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SUMMARY 

Nanoparticles (NPs) have considerable potential in targeted medicine. NPs can merge 

various functions and serve as labels for imaging or as nanocarriers in therapy. Modification of 

NPs with targeting ligands can lead to highly specific interactions with targeted cancer cells. 

However, the efficacy of targeting depends on the ratio between specific and non-specific 

interactions of a NP with the cell. Non-specific interactions of NPs are unrelated to targeted 

receptors and need to be eliminated in order to decrease background noise during imaging and 

adverse effect of drugs on healthy tissues.  

In this thesis, surface modifications of NPs were explored mainly on biocompatible 

carbon NPs called nanodiamonds (NDs), which have exceptional fluorescent properties such as 

long fluorescence lifetime, no photobleaching and photoblinking and sensitivity of their 

fluorescence to electric and magnetic field. Main issues addressed in this thesis are low colloidal 

stability of NDs in buffers and media, their non-specific interactions with proteins and cells and 

limited approaches for ND surface modifications. These issues were solved by coating NDs 

with a layer of biocompatible, hydrophilic, and electroneutral poly(ethylene glycol) or poly[N-

(2-hydroxypropyl) methacrylamide] polymers. Optimized polymer coating provided NDs steric 

stabilization in concentrated buffers, eliminated non-specific interactions with cells and enabled 

further bioorthogonal functionalization of NDs. Modification of NDs was demonstrated using 

various targeting ligands. First, NDs were modified with targeting peptide cyclic RGD. These 

conjugates showed reasonable targeting effect thanks to the elimination of non-specific 

interactions. The specific interactions of NDs with cancer cells were further improved upon 

surface modification with transferrin and small-molecule inhibitor of glutamate 

carboxypeptidase II.  

The developed biocompatible interface of NDs enabled further biomedical applications. 

First, NDs with gold layer and polymer coating were shown to efficiently target and kill cancer 

cells using photothermal ablation. Second, optical relaxometric nanosensors working under 

physiological conditions were created from NDs with polymer layer containing 

Gd3+complexes. The chemically programmable structure of the polymer enabled optical 

readout of localized chemical processes occurring on an extremely small scale (10–22–10–20 

mol). 

 

Key words: nanoparticles, nanodiamonds, surface modifications, polymer coating, anti-

fouling, core-shell, cell targeting, biomedical applications 



11 
 

SOUHRN  

Nanočástice mají mnoho předpokladů k tomu, aby byly použity v cílené medicíně. 

Mohou zastávat více funkcí najednou a sloužit tak jako zobrazovací značky nebo nosiče 

účinných látek pro terapii. Po modifikaci vhodným cílícím ligandem mohou specificky 

interagovat s rakovinnými buňkami. Účinnost cílení nicméně závisí na poměru mezi 

specifickou a nespecifickou interakcí nanočástic s buňkami. Nespecifické interakce nanočástic 

s buňkami nesouvisí s cíleným receptorem a musí být odstraněny, aby bylo možné snížit pozadí 

zobrazování, případně snížit škodlivý efekt léků na zdravé tkáně.  

V této práci byly povrchové modifikace nanočástic zkoumány především na 

biokompatibilních uhlíkových nanočásticích nanodiamantech, které vykazují výjimečné 

fluorescenční vlastnosti jako je dlouhá doba života fluorescence, fluorescence bez 

fotodestrukce („photobleaching“) a blikání („photoblinking“) a citlivost fluorescence 

k elektromagnetickému poli. Hlavními nedostatky nanodiamantů, které jsou v této práci řešeny, 

jsou nízká koloidní stabilita částic v pufrech a médiích, jejich nespecifické interakce s proteiny 

a buňkami a omezené možnosti modifikací povrchu. Tyto nedostatky byly překonány pokrytím 

nanodiamantů vrstvou biokompatibilních, hydrofilních a elektroneutrálních polymerů 

poly(etylenglykolu) a poly[N-(2-hydroxypropyl) metakrylamidu]. Optimalizovaná polymerní 

vrstva poskytovala částicím stabilizaci v koncentrovaných pufrech, eliminovala nespecifické 

interakce s buňkami a umožnila bioortogonální modifikace cílícími ligandy. Pro cílení 

k rakovinným buňkám byly nanodiamanty nejprve modifikovány cyklickým peptidem RGD. 

Tyto částice vykazovaly výrazný cílící efekt díky eliminaci nespecifických interakcí nanočástic 

s buňkami. Specifická interakce nanodiamantů s rakovinnými buňkami byla dále vylepšena po 

modifikaci proteinem transferinem a nízkomolekulárním inhibitorem glutamát 

karboxypeptidázy II.  

 Díky vyvinutému biokompatibilnímu povrchu bylo možné nanodiamanty využít 

v biomedicínských aplikacích. Nejprve byly nanodiamanty s vrstvou zlata a polymeru použity 

pro účinné cílení a zabití rakovinných buněk pomocí fototermální ablace. Dále byly 

nanodiamanty s polymerní vrstvou a komplexy s Gd3+ ionty použity pro vytvoření optických 

relaxometrických nanosenzorů pracujících ve fyziologických podmínkách. Povrchová 

struktura nanosenzorů umožnila optické čtení lokalizovaných chemických dějů s extrémní 

citlivostí (10–22–10–20 mol). 

Klíčová slova: nanočástice, nanodiamanty, povrchové modifikace, polymerní vrstva, cílení 

buněk, biomedicínské aplikace 
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LIST OF ABBREVIATIONS 
 

AIBN  azobis(isobutyronitrile) 

ATRP  atom transfer radical polymerization 

BSA  bovine serum albumine 

CCRF-CEM human T lymphoblast  

CVD  chemical vapor deposition 

DLS  dynamic light scattering 

DMAEMA 2-(dimethylamino)ethyl methacrylate 

DNA  deoxyribonucleic acid 

DND  detonation nanodiamond 

EPR  the enhanced permeation and retention 

GCPII  glutamate carboxypeptidase II 

GSH  glutathione 

HeLa   human adenocarcinoma cell line 

HER2  human epidermal growth factor receptor 2 

HPHT  high pressure and high temperature 

HPMA  N-(2-hydroxypropyl)methacrylamide 

HUVEC human umbilical vein endothelial cell line  

ICP-MS inductively-coupled plasma mass spectrometry  

LNCaP  human prostate adenocarcinoma cells 

ND  nanodiamond 

NHS  N-hydroxysuccinimide 

NIR  near infrared  

NP  nanoparticle  

(N-V)  nitrogen vacancy 

ODMR optically detected magnetic resonance 
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PBS  phosphate buffer saline 

