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Abstract: Stability is a fundamental property of a solution of a system of dif-
ferential equations. If the system is represented by a linear differential operator,
then the negativity of its spectrum implies the stability of the solution, where the
negativity of the spectrum means the absence of eigenvalues with positive real
part. The analysis of the spectrum of the corresponding linear operator is used
in the study of the stability of the pipe flow. Unlike in other systems, there are
no analytic formulas for the eigenvalues of the linearized operator characterizing
the stability of the pipe flow and the eigenvalues must be computed numerically.
Numerous numerical experiments indicate that the spectrum of the operator is
negative, and the pipe flow is stable for all values of the Reynolds number. How-
ever, no formal proof of this statement exists so far. The objective of the thesis is
to compare the spectrum of the operator characterizing the stability of the pipe
flow with the spectrum of a simpler operator for which the analytic formulas for
the eigenvalues are available. The comparison of the spectra of the operators
might be helpful in formulating conjectures concerning the analytical estimates
for the operator characterizing the stability of the pipe flow.

Keywords: flow stability, spectrum of differential operator, numerical solution

ii
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Abstrakt: Jednou ze základńıch vlastnost́ı řešeńı soustavy diferenciálńıch rovnic
je stabilita. Pokud je soustava reprezentovaná lineárńım diferenciálńım operáto-
rem, pak negativita př́ıslušného spektra (absence vlastńıch č́ısel s kladnou reálnou
část́ı) implikuje stabilitu daného řešeńı. Tato analýza spektra se využ́ıvá při
studiu stability prouděńı ve válcové trubici. Pro vlastńı č́ısla linearizovaného
operátoru charakterizuj́ıćıho stabilitu prouděńı v trubici ale neexistuj́ı analyt-
ické vztahy a vlastńı č́ısla muśı být poč́ıtána numericky. Numerické výpočty
sice naznačuj́ı, že vlastńı č́ısla jsou záporná a prouděńı v trubici je stabilńı pro
všechny hodnoty Reynoldsova č́ısla, formálńı d̊ukaz tohoto tvrzeńı nám ale stále
uniká. Ćılem bakalářské práce je porovnat spektrum operátoru charakterizuj́ıćı
stabilitu prouděńı v trubici se spektrem jednodušš́ıho operátoru, pro jehož vlastńı
č́ısla máme analytické vztahy. Toto srovnáńı může být nápomocno při formulaci
hypotézy pro analytický odhad spektra charakterizuj́ıćıho prouděńı v trubici.
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Introduction

The basic and fundamental property of a solution of a system of differential
equations is its stability under small perturbations of initial conditions. The
stability determines the behavior of the solutions and indicates, for example,
whether the given solution can be observed in experiment or not. If the system
of differential equations is represented by a linear differential operator, then its
spectrum characterizes the stability of the solution. This means that the whole
stability problem reduces to the computation of the spectrum of the operator.

The question of the stability is very important while studying, for example,
a flow of fluid. In 1883 Reynolds conducted a series of experiments in which he
studied the stability of a flow in a pipe. He observed the transition from laminar
to turbulent flow, and conjectured that the transition is related to the loss of
stability of the laminar flow. This experiment encouraged many mathematicians
to analyze this problem theoretically.

The stability of various flows was studied and various results were achieved.
Plane Poiseuille flow, that is the motion of a fluid between two infinitely long
parallel plates, has been studied, for example, in [1]. The numerical computations
show the existence of a critical of value of the Reynolds number Rc

Rc = 5772.22,

for which the flow becomes unstable.
However, most of flows are less accessible to mathematical analysis in the sense

that there are no analytic formulas or suitable estimates for the spectrum of the
corresponding operator. This is especially true for the flow in a circular pipe
(Hagen-Poiseuille flow, see: Yudovich: Eleven great problems of mathematical
hydrodynamics [2]). The numerical results indicate that Hagen–Poiseuille pipe
flow is probably stable for every value of the Reynolds number although no formal
proof exists so far and the question of the stability of the Hagen–Poiseuille pipe
flow remains unclear.

The subject of the thesis is to conduct numerical experiments and compute
the eigenvalues of the operator that characterizes the stability of the pipe flow.
Using the numerical results, we will show some basic properties of the spectrum
of the operator characterizing the stability of the pipe flow (especially the absence
of eigenvalues with positive real part). Further, we will compare the numerically
found spectrum with the spectrum of a simpler, but similar operator for which
analytic formulas for the eigenvalues are available. The simpler operator will be
the Stokes operator. The comparison of the spectra might be helpful in formu-
lating conjectures concerning the analytical estimates for the eigenvalues of the
full operator characterizing the stability of the pipe flow.

The thesis is organized as follows. The asymptotic linear stability is defined
in chapter 1. In chapter 2 we find the laminar solution for the Hagen–Poiseuille
pipe flow. Further, we find the operator L that describes the stability of Ha-
gen–Poiseuille pipe flow and introduce a similar, but simpler operator (Stokes
operator A) for which the analytic formulas for the eigenvalues are available.
We summarize the derivation of these analytic formulas (see [3]). This analytic
derivation seems to be an impossible task for the full operator L.
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In chapter 4 we describe the numerical methods used in the computation of
the spectrum of the operator L (we use adopted Matlab algorithm, see Appendix
A and [4]). In the last chapter we present the numerical results concerning the
spectra of the operators. We discuss the convergence of the numerical approxi-
mation of the spectrum σ(L) of the operator L and the spectrum of the Stokes
operator σ(A). Further, we plot the eigenvalues of the operator L with the largest
real part max

λi∈σ(L)
<(λi) as a function of the Reynolds number Re. This is the key

piece of information from the perspective of the stability analysis. If max
λi∈σ(L)

<(λi)

is positive, then the flow is unstable, otherwise it is stable. We compare plots
of max

λi∈σ(L)
<(λi) as a function of Re for the full operator L and max

λi∈σ(A)
<(λi) as a

function of Re for the Stokes operator, and we comment on the behavior of these
functions.
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1. Asymptotic linear stability of
the solution of differential
equations

Let us consider a linear system of ordinary differential equations

dx

dt
= Ax. (1.1)

where A is a linear operator. In this section we will introduce a concept of
the linear stability and asymptotic linear stability of the solution of (1.1) and
formulate requirements that ensure the assymptotic linear stability. For more
information see [5]

Definition 1. The solution x = Φ(t) of (1.1) is stable if every solution ψ(t) of
(1.1) which starts sufficiently close to Φ(t) at t = 0 remains close to Φ(t) for all
future time t. The solution Φ(t) is unstable if there exists at least one solution
ψ(t) of (1.1) which starts near Φ(t) at t = 0 but which does not remain close to
Φ(t) for all future time. More precisely, the solution Φ(t) is stable if for every
ε > 0 there exists δ = δ(ε) such that

||ψ(t)− Φ(t)|| < ε if ||ψ(0)− Φ(0)|| < δ(ε)

for every solution ψ(t) of (1.1).

Definition 2. A solution x = Φ(t) of (1.1) is asymptotically stable if it is stable,
and if every solution ψ(t) which starts sufficiently close to Φ(t) must approach
Φ(t) as t approaches infinity.

Theorem 1. Every solution x = Φ(t) of (1.1) is asymptotically stable if all the
eigenvalues of A have negative real part.

Proof. Let x = Φ(t) be our solution of (1.1). We will first prove that if x(t) ≡ 0
is asymptotically stable, then x = Φ(t) is also asymptotically stable.

Let ψ(t) by any solution of (1.1). Let us define z(t) = Φ(t) − ψ(t). It is
evident that z(t) is also a solution of (1.1). Therefore, if the solution x(t) ≡ 0 is
stable, then z(t) = Φ(t)− ψ(t) will always remain small if z(0) = Φ(0)− ψ(0) is
sufficiently small. Moreover, if z(t) tends to 0 as t approaches infinity, then ψ(t)
approaches Φ(t) as t approaches infinity.

Now, let us prove that if all the eigenvalues if A have negative real part
then x(t) ≡ 0 is asymptotically stable. Any solution of (1.1) is of the form:
ψ(t) = eAtψ(0). Let us denote the ij element of the matrix eAt as Ψij. Then

ψi(t) =
n∑
j=1

Ψij(t)ψ
0
j .

Let α1 be the larges of the real parts of the eigenvalues. Each element of Ψij(t)
is a linear combination of the of functions of the form q(t)eλt, where q(t) is
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a polynomial and λ is an eigenvalue. Then we can find a number K and α,
α1 < α < 0 such that

∣∣ψi(t)∣∣ ≤ n∑
j=1

Keαt
∣∣∣ψ0

j

∣∣∣ = Keαt
n∑
j=1

∣∣∣ψ0
j

∣∣∣.
Hence

‖ψ(t)‖ = max{
∣∣ψ(t)

∣∣, ..., ψn(t)} ≤ nKeαt‖ψ(0)‖.

