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Abstrakt

Prace se vénuje kombinatorickym vlastnostem filtri na pfirozenych
¢islech. Obsahuje ivod do problematiky definovatelnosti filtrt a jejich
kombinatoriky, definice zékladnich typu filra: P-filtr, Q-filtr, Rapid
filtr; uporddani: Rudin-Kiesler, Rudin-Blass, Katétov a Tukey; kon-
strukee filtr1; zékladni definice z kombinatoriky na w; ivod do deskrip-
tivni teorie mnozin, topologie a zakladni vysledky.

Abstract

The work is devoted to combinatorial properties of filters on natu-
ral numbers as an introduction and motivation to the definability of
the filters and its combinatorics. The work contains definitions of ba-
sic filter types: P-filter, Q-filter, Rapid filter; orders: Rudin-Kiesler,
Rudin-Blass, Katétov and Tukey; filter constructions; basic defini-
tions related to combinatorics on w; introduction to basic descriptive
set theory and topology and some specific results.
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1. Introduction

Introduction

The goal of this work is to show the Mazur theorem from [ ]| as a bridge
between topology and combinatorics. In Chapters I and II there are basic
definitions related to combinatorics on w. Chapter III contains an introduc-
tion to topology and basic descriptive set theory. Chapter IV focuses on
Mazur’s specific result.

The concept of wltrafilter is important concept and the theory of definabil-
ity plays important role here. It developes the topological hierarchy which
classifies the sets over real numbers R. As the real number it is possible to
take the points from Cantor space and an ultrafilter could be regarded as a
subspace of Cantor space.

The natural numbers N is the set {0,1,2,...}.

Set theory is a domain of mathematical logic that studies sets. Georg Cantor
created this theory as the theory of actual infinity, now commonly based on
ZFC (the Zermelo-Fraenkel axioms with the axiom of choice). Informally set
theory is the theory of the membership relation €.

x € A means that x is a member of the set A.
x ¢ A means that x is not a member of the set A.

The set theoretic version of numbers is folowing: the finite ordinals begin
with the empty set (), which is folowed by {0}, the set containing empty
set, {0,{0}},{0,{0},{0,{0}}}, ... Every ordinal is the set of the previous
ordinals. The first infinite ordinal number (the first after all natural numbers)
is denoted w. After w it is possible to count other transifinte numbers. In
the set theory there are coded two kind of numbers: ordinal number and
cardinal number which are same if they are finite. The size comparison
of infinite sets using the subset relation doesn’t work so assume folowing
appropriate definition:

1.1 Definition. The set X is strictly larger than Y, denoted X > Y if there
exists one-to-one function from Y into X and there is no map from Y onto
X. o

In ZFC there is the Power set axiom which says there exists the set of all
subsets of any set X denoted P(X).

1.2 Theorem. P(X) = X The power set of any set is strictly larger then
the set.
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Proof. There is a one-to-one function from X to P(X): f(x) = {z}. Assume
towards contradiction, let there is an onto map f: X — P(X).

Consider the set A ={Y € X | Y ¢ f(Y)}. A is a member of P(X), so
there must be some element z € X such that f(z) = A. There are two cases:

If z € A, then z ¢ f(2) = A, a contradiction.
If z ¢ A, then z € A by definition of A, again a contradiction.

g

Informally from Theorem 1.2 it folllows that there are infinite many sizes of
sets (cardinalities). The first infinite cardinal Ry (the first after all natural
numbers), denoted by the Hebrew letter aleph, is the size of the set N. The
next cardinal numbers are Ny, Ny, N3, ... The sets with cardinalities ¥; and
larger are called uncountable sets.

In ZFC is not provable which cardinality equals to the cardinality of P(w). By
P(w) > w, the cardinality of P(w) is not Rg. This question can be assumed
as the additional axiom 2% = N; which is called the Continuum hypothesis.
For this, the size of continuum 2%° is abbreviated ¢, and the first uncountable
cardinal N; (the first uncountable ordinal w;). The continuum could mean
R, Cantor space 2, [w]* or Baire space w*. These spaces are essentially the
same: after removal of at most a countable set from each space, there exists
a homeomorphism between the modified spaces.



2. Chapter I

Chapter 1

In this chapter there is an introduction of basic definitions and facts related
to the concept of filter. Filter formalizes the notion of bigness.

2.1 Filters

2.1 Definition (Filter on a set). A filter on a set X is a collection F of
subsets of X such that:

1. X e F;
2. if Ae Fand B € F, then ANB € F;
3.ifABC X, Ae F,and AC B, then B € F.

If, moreover, the following holds:
4. Ac For X\ Ae Fforal ACX.

Then F is called ultrafilter.

A filter F is proper if () ¢ F. Only proper filters are considered. A filter F is
principal if there is an x € X such that F = {A C X | 2 € A}. Non-principal
ultrafilter is called free. o

2.2 Observation. Principal filter is ultrafilter.

2.3 Proposition. An ultrafilter is principal if and only if it contains a finite
set.

Proof. The right direction is obvious so we prove other implication. Assume
finite A € U. Let B is C-minimal subset of A from the sets in ¢/. If B is not
a singleton set then let € B and because U is ultrafilter then {z} € U or
B\ {z} € U so B is not minimal. O

2.4 Definition. A filter F is Fréchet filter on a infinite set X if

F={ACX|[X\A] <w}.
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2.5 Proposition. A filter extends the Fréchet filter if the intersection of all
its members is empty.