PEG  poly(ethyleneglycol) 

PEI  polyethyleneimine 

PHPMA poly[N-(2-hydroxypropyl)methacrylamide] 

PPEGMA poly[PEG methyl ether methacrylate] 

PG  polyglycerol 

Qβ  bacteriophage virus-like particle 

RAFT  reversible addition-fragmentation chain transfer 

RGD  peptide with three amino acid sequence arginine-glycine-glutamic acid 

RNA  ribonucleic acid 

SDS-PAGE sodium dodecyl sulfate–polyacrylamide gel electrophoresis  

SPR  surface plasmon resonance 

TBS  tris-buffered saline  

TEM  transmission electron microscopy 

TEOS  tetraethoxysilane 

TGA  thermogravimetric analysis  

U-87 MG human glioblastoma cell line 

U2OS  human osteosarcoma cancer cell line 

MPyV  mouse polyomavirus-like particle 

U-251 MG glioblastoma cell line 
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1. INTRODUCTION  

1.1. Nanoparticles for targeted nanomedicine 

Optical imaging is a key tool in contemporary biomedicine with emerging applications, 

such as cancer diagnosis. Merging diagnostic imaging ability with a therapeutic function results 

in a “theranostic” agent. The biggest drawback of the current theranostic techniques is their lack 

of specificity and resulting systemic toxicity. Compared with conventional small-molecule 

drugs and probes, NPs (NPs) have a prolonged circulation time and stability in blood stream 

and can, therefore, increase tumor exposure, resulting in improved treatment effects and lower 

systemic toxicity. Merging various functions is a promising direction of diverse NPs (lipid and 

polymer based NPs, viral NPs or inorganic NPs) used in biomedicine. (Fernandez-Fernandez 

et al., 2011) Inorganic NPs such as gold, silica, magnetic, carbon NPs or quantum dots have 

special features such as plasmonic, magnetic or fluorescent properties useful for various 

biological applications. NPs can be used as contrast agents for magnetic resonance imaging, 

optical and photoacoustic imaging. However, their disadvantage is their colloidal instability in 

biological media and abiological origin resulting in a problematic elimination from the 

organism. On the other hand, organic NPs such as lipids, polymeric or protein NPs are not 

foreign materials, but they lack the added value of special physical properties (e.g. fluorescence, 

magnetism) and therefore serve only as carriers. Lipid and polymeric NPs are reaching the 

clinical studies most frequently, however gold, iron and silica NPs have been also tested. (Wicki 

et al., 2015) A few of the NPs have been already approved by the FDA (Food and Drug 

Administration) for clinical use. (Bobo et al., 2016)  

Cellular uptake of NPs into the tumors is enhanced through inherent nature of passive 

targeting (the enhanced permeation and retention – also known as EPR effect) and also possibly 

using active targeting. (Prokop and Davidson, 2008) EPR effect is based on a fact that newly 

formed tumor blood vessels have large gaps among endothelial cells and NPs can get through 

these gaps from blood to tumor tissue. Active targeting is facilitated by targeting molecules 

(ligands), which recognizes and binds to targeted moiety via molecular recognition. NPs that 

are modified with targeting ligands can specifically recognize only targeted receptors on certain 

cells and they interact with other cell types in lower extent (Fig. 1). Targeting molecules can be 

covalently attached on the surface of the NPs in high concentration; therefore, avidity to a 

targeted moiety is greatly increased, circumventing a low affinity of many ligands. (Prokop and 

Davidson, 2008) Convenient NP carriers can carry a large amount of a drug and do not induce 
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immune reaction resulting in the prolonged half-life in the blood. Both the prolonged circulating 

time in organism and accumulation of carriers in targeted place enhance the effect of the drug 

in tumor tissue and enables to use a lower dose of the NP drug carriers having lower adverse 

effects on healthy tissues.  

 

Fig.1 The overall scheme of targeting using NPs 

bearing polyvalent array of targeting ligands, 

which binds to receptor, anchored in cell 

membrane. In certain cases, the NP is then 

endocytosed. Adapted from (Neburkova et al., 

2018). 

 

 

1.2. Nanodiamonds 

Carbon-based nanomaterials have garnered a great deal of interest over the past three 

decades, starting with the fullerenes, carbon nanotubes and graphene and lately more and more 

attention is put on carbon nanodots and nanodiamonds (NDs). (Georgakilas et al., 2015) Carbon 

NPs differ in hybridization of carbon atoms (sp2 or sp3), size and therefore in their 

physicochemical properties. In our laboratory, we focus mostly on the NDs. 

NDs show low toxicity and are considered to be highly biocompatible carbon NPs; they 

are polydisperse in both size and shape (Fig. 2A). There are three main preparation techniques 

yielding NDs with distinct properties.  

Detonation diamonds (DNDs) are prepared upon detonation of certain explosives 

(trinitrotoluene and hexogen) in presence of a non-oxidizing cooling medium. DNDs have small 

size of primary grains (2-10 nm), but tend to form clusters (100-200 nm). Thanks to their high 

surface to volume ratio, they can adsorb substantial amount of cargoes and are often studied as 

drug delivery or transfection agents. (Mochalin et al., 2012) ND particles can be created also 

by plasma-assisted chemical vapor deposition (CVD NDs). CVD NDs are grown as 

nanocrystalline films of grain size 5 nm to several micrometers and are widely used for 

biosensor applications. (Butler and Sumant, 2008). NDs grown in high pressure and high 

temperatures conditions (HPHT) form micron-size crystals which can be milled to 

approximately 50 nm grains. These HPHT NDs contain nitrogen impurities from preparation 

process, which give rise, after proper treatment, to fluorescent nitrogen-vacancy (N-V) centers. 
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HPHT NDs are therefore used as cellular labels an nanosensors, enabling bioimaging for 

extended time thanks to their exceptional optical properties. (Chang et al., 2008) In our 

laboratory, we work almost exclusively with fluorescent HPHT NDs. 