In the following example we will study the spectrum of the Laplace operator.
Later on we will study more complicated systems which contain Laplacian.

1.1 Example: Stability of the trivial solution of

the heat equation

Let us consider the heat equation in Ω × R+ = (0, a) × (0, b) × R+ ⊂ R2 × R+

with the Dirichlet boundary condition.

∂φ

∂t
= ∆φ,

φ(0, y) = φ(a, y) = 0 ∀y ∈ (0, b), (1.2)

φ(x, 0) = φ(x, b) = 0 ∀x ∈ (0, a).

We immediately see that φ ≡ 0 satisfies (1.2).
Let us investigate the stability of the previous solution. Let us denote the

trivial solution of (1.2) as φ̃ , φ̃ ≡ 0 , and a perturbation of the solution as φ.
The sum of these two functions satisfies:

∂(φ+ φ̃)

∂t
= ∆φ,

(φ+ φ̃)(0, y) = (φ+ φ̃)(a, y) = 0 ∀y ∈ (0, b), (1.3)

(φ+ φ̃)(x, 0) = (φ+ φ̃)(x, b) = 0 ∀x ∈ (0, a).

Since φ̃ satisfies (1.2), system (1.3) reduces to:

∂φ

∂t
= ∆φ,

φ(0, y) = φ(a, y) = 0 ∀y ∈ (0, b), (1.4)

φ(x, 0) = φ(x, b) = 0 ∀x ∈ (0, a).

The trivial solution φ̃ is asymptotically stable if φ vanishes as t tends to
infinity. The problem reduces to finding the eigenvalues λ and the eigenfunctions
φmn of the Laplace operator that satisfy the boundary conditions:

∆φmn = λmnφmn,

φmn(0, y) = φmn(a, y) = 0 ∀y ∈ (0, b), (1.5)

φmn(x, 0) = φmn(x, b) = 0 ∀x ∈ (0, a).
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We can easily show by using Green’s theorem that the eigenvalues are negative.
We take the foregoing partial differential equation, multiply it by φnm and inte-
grate it over the volume Ω. We get∫

Ω

∆φmnφmn dV =

∫
Ω

λmnφmnφmn dV.

By using Green’s theorem we get:∫
Ω

∆φmnφmn dV =

∫
δΩ

φmn∇φmn dS −
∫
Ω

∇φmn · ∇φmn dV.

The first term of the left-hand side of the previous equation vanishes due to the
boundary condition. Thus

λmn

∫
Ω

φmnφmn dV = −
∫
Ω

∇φmn · ∇φmn dV.

We can see that λmn is negative.
The system (1.5) can be solved by separation of variables. The resulting

eigenfunctions are equal to

φmn = sin

(
π

a
mx

)
sin

(
π

b
ny

)
for m,n ∈ N,

and the corresponding eigenvalues are

λnm = −π2

(
m2

a2
+
n2

b2

)
.

The general solution of (1.4) can be written as:

φ(x, y, t) =
∞∑

m,n=1

amn(t)φmn(x, y),

where

φnm(x, y) = sin

(
π

a
mx

)
sin

(
π

b
ny

)
,

and
damn
dt

= λmnamn,

amn(t) = Cmne
λnmt,

where Cmn is a constant. The limit of φ as t approaches infinity is zero as we
expected. This means that the trivial solution of the heat equation is stable.
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2. Pipe flow

In this chapter we study a flow in a pipe. We formulate the Navier-Stokes equa-
tions and find the laminar solution. Further, we find evolution equations for a
perturbed system.

Figure 2.1: Pipe

2.1 Navier-Stokes equations and the laminar so-

lution

Let us consider a flow in an infinite circular pipe of radius R, see figure 2.1, that
is driven by the prescribed pressure gradient ∂p

∂z
. Furthermore, we consider a

fluid to be incompressible and Newtonian. The density of the fluid is ρ and the
dynamics viscosity is µ. The flow in the pipe is described by the system of partial
differential equations known as the Navier-Stokes equations:

∇ · v = 0,

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p+ µ∆v, (2.1)

v|∂Ω = 0,

where ∂Ω = {x ∈ R3 : x = (r, ϕ, z), r = R, ϕ ∈ (0, 2π), z ∈ (−∞,∞)}. The last
equation represents the non-slip condition on the boundary.

Let us assume the flow to be steady and the velocity v depends only on
the radial distance r, and pressure p depends only on position z. Therefore, in
cylindrical coordinates we get

∂v

∂t
= 0,

u = 0, v = 0, w = w(r),
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p = p(z),

where u, v, w are x−, y−, z− component of v, respectively. Then we can easily
solve the system (2.1). Since

(v · ∇)v = 0,

and

∆v =
1

r

∂

∂r

(
r
∂w

∂r

)
ez,

there is only one nontrivial equation:

1

µ

∂p

∂z
=

1

r

∂

∂r

(
r
∂w

∂r

)
. (2.2)

The solution of the preceding ordinary differential equation is:

w =
1

4µ

∂p

∂z
r2 + C1 ln r + C2. (2.3)

where C1 and C2 are some constants. Considering the boundary condition (2.3),
we obtain the final formula for the laminar solution of the flow in the pipe:

w = − 1

4µ

∂p

∂z
(R2 − r2). (2.4)

2.2 Evolution equation for a perturbation

Let us consider the laminar flow with a small perturbation. The total velocity
vtot is equal to the sum of the velocity of laminar flow ṽ and the velocity of the
perturbation v:

vtot = ṽ + v.

We would like to study properties of the perturbation. At first we would like
to find the evolution equations for the perturbation v. We begin by formulating
the Navier-Stokes equations for the full system:

∇ · (ṽ + v) = 0,

ρ

[
∂(ṽ + v)

∂t
+ ((ṽ + v) · ∇)(ṽ + v)

]
= −∇(p̃+ p) + µ∆(ṽ + v), (2.5)

(ṽ + v)|∂Ω = 0.

We already know that ṽ is the laminar solution of the Navier-Stokes equations.
Subtracting (2.1) from (2.5), we get

∇ · v = 0,

ρ

[
∂v

∂t
+ (v · ∇)ṽ + (ṽ · ∇)v + (v ·∇)v

]
= −∇p+ µ∆v, (2.6)

v|∂Ω = 0.

If we consider the perturbation to be infinitesimal we can neglect the nonlinear
term (v · ∇)v. Hence

∇ · v = 0,

ρ

[
∂v

∂t
+ (v · ∇)ṽ + (ṽ · ∇)v

]
= −∇p+ µ∆v, (2.7)

v|∂Ω = 0.
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2.2.1 Evolution equation without convective terms

So far, we found the evolution equations for the perturbation. We can see that
the convective terms (v · ∇)ṽ and (ṽ · ∇)v in (2.7) complicate the solution. Let
us examine the behavior of the system if we omit these terms. Hence

ρ
∂v

∂t
= −∇p+ µ∆v. (2.8)

Multiplying both sides of the foregoing equation by v and integrating over volume
Ω we obtain ∫

Ω

ρ
∂v

∂t
· v dV = −

∫
Ω

∇p · v dV +

∫
Ω

µ∆v · v dV. (2.9)

The left-hand side of the foregoing equation can be written as the time derivative
of the kinetic energy:∫

Ω

ρ
∂v

∂t
· v dV =

d

dt

1

2
ρ

∫
Ω

v2 dV =
dE

dt
. (2.10)

The first term of the right-hand side of (2.9) can be modified by using Green’s
theorem and obviously is equal to zero because of the zero-divergence condition
and the boundary condition.

−
∫
Ω

∇p · v dV =

∫
Ω

p∇ · v dV −
∫
∂Ω

pv · n dS = 0 (2.11)

The second term of right-hand side of the equation (2.9) can be written as∫
Ω

∆v · v dV =

∫
∂Ω

∇v v · n dS −
∫
Ω

∇v : ∇v dV = −
∫
Ω

∇v : ∇v dV, (2.12)

where ∇v : ∇v denotes Tr(∇v∇vT ). Thus from (2.9) we get

dE

dt
= −µ

∫
Ω

∇v : ∇v dV = −µ
∫
Ω

|∇v|2 dV ≤ 0. (2.13)

This means that if we omit the convective terms (v · ∇)ṽ + (ṽ · ∇)v the
perturbation will be subdued. This was a physical approach. Later we will
proceed more mathematically. We will show that the eigenvalues of the Stokes
operator A, which characterize the system (2.8), are negative. This means that
v tends to zero as t approaches infinity.