Proof. If \F = Aand a € A, then X\ {a} ¢ F, so F can’t contain Fréchet
filter. g

2.6 Observation. If A is a nonempty family of filters over X, then (A is
a filter over X.

Proof. Assume aiming toward contradiction [ A is not a filter. Assume, for
example, that there are some b D a such that b ¢ (1A and a € (| A. Then
for any filter from A, for all b D a is satisfied b € F, contradiction. The other
filter properties works similarly. [l

2.7 Observation. If A is a C-chain of filters over X, then |J A is a filter
over X.

Proof. 1f [JA is not a filter. For example a,b € [JA and anb ¢ [JA, then
there is some filter F € A for which a,b € F and aNb € F, contradiction. [J

2.8 Observation. If F is a filter and X € F, then P(X)NF is a filter over
X.

Proof. For any A, B C X in filter F there is AN B C X in filter F. For any
A, B C X in filter F and A C B, then B C X. O

2.9 Definition (Finite intersection property FIP). A nonempty system E
of sets has the Finite intersection property, FIP; if for every n € w and every
family e, ..., e, € E is true:

Goﬂ...ﬂen%Q.
o

2.10 Observation. Every E C P(X) with the FIP can be extended to a
proper filter.

Proof. F is defined: F = {A C X |3n € wey, ..., Je,, € E(egN...Ne, C A)}.

F is closed under intersection, i.e. that for A, B € F thereis AN B € F
because if
eoN..Ne, CAand fon..Nf,CHB

then
eoN..NenNfoN..N fm CANB
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2.11 Lemma. A filter F over X is an ultrafilter if and only if it is mazximal
in the order C.

Proof. Let U is ultrafilter. For contradiction, there is a F D U so there is
some A € F\ U. U is ultrafilter so X \ A € Y. Then X \ A € F and
A € F is contradiction. For other side assume F is a filter that is not an
ultrafilter. To find 7" O F: Let B C X be such that neither B nor X \ B
is in F. Consider the family G = F U {B}, G has the finite intersection
property because if A € F, then AN B # (), otherwise there is A C X \ B
and X \ Be F. If Ay,..., A, € F, we have A;N..N A, € F and so

BNAN.NA,#0

G has finite intersection property, so there is a filter 7' O G.
Since B € F'\ F, F is not maximal. O

The Aziom of choice implies following useful theorem.

2.12 Theorem (Zorn’s lemma). If X is a partially ordered set such that
every chain in X has an upper bound, then X contains a mazrimal element.

2.13 Theorem (Tarski’s Ultrafilter Theorem). Every filter can be extended
to an ultafilter

Proof (taken from [ ]). Let Fy be a filter. P = {F | Fo C F and F is filter}.
(P, C) is partially ordered set. Let C be a chain in P, then |JC' is a filter by
Observation 2.7 and an upper bound of C in P. By Zorn’s lemma there exists
a maximal element ¢/ in P. This ¢/ is an ultrafilter by Lemma 2.11. U

A filter F over S is countably complete (o-complete) if it is closed under
countable intersections. Every principal filter is closed under arbitrary inter-
sections.

2.14 Definition (Filter Base). A filter Base over a set X is a collection B
of subsets of X such that:

1.if Ae Band A’ € B, then AN A’ € B;
2. B#0 and 0 ¢ B.

Given a filter base B, the filter generated by B is defined as the smallest filter
containing B. Every filter is also a filter base. o

8
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Let X be a non-empty set and C be a non-empty subset of X. Then {C'} is a
filter base. The filter generated by C (i.e., the collection of all subsets of X
containing C) is called the filter generated by C.

2.15 Definition. An ultrafilter U is a uniform ultrafilter on X if |A| = | X]|
for every A € U. o

2.16 Definition (Filter Generators). The set S is said to generate a fil-
ter F (or it is called a set of filter generators of F) if the family all finite
intersections of elements of S forms a filter base of F. o

For the answer how many ultrafilters are possible on w it it useful to define
following concept.

2.17 Definition. A family C C P(w) is uniformly independent on w if for
any distinct sets X1, ..., X,,,Y7,...,Y,, € C

IXin..nX,N(w\Y)N..N(w\ Yy =w.

It means that for all finite boolean combinations of distinct sets the intersec-
tion has cardinality w. o

We first prove the following lemma.

2.18 Lemma. There exist continuum sized uniformly independent family of
subsets of w.

Proof (taken from []). Let Fin be the set of all finite subsets of w and let
A={(F,F'"Y | F € Fin and F' C Fin and |F'| € Fin}.