1.2.1. Surface chemistry on NDs 

After synthesis, the NDs are contaminated with a small amount of various sp2 carbon 

phases. These can be removed by oxidation in air at elevated temperature (510 °C) for several 

hours, at which sp3 carbon is not yet burned. (Osswald et al., 2006) After this procedure the 

surface of NDs is highly heterogeneous, containing carboxyl or hydroxyl groups, ketones, 

anhydrides, lactones and other groups present. (Krueger and Lang, 2012) The heterogeneity of 

the surface is further reduced using oxidative treatment in mineral acids. (Havlik et al., 2013) 

This process produces surface with high fraction of hydroxyls and carboxylic acids. Such 

pretreated NDs form stable colloidal solutions in water.  

Modifications of these hydroxyl and carboxyl groups on NDs were thoroughly studied. 

All the approaches of surface modification require harsh reaction conditions, because the 

groups are sterically hindered by close proximity of the surface and the modification efficiency 

is generally low. Instead of full conversion, we speak about enrichment of the surface by certain 

moieties (hydrogen atoms, halogen atoms or hydroxyl groups). There is a difference between 

surface functionalization of NDs according to their origin. DNDs because of their smaller size 

(higher surface to volume ratio) and many sp2 carbon atoms on the surface are more prone to 

the modification and more studied than HPHT NDs. (Krueger and Lang, 2012) 

Biomolecules can be attached to the ND surface using both non-covalent and covalent 

interaction. For attachment of molecules, usually carboxyl groups are utilized, either for non-

covalent electrostatic interaction or for covalent modification. The carboxylic acids can be 

easily converted to active esters, which readily react with amines forming amides. (Zhang et 

al., 2009a; Fu et al., 2012) Non-covalent attachment is experimentally easy (NDs are incubated 

in the solution along with biomolecules), utilizing adhesion and electrostatic interactions. 

However, the conformation of the attached proteins is not under control. Since the attachment 

is reversible, there is also the risk of molecule detachment if ND are introduced to the molecules 

with higher affinity to the surface. Covalent attachment is experimentally more difficult to 

perform, leads to lower yields, however, the point of attachment is fully under control. 

Maintaining a proper conformation and molecule orientation can be essential for retaining the 

activity of the attached biomolecules. Low coverage of the surface can lead to the lower activity 

of the protein, because of many reactivity sites bind to the surface non-specifically and the 
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protein conformation is loosen. Blocking of the free space by other non-active protein can be 

utilized to create more “crowded” environment. (Nguyen et al., 2007) To retain activity, spacers 

between surface and biomolecules are often used. Active site of the biomolecules is then no 

longer hindered by surface and the modification yield and reactivity is therefore higher. NDs 

can be also modified by synthetic polymers, which will be discussed in chapters related to the 

specific applications.  

DNDs modified with various molecules were used for further mentioned biological 

applications. Immobilization of enzyme trypsin on DNDs was shown to be beneficial. Enzyme 

attachment results in long-lasting stability of the enzyme, which enables repeated use and easier 

separation from the solution. Catalytic properties of the enzyme can be also improved. (Wei et 

al., 2010) Recently, DNDs were identified as one of the most efficient nanomaterial for 

enhancing contrast agents. Relaxivity of paramagnetic ions conjugated to the surface is 

increased. DNDs coupled with Gd(III) chelators were used to observe tumor differentiation and 

growth in T1-weighted images in vivo in mice. (Rammohan et al., 2016) 

1.2.2. Optical properties of NDs  

HPHT NDs can host (N-V) centers (Fig. 2B), which emit red fluorescence in the visible 

range (Fig. 2C), favorable for optical bioimaging due to low auto-fluorescence of the cell (near 

infrared (NIR) window of biological tissues) as well as the better permeation of the longer 

wavelengths through the tissue.   

 

Fig. 2 (A) Transmission electron microscopy (TEM) image of pristine HPHT NDs. (B) Schematic picture of a (N-

V) center. N is substitutional nitrogen, V is a carbon vacancy. (C) Fluorescent emission spectra of NDs with 

maximum in NIR region, (N-V)0 and (N-V)- are two different electronic transition states of the (N-V) center. 

 

Vacancies are produced by knocking out a carbon atom from the lattice. This can be 

achieved using irradiation with high-energy beam of particles (usually electrons, protons or 
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helium ions) in cyclotron or microtone. A nitrogen atom is already present instead of a carbon 

atom in the crystal lattice as an impurity resulting from a production process. In next step, the 

vacancy has to get into close proximity of the nitrogen. This can be done using annealing at 

elevated temperatures, when the vacancy gets adjacent to nitrogen atom forming the (N-V) 

center. Two different electronic transition states of the (N-V) center exist inside the material: 

neutral diamagnetic (N-V)0 and negatively charged paramagnetic (N-V)- with different 

photoluminescence and spin properties. (N-V) centers have a long fluorescence lifetime 

(typically in few tens of nanoseconds) and are resistant to photobleaching (irreversible 

destruction of a fluorophore in time upon illumination) and photoblinking (reversible changing 

of bright and dark state). (Rehor et al., 2016) Fluorescence intensity is dependent on amount of 

(N-V) centers and it is thus dramatically higher for larger particles with more centers. 

Fluorescence intensity can be adjusted by treatment optimization. (Havlik et al., 2013) 

Although the procedure was lately thoroughly optimized, the low intensity of ND fluorescence 

is the main drawback of the particles. However, thanks to the extraordinary properties of (N-

V) centers, NDs can be utilized in many biological applications which are not suited for highly 

fluorescent toxic quantum dots, photobleachable fluorescent dyes and proteins.  

Charged states of (N-V) centers respond to certain chemical processes at ND surface 

such as different oxidation states of surface carbons or adsorption of charged molecules. This 

effect was used for preparation of optical sensors. Petrakova et al. observed gradual oxidation 

of hydrogenation NDs based on the shape of fluorescent spectra. (Petrakova et al., 2011) 

Change in shape of fluorescent spectra was observed also after adsorption of charged polymers 

on the surface. (Petrakova et al., 2015, 2016) 

1.2.2.1. Optically detected magnetic resonance (ODMR)  

The specific electronic structure of (N-V)- centers also enables use of NDs as 

ultrasensitive magnetic and electric field sensors. (Chipaux et al., 2018) (N-V)- center is a three-

level emission system (Fig. 3A); the relaxation from exited state can occur directly to the ground 

state or through metastable state with longer emission time. Longer emission time leads to lower 

emission efficiency. Both the ground state and the excited state are split to three sublevels with 

electronic spin states bearing different magnetic spin levels (ms = 0 and double degenerate ms 

= ±1). After excitation from the level with ms = 0, relaxation always occurs through a radiative 

decay (fluorescence can be observed). Relaxation from the exited ms = ±1 state can occur both 

by radiative decay with fluorescence or by a transition to metastable state without observable 

fluorescence. The fluorescence of (N-V)- centers is therefore spin state selective. The energy 
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gap between the sublevels m = 0 and m = ± 1 (2.87 GHz) is in microwave region. Applying 

microwave field leads to switching between ms = 0 and ms = ±1 states (that become 

energetically equal) and results in a drop of the fluorescence. This modulation can be adjusted 

in a controlled way.  