2.3 Non-dimensional Navier-Stokes and Stokes

operator

Now we will non-dimensionalize the Navier-Stokes equations through choice of
appropriate scales. The non-dimensional Navier-Stokes equations seems to be
more convenient in our computation. We set

r∗ =
r

L
, v∗ =

v

V
, t∗ =

t

L/V
, p∗ =

p

ρV 2
, Re =

LV ρ

µ
,

9



where L is the characteristic length (the radius of the pipe) and V is the char-
acteristic velocity (velocity at the centreline). Using non-dimensional quantities
(2.1) is of the form

∇ · v∗ = 0,
∂v∗

∂t
+ (v∗ ·∇)v∗ = −∇p∗ +

1

Re
∆v∗, (2.14)

v∗|∂Ω = 0.

From now on, we will work only with the non-dimensional Navier-Stokes equa-
tions and non-dimensional variables. For simplicity of notation we will denote the
non-dimensional velocity, length, time and pressure as v, r, t and p respectively.

Let us return to the evolution equations for the perturbation. After scaling
they take the following form

∇ · v = 0,
∂v

∂t
= −∇p+

1

Re
∆v − (v · ∇)ṽ − (ṽ · ∇)v, (2.15)

v|∂Ω = 0.

10



3. Spectrum of the Stokes
operator

In this chapter we investigate the evolution equations for the perturbation without
the convective terms (v ·∇)ṽ and (ṽ ·∇)v. We study the corresponding eigenvalue
problem and find the analytic formulas for the eigenvalues and eigenfunctions of
the Stokes operator A.

The corresponding eigenvalue problem is of the form:

∇ · v = 0, (3.1)

λv = −∇p+
1

Re
∆v, (3.2)

v|∂Ω = 0, (3.3)

where λ is the eigenvalue and v and p are the corresponding eigenfunctions.
Further, we prescribe periodic boundary condition in z direction.

v(r, ϕ, z, t) = v(r, ϕ, z + 2l, t) (3.4)

3.1 Properties of the spectrum

Firstly, we show that the eigenvalues are negative. We proceed as above. We
take the equation (3.2) multiple it by v and integrate it over a volume Ω∫

Ω

λv · v dV = −
∫
Ω

∇p · v dV +
1

Re

∫
Ω

∆v · v dV. (3.5)

Hence

λ

∫
Ω

|v|2 dV = − 1

Re

∫
Ω

|∇v|2 dV. (3.6)

It follows that all the eigenvalues are real and negative.
The preceding eigenvalue problem can be expressed by the Stokes operator

A see [6]. It can be shown that the Stokes operator is self-adjoint and that the
inverse of the Stokes operator is a compact operator. For the proof see [6]. It
follows that

• 0 < λ1 ≤ · · · ≤ λj,

• limj→∞ λj =∞,

• Corresponding eigenfunctions form an orthonormal basis.

3.2 Analytic formulas for the eigenvalues and

eigenfunctions

Now we summarize the derivation of the analytic formulas for the eigenvalues of
the operator A, performed in [3].
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Let us consider the cylindrical domain Ω defined by

Ω = {x ∈ R3 : x = (r, ϕ, z), r ∈ (0, 1), ϕ ∈ (0, 2π), z ∈ (−l, l)}, (3.7)

with the boundary ∂Ω compounded of two domains ∂Ω = ∂Ω1 ∪ ∂Ω2 defined by

∂Ω1 = {x ∈ R3 : x = (r, ϕ, z), r ∈ (0, 1), ϕ ∈ (0, 2π), z ∈ {−l, l}}, (3.8)

∂Ω2 = {x ∈ R3 : x = (r, ϕ, z), r = 1, ϕ ∈ (0, 2π), z ∈ (−l, l)}. (3.9)

Ω represents the pipe of the radius R = 1 and length 2l. ∂Ω1 and ∂Ω2 represent
the base area and the lateral area, respectively.

Let us summarize the equations that describe our eigenvalue problem

∇ · v = 0, (3.10)

λv = −∇p+
1

Re
∆v, (3.11)

v|∂Ω = 0. (3.12)

where v and p are the unknown functions velocity and pressure, respectively, and
λ is the eigenvalue corresponding to v and p. Let us define new variables as

ṽ = − v

Re
, p̃ = −p, λ̃ = −Reλ. (3.13)

Then our eigenvalue problem takes a simpler form.

∇ · ṽ = 0, (3.14)

λ̃ṽ = ∇p̃−∆ṽ, (3.15)

ṽ|∂Ω = 0. (3.16)

If we apply the divergence operator on (3.15) we get:

∆p̃ = 0. (3.17)

In cylindrical coordinates equations (3.14), (3.15) and (3.16) take the form:

ũr + r−1ṽϕ + w̃z + r−1ũ = 0, (3.18)

∆ũ− 2

r2
ṽϕ − r−2ũ+ λ̃ũ = p̃r, (3.19)

∆ṽ +
2

r2
ũϕ − r−2ṽ + λ̃ṽ = r−1p̃ϕ, (3.20)

∆w̃ + λ̃w̃ = p̃z, (3.21)

∆p̃ = 0, (3.22)

where ũ, ṽ and w̃ are r−, ϕ− and z− component of ṽ, respectively. Because of
the symmetries of our problem we can write the solution as a superposition of
functions in the following form:

ṽkn = ṽkn(r) exp(inϕ+ ikz), (3.23)

p̃kn = p̃kn(r) exp(inϕ+ ikz). (3.24)
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where n ∈ Z, k = π
l
m, m ∈ Z.

Introducing (3.23) and (3.24) into the foregoing equations we get:

ũ′kn(r) + r−1ũkn(r) + ikw̃kn + inr−1ṽkn = 0. (3.25)

ũ′′kn(r) + r−1ũ′kn(r) +

(
λ̃− k2 − n2 + 1

r2

)
ũkn(r)− 2in

r2
ṽkn(r) = p̃′kn, (3.26)

ṽ′′kn(r) + r−1ṽ′kn(r) +

(
λ̃− k2 − n2 + 1

r2

)
ṽkn(r) +

2in

r2
ũkn(r) =

in

r
p̃kn, (3.27)

w̃′′kn(r) + r−1w̃′kn(r) +

(
λ̃− k2 − n2

r2

)
w̃kn(r) = ikp̃kn, (3.28)

p̃′′kn(r) +
1

r
p̃′kn(r)−

(
k2 +

n2

r2

)
p̃kn(r) = 0. (3.29)

We will study the solution of this system for the different cases of n and k.
The first important and the simplest case is n = k = 0. Then the formula

(3.29) reduces to a simple ordinary differential equation called the Euler equation

p̃′′00(r) +
1

r
p̃′00(r) = 0, (3.30)

with the general solution

p̃00 = C1 + C2 ln r C1, C2 ∈ R. (3.31)

We set C2 = 0 due to the boundedness of p̃00. Equations (3.26) - (3.28) reduce to

ũ′′00(r) + r−1ũ′00(r) +

(
λ̃− 1

r2

)
ũ00(r) = 0, (3.32)

ṽ′′00(r) + r−1ṽ′00(r) +

(
λ̃− 1

r2

)
ṽ00(r) = 0, (3.33)

w̃′′00(r) + r−1w̃′00(r) + λ̃w̃00(r) = 0, (3.34)

with a general solution

ũλ00(r) = arJ1(
√
λ̃r) + brY1(

√
λ̃r), (3.35)

ṽλ00(r) = aϕJ1(
√
λ̃r) + bϕY1(

√
λ̃r), (3.36)

w̃λ00(r) = azJ0(
√
λ̃r) + bzY0(

√
λ̃r), (3.37)

where Jn denotes the Bessel function of order n and Yn denotes the Weber function
of order n. The terms corresponding to Weber function vanish because of the
required boundedness in r = 0. At this point we confront the problem of satisfying
the boundary condition ṽ = 0 for r = 1. We have two choices how to fulfill the
boundary condition. In the first case we set az 6= 0 and ar = aϕ = 0. The values
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of λ̃ are restricted and
√
λ̃ runs through all roots of the Bessel function of the

zero order J0 and the corresponding eigenfunctions are equal to

ṽλ00 = az

 0
0

J0(
√
λ̃r)

 ,

In the second case we set az = 0 and aϕ 6= 0, ar 6= 0 and
√
λ̃ runs through all

roots of the Bessel function of the first order J1. Moreover ar = 0 because of the
zero-divergence condition (3.18). Hence the corresponding eigenfunctions are

ṽλ00 = aϕ

 0

J1(
√
λ̃r)

0

 .

Analogously, similar formulas are obtained for the other cases. In the following
section we just summarize the results of the derivation. For more information see
[3].

In the case n 6= 0, k = 0
√
λ̃ runs either through all roots of Jn and the

corresponding eigenfunctions are

ṽλ0n = az exp(inϕ)

 0
0

Jn(
√
λ̃r)

 ,

or through all roots of Jn+1 if n > 0 and through Jn−1 if n < 0. Corresponding
eigenfunctions are equal to

ṽλ0n = c1 exp(inϕ)


|n|r|n|−1

λ̃
+ |n|Jn(

√
λ̃r)

rλ̃Jn(
√
λ̃

)

in

(
r|n|−1

λ̃
− (Jn−1(

√
λ̃)−Jn+1(

√
λ̃))

2|n|
√
λ̃Jn(
√
λ̃)

)
0

 .