The size of Fin x Fin<¥ is w, so |A| = w. We will construct the independent
family on A. For each X C w, let

Ax={(F,F')e A|FNnX e F'}
and let
C={Ax [ X Cw}

If X and Y are distinct subsets of w, then Ax # Ay. For example, if n € X
but n ¢ Y, then let F' = {n}, F' = {F}, and (F, F’) € Ax and (F, F') ¢ Ay,
so |C| = 2. To show that C is uniformly independent, let X, ..., X,,, Y1, ..., Y,
be distinct subsets of w. For each i < n and each j < m, let a;; € w such
that either a;; € X; \Y; or a;; € Y; \ X;. Now let F' € Fin such that

9
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{a;j | i <mand j <m} C F, Vi <nj<mFNX; # FNYj) and if
F'={FnX;|i <n}, then

Vi < n(F, F') € Ax,,

Vj < m(F,F') ¢ Ay,

then,
|AxlﬂmAXnﬂ(W\Ayl)ﬂm(W\Aym)l = W.

g

2.19 Theorem (Pospisil). ' The number of uniform ultrafilters on w is 22°

Proof (taken from []). Let C be an uniformly independent family of subsets
of w. For every function f:C — {0,1}, consider this family of subsets of w:

Gr={Xw\X | Sw}U{X | f(X) =1} U{w\ X | f(X) =0}

The family G has the finite intersection property, and so there exists an
ultrafilter Dy such that Dy O Gy. Dy is uniform. If f # g, then for some
X eC f(X)#g(X);eg f(X)=1andg(X)=0and then X € D; while

w\ X € D,. So there are 2*" distinct uniform ultrafiters over w.| | O

L Bedrich Pospisil (1912-1944) was arrested by the Gestapo and sentenced to three years
in a concentration camp, from where he returned on May 17, 1944 but be soon succumbed
to the consequences of long imprisonment.

10
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Chapter 11

It is not obvious that all non-principal ultrafilters are not the same (up to
permutation of w). A cardinality argument shows that they can’t be same.
There are too many ultrafilters and not enough permutations so that there are
non-isomorphic non-principal ultrafilters on w. It is an interesting problem
to find the properties that distinguish them.

The analysis of different orders on the set of all ultrafilters on w gives some
view on complex structure of this set. There is a ordering of the ultrafilters
which says that U is less than V if it is a quotient of V under some mapping
of the natural numbers.

Let define following useful order concepts.

3.1 Definition. A quasiorder is a set with a transitive reflexive relation
<. <o

3.2 Definition. A partial order is antisymetric quasiorder. o

3.3 Definition. A partial order is directed if for any two members there is
another member above both. o

3.4 Definition. A subset A C X of partially ordered set (X, <) is cofinal if
Ve € Xda € Az < a). o

3.5 Definition. A subset A C X of partially ordered set (X, <) is bounded
if 3r € XVa € A(a < x). o

3.6 Observation. If (X, <) is directed order, and A C X is cofinal, then A
15 directed.

Proof. For any two a,b € A there is another ¢ € X above. The cofinality
gives some d € A above c¢. From transitivity a,b < d. O

3.7 Definition. A function f: X — Y is cofinal if the image of each cofinal

subset of X is cofinal in Y. o
3.8 Definition (Tukey). [ ] A partial ordering (Y, <y) is Tukey reducible
to a partial ordering (X, <x), X <7 Y, if there is a cofinal function f : Y —
X. o

11
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3.1 Orders on filters on w

3.9 Definition (image of a filter under a function f : w — w). For f € “w
and a filter V C P(w) let

fV)={r Cw|Fy e Vfyl Cz}.

3.10 Observation. f(V)={z Cw | f'[z] € V}

3.11 Observation. If V C P(w) is an ultrafilter over w, then U = f(V) is
also an ultrafilter over w.

Proof. Since f~!w] = w, so w € U, and since 0] =0 ,s0 0 ¢ U.

Ifx C 2’ and z € f(V), then f[y] C z for some y € V, and therefore f[y] C 2/,
which shows that 2’ € f(V).

If x,2/ € f(V), then f'[z], f'[2'] € V, and since V is a filter, f'[z] N
f7a'l € V. Since f7lz N2 €V we get xNa’ € f(V).

Ifz ¢ f(V), then f~lx] € V, and w\ f[z] € V, then flw]\ fl[z] € V,
and f~Hw\z] €V, sow\ x €V. U is ultrafilter. O

3.12 Lemma. IfU is ultrafilter and f(U) = U, then {n |f(n) =n} € U,

i.e. [ 1s identity on a set in U.
Proof. Let A={n|f(n)=n}, B={n|f(n) <n}, and C = {n |f(n) > n}.
f™ denotes n-th iteration of f.
If Bel,let B, ={m |¥n' <n(f")(m) € B) and f™(m) ¢ B}.
B=|]JB,
1<n

One of B = |J Ba, and Bo = |J Bani1 is in U because U is ultrafilter.

1<n 1<n

If Bp € U, then f[Bg] € U, and if Bo € U, then f[Bo| € U, so both cases
are impossible, B ¢ U

IfCcld,let O, ={m | VYn' <n(f)(m) € C)and ™ (m) ¢ C}.
c=\Jc.
1<n

Same as for B, C ¢ U. Let C° =w\ C and C§ = {n € C° | n ¢ f[C]},
Ce={meC°|vn <n(me fM[CS]) and m ¢ f™[CE]}, so C° ¢ U, then
Ael. U

12



3.1 Orders on filters on w 3. Chapter I1

3.13 Definition (Rudin-Keisler order, [ ]). Let F, G be filters. If there is
a function f : w — w such that A € F if and only if f~![A] € G, then
F <rk G. o

3.14 Definition. F =rg G if and only if F <gzx G and G <gg F. o

Ultrafilters that are RK equivalent are said to be isomorphic. There are
several partial orders on isomorphism types of ultrafilters in the following
definitions. The given isomorphism type means the set of all isomorphic
ultrafilters.