If external magnetic field is present, the spin states ms = ±1 are no longer degenerated 

(effect called Zeeman splitting). From the position of the lines in the electron paramagnetic 

resonance spectra (Fig. 3B,C), external magnetic field can be calculated with high accuracy and 

sensitivity. This allows quantifying of external electric and magnetic fields via optically 

detected magnetic resonance (ODMR). (Balasubramanian et al., 2008; Hegyi and 

Yablonovitch, 2013; Rehor et al., 2016) 

 

Fig. 3 (A) The electronic energy levels in (N-V)- center. Three level system with two possibilities of relaxation 

(directly to the ground state or through metastable state resulting in the drop of the fluorescence). The difference 

in spectra between situation without (B) and with (C) applied magnetic field, depicted also in yellow rectangle in 

A. Adapted from (Schirhagl et al., 2014).  

1.2.3. Biocompatibility of NDs 

Post-synthetic oxidative procedure results in significant improvement of the 

biocompatibility of NDs. Biocompatibility and low toxicity are key properties for using NDs in 

biomedical applications. According to the William’s definition, “biocompatibility refers to the 

ability of NPs to perform its desired function without eliciting any undesirable local or systemic 

effects in the recipient”. “NPs toxicity is related to the ability of particles to adversely affect 

normal physiology or interrupt the normal structure of organs or tissues.” (Williams, 2008; Li 

et al., 2012) NPs are usually considered to be toxic because of their small size and possibility 

to internalize into cells and localize in critically important organelles. The toxicity depends on 
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number of features such as purity of the material, surface charge, shape, diameter and many 

other parameters. Adverse effects of NPs appear to be concentration dependent and cell-type 

dependent. However, NDs after post-synthetic modifications are considered to be 

biocompatible and with a very low toxicity, superior to other carbon and inorganic NPs. Highly 

ordered and oxidized sp3 carbon atoms of HPHT NDs are likely the reason of the low toxicity 

compared with other carbon NPs. Many groups studied the toxicity and biocompatibility of 

HPHT NDs, usually using colorimetric metabolic assays. The results of the studies are very 

positive: none or low cytotoxicity (both short- and long-term) was observed in various types of 

assays. Generation of reactive oxygen species, inducing of apoptosis, differentiation or 

genotoxicity and adverse change in metabolic activity or proliferation were studied. (Chipaux 

et al., 2018) 

Relatively few in vivo studies have been carried out on HPHT NDs. (Laan et al., 2018) 

A study on Ceanorhabditis elegans has shown no oxidative stress and no change in size or life 

length was observed for several days. The introduction of NDs into the worms by either feeding 

them with colloidal ND solution or by microinjection influenced the ND distribution. The 

distribution was also dependent on the surface modification of the NDs. (Mohan et al., 2010) 

Toxicity (including unchanged body weight or water consumption) was not observed in mice 

and rats over a 5-month period after intradermal administration. Even multiple injections did 

not cause observable toxicological effects. (Vaijayanthimala et al., 2012) Both short- and long-

term biodistribution in organs are also very important parameters to study. HPHT ND after 

intratracheal instillation in mice were entrapped predominantly in lung and liver after 28 day 

without significant excretion (NDs were barely detectable in urine and feces). Although, no 

symptoms of abnormality were observed. (Yuan et al., 2009) 

1.2.4. Cellular fate of NDs and bioimaging 

HPHT NDs are a promising alternative to already existing fluorescent dyes. Although 

the fluorescence intensity is not as high as for quantum dots or organic dyes, emission in near-

infrared region with low autofluorescence enables ND observation under confocal microscope. 

Better signal-to-noise ratio can be achieved thanks to the long fluorescence lifetime of NDs. 

Short lifetime emitters can be filtrated in time-gated images and only fluorescence of NDs 

observed in fluorescence lifetime imaging microscopy. (Faklaris et al., 2008; Kuo et al., 2013) 

NDs are utilized for long-term in vitro tracking of single particle because of no photobleaching 

and photoblinking. Three-dimensional trajectory of NPs can be tracked over long periods of 

time, determining for example cellular entry, localization, diffusion coefficient of the particles 
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inside the cells or reveal details about intracellular therapeutic activities. (Chang et al., 2008; 

Zhang et al., 2009a; Hui et al., 2017)  

NDs enter spontaneously into the cells. The rate of the internalization and internalization 

pathway depends on the factors such as size, shape, charge and surface modifications. Small 

particles enter to the cell more freely than large aggregates; size and shape also determine the 

type of endocytosis involved. (Lee et al., 2013; Vaijayanthimala et al., 2009) Colloidal stability 

of the particles is therefore important because of the ability of particles to enter the cell and 

provide its function. Charge and surface modification regulate the interactions with 

biomolecules (proteins, lipids and polysaccharides) on the cell surface. Presence of the serum 

proteins and possibility (or impossibility) of adsorption on ND surface also greatly effects the 

interaction. (Vaijayanthimala et al., 2009) The higher uptake of positively charged NPs (due to 

the interaction with negatively charged cell membrane) is the reason of higher toxicity of these 

particles in contrast to negatively charged NPs. (Marcon et al., 2010)  

Many scientists also studied the uptake mechanism. Decrease in NDs internalization 

after application of factors such as low temperature and sodium azide (sodium azide inhibits 

cytochrome oxidase and leads to energy depletion) suggests the dependence on temperature and 

energy and implies active transport pathway. (Faklaris et al., 2009; Vaijayanthimala et al., 2009) 

Inhibitors of specific endocytic pathway suggest clathrin-mediated pathway (Fig. 4A). (Faklaris 

et al., 2009; Vaijayanthimala et al., 2009)  

 

Fig. 4 Uptake of the NDs (red fluorescence) to the human adenocarcinoma HeLa cell. (A) NDs incubation with 

over 2 hours (1) at 37°C; (2) at 4°C; at 37°C after pretreatment with (3) NaN3 (10 mM); (4) sucrose (0.45 M); (5) 

filipin (5 µg/ml). (B) Co-localization experiment of NDs with (1) green-labeled endosomes; (2) green-labeled 

lysosomes. Co-localization appear in yellow in merged figure. Adapted from (Faklaris et al., 2009). 