In the case k 6= 0 and n = 0
√
λ̃ is either equal to all roots of J1 with correspond-

ing eigenfunctions

ṽλk0 = aϕ exp(ikz)

 0

J1(
√
λ̃− k2r)
0

 ,

or equal to all roots of the following equation

I0(|k|)J2(
√
λ̃− k2) + I2(|k|)J0(

√
λ̃− k2) = 0, (3.38)

with corresponding eigenfunctions

ṽλk0 = c1
exp(ikz)

λ̃


ik

(
I0(|k|r)− I0(|k|)J0(

√
λ̃−k2r)

J0(
√
λ̃−k2)

)
|k|
(
I1(|k|r)− I1(|k|)J1(

√
λ̃−k2r)

J1(
√
λ̃−k2)

)
0

 .
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In the most general case n 6= 0 and k 6= 0 the values of λ̃ are equal to the
roots of the following determinant:

∣∣∣∣∣∣∣∣
√
λ̃− k2Jn(

√
λ̃− k2)r 0 2|k|In(|k|)

−Jn−1(
√
λ̃− k2) Jn−1(

√
λ̃− k2) In−1(|k|)

0 Jn+1

√
λ̃− k2) In+1(|k|)

∣∣∣∣∣∣∣∣ = 0. (3.39)

The corresponding eigefunctions are equal to

ṽλkn = exp
(
i(kz + nϕ)

)ũλknṽλkn
w̃λkn

 ,

where

ũλkn =
ar
r
Jn(

√
λ̃− k2r) +

ikaz

λ̃− k2
Jn−1(

√
λ̃− k2r) + (3.40)

+
c1|k|
2λ̃

(In−1(|k|r) + In+1(|k|r)),

ṽλkn = − kaz

λ̃− k2
Jn−1(

√
λ̃− k2r) +

c1i|k|
2λ̃

(In−1(|k|r)− In+1(|k|r)) + (3.41)

+
ari(λ̃− k2)

2n
(Jn−1(

√
λ̃− k2r)− Jn+1(

√
λ̃− k2r)),

w̃λkn = azJn(

√
λ̃− k2r) +

c1ik

λ̃
In(|k|r). (3.42)

Finally, the eigenvalues of the Stokes system are equal to

λ = − λ̃

Re
. (3.43)

The asymptotic behavior is Re−1 and the eigenvalues λ are negative for all
Re > 0.
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4. Numerical computation of the
spectrum of the full operator

The computation of the spectrum of the full system is based on the approximation
of the eigenfunctions by functions from a finite space, and projecting over a
suitable space of functions. At first, we introduce some numerical techniques, see
[4].

4.1 Chebyshev polynomials

In our numerical computation we will utilize a special family of orthogonal poly-
nomials called Chebyshev polynomials. We will use these polynomials in a con-
struction of differentiation matrices, where we will use a grid made of so-called
Chebyshev points. We will also take advantage of these points in Gauss-Lobatto
integration formulas and finally we will use Chebyshev polynomials to construct
a suitable finite basis for approximating the eigenfunctions of the operator that
characterize the stability of the pipe flow.

There are various equivalent options how to define Chebyshev’s polynomials.
The first possibility is based on the following ordinary differential equation:

(1− x2)y′′ − xy′ + n2y = 0, (4.1)

where the Chebyshev polynomials of degree n, Tn, arise as the solution of (4.1)
for n ∈ N0. The second explicit and very useful definition is

Tn = cos(n arccosx), (4.2)

which holds for |x| ≤ 1.
At this moment, the point to note is that Chebyshev polynomials have many

useful properties. We will mention just those that will be used in our later
numerical computation. One of the most important property is the orthogonality.
We say that Chebyshev polynomials are orthogonal with respect to the weight
function w

w =
1√

1− x2
(4.3)

More precisely for m,n ∈ N0, m 6= n∫ 1

−1
Tm(x)Tn(x)

dx√
1− x2

= 0. (4.4)

Second useful property is a parity. In general, Chebyshev polynomials are
either even or odd, depending on the degree n

Tn(−x) = (−1)nTn(x). (4.5)

We introduce two crucial set of points. The first set consists of the roots of
Chebyshev polynomials on [−1, 1]

ξ
(n)
k = − cos

(
2k − 1

2n
π

)
, (4.6)
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Figure 4.1: Chebyshev polynomials for 0 ≤ n ≤ 4

where 1 ≤ k ≤ n. The second set consists of the roots of the first derivative of
Chebyshev polynomials and boundary points

η
(n)
k = − cos

(
kπ

n

)
, (4.7)

where 0 ≤ k ≤ n. We will use these points in constructions of a grid for the
differentiation matrices as well as in the Gauss-Lobatto integration formulas.
More information about Chebyshev polynomials is discussed in [7] or [8].

4.2 Differentiation matrices

In many numerical computations we are facing the problem of computing an
approximation of the first or higher derivative of a function f in fixed points
{xj}nj=1. One way how to accomplish this is an application of differentiation
matrices. Let us suppose we know the values f(xj), j = 1, ..., n. There are
various ways how to construct these matrices.

The first method is based on finite-differences. Let us have a uniform grid
{xj}nj=1. Then the first derivative of f in xj can be approximated as followings

f ′(xj) ≈
f(xj+1)− f(xj−1)

2h
. (4.8)

Further let us assume that the problem is periodic with period n. This means
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that f(xn+1) = f(x1). This pattern leads to following differentiation matrix:

f ′(x1)

...

f ′(xn)


≈ h−1



0 1
2

1
2

−1
2

0
. . .
. . .
. . . 0 1

2
1
2

−1
2

0





f(x1)

...

f(xn)


. (4.9)

One can verify that the method will converge at the rate O(h2) for sufficiently
smooth function f . Higher accuracy can be accomplished by using more terms
of the Taylor expansions (4.8).

The second method is based on interpolating of f by a trigonometric or al-
gebraic polynomial function. This might lead to spectral accuracy for analytic
functions. It means that∣∣wj − f ′(xj)∣∣ = O(hm) ∀m ≥ 0.

where wj is our approximation of the derivative of f in xj.
Let us investigate the following situation. If we work on the interval

(−∞,+∞) or if we have periodic function f , then the approximation based on
trigonometric polynomials and uniform grid of {xj}nj=1 leads to spectral accu-
racy, provided f is smooth. Let us assume that we have a non-periodic function
f defined on interval [−1, 1] . The question is how to choose the set of points
{xj}. It turns out that the uniform grid is not a good idea. This leads to Runge
phenomenon and causes oscillations at the edges of the interval. This leads to
a catastrophic loss of precision. It turns out that the density of the grid points
should be asymptotically proportional to

ρ ∼ n

π
√

1− x2
.

This dependence is more discussed in [9]. Chebyshev points {η(n)k }nk=0 defined as
above satisfy the requirement and it is convenient to choose the set of points as:
{xj} = {η(n)k }nk=0. We can use these points to find interpolation polynomial ϕ of
degree less or equal then n which satisfies ϕ(xj) = f(xj) ∀j = 0, ..., n and set
f ′(xj) ≈ ϕ′(xj) ∀j = 0, ..., n. It can be shown that if f is analytic in [−1, 1] then
this scheme leads to spectral precision. For the derivation of the corresponding
differential matrix see [9]. Chebyshev differentiation matrix is equal to :

DN =



2n2+1
6

2 (−1)j
1−xj · · · 2 (−1)j

1−xj
(−1)n

2

−1
2
(−1)i
1−xi − xj

2(1−x2j )
(−1)i+j

xi−xj
1
2
(−1)n+i

1+xi

...
. . .

...

−1
2
(−1)i
1−xi

(−1)i+j

xi−xj − xj
2(1−x2j )

1
2
(−1)n+i

1+xi

− (−1)n
2

−2(−1)n+j

1+xj
· · · −2(−1)n+j

1+xj
−2n2+1

6


.
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The following code is an example of a function that takes the number of grid
points and returns the Chebyshev differentiation matrix DN . The same function
for a construction of differentiation matrix is used in algorithm A (see Apendix -
Matlab code rows 34-39).