3.15 Observation. IfU and V are ultrafilters on w and VA € V(f[A] € U),
then f witnesses that U <grg V.

Proof. Let B € U, for contradiction let f~'[B] ¢ V, then w\ f~1[B] € V, so
fHw\ Bl €V, then f[f'w\B]] Cw\BelU, then B¢ U.

The other side, let f71[A] ¢ V, then w \ f7[A] € V, and f~Hw \ 4] € V, so
flf Yw\A]] Cw\ Ael, and then A ¢ U. O

The relation <gg is a quasiorder since the relation is not antisymmetric.
Transitivity is given by the function compositions.

3.16 Definition (Katétov order, [ ]). Let F, G be filters. If there is a
function f:w — w such that f7[A] € G, for all A € F then F <x G.  ©

As noted in [ ], the Katétov order was introduced by Miroslav Katétov?
together with the Rudin-Keisler order.

On ultrafilers the Rudin-Keisler and Katétov orders are the same. Katétov
equivalence is defined in the same way as RK-equivalence.

3.17 Observation. If F C G, then F <k G.

We consider the following variant of Katétov order defined above.

3.18 Definition (Katcétov-Blass order, [ ]). Let F, G be filters. If there is
a finite-to-one function f : w — w such that f~![A] € G, for all A € F then
F <k 9. ©

3.19 Definition (Rudin-Blass order, [ ]). Let F, G be filters. If there is a
finite-to-one function f : w — w such that A € F if, and only if f~![A] € G,
then F SRB g &

2Gince 1953 to 1957 he was rector of Charles University in Prague.

13
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An ultrafilter can be considered as a partial ordering by reverse inclusion. So
(U, D) is a directed partial ordering.

3.20 Definition (Tukey order). Let U, V be ultrafilters. If there is a cofinal
function f:V —U , then U <p V. o

3.21 Observation. Let U, V are ultrafilters. If U <ggx V, thenU < V.

Proof. Let YA € V(f[A] € U). The Tukey function f'(A) = f[A] for all
A € V. If B is cofinal in V, then VA € V3B € B(A DO B), and then
VA € VAB € B(f[A] 2 f[B]). so f’is cofinal and U < V. O

Tukey ordering on ultrafilters is a weakening of Rudin-Keisler ordering. The
Tukey equivalence class of an ultrafilter is called its Tukey type.

The folowing standard definitions are taken from unpublished notes of my
advisor:

3.22 Definition (Fubini product). Let F, G be filters on w. F x G =
{A Cwxw|{n |A(n) € G} € F} where A(n) is vertical section at n;
A*(n) = {m |(n,m) € A}. o

3.23 Definition (F-sum). If {F; |s € S} is a set of filters and F is a filter
on S. Then the F-sum of the filters is

]:_Z}“SZ{AQ U{S}XSS {s |A.(s) € Fs} € F}

s€S seS
o
3.24 Definition (Free-product filter). Let F, G be filters on w.
F®G={(AB)|AcFand BegG}
o

3.2 Standard combinatorial properties

Let us define special sorts of ultrafilters. The first combinational property of
filters is a generalization of the standard P-point property of ultrafilters.

3.25 Definition (P-filter). A filter F is P-filter if for every (descending:
Ay O A; D A,...) countable sequence (A, € F |n < w) of elements of F
there exists X € F such that X C* A,, (for all n <w X \ A, is finite).

Non-principal ultrafilters which are P-filters are called P-points (weakly se-
lective). A point of topological space is a P-point if its neighbourhoods filter
is closed under countable intersections. o

14



3.2 Standard combinatorial properties 3. Chapter II

3.26 Definition (P-ultrafilter). An ultrafilter U is P-ultrafilter (weakly se-

lective) if for all factoring |J X, = w is satisfied one of the following items:
n<w

1. 3n <w(X, €U);
2. 3X elU Vn (| X NX,| <w).

3.27 Observation. An ultrafilter U is P-ultrafilter if and only if

Vi:w—w3dX el (f | X is finite-to-one or constant).

Proof. Let there is a factoring (X, )ne,. The factoring can be translated
to function f satisfying f(x) = n < 2 € X, and vice versa. Then there
exists X € U. f | X is constant if and only if In < w(X,, e U). f | X is
finite-to-one if and only if Vn (| X N X,| < w). O

3.28 Observation. The definitions of P-point ultrafilter and P-ultrafilter
are equivalent.

Proof. Let there is a factoring (X, )neo. If some set X,, € U, it is finished.
If no partition is in the ultrafilter, let there is an enumeration of theirs com-
plements: (X! | X! =w\ X, for n € w). For this set exists X € U, and for
every n € w, |[X N X/ | < w.

The other direction, let (4, € U | n < w) is a sequence in U. Without
loss of generality the sequence is strictly decreasing, and Ay = w. If U
contains the intersection, it is finished. If not, let consider the factoring
defined X,, = A, \ A,41 ilustrated on the following picture.