 

The endocytic pathway can change according to surface modification. Installing of 

molecules undergoing caveolae pathway (such as folic acid) on the surface of NDs results in 
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internalization by caveolin-mediated pathway. (Zhang et al., 2009a) Macropinocytosis take 

place in case of large aggregates of NPs. (Alhaddad et al., 2012; Liu et al., 2009) After 

endocytosis, cell membrane is engulfed and NDs are localized mainly in endosomes, which 

later fuse to lysosomes. (Alhaddad et al., 2012; Faklaris et al., 2009) Co-localization 

experiments with various labeled compartments were done to prove the localization (Fig. 4B). 

Chu et al. observed liberation from endosomes dependent on the shape of the particles. 

Sharp particles were able to escape the endosome by rupturing the endosomal membrane. This 

phenomenon was observed more generally, not only for NDs, but also for gold and silica NPs. 

(Chu et al., 2014) Ability to escape from endosome and to avoid lysosome capturing is 

important for applications with potential in cytoplasm. In case of very small NDs (5-10 nm) the 

way of crossing the membrane was found different – a direct crossing. (Faklaris et al., 2009) It 

is also important to note, that no NDs were observed in nucleus, indicating no potential adverse 

effect on nucleus structure or deoxyribonucleic acid (DNA). (Alhaddad et al., 2012; Faklaris et 

al., 2009) 

Possibility of long-term bioimaging using NDs revealed many interesting facts. 

Positively charged modified NDs were observed to internalize to the cell by endocytosis, to end 

up inside vesicles and to be transported from the cytoplasm of one cell to the cytoplasm of 

another cell through intracellular communication pathways. (Epperla Chandra Prakash et al., 

2015) NDs were also used for direct monitoring of trafficking processes of transmembrane 

signaling cascade. NDs modified with transforming growth factor (TGF) were able to label 

endogenous TGF-β receptor and displayed its localization. (Liu Wenliang et al., 2015)  

Much more challenging bioimaging in vivo was first shown on small 1 mm long worm 

C.elegans. Penetration and localization of NDs was observed by confocal microscope. Non-

changing signal through the embryogenesis implied the possibility of long-term imaging in 

vivo. (Mohan et al., 2010) NDs were observed by fluorescent camera also in mammals (rat or 

mice) despite high tissue auto-fluorescence and absorption in the bulky bodies. The auto-

fluorescence (emission after excitation upon short wavelength 430 nm) was subtracted from the 

signal of ND to increase signal-to-noise ratio. Long-term imaging and tracking in the body was 

shown on mice lymph nodes. (Vaijayanthimala et al., 2012) ODMR can be used with advantage 

as another method for background-free imaging. Irradiation of the sample with resonance 

frequency (in microwave field) results in the drop of the ND fluorescence, while fluorescence 

of rest of the sample remain unchanged. This method was used in cell culture studies 
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(McGuinness et al., 2011) as well as in more complex models such as in C. elegans and mouse. 

(Igarashi et al., 2012)  

ODMR measurements can be further exploited to measure temperature in nanoscale, 

because spin resonance of (N-V)- center is temperature-dependent. (Sotoma et al., 2018) 

Difference in temperature was measured also inside living cells. Change in temperature was 

measured nearby gold NPs (distance of 200 nm), which were heated upon using a laser. (Kucsko 

et al., 2013) 

1.2.5. Drug delivery  

One of the most important application of NPs is delivery of therapeutic agents (drugs, 

toxins or nucleic acids). Small molecule drugs (Laan et al., 2018) or biomolecules toxins (Liu 

et al., 2008) were loaded (almost exclusively non-covalently) on the surface of NDs.  Up to 

now, DNDs were mostly used for the drug delivery because of their smaller size (and larger 

surface to volume ratio) and higher loading efficiency. DNDs after modification tend to form 

clusters with drug loaded amid the grains. Small molecules such as doxorubicin (an apoptosis-

inducing drug used for chemotherapy), poorly soluble 4-hydroxytamoxifen (an antagonist of 

the estrogen receptor in breast tissue) or epirubicin (inhibitor of DNA and ribonucleic acid 

(RNA) synthesis used for chemotherapy) were attached to the ND. The efficiency of the drugs 

attached to NDs was dramatically increased  (Huang et al., 2007; Chen et al., 2009; Moore et 

al., 2013).   

NDs with attached nucleic acids are promising material for gene therapy. (Chipaux et 

al., 2018) NDs proved to be useful as non-viral gene delivery system. Such system has to be 

able to penetrate the cell membrane, to escape from endosome and release the nucleic acid for 

successful gene expression or gene silencing. (Neuhaus et al., 2016) Both nucleic acids and 

oxidized NDs are negatively charged, therefore modification of the surface usually by 

positively charged polymer has to take place. All kinds of polyethyleneimines (PEI) or 

poly(allylamine) were attached to the surface. It was shown that DNDs with PEI has higher 

transfection efficiency than ND-NH2 or free PEI. (Zhang et al., 2009b) The transfection and 

release of nucleic acids using ND-PEI can be observed thanks to the fluorescence of NDs on 

confocal microscope, either for DNA (Petrakova et al., 2016) or antisense RNA (Lukowski et 

al., 2018). The polymer type determines the route of entry to the cell and therefore efficiency 

of the transfection. The polymer coating not only enables nucleic acid attachment but also 

results in positively charge particles easier uptaken to the cells (due to negative charge of the 

cell membrane). Comparison of NDs with standard lipofectamine showed similar transfection 
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capability with improved cytotoxicity profile of NDs. (Alhaddad et al., 2011, 2012) It should 

be also noted that the polymer on the surface of NDs protects nucleic acid against enzymatic 

cleavage. It is also possible to build up a polymer directly from surface (more details are in 

following chapters). In this way, a cationic polymer from 2-(dimethylamino)ethyl methacrylate 