1 function [D,x] = cheb(N)
2 if N==0, D=0; x=1; return, end
3 x = cos(pi*(0:N)/N)';
4 c = [2; ones(N-1,1); 2].*(-1).ˆ(0:N)';
5 X = repmat(x,1,N+1);
6 dX = X-X';
7 D = (c*(1./c)')./(dX+(eye(N+1)));
8 D = D - diag(sum(D'));

4.2.1 Special form of differentiation matrices for bound-
ary value problem and radial variable r

The differentiation matrix for the second derivative is equal to the square of DN .
In our numerical computation we will deal with a problem of computing the first
and the second derivative of the function f satisfying the boundary condition
f(±1) = 0. Since the values of the function f at the boundary are f(x0) =
f(xn) = 0, the first and the last column of Dn posses no relevant information.
We can also ignore the values f ′(x0) and f ′(xn) since their values are no more
relevant. Therefore, the differentiation matrix can be reduced by removing its
first and last rows and columns.

In our computation we will work in cylindrical coordinates where r ∈ [0, 1]
instead of [−1, 1]. If take r ∈ [−1, 1] instead of r ∈ [0, 1] we can divide the
differentiation matrix into four parts

DN =

(
DN1 DN2

DN3 DN4

)
. (4.10)

The parts DN3 and DN4 can both be discarded because we don’t need to know
the values of f ′(r) for r ≤ 0. In our following computation the functions we will
differentiate will be either odd or even. For even functions the differentiation
matrix is:

DE = DN1 +DN2 (4.11)

for odd functions:
DO = DN1 −DN2 (4.12)

For the computation of the odd and even differentiation matrices DE and DO
see Appendix - Matlab code rows 43-48.

4.3 Numerical integration

In the computation of the spectrum of the operator characterizing the stability
of the pipe flow we will have to integrate some functions. The only way how to
accomplish this will be the application of numerical method.
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Newton-Cotes quadrature formulas provide us the simplest tool how to nu-
merically evaluate a general function. The idea is to take a uniform grid of points
{xi}, construct the Lagrange interpolant ϕ, where f(xi) = ϕ(xi) ∀ i = 0, . . . , n,
and integrate ϕ analytically. In particular:∫ b

a

f(x)dx ≈
∫ b

a

ϕ(x)dx =

∫ b

a

n∑
i=0

f(xi)
∏
j 6=i

x− xj
xi − xj

dx =

=
n∑
i=0

∫ b

a

f(xi)
∏
j 6=i

x− xj
xi − xj

dx =
n∑
i=0

wif(xi)

. (4.13)

It can be shown that the formula∫ b

a

p(x)dx =
n∑
i=0

wip(xi), (4.14)

is true for any polynomial p of degree less or equal n. Thus, we say that the
quadrature has order n.

Higher order can be obtained by using different grid of points {xi}. The
idea is to take the grid points obtained as a the roots of the first derivative
of Chebyshev polynomials η

(n)
k defined as above. This leads to Gauss-Lobatto

integration formula: ∫ 1

−1
f(x)w dx ≈

n∑
i=0

f(η
(n)
i )w̃i. (4.15)

where w̃i are weights of the quadrature and w is the weight function corresponding
to the Chebyshev polynomials (w = 1√

1−x2 ). It can be shown that the Gauss-

Lobbato integration quadrature (4.15) has order 2n − 1. For more information
see [7]. The weights w̃i are equal to:

w̃i =

{
π
2n

if i = 0 or i = n,
π
n

if 1 ≤ i ≤ n− 1.
(4.16)

For derivation see, for example, [7]. Later, we will deal with the fact of integrating
f over the interval (0, 1). This will be possible because of the evenness of the
integrand. ∫ 1

0

f(x)w dx =
1

2

∫ 1

−1
f(x)w dx. (4.17)

If n is odd we can use only half elements in (4.15). In the algorithm the numerical
integration is carried out by a matrix multiplication (see Appendix - Matlab
algorithm rows 68-69).

4.4 The eigenvalue problem for the perturba-

tion

The nondimensional Navier-Stokes equations for the perturbation are

∇ · v = 0,
∂v

∂t
= −∇p+

1

Re
∆v − (v · ∇)ṽ − (ṽ · ∇)v, (4.18)

v|∂Ω = 0,
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where v and p are non-dimensional velocity and pressure of the perturbation,
ṽ is the velocity of the laminar flow and Re is the Reynolds number. Because
of the symmetry of the problem we will work in cylindrical coordinates. Let us
denote the r-, ϕ- and z- components of the velocity v (perturbation) as u, v, w,
respectively, and the r-, ϕ- and z- components of the velocity ṽ (laminar solution)
as ũ, ṽ, w̃, respectively.

In cylindrical coordinates (4.18) takes the form:

ur + r−1vϕ + wz + r−1u = 0, (4.19)

ut + w̃uz = −pr +Re−1(urr + r−1ur + r−2uϕϕ + uzz − 2r−2vϕ − r−2u),

(4.20)

vt + w̃vz = −r−1pϕ +Re−1(vrr + r−1vr + r−2vϕϕ + vzz + 2r−2uϕ − r−2v),
(4.21)

wt + uw̃r + w̃wz = −pz +Re−1(wrr + r−1wr + r−2wϕϕ + wzz).
(4.22)

The boundary condition takes the form:

u = v = w = 0 for r = 1. (4.23)

Let the origin pressure be p̃ = −4Re−1z + K, where K is a constant. Since
ṽ is the laminar solution of the flow in a pipe we have ũ = 0, ṽ = 0, w̃ =
−p̃z Re4 (1− r2) = 1− r2. Due to periodicity we can write:

v(r, ϕ, z, t) = ei(nϕ+kz)v(r, t), (4.24)

p(r, ϕ, z, t) = ei(nϕ+kz)p(r, t). (4.25)

where n ∈ Z, k = π
l
m, m ∈ Z. The resulting velocity and pressure are equal

to the sum of the preceding functions over all n and k. Introducing (4.24) and
(4.25) into the previous equations we get

ut = −pr +Re−1(urr + r−1ur − r−2n2u− k2u− 2r−2inv − r−2u)− ikw̃u,
(4.26)

vt = −inr−1p+Re−1(vrr + r−1vr − r−2n2v − k2v + 2r−2inu− r−2v)− ikw̃v,
(4.27)

wt = −ikp+Re−1(wrr + r−1wr − r−2n2w − k2w)− w̃ru− ikw̃w,
(4.28)

ur + r−1inv + ikw + r−1u = 0. (4.29)

Further, we can consider

v(r, t) = v(t)v(r). (4.30)

p(r, t) = p(t)p(r). (4.31)

Our eigenvalue problem of the full system is of the form:

∇ · v = 0,

λv = −∇p+
1

Re
∆v − (v · ∇)ṽ − (ṽ · ∇)v, (4.32)

v|∂Ω = 0,
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where v = v(r, ϕ, z), p = p(r, ϕ, z) and λ is the eigenvalue corresponding to v
and p. Proceeding as above we get:

−pr +Re−1(urr + r−1ur − r−2n2u− k2u− 2r−2inv − r−2u)− ikw̃u = λu,
(4.33)

−inr−1p+Re−1(vrr + r−1vr − r−2n2v − k2v + 2r−2inu− r−2v)− ikw̃v = λv,
(4.34)

−ikp+Re−1(wrr + r−1wr − r−2n2w − k2w)− w̃ru− ikw̃w = λw,
(4.35)

ur − r−1inv + ikw + r−1u = 0 (4.36)

where v = v(r), p = p(r). The foregoing eigenvalue problem (4.32) can be
described by the linear operator L. Then the system (4.32) reduces to

Lv = λv (4.37)

Later we will approximate v by a linear combination of functions from a space
of functions that satisfy (4.36) identically.

But for the moment, let us investigate some numerical properties. In forego-
ing chapter dedicated to differential matrices we mentioned that we can achieve
a spectral precision if the function we are working with is analytic. We will for-
mulate a theorem that will ensure that the vector field v is analytic. For more
information see [10].

Theorem 2. Consider an analytic vector field v(ϕ, r) = einϕv(r) n ∈ Z for
r ≤ ε for some ε > 0. The radial, azimuthal and axial components of v must
satisfy the following conditions:

u = rfE(r), v = rgE(f) if n = 0, (4.38)

u = r|n|−1fE(r), v = r|n|−1gE(f) if n 6= 0, (4.39)

for the radial and azimuthal components, and

w = r|n|hE(r) ∀n ∈ Z, (4.40)

for the axial component, where fE, gE and hE are functions which are analytic
and even.

We can see that there is a requirement we will have to satisfy while construct-
ing the suitable basis.

4.5 Petrov-Galerkin discretization

At this moment, our main goal is to find a suitable basis of functions that satisfy
the zero-divergence condition, the boundary condition and theorem 2 to approx-
imate our vector field v. We seek the functions vm such that:

v(r, ϕ, z) = ei(kz+nϕ)
2M∑
m=0

amvm. (4.41)
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Since Chebyshev polynomials form an orthogonal basis we will use them in the
construction of our basis. The zero-divergence condition makes the components
of v linearly dependent and we have just two degrees of freedom for a particular
m = 0, 1...,M − 1. Let us define following two functions:

hm(r) = (1− r2)T2m(r), gm(r) = (1− r2)2T2m(r), (4.42)

where T2m stands for the Chebyshev polynomial of degree 2m. Let us investigate
two cases depending on n.