,,,,,,,,,,,

P W
,,,,,, [ .

by r= 777 1 X
| e r——==—==-=- I U n
N i | : H n<w
o
\
sl LX,,J : :\
T . ‘:
: |

[

No part this factoring of w is in U since if X,, € U then X, N A1 =0 € U.
There is some X € U where | X N A,| < w. Proof by induction, X C Ay.
Suppose X C* A,,. X NA,.1 = (XNA,)\ X,, since X,, N X is finite, then
XﬂAn :*XﬂAn+1, SOXQ* An+1- O

15
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3.29 Definition (Q-filter). A filter F is @Q-filter if for every partition P of
w into finite sets there is a selector A € F, ie. Vp e P(|ANp| =1). o

3.30 Definition (Rapid-filter). A filter F is Rapid-filter if for each function
h:w — w, there is A € F with |[AN h(n)| < n for every n < w. o

16



4. Chapter II1

Chapter 111

This chapter presents the filters on w in the context of their topological
properties. It means to identify filters on w with subsets of Cantor space 2¢.

4.1 Topology

In classical topology the points of a space are primitive objects and open sets
are defined as sets of points (point-set topology).

4.1 Definition (Topological space). A Topological space is an ordered pair
(X, 1), where X is a set and 7 C P(X) such that:

1. 0, X e
2. if AC 7, then |JA € 7;
3.if A, Ber,then ANB € T.

The collection 7 is called topology. Members of the topology are called open
sets. A set is called closed if its complement is open. Asnoted in [ |, the idea
behind this definition, at least for the standard spaces, is that an open set is
one which contains no point of its boundary. For instance, in 2-dimensional
euclidean space, an open disc, meaning the set of points having distance
strictly less than some fixed number from a fixed point, forms an open set.
Another way to explain this is that wherever in the set it is possible to move
a little in any direction, and stay in the set. For the closed disc moving any
distance may leave the set.

Though the definition of closed as the complement of open, it is possible
for a set to be both closed and open. In this case the set is called clopen.
Obvious examples of clopen sets in all spaces are () and X, but there may
be many more clopen sets than that. The more clopen sets are in the more
disconnected spaces.

<

4.2 Definition (Neighbourhood). N, is neighbourhood of x € X if there is
an open set O containing x such that O C N,. If N, is open, we call it open
neighbourhood O,. o

4.3 Observation. Directly from definition, the system of closed sets contains
X and O and is closed under arbitrary intersections and finite unions (De
Morgan’s laws).

17



4.1 Topology 4. Chapter II11

4.4 Lemma. The set A is open, if and only if Yo € A AN, (N, C A).
Proof. The right direction is obvious. Let Vx € A(N, C A), so

S=|J{Na |z €A}

is open and Vo € S(N, C 5), then A C S. Vx € S(N, C A), then S C A,
then A =S and A is open. O

4.5 Definition (Interior). If Y is a subset of X, let int(Y) be the union of
open sets contained in Y.

int(Y)=| {oerjocy}

4.6 Definition (Closure). Let Y be the intersection of all closed sets con-
taining Y.
Y = ﬂ{C’ |C' is closed and Y C C'}

o

4.7 Observation. int(Y) is the greatest open set contained in Y and Y is
the smallest closed set containing Y in the ordering under inclusion.

4.8 Definition. Set D C X is dense in (X, 7) if D = X. ©
4.9 Definition. Set B C P(X) is topology base if:

1. forUVeBandz e UNV then IW € Blx e W CUNW);
2. Ve e X U € B(x € U).

<

4.10 Definition (Compactness). (X, 7) is compact if every open cover of X
has a finite subcover, where C is an open cover if C' C 7 and |JC = X.

Conversely if F is a system of closed sets and has FIP then [ F is non-
empty. <o

4.11 Definition. (X, 1) is locally compact if every point x has a compact
neighbourhood. o

4.12 Definition (Filter converges to x). Let F be a filter on X and = € X.
We say that the filter converges to x, or that x is a limit of F, if all N, C F.
o
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4.13 Example. Fréchet filter F in discrete topology on w is a non-convergent
filter: the singleton set {n} cannot belong to F.

4.14 Definition (Hausdorfl space). A Hausdorff space is a topological space
with a separation property: any two distinct points can be separated by
disjoint open sets. o

4.15 Observation. Singleton set is closed in Hausdorff space.

Proof. Let there be a point x in space X. For any point y different from x
there is an open neigbourhood NN, not containing x. So

U No=X\{z}

yeX\{z}
is open. U

4.16 Lemma. X is Hausdorff space if every filter has at most one limit.

Proof. Suppose X is Hausdorff and let x # y. Then there are neighbourhoods
U and V of x and y respectively with U N’V = (). No filter contains both U
and V, and so no filter can converge to both x and y. Hence all filters have
at most one limit.

Conversely, suppose that x and y do not have disjoint neighbourhoods. Then
N, U N, forms a subbase for a filter which converges to both x and y. So if
every filter has at most one limit then X is Hausdorff. Il

So requiring X to be Hausdorff is equivalent to requiring unique limits. In
Hausdorf space limr = x means x is unique limit of . Note that not all
filters have a limit.