(DMAEMA) was synthetized on the surface. This structure proved to be efficient in transfection 

with low cytotoxicity. (Zhang et al., 2011a) Not only positively charged polymers, but also 

positively charged peptides (Arg8 or Lys8) exposed on NDs with neutral polymer were able to 

form complexes with plasmid DNA through electrostatic interactions. (Zhao et al., 2014a) 

Successful transfection of silencing RNA (siRNA) by plasma hydrogenated cationic DNDs 

(DNDs with positive charge but without polymer) and subsequent gene silencing was shown in 

Ewing sarcoma cell line. (Bertrand et al., 2015) 

1.2.6. Cellular targeting of NDs  

The major goal of targeted nanomedicine is to prepare NPs modified with molecules 

specifically interacting with receptors expressed on the cells and thus enhancing internalization 

to these cells. To successfully target, high specific and low non-specific interactions with cells 

need to be achieve by control of the surface, colloidal stability, modification suitability and 

efficiency. For targeting, HPHT NDs are more used than DNDs due to their fluorescence 

properties and possibility to observe the final destination of particles. Various kinds of 

molecules were used to modify the ND surface ranging from small molecules such as hormones 

or peptides to large proteins and antibodies.  

1.2.6.1. Cellular targeting with proteins 

Targeting with a large protein molecule is easier to achieve, because the large molecules 

hinder the ND surface. This results in lower non-specific interaction with cells than bare NDs 

and therefore in a more efficient targeting. Most commonly used protein for targeting is 

transferrin. Transferrin is a non-heme iron-binding glycoprotein, which transports two Fe3+ ions 

and controls levels of free iron in the body. Transferrin with two Fe3+ ions (holo-transferrin) is 

internalized to the cells by clathrin-mediated pathway to the early endosome, where the pH is 

lower and the Fe3+ ions are released to the cytoplasm. Complex of transferrin and transferrin-

receptor is then recycled and removed from the cell by exocytosis. Transferrin is released from 

the complex and receptor returns to the cell membrane, where is prepared for internalization of 

next holo-transferrin (Fig. 5) 
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Fig. 5 Cellular uptake of iron by receptor-mediated endocytosis. Holo-transferrin (Diferric-Tf) is bound to the 

receptor and endocyted via clathrin-coated pits. After pH decrease, reduced Fe2+ are released and transported by 

divalent metal ion transporter 1 (DMT1) to cytoplasm. Receptor-transferrin complex returns to the membrane, 

where transferrin without ferric ions (Apo-Tf) is released. Adapted from (Daniels et al., 2006a). 

 

Transferrin receptors are expressed in all cells with nuclei and therefore present on 

almost every cell membrane. However, the transferrin receptors are overexpressed in high 

extent on cancer cells with high rate of proliferation and metabolic activity. Amount of 

transferrin receptors correlate with tumor stage and cancer prognosis. (Li and Qian, 2002; 

Daniels et al., 2006b) 

NDs modified with transferrin were internalized in the cells in higher manner than NDs 

without transferrin and were observed under confocal microscope and using flow cytometry. 

The role of transferrin was confirmed by preincubation of the cells with free transferrin, which 

blocks the receptors and decrease the internalization of NDs inside the cell. (Li and Zhou, 2010; 

Weng et al., 2009; Wang et al., 2014; Weng et al., 2012; Wang et al., 2015; Rehor et al., 2015) 

ND-transferrin particles delivered doxorubicin inside the cells (Wang et al., 2014, 2015) and 

displayed phototoxicity after irradiation with 532 nm laser. This is the excitation wavelength 

for NDs that are able to transform light into thermal heating. (Weng et al., 2012)  

Growth hormone receptor is another cell membrane structure with high potential as a 

promising target. It can be selectively targeted either by growth hormone (Cheng et al., 2007; 

Li et al., 2017) or by monoclonal antibodies against epidermal growth factor receptor. (Zhang 

et al., 2011b) Growth hormone modified NDs were tracked using Raman mapping, thanks to 

the strong Raman signal of sp3 atom in diamond at 1332 cm-1. Growth hormone receptor is 

overexpressed in 30% of solid tumors (Zhang et al., 2011b) and the system of growth hormone 
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and its receptor is likely to be participated in human colorectal cancer. (Cheng et al., 2007) 

However, a change of cell morphology and promotion of cancer cell migration was observed 

for HeLa cells during targeting; further investigation of this potential risk is needed. (Li et al., 

2017) 

Several toxins, such as chlorotoxin-like peptide BmK-CT and α-bungarotoxin, were 

attached on the surface of NDs with the effect of both targeting and killing the cells. The toxins 

are targeting the matrix metalloproteases and α-7-nicotinic acetylcholine receptor, respectively. 

(Fu et al., 2012; Liu et al., 2008) 

1.2.6.2. Cellular targeting with small molecules 

Targeting with small molecules (e.g. vitamins and peptides) has many advantages. 

Small molecules are easier to handle, because their stability and conformation is not sensible 

as for proteins. In addition, much higher loading of the surface can be achieved and the small 

molecule is favorably exposed to the environment. On the other hand, small size molecules do 

not cover the surface properly and therefore do not assure colloidal stability and do not shield 

the surface from non-specific interactions with cells.  

Efficient targeting is ensured by combination of two factors, high specific interaction 

with the targeted cells (dependent on choice of the molecule, its interaction with target, 

sufficient loading) and low or none non-specific interaction with healthy cells. Only 

accomplishment of both factors can lead to significant difference in interaction between cancer 

cells and normal cells. Considering that peptides do not lower the non-specific interaction with 

the cells, surface has to be first modified with polymers guaranteeing the protection of the 

surface. Polymer coating is a very important aspect thoroughly discussed in next chapters. For 

now, it should be noted that all NDs discussed in this chapter are coated with polymer, quality 

of which influence the efficiency of targeting.  

Another commonly used targeting moiety is folate (vitamin B9). The receptor for folate 

is overexpressed on human tumor cells due to increased metabolic activity and need of DNA 

synthesis. NDs with attached folate were tracked using the inherent ND fluorescence in three 

dimensions over more than 5 minutes during endocytosis. (Zhang et al., 2009a) (Fig. 5)  
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Fig. 5 (A) Dependence of internalization of polymer-coated ND (blue) and NDs modified with folate (red) on ND 

concentration.  (B) Bright field image of the HeLa cell with marked red square, where (C) three-dimensional 

tracking of single ND modified with folate was observed over a time period of 370 seconds. Adapted from (Zhang 

et al., 2009a). 