In case that n = 0 (4.36) reduces to ur + ikw + r−1u = 0 so u and w are
linearly dependent.

If k 6= 0 a suitable space of solenodial functions satisfying the boundary
condition is composed of the following functions

vm =

 0
rhm(r)

0

 , vm+M =

 −ikrgm(r)
0

( d
dr

+ r−1)[rgm(r)]

 .

For k = 0:

vm =

 0
rhm(r)

0

 , vm+M =

−ikrgm(r)
0

hm(r)

 .

The term r in the preceding functions is important to satisfy the parity require-
ments of theorem 2. The factor (1−r2) is added to satisfy the boundary condition.

In case n 6= 0 we proceed as above

vm =

−inr|n|−1gm(r)
d
dr

[r|n|gm(r)]
0

 , vm+M =

 0
−ikr|n|+1hm(r)
inr|n|hm(r)

 .

So far we have approximated v by the linear combination of the solenoidal func-
tions vm. Petrov-Galerkin method is based on approximating v by a linear com-
bination of the functions from a finite dimensional space of solenoidal functions
and projecting it over the function W from a suitable space. In particular, we
are interested in a weak solution of our eigenvalue problem

(Lv,W ) = (λv,W ), (4.43)

where (·, ·) stands for the inner product. It is convenient to chooseW as a function
that satisfy the zero-divergence and the boundary condition. Then the pressure
term in the operator L vanishes:∫

Ω

∇p ·W dV =

∫
∂Ω

pW · dS −
∫
Ω

p∇ ·W dV = 0. (4.44)

Then the operator L takes the following form:

Lv =

Re−1(urr + r−1ur − r−2n2u− k2u− 2r−2inv − r−2u)− ikw̃u
Re−1(vrr + r−1vr − r−2n2v − k2v + 2r−2inu− r−2v)− ikw̃v

Re−1(wrr + r−1wr − r−2n2w − k2w)− w̃ru− ikw̃w

 . (4.45)
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We construct the functions Wm similar to the functions vm but add the factor
1√

1−x2 which corresponds to Chebyshev weight. W is the linear combination of
Wm.

Case n = 0, k 6= 0:

Wm =
1√

1− r2

 0
hm(r)

0

 ,

Wm+M =
1√

1− r2

 ikr2gm(r)
0

( d
dr

+ r−1)[r2gm(r)] + r3hm(r)

 .

Case n = 0, k 6= 0:

Wm =
1√

1− r2

 0
hm(r)

0

 , Wm+M =
1√

1− r2

ikr2gm(r)
0

rhm(r)

 .

Case n 6= 0

Wm =
1√

1− r2

 inrsgm(r)
d
dr

[r1+sgm(r)] + r2+shm(r)
0

 ,

Wm+M =
1√

1− r2

 0
−ikr2+shm(r)
inr1+shm(r)r


where s = 1 if n is odd otherwise s = 0. If k = 0 and n is odd, then the third
component of Wm+M is replaced by inhm(r).

The computation of the basis {vm} and {Wm} is carried out by functions V
and W (see Appendix - Matlab code rows 70-102). The factor 1√

1−r2 is omitted
because of the numerical quadrature. On the other hand, the factor π

N
is included

because of the Gauss-Lobatto integration formula. Weights corresponding to
i = 0 or i = n are omitted due to the boundary condition.

Our eigenvalue problem (4.32)

λ

2M∑
m=0

amvm =
2M∑
m=0

amLvm, (4.46)

takes after projecting over the functions Wj the following form:

λBa = Aa, (4.47)

where Bij = (vi,Wj) and Aij = (Lvi,Wj). Algorithm (Appendix A) returns
matrices A and B. The formula (4.47) is a generalized eigenvalue problem which
can be solved by the built-in Matlab function eig.
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5. Numerical results

In this section we present the numerical results. We begin by investigating the
convergence of the method. The key piece of information is the negativity of the
spectrum, where the negativity of the spectrum means the absence of eigenvalues
with positive real part. We study the dependence of the eigenvalue with the
largest real part max

λi∈σ(L)
<(λi) on the Reynolds number for the operator L and

the Stokes operator, and compare these results. See appendix A for the Matlab
algorithm.

5.1 Convergence of the numerical method

At first we study the convergence of the numerical method. We investigate the
dependence of max

λi∈σ(L)
<(λi) on the number of Chebyshev modes for the radial

approximation. In figure 5.1 we see this dependence for k = n = 1 and we can
see that the algorithm convergences to a particular value.

We observe that there is a minimal value M0 for Chebyshev modes to give
correct results. Similar results are obtained for all cases k 6= 0. If k = 0 the
method converges almost immediately. We see that the method converges but at
the formal level we don’t know if the value the method converges to is the right
solution. We apply the numerical method for the computation of the eigenvalues
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Figure 5.1: The dependence of the largest real part of the computed eigenvalues
on the number of Chebyshev modes for radial approximation M
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of the Stokes operator. Because we know the analytic formulas for the eigenvalues
of the Stokes operator we can verify whether the algorithm converges to the right
solution, at least for the case of the Stokes operator. The only thing we have to
change in algorithm is to set Lam = 0 and dLam = 0 see Appendix A - Matlab
code, row 61. In figure 5.2 we can see the dependence of the largest real part of
the computed eigenvalues of the Stokes operator max

λi∈σ(A)
<(λi) on the number of

Chebyshev modes for radial approximation (represented by points). The dashed
line shows the largest eigenvalue computed by analytic formula (3.39). In the
case of the Stokes operator, we can see that the algorithm converges to the right
value. This indicates that the algorithm should converge to the right solution for
the full operator too.
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Figure 5.2: The dependence of the largest real part of the computed eigenvalues
on the number of Chebyshev modes for radial approximation M for n = k = 1

5.2 Spectrum of the operator L
In this section we plot the eigenvalues of the full operator L in the complex plane.
The actual flow is equal to the superposition of all particular states for all n ∈ Z
and k = π

l
m, m ∈ Z. It is impossible to cover all the possible cases of n and k,

but we will focus on four the most important cases.
The first and the most simple case is n = k = 0 with eigenfunctions indepen-

dent of θ and z (see figure 5.7 for the eigenfunction corresponding to the least
stable state). The second case is n 6= 0 and k = 0 (we chose n = 1 for the simplic-
ity). Figure 5.3 shows the eigenvalues in complex plane for the case n = k = 0
and figure 5.4 shows the eigenvalues for k = 0 and n = 1. We can see that all the
eigenvalues for the both cases are real and cluster to the origin as Re increases.
Table 5.1 shows the top ten eigenvalues with the largest real part. We can see
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that all the eigenvalues are negative, and tend to zero as Re tends to infinity. We
investigate more precisely this dependence in the following section. The reason
why we introduced these two cases together is because of the similarity of the
spectra unlike the other cases when k 6= 0.

The choice of the values M was dependent on required accuracy and time
complexity. The values of M are captured in table 5.1.

The other cases are k 6= 0, n = 0 (we chose k = 1) and k 6= 0, n 6= 0 (we
chose n = k = 1). The eigenvalues are plotted in figure 5.4 and 5.5. For the
eigenvalues with the largest real part and the values M see table 5.2 and table
5.3. We can immediatelly see that these spectra differ from the previous cases
(k = 0). We see that the eigenvalues are imaginary and distributed into three
branches. The first branch is composed of the eigenvalues with the imaginary
part Imλ ≈ 2

3
. This distinct line does not appear for the values of the Reynolds

number grater than Re ≈ 105. This is caused by rounding errors discussed in
[10]. This has something to do with the fact that the operator L is non-normal
and with increasing Re the operator L becomes more non-normal, again see
[4]. Figure 5.8 shows the eigenfunction corresponding to the eigenvalue from
the first branch. The second branch is consisted of the eigenvalues with the
imaginary part Imλ > 2

3
called center modes. The third branch is consisted of

the eigenvalues with the imaginary part Imλ < 2
3

called wall modes. Figures 5.9
shows the eigenfunction corresponding to the wall mode and figure 5.10 shows
the eigenfunction corresponding to the center mode. Later, we will show the
asymptotic behavior of these two branches.
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Figure 5.3: The eigenvalues of the full operator for the different Reynolds numbers
in the complex plane for k = n = 0
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Figure 5.4: The eigenvalues of the full operator for the different Reynolds numbers
in the complex plane for k = 0, n = 1
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Figure 5.5: The eigenvalues of the full operator for the different Reynolds numbers
in the complex plane for k = 1, n = 0
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Figure 5.6: The eigenvalues of the full operator for the different Reynolds numbers
in the complex plane for k = 1, n = 1