4.17 Definition (Regular space). A reqular space is a topological space with
a separation property: Any point and closed set can be separated by disjoint
open sets. <o

4.18 Definition (Normal space). A normal space is a topological space
with a separation property: Any two distinct closed sets can be separated by
disjoint open sets. o

4.19 Definition (Continuous function). Let (X, 7), (Y, o) be topological
spaces and f : X — Y is function. fis continuous if for every open set U in
Y, f7'[U] is open in X. o
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4.20 Observation. A topological space is normal if and only if for every open
set U and every closed C C U, there is an open set V such C CV CV CU.

4.21 Fact. A closed subset of a compact space is compact.
4.22 Fact. A compact subset of a Hausdorff space is closed.
4.23 Fact. The continuous image of closed set in the compact space is closed.

4.24 Definition (Metric space). A Metric space is an ordered pair (X, p),
where X is a set and p : X? — R. p is called metric if it has folowing
properties:

1. p(x,y) <0 forall z,y € X;

2. p(z,y) =0 if and only if x = y;

3. plz,y) = ply, ©);

4. p(z, 2) < p(x,y) + p(x, z) for all z,y,z € X.

<

4.25 Theorem (Urysohn’s lemma). * Let (X, 7) be normal space and F, H
be closed sets such that F' N H = (), then exists a continuous function which
separates F and H.

4.26 Definition (Product topology). Let (X;, ;) be topological spaces for

i€ I, I#0. Consider space (][ X;,7,) where O is a basic open set in 7, if
iel
and only if there is some finite J C I and open sets V; € 7; for j € J such

that
O=(Yr' Vil | jeJt,

where 7; is projection of [ X; on the X; component. o
iel
A base for the product topology consists of all finite intersections of cylinders

so the projections are continuous and it is preferable in contrast to natural
box topology.

4.27 Theorem (Tychonoff). If each space X; is compact, then [[ X; is
i€l
compact.

3 Urysohn’s lemma has useful applications. For example Urysohn Metrization Theorem.
If X is a normal space with a countable basis, then there is the continuous function from
X to [0, 1] to assign numerical coordinates to the points of X and obtain an embedding of
X into R¥. From this, every countable normal space is a metric space.
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4.2 Cantor space

The product space 2¢ (all functions from the set w to the discrete space
whose only members are 0 and 1, with the product topology) is called the
Cantor space.

4.28 Definition (Cantor space). Cantor space is countable product of two
point space with discrete topology. o

The following is a corollary of the Tychonoff theorem.
4.29 Observation. Cantor space is compact.

4.30 Definition (Standard metric in Cantor space). p(z,y) = 2~~1 where
r=min{n | x, # yn} o

For ACw,ae€ A< and b € [w\ A<, [a,0] ={X € 2¥ | a C X and
bN X = (0}; [a,b] is basic clopen sets in 2“.

4.31 Observation. The intersection is continuous function N : 2¥ x 2¥ —
2¢,

Proof. Pre-image N~'{[a,b]] = {(A,B) | AN B € [a,b]} and N~!{[a,b]] =
{(A,B) |laC AnNBand b C (w\A)U(w\B)}. Forall A, B,if ANB € [a, b,
then (A, B) € [a, b\ A] X [a, b\ B], so every point from N~ [[a, b]] is contained in
the clopen neighbourhood. For showing that [a,b\ A] x [a,b\ B] € N~{[a, D],
let some (FPy, Py) € [a,b\ A] x [a,b\ B], then a C Py, a C P, (b\A)NPy =10
and b\ B)NP,=0,s0a C PR NP andbC (w\ FR)U(w\ ). O

4.32 Observation. The union is continuous function U : 2¥ x 2% — 2%,

4.33 Theorem. A topological space X is compact if and only if every ultra-
filter on X converges to at least one point.

Proof. Suppose that X is compact, and let U be an ultrafilter on X. Then U
has FIP, since it is closed under finite intersections, and () ¢ U. Compactness

causes that there is some point z € [) B. This means that every open
Beu
neighbourhood of x meets every B € U. Let N, be an open neighbourhood

of x. Since no member of U is disjoint from N,, in particular X \ N, ¢ U.
Since U is an ultrafilter, it must be that N, € U. This proves that U converges
to x.

For the converse, suppose that every ultrafilter converges and let F be a
family of subsets of X that has FIP. Then F generates a filter, which can be
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extended to an ultrafilter /. By assumption, i/ converges to some point X.
Consider B € F. Since U converges to x, every neighbourhood of x meets
B. This says exactly that x € B, so, since this is true of every B € F, so

r € |J B. This proves that X is compact. Il
BEF

4.34 Definition (P-point). A point x in topological space X is called a P-
point if the intersection of countably many neighbourhoods of x contains a
neighbourhood of x. o

4.35 Definition (Weak P-point). A point x in a topological space that is
not an accumulation point of any countable subset of the space is called a
weak P-point. Every P-point is a weak P-point. o

4.3 Definable sets

Descriptive set theory clasifies subsets of a topological space according to the
complexity of their definitions. Borel hierarchy is used to describe classes of
subsets of R, Baire space or Cantor space, etc. Level one consists of all
open (X9) and closed (I1?) sets, and levels 2, 3, 4, ... are obtained by taking
countable unions and intersections of the sets on the previous level. More
complex definable sets are projective sets, those obtained from Borel sets by
the operation of continuous image and complementation.