 

The uptake was inhibited if free folate was pre-incubated with the cells, confirming the 

mechanism of binding to the cells. The conversion from clathrin-mediated endocytosis (in case 

of only polymer-coated NDs) to caveolae-mediated pathway in case of ND-folate conjugates 

was suggested. Increase of the uptake in comparison to non-modified particles was 

approximately 12-fold. (Zhang et al., 2009a) Physically adsorbed doxorubicin to ND-folate 

conjugate was released in acidic pH environment (present either in tumor environment or inside 

of the cells in endosome or lysosome). Toxicity of the doxorubicin-ND-folate conjugate 

followed directly the amount of folate receptors on the surface of different cells and was directly 

proportional to the time incubated in the cells. (Dong et al., 2015) Mitochondrial localizing 

sequence (MLS) attached to the doxorubicin-ND-folate conjugate delivered conjugate not only 

across the membrane of cancer cells but also selectively to mitochondria (confirmed by electron 

microscopy imaging). Significant toxicity of conjugate was detected in comparison to free 

doxorubicin. (Chan et al., 2017) 

Two peptides were until now utilized for ND targeting to cancer cells. First, sequence 

from antibody against human epidermal growth factor receptor 2 (anti-HER2), a six-amino acid 

peptide (KCCYSL), interacts with HER2 receptor overexpressed on the surface of breast cancer 

cells. The degree of overexpression correlates with the aggressiveness of the cancer. Anti-

HER2-ND conjugates were internalized to overexpressing tumor cells in higher manner than in 

case of controls (particles without peptides, peptide pretreatment or cells with lower expression 

of protein). However, the difference between specific and non-specific interaction was only 

approximately 2-fold. The longer residence of this conjugate in the region of HER2-positive 



29 
 

tumor was observed. The presence of NDs was used in photoacoustic imaging in vivo on mice 

tumor model. (Zhang et al., 2015) 

 The second peptide often used for targeting of NDs is RGD peptide. (Slegerova et al., 

2015; Zhao et al., 2014b, 2014c) RGD sequence occurs in many proteins of extracellular matrix 

(such as fibronectin, collagen and others) and specifically interacts with the integrin protein. 

Integrin receptors consist of α and β subunits and differ in their structure. αVβ3 receptor is 

overexpressed on cancer cells (e.g. glioblastoma) and in the tumor neovasculature. Interaction 

of RGD with integrin can be enhanced by cyclization of the peptide. Zhao et al. observed dose-

dependent internalization to glioblastoma cells overexpressing the integrins over HeLa cells.  

Drug cis-platin was attached to the conjugate and released at acidic pH in lysosome two 

times faster than in neutral culture media, confirming toxicity of the conjugate. Toxic effect of 

the conjugate was not higher in glioblastoma cells than of free cis-platin, however almost none 

was observed in control cells (compared with effect of free cis-platin) and for conjugate without 

RGD peptide modification. This emphasize the importance of targeted drug delivery. (Zhao et 

al., 2014b) Similar phenomenon was observed for DNDs with the same surface structure 

(doxorubicin was used instead of cis-platin in this study). Importance of evading the 

macrophage system was also highlighted and demonstrated in the study. (Zhao et al., 2014c) 

1.2.7. Polymeric shells on NDs  

Although NDs showed to be biocompatible material convenient for biological 

applications such as bioimaging, targeting or drug delivery, better control of ND surface and 

properties related to the surface is needed. Limitations of NDs are i) colloidal stability in 

biological media and buffers, ii) limited modification yields with biomolecules caused by steric 

hindrance of the surface, iii) adsorption of proteins to the surface causing non-specific 

interactions with cell surface. Addressing these limitations can broaden ND scope of biological 

applications and improve their effect. The often and successfully used solution to these 

problems is a polymer layer unchanging spectral properties of NDs, as further discussed below.  

1.2.7.1. Colloidal stability of NDs  

Size, composition and chemical groups on the surface determine NPs colloidal stability. 

Generally, larger particles are less colloidally stable than smaller ones and the stability of NPs 

increases with increasing surface charge. The charge of the particles is reflected by parameter 

called zeta potential. NPs with zeta potential higher than 30 mV and lower than -30 mV are 

considered to be stable thanks to the repulsive Coulomb forces stabilizing such colloidal 
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dispersion. Oxidized NDs have zeta potential approximately - 40 mV, which makes them stable 

in water. (Rehor et al., 2016) Although for biological applications, stability has to be ensured 

in the solutions with electrolytes. Electrolytes disturb the equilibrium between repulsive 

Coulomb forces and attractive van der Waals forces. Disruption of this equilibrium results in 

compression of the electrostatic double layer and leads to aggregation of the NPs. (Edwards 

and Williams, 2004) Instability in solutions of electrolytes is a common feature for all inorganic 

NPs. Biopolymer coating provides steric stabilization of NPs and prevents close contact of NPs 

and subsequent aggregation. Usually, proteins and synthetic polymers are used to coat NPs. 

Proteins adsorbed on NDs from the serum improve particle stability, prevent formation of 

aggregates and facilitate cell uptake. This simple approach helps in some of biological 

applications, although for majority of them protein coating is unfavorable and dense layer of 

synthetic polymer has to be grown on NDs.  

1.2.7.2. Efficient modification of NDs with biomolecules 

As already mention above in chapter 1.2.1, direct modification of the surface groups 

(either alcohols or carboxyl groups) is problematic. Groups are in close proximity to the surface, 

which hinders them from further reactions and enables only low yields under harsh conditions. 

Another problem concerning large biomolecules is retaining their activity and function. 

Proteins have usually one interaction site that can be unfavorably oriented to the ND surface 

and therefore not accessible to the surrounding.  Flexible linkers between the surface and 

biomolecule can enable movement of the biomolecule and can enhance biomolecule efficiency. 

Layer of hydrophilic flexible polymer fulfills this requirement and enhance both biomolecule 

modification yield and its functionality.  

Furthermore, only carboxylic acids and hydroxyl groups are present on oxidized NDs 

in higher extent, which limits surface modification with biomolecules to amide coupling or 

esterification. On the other hand, first modification of NDs with synthetic polymers results in 

diverse modifications with a wide variety of moieties with tunable reactivity. For example, 

bioorthogonal reactions ensures specificity without using protecting groups. Among others, 

azide-alkyne cycloaddition catalyzed by Cu(I) ions, designated as “click” reaction, enables high 

yield for large substrates, is experimentally simple and can be done with high efficacy in mild 

conditions in an aqueous environment. (Lallana et al., 2012) 
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1.2.7.3. Non-specific interaction of NDs with proteins and cells  

NDs favorably adsorb proteins from the solution. (Hemelaar et al., 2017) For some 

applications, non-specific adsorption is advantageous; however, for other biological 

applications it causes inconveniences. Proteins create on the surface of NDs “protein corona”, 

which completely change surface properties and influence the uptake pathway. (Lynch and 

Dawson, 2008) The “protein corona” consist of inner layer (the hard corona), which exchange 

very slowly, and outer layer (the soft corona) with freely exchanging proteins. Due to the hard 

corona’s long lifetime, NDs interacts with surroundings via the protein surface layer as 

inseparable part. Moreover, if NDs are first modified with a molecule and further introduced to 

the serum proteins, “protein corona” shield the molecule attached to the surface and decrease 

its interactions with target. Cell membranes expose many protein structures that can interact 

with NDs. After exposition of NDs to the cells, NDs are spontaneously uptaken. “Protein 

corona” also helps NDs to be internalized, because ND surface exhibits familiar proteins (Fig. 

6). (Hemelaar et al., 2017) 

 

 

Fig. 6 (A) NDs are covered with proteins in serum-containing media, which facilitate the uptake in the cell. (B) 

Polymer-coated NDs do not interact with proteins and cell membranes and remain intact outside of the cell.    

 

This is also the reason why simple protein coating is unsatisfactory solution for 

achieving colloidal stability of NDs. Spontaneous internalization is unacceptable for 

applications such as cell targeting and needs to be eliminated. NDs first has to be shielded from 

any interaction with cells and then modified with targeting molecule enhancing only interaction 

to targeted cells. Neutral hydrophilic dense polymeric shells create “stealth” coating with 

antifouling effect. Proper polymer coating should reduce recognition of NDs by immune 

system. Avoiding the immune response prolongs the circulation time, which is key requirement 

for in vivo applications. (Cigler et al., 2017; Neburkova et al., 2017)  
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1.2.7.4. Classification of coating polymers 

Polymers for preparation of antifouling layers should meet certain criteria such as 

biocompatibility, hydrophilicity, neutral charge (optimally) or negative charge (alternatively). 

Usually, poly(ethyleneglycol) (PEG) or its derivatives are used. Terminal hydroxyl groups of 

the PEG can be enzymatically oxidized to aldehydes, which further reacts with biomolecule 

amines. This adverse effect can be bypassed by using methoxy-derivatives of PEG such as 

poly[PEG methyl ether methacrylate] (PPEGMA). Immune reaction to PEGylated NPs was 

recently reported. This is known as “PEG dilemma”. Therefore, demand for other types of 

polymers raised. Polymers should share convenient properties of PEG, but lack the unfavorable 

ones. Lately, polymers based on polyglycerol (PG), polyoxazolines or methacrylate derivatives 

were used for NP coating. (Amoozgar and Yeo, 2012) PG is more hydrophilic than PEG and 

less susceptible to oxidation. Thanks to its hyperbranched structure, PG cover NPs very 

efficiently. Poly[N-(2-hydroxypropyl) methacrylamide] (PHPMA) is hydrophilic, non-

immunogenic polymer with functionalizable side chains enabling further modifications.  

1.2.7.5. Attachment method 

Similarly to any other modification, surface of NPs can be modified with polymers using 

non-covalent interaction or covalent interaction (Fig. 7A). Non-covalent interactions of 

negatively charged NDs mediated through electrostatic interactions or hydrophobic interactions 

can be utilized for either positively charged polymers (useful for gene delivery, not for “stealth” 

coating) or for block copolymers. Polymers spontaneously adsorb on the surface, similarly to 

proteins, if their interaction with surface is more favorable than with solvent. (Netz and 

Andelman, 2003) Positively charged polymers stabilize the particles in buffers thanks to both 

steric and charge stabilization. However, as the whole chain have the affinity to the surface, 

potential problem arise if mixing NDs with the polymer in the solution. One polymer can bind 

to more ND particles and cause aggregation from the solution. This can be prevented by slowly 

adding NDs to the polymer solution, usually during sonication in a bath. (Alhaddad et al., 2012) 

In case of block copolymers, hydrophobic interaction of one part of the polymer occur with ND 

surface, the rest of the polymer (usually the hydrophilic part) is exposed to the solution.  

Covalent modifications are used typically for neutral hydrophilic polymers. Preparation 

of the polymer first in the solution, its characterization and then attachment by the end-

functionality to the surface of ND is called “grafting to” method (Fig. 7A). “Grafting to” method 

is experimentally easier and various end-functionalized polymers (usually PEG) are accessible. 

Usually carboxyl groups on the ND surface react in amide coupling with N-hydroxysuccinimide 
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(NHS-ester) on PEG. Density of the polymer chains on the surface is limited. First, the 

reactivity of the groups on the surface is reduced, second, the polymer chain is large molecule 

and the reaction between two large moieties is less efficient. Moreover, polymer chain with its 

end-functionality has to diffuse to the surface reactive groups through the existing polymer 

layer. This difficulty of reaching the surface also decreases the yield of reaction. Alternatively, 

polymers can grow directly on the surface of NDs from monomers in “grafting from” method 

(Fig. 7A). Only synthetic polymers can be attached by this method to the surface. Without steric 

hindrance of the polymer chains, the efficiency of coating by this method is high. Monomers 

are much smaller and therefore diffuse to the surface much easier and the layer is prepared in 

more uniform way. (Cigler et al., 2017; Neburkova et al., 2017) Common strategy living radical 

polymerization prevents termination of the reaction. For this method, surface needs to be first 

modified with initiator of the polymerization. For atom transfer radical polymerization (ATRP), 

halide-terminated NDs are needed. RAFT agents need to be installed on NDs for reversible 

addition-