Table 5.1: Top ten eigenvalues with the largest real part for n = k = 0 and
n = 1,k = 0

n = k = 0 n = 1 k = 0
Re = 103, M = 8 Re = 104, M = 12 Re = 103, M = 16 Re = 104, M = 24
-0.005783185962 -0.000578318596 -0.014681970641 -0.001468197062
-0.014681970642 -0.001468197064 -0.026374616427 -0.002637461646
-0.030471262365 -0.003047126234 -0.049218456321 -0.004921845633
-0.049218456295 -0.004921845632 -0.070849998918 -0.007084999888
-0.074887164922 -0.007488700679 -0.103499453895 -0.010349945389
-0.103499394379 -0.010349945389 -0.135020708865 -0.013502070888
-0.139083201912 -0.013904028548 -0.177520766813 -0.017752076681
-0.177498009363 -0.017752076645 -0.218920189145 -0.021892018913
-0.224754465252 -0.02229327511 -0.271281654271 -0.027128165427
-0.27017818828 -0.027128154656 -0.322555116494 -0.032255511629
Re = 105, M = 32 Re = 106, M = 56 Re = 105, M = 72 Re = 106, M = 150
-0.000057831859 -0.000005783185 -0.000146819735 -0.000014680122
-0.000146819706 -0.00001468197 -0.000263746111 -0.000026378135
-0.000304712623 -0.000030471262 -0.000492184631 -0.000049219897
-0.000492184563 -0.000049218456 -0.000708499975 -0.000070849401
-0.000748870067 -0.000074887006 -0.001034994575 -0.000103502944
-0.001034994538 -0.000103499453 -0.001350207046 -0.000135020605
-0.001390402844 -0.000139040284 -0.001775207686 -0.000177523205
-0.001775207668 -0.000177520766 -0.002189201822 -0.000218916484
-0.002229323036 -0.000222932303 -0.002712816532 -0.000271284526
-0.002712816542 -0.000271281654 -0.00322555117 -0.000322555032
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Table 5.2: Top ten eigenvalues with the largest real part for n = 0,k = 1
Re = 103 Re = 104

-0.090351143193+0.910548673481i -0,028384271247+0,971715728752i
-0.090442729651+0.910557301936i -0,028384271247+0,971715728753i
-0.156993470436+0.566149199447i -0,056668542494+0,943431457504i
-0.170550892709+0.312166195963i -0,056668542494+0,943431457505i
-0.178325404281+0.823014217031i -0,076392803906+0,285639570495i
-0.179893858414+0.821108593968i -0,082793747357+0,147212121922i
-0.268204164433+0.730844436575i -0,084952813742+0,915147186257i
-0.272228727747+0.534314004291i -0,084952813753+0,915147186266i
-0.273590095844+0.752807990632i -0,113237084989+0,88686291501i
-0.347172111587+0.673018741169i -0,113237085417+0,886862914928i
Re = 105 Re = 106

-0.008954271911+0.99105572809i -0,002829427107+0,997171572877i
-0.008954271911+0.99105572809i -0,002829427124+0,997171572875i
-0.017898543818+0.982111456179i -0,00565785425+0,99434314575i
-0.017898543821+0.982111456179i -0,005657854265+0,994343145713i
-0.026842815736+0.973167184272i -0,008486281375+0,991514718624i
-0.026842815831+0.973167184174i -0,008486281377+0,991514718664i
-0.035787087619+0.964222912447i -0,011314708499+0,988686291503i
-0.035787087635+0.964222912354i -0,011314708537+0,988686291416i
-0.035973491574+0.13725788376i -0,01414313561+0,985857864578i
-0.039250995313+0.068822900321i -0,014143135622+0,985857864377i

Table 5.3: Top ten eigenvalues with the smallest real part for n = k = 1
Re = 103 Re = 104

-0.070864011362+0.846749815969i -0.022704914734+0.951481194804i
-0.091142609393+0.469142875603i -0.047232199591+0.273788709335i
-0.15121626726+0.748193843797i -0.048460432865+0.977153782622i
-0.152699583102+0.927301309131i -0.048936177292+0.920498125432i
-0.159722386628+0.309479873799i -0.07574809593+0.890436385477i
-0.228549842337+0.664769574468i -0.079250801338+0.950783570186i
-0.249116943978+0.843693445559i -0.08101850259+0.146420340749i
-0.285612826229+0.531526601564i -0.102857540824+0.860812935555i
-0.332370319165+0.637076546507i -0.109105063244+0.923824990361i
-0.343045568941+0.759483486014i -0.130149260137+0.831438670495i
Re = 105 Re = 106

-0.007202317053+0.984649809606i -0.002278591043+0.995144310844i
-0.015344184305+0.992784662196i -0.004854884788+0.997720023898i
-0.015533241711+0.974862681073i -0.004917688634+0.99204996396i
-0.024048978685+0.965371102891i -0.007614426857+0.989051541005i
-0.02511278407+0.984442246447i -0.00794637132+0.995080951604i
-0.029236459973+0.137214308074i -0.010337409542+0.986096038617i
-0.032660506748+0.95602243791i -0.010944925383+0.992383008821i
-0.034585362608+0.975915500696i -0.013080970719+0.983158342393i
-0.038910627105+0.0686461437i -0.013899329233+0.989656240713i
-0.041331029442+0.946757561753i -0.0153380023+0.06496314961i
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Figure 5.7: Constant-z cross section of eigenfunction corresponding to λ =
−0.004893990214042 for n = k = 0, M = 50

Figure 5.8: Constant-z cross section of eigenfunction corresponding to λ =
−1.173535911897143 + 0.668135294640209i for n = k = 1, M = 50
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Figure 5.9: Constant-z cross section of eigenfunction corresponding to λ =
−0.047232199583599 + 0.273788709325560i (wall mode) for n = k = 1, M = 50

Figure 5.10: Constant-z cross section of eigenfunction corresponding to λ =
−0.022704914397274+0.951481194585837i (center mode) for n = k = 1, M = 50

32



5.3 Asymptotic behavior and comparison with

the Stokes operator

The crucial question is whether the real part of the eigenvalues of L remains
negative or not. We carried out the computation for M = 140 and Re ∈ [101, 108]
for the cases n = k = 0 and n = 1, k = 0, and for Re ∈ [101, 106] for the cases
n = 0, k = 1 and n = k = 1. Figures 5.11-14 show the dependence of the largest
real part on the Reynolds number Re. Table 5.4 shows the numerical values. We
can see that with increasing Re the largest real part also increases, but remains
negative.

Figures 5.11 - 5.14 show the comparison of the largest real part of the eigen-
values for the Stokes operator and for the full operator. In table 5.4 we can see
that if k = 0 then the largest real parts of the eigenvalues of the Stokes and full
operator are very similar. This is caused by the similarity of the Stokes operator
and L for n = k = 0.

The asymptotic behavior of the largest real parts of the eigenvalues of the
Stokes operator is

max
i
<λStokesi ∼ Re−1. (5.1)

see (3.43).
Asymptotic behavior of the eigenvalues has been analyzed theoretically for

channel flow, for example in [1]. The asymptotic behavior of the eigenvalues with
the largest real part of the operator L was numerically studied in [4]. Again, we
have to distinguish the different cases of n and k. For the case n = 1, k = 0 the
asymptotic behavior is

max
i
<λi ≈ −14.6819706Re−1. (5.2)

We can see that the asymptotic behavior of (5.1) and (5.2) is the same.
The different situation occurs when k 6= 0. In case n = k = 1 the asymptotic

behavior of the center mode and wall mode are different. The approximation for
the particular cases are

max
i
<λcenteri ≈ −2.28058Re−1/2 + 0.92Re−1, (5.3)

and
max
i
<λwalli ≈ −1.680Re−1/3 + 14.3R−2/3. (5.4)

for more information see [4].
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Figure 5.11: The eigenvalues of the full operator for different Reynolds numbers
in the complex plane
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Figure 5.12: The eigenvalues of the full operator for different Reynolds numbers
in the complex plane

34



101 102 103 104 105 106

Re

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

m
a
x

i

ℜ
λ
i

n = 0 k = 1

Full
Stokes

Figure 5.13: The eigenvalues of the full operator for different Reynolds numbers
in the complex plane
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Table 5.4: Comparison of the eigenvalues with the greatest real part of Stokes
and full system

Re Stokes Full Stokes Full
n = k = 0 n = 1 k = 0

101 -0.578318596294 -0.578318596295 -1.468197064212 -1.468197071222
102 -0.057831859629 -0.057831859629 -0.146819706421 -0.146819750661
103 -0.005783185962 -0.005783185962 -0.014681970642 -0.014681944144
104 -0.000578318596 -0.000578318596 -0.001468197064 -0.00146818965
105 -0.000057831859 -0.000057831859 -0.000146819706 -0.000146829053
106 -0.000005783185 -0.000005783185 -0.00001468197 -0.000014685957
107 -0.000000578318 -0.000000578318 -0.000001468197 -0.00000146847
108 -0.000000057831 -0.000000057831 -0.000000146819 -0.0000001397

n = 0 k = 1 n = k = 1
101 -1.468197064212 -1.577816484154 -1.407785105145 -1.393490894002
102 -0.146819706421 -0.273450141036 -0.140778510514 -0.147136655284
103 -0.014681970642 -0.090351143264 -0.014077851051 -0.070864013135
104 -0.001468197064 -0.028384271062 -0.001407785105 -0.022704909271
105 -0.000146819706 -0.008954271911 -0.00014077851 -0.0072023138
106 -0.00001468197 -0.002829427126 -0.000014077851 -0.002279649415
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6. Appendix

6.1 Matlab code

For more information see: [4].