4.36 Definition (F,). A set A C Ris F," if it is a countable union of closed
sets. The class is denoted X9 in logical notation. o

4.37 Definition (Gs). A set A C R is G4° if it is a countable intersection
of open sets. The class is denoted II3 in logical notation. o

The next levels are Fls, it is a countable intersections of F,,. And Gs,. it is
a countable unions of Gj.

4.38 Example. Consider real numbers with the usual topology. Q = |J {qn}
new

1s F, and the complement of Q must be G, set.

4F, comes from French: The F stands for fermé, meaning ”closed,”while the sigma
stands for somme, meaning "sum.”

5Gs comes from German: The G stands for Gebiet, meaning ”area,” while the delta
stands for Durchschnitt, meaning “intersection.”
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4.4 Meager sets

Meager set (or a set of first category) is a set that, considered as a subset of
a topological space, is in a precise sense small or negligible.

4.39 Definition (Nowhere dense set). Given a topological space X, a subset
A of X is nowhere dense if for every non-empty open set O there is a non-
empty open set O’ C O such that O'N A = (. o

A subset B of X is nowhere dense if there is no neighbourhood on which B
is dense: for any nonempty open set U in X, there is a nonempty open set V
contained in U such that V and B are disjoint.

4.40 Definition (Meager set). Given a topological space X, a subset A of X
is meager (the first category) if it can be expressed as the union of countably
many nowhere dense subsets of X. o

The rational numbers are meager as a subset of R. The Cantor set is meager
as a subset of R, but not as a space, since it is complete metric space.

4.41 Definition (Baire space). A topological space is called a Baire space
if the complements of meager sets in X are dense. o

4.42 Lemma. A topological space is Baire if and only if the intersection of
countable many open dense sets in X is dense in X.

Proof. Assume the space X is not Baire, so there is is a meager set M, such
that X \ M is not dense. Assume that M is open. M = |J A,; A, are
new

nowhere dense, and () X \ A, is not dense. X \ A, is open dense, so the
necw
intersection of countable many open dense sets is not dense.

For the other direction, let there be open dense sets A, and ()] A, is not

new
dense, then there exists open set O and (| 4, NO =0. A, =0N(X\ 4,)
new
is nowhere dense and X\ |J A4, is not dense. U

new

4.43 Theorem (Baire category theorem). Every locally compact Hausdorff
space (X, 1) is Baire.

Proof (taken from [ ]). Let there be countable many open dense sets:

D ={Dye, € T | D, is dense},
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and open set O, so O N Dy is not empty, then there exists open set Oy,
zja?; C)rWZDm

by the regularity of locally compact Hausdorff space. Inductively there exists

Ons1 €O, ND,.
N O, has FIP and by the local compactness is not empty.

new
No.-No.cNpno.

new new

so (D is dense. O

4.5 Filters and convergence

Standard limit (convergence) of a sequence (x,¢, | T, € R) is defined:

lim z,, = a if Veang¥n > ny(|a, — a| < ¢)

n—o0

The notion of the filter convergence is a generalization of the classical notion
of the convergence of a sequence. Let N, be a set of all open neighbourhoods
of a. N, has following properties:

1. X € Ng;

2. if Ae N, and B € N, then AN B € N,;

3. if A, BCN,, A€ N,, and A C B, then B € N,;

4 0¢ N,
The neighbourhood satisfies the filter properties and is called a neighbourhood
filter.

4.44 Definition. F-limz, = a if VA e N,({n | z, € A} € F), for (z, | n €

w). ° o

6 Filter convergence was formulated by Henri Cartan around 1937 and explored by Bour-
baki in the 1940s.
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In other words for all neighbourhoods A of the point a almost all sequence
members are in N,. Standard limit definition is equivalent to F-lim where
F is Fréchet filter.

4.45 Observation. Let S be a sequence (T,c, |r, € R) and a its limit
point. Then a € {x, [n <w}\{a}. Let A={X Cw | lin)}xn =a}, if A is
ne

non-empty, A is closed under union and subsets.
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5. Chapter IV

Chapter 1V

In this chapter we present Mazur’s result on the relation between submea-
sures and F, ideals on w.

5.1 Ideals and filters

5.1 Definition (Ideal over a set). An ideal over a set X is a collection Z of
subsets of X such that:

1. 0 eT;
2. if AeZ and B€Z, then AUB €7,
3.ifAABC X AeZ and AC B, then A€ 1.

Given an ideal Z, Z* is the dual filter, consisting of complements of the sets
in Z. Similarly, if F is a filter on X, F* denotes the dual ideal.

T"={ACX|X\AeT}

<

Duality between ideals and filters allows to examine only one of this con-
cepts which is in some particular situation better. The sentences could be
transformed using De Morgan’s laws.

The ideal convergence is dual to the filter convergence. The sequence (z,, | n €
w) is Z-convergent to a if Ve > 0 ({n € w |e < |z, —al} € T), so I-lim z,, = a.
If Z = Flin, then Z-convergence is equivalent to standard convergence.