1 function [r,A,B] = pipe(Re,n,k,M)
2 % SPECTRAL CODE FOR ANALYSIS OF LINEARIZED IDEAL PIPE FLOW
3 %
4 % A. Meseguer and L. N. Trefethen, Oxford University, 2001.
5 % See "Linearized pipe flow to Reynolds number 10ˆ7"
6 % and http://web.comlab.ox.ac.uk/oucl/work/nick.trefethen.
7 %
8 % Inputs:
9 % Re = Reynolds number

10 % n = azimuthal wavenumber (integer)
11 % k = axial wavenumber (real)
12 % M = number of Chebyshev modes for radial approximation
13 %
14 % Outputs:
15 % r = Chebyshev grid in radial direction
16 % A, B = matrices defining eigenvalue problem
17 %
18 % Internal variables:
19 % rr = quadrature points in [-1,1] for quadrature
20 % r = restriction of rr to (0,1)
21 % D = Chebyshev differentiation matrix
22 % DE,DO = even and odd halves of D, or reverse if n is odd
23 % D2E,D2O = likewise for Dˆ2
24 % Initializations:
25 global DE DO
26 N = 2*M+7; % number of grid points in (-1,1]
27 K = (N-1)/2; % number of grid points in (0,1)
28 half = 2:K+1; % indices of grid points in (0,1)
29 rad = 1:K; % indices of radial components of V & W
30 az = K + rad; % indices of azimuthal components
31 ax = K + az; % indices of axial components
32 % Chebyshev mesh and differentiation matrix for rr in [-1,1]
33 % (see cheb.m in chap. 6 of Trefethen, Spectral Methods in ...

Matlab):
34 rr = cos(pi*(0:N)/N)';
35 c = [2; ones(N-1,1); 2].*(-1).ˆ(0:N)';
36 X = repmat(rr,1,N+1);
37 dX = X-X';
38 D = (c*(1./c)')./(dX+(eye(N+1))); % off-diagonal entries
39 D = D - diag(sum(D')); % diagonal entries
40 % Extraction from D and Dˆ2 of pieces corresponding to r in (0,1)
41 % (see chap. 11 of Trefethen, Spectral Methods in Matlab):
42 r = rr(half);
43 s = (-1)ˆmod(n,2);
44 DE = D(half,half) + s*D(half,N+2-half);
45 DO = D(half,half) - s*D(half,N+2-half);
46 D2 = D(half,:)*D;
47 D2E = D2(:,half) + s*D2(:,N+2-half);
48 D2O = D2(:,half) - s*D2(:,N+2-half);
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49 % Computation of solenoidal basis and dual basis:
50 V = zeros(3*K,2*M+2); W = zeros(2*M+2,3*K);
51 for m = 0:M
52 p = [m+1 m+M+2];
53 V(:,p) = basis(n,k,r,m);
54 W(p,:) = dualbasis(n,k,r,m);
55 end
56 % Linearized Navier-Stokes operator:
57 I = speye(K); % 1
58 R = spdiags(r,0,K,K); % r
59 Ri = spdiags(1./r,0,K,K); % rˆ(-1)
60 Ri2 = spdiags(1./r.ˆ2,0,K,K); % rˆ(-2)
61 Lam = (I-R.ˆ2); dLam = -2*R; % laminar profile and its gradient
62 LV = zeros(3*K,2*M+2);
63 TMP = -nˆ2*Ri2 - kˆ2*I + i*k*Re*Lam;
64 LV(rad,:) = (D2O + Ri*DO - Ri2 + TMP)*V(rad,:) - ...

2i*n*Ri2*V(az,:);
65 LV( az,:) = (D2O + Ri*DO - Ri2 + TMP)*V( az,:) + ...

2i*n*Ri2*V(rad,:);
66 LV( ax,:) = (D2E + Ri*DE + TMP)*V( ax,:) + Re*dLam*V(rad,:);
67 LV = LV/Re;
68 B = W*V;
69 A = W*LV;
70 function V = basis(n,k,r,m)
71 global DE DO
72 zero = zeros(size(r));
73 an = min(abs(n),2-mod(n,2));
74 h = (1-r.ˆ2).*cos(2*m*acos(r)); g = (1-r.ˆ2).*h;
75 if n==0
76 u1=zero; u2=-i*k*r.*g;
77 v1=r.*h; v2=zero;
78 w1=zero; w2=DO*(r.*g)+g;
79 else
80 u1=-i*n*r.ˆ(an-1).*g; u2=zero;
81 v1=DE*(r.ˆan.*g); v2=-i*k*r.ˆ(an+1).*h;
82 w1=zero; w2=i*n*r.ˆan.*h;
83 end
84 if k==0 & n==0, w2=h; end
85 V = [u1 u2; v1 v2; w1 w2];
86 function W = dualbasis(n,k,r,m)
87 global DE DO
88 zero = zeros(size(r));
89 h = (1-r.ˆ2).*cos(2*m*acos(r)); g = (1-r.ˆ2).*h;
90 if n==0
91 u1=zero; u2=i*k*r.ˆ2.*g;
92 v1=h; v2=zero;
93 w1=zero; w2=DE*(r.ˆ2.*g)+r.ˆ3.*h+r.*g;
94 else
95 s = mod(n,2);
96 u1=i*n*g.*r.ˆs; u2=zero;
97 v1=DO*(g.*r.ˆ(s+1))+r.ˆ(s+2).*h; v2=-i*k*r.ˆ(s+2).*h;
98 w1=zero; w2=i*n*r.ˆ(s+1).*h;
99 end

100 if k==0 & mod(n,2)==1, w2 = i*n*h; end
101 if k==0 & n==0, w2 = r.*h; end
102 N = 2*(length(r)+1);
103 W = ((pi/N)*[r r; r r; r r].*[u1 u2; v1 v2; w1 w2]).';
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Conclusion

We have studied the problem of the stability of the laminar solution of the Ha-
gen–Poiseuille pipe flow under infinitesimal perturbation. We have formulated
the linearized evolution equations for the infinitesimal perturbation and the cor-
responding eigenvalue problem for the operator L characterizing the evolution of
the perturbation.

We have introduced the Stokes operator, which is a similar but simpler oper-
ator then L, and we have summarized the derivation of the analytic formulas for
the eigenvalues and eigenfunctions of the Stokes operator.

Further we have briefly discussed the most important numerical methods used
in the numerical computation of the eigenvalues of the operator L. We have intro-
duced the concepts of Chebyshev polynomials, differentiation matrices, numerical
quadrature and Petrov-Galerkin discretization, and we have explained the appli-
cation of these concepts in the algorithm.

The main objective of the thesis was to carry out numerical computations
of the eigenvalues of the operator L. Using the analytic results for the Stokes
operator we have demonstrated the convergence of the numerical method.

We have verified the negativity of the computed eigenvalues for the Reynolds
numbers in the range Re ∈ [101, 108] for the case k = 0 and in the range Re ∈
[101, 106] for the case k 6= 0. Having obtained numerically calculated spectrum
σ(L) for the full operator and analytic results for the spectrum σ(A) of the Stokes
operator, we have investigated the relation between max

λi∈σ(L)
<(λi) and max

λi∈σ(A)
<(λi).

Having compared the analytically derived asymptotic behavior of the depen-
dence of the largest real part of the eigenvalues for the Stokes operator and
numerically computed asymptotic behavior for the full operator (see [4]) we have
found that the asymptotic behavior is the same for the case k = 0. For the case
k 6= 0 the numerical results indicate that the largest real part of the eigenvalues
of the Stokes operator is greater than the the largest real part of the eigenvalues
of the full operator. Provided that we work with sufficiently large values of the
Reynolds number.

This hypothesis is based only on numerical results and must be verified ana-
lytically. If it is correct it will provide us an important estimate on the behavior
of the spectrum of the full operator L, and might help to resolve the open prob-
lem on the stability of the pipe flow (see Yudovich: Eleven great problems of
mathematical hydrodynamics [2]).
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