5.2 Definition (P-ideal). A ideal Z is P-ideal if for every (increasing: Ay C
Ay C A,...) countable sequence (A; € Z |i € w) of elements of Z there exists
B € T such that B O* A, for all n < w. A; \ B is finite. o

5.2 Submeasure

A measure on a set is a function which assigns a positive number to each
suitable subset of given set. The measure is intuitively interpreted as size.
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5.3 Definition. A submeasure on w is a function ¢ : P(w) — Ry U {oc}
satisfying:

L. (@) =0;
2. if A C B then ¢(A) < ¢(B);
3. (AU B) < ¢(A) + ¢(B).

To avoid trivialities, let ¢(A) < oo for all finite subsets of w. o

5.4 Definition. If ¢ submeasure satisfies ¢(A) = lim p(AN{1,...,n}), then
n—oo

¢ is called a lower semicontinuous submeasure (lscsm). o

5.5 Definition. Fin(p) = {A C w | ¢(A) < oo}, called a finite ideal of
©. o

5.6 Observation. If ¢ is Iscsm, then Fin(yp) is an F, ideal.

Proof. Fin(p) = |J{A Cw | ¢(A) <m}. For ¢ lscsm is equal to

mew
U {ACw| lim p(AN{l,...,n}) <m}
mew

and

U M{Acw|eAn{l ...,n}) <m},

mew ncw

so p(AN{1,...,n}) < m is finite union of closed sets, then Fin(y)is F,. O

5.7 Definition. Let X be a topological space. The function f: X — RU
{—00, 0} is lower semicontinuous if and only if Vir € R({A € X | f(A) <r}
is closed). o

5.8 Definition. Exzh(p) = {A C w | lim ¢(A\ {1,...,n}) = 0}, called the
n— oo
ezhaustive ideal of p. (Trivially by definition 5.3 Exh(y) is ideal.) o

5.9 Observation. If p is Iscsm, then Exh(p) C Fin(yp).

Proof. Let A € Exh(yp) then lim o(A\ {1,....,n}) = 0, so there is some ny
n— oo
which satisfies p(A\ {1,...,n0}) < oco. From definition 5.3.3

o(A) < p(A\{L,....,n0}) + (ANA{L,...,n0}),

so p(A) < oc. O
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5.10 Observation. If ¢ is lscsm, then Exh(p) is an F,s P-ideal.

Proof. Let F,,, = {ACw | @(A\{1,...,m}) < L}, F,, is closed set, then

Exh(p) = ﬂ U Fon

ncw mew

Let (A; € Z | i € w) is in Exh(p), then let have a sequence

(1] @(AN {1, i) € 7).

and B = [J(A;\ {1,...,n:}), so A; \ B is finite.

1EW

For any n there exists k

1
AUAN L kD < 5
i<n
so for any n (B \ {1,...,k}) < 5=, then B € Ezh(yp). O

5.11 Definition. A set A C P(w) is hereditary if it is closed under subsets.
o

5.12 Lemma. For any hereditary F, set H there exists a family {F, |n € w}
of hereditary closed sets such that H = J F,, and F,, C F,, 11 forn € w.

new

Proof. Let H= |J D,, where D, is closed for n € w.

new

F,={ANB|Ac|JDyand BePw)}

k<n

F, is closed because it is continuous image of closed sets in compact space.
So F), is hereditary closed set. Il

5.13 Theorem (Mazur). Let Z be an ideal on w. Then T is an F, if and
only if there is a lscsm ¢ such that T = Fin(p).([])

The idea of the proof is to define such sets with the indexes satisfying the
submeasure conditions.

Proof. For right direction of equivalence let have a F,-ideal Z.

T=|]J D,

n<w
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where each D,, are closed sets.
7=|JF,
n<w
where each F) is hereditary closed and F, C F, , for each n. Let define
Fy, Fy, F5, ... inductively:
2. F,byun={AUB | A BeEF,}UF,,.
{AUB | A, B € F,} is closed because it is continuous image of closed sets

in compact space. For every A € Fin there is ¢(A) = min({n | A € F,})
which satisfies:

3. ©(0) = 0;

5. p(AUB) < ¢(A) +¢(B);
Let (AU B) > ¢(B) + ¢(B), then
ImIn(AUB ¢ F,,, and A € F,, and B € F},). Then A ¢ F,, ., and
B¢ Fppn.

6. @ is Iscsm.

So we can extend ¢ to @ : P(w) — R:
P = lim p(AN{l,...,n})
n—oo
and Z = {ACw | lim p(AN{1,...,n}) < oo}
n—o0

For the proof of the left direction there is a submeasure ¢ : Fiin — R§ U{oo},
so for every n let

F,={ACuw|Vkew (p(AN{l,...,k}) <n)},

SO

F, = U{A Cw|e(AN{],..., k}) <n}.

k<w

For fixed k the set is a finite union of basic clopen sets, so F;, is closed and
Z = | F,. Z is hereditary, closed under finite unions and w ¢ Z. U

n<w
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Following examples shows some ideals on the countable sets.

5.14 Example. 7, = {A Cw | > L < oo} is F, P-ideal where submeasure
" neA

@ is defined: p(A) = > L

neA

5.15 Example. Zp;,o = {A € 2% | Vn € w(({n} x w) N A is finite)}

5.16 Example. Z,.,s = {A C Q | A is nowhere dense in R} is neither a
P-ideal nor F,.

5.17 Example (| |). ; ={A €2 | Incw(ACnxw)}

5.18 Theorem (Solecki, [ ']). Z is an analytic P-ideal if and only if there
is a lscsm ¢ such that T = Exh(p).

Analytic P-ideals are F,s. This is, in fact, a corollary of the previous theorem.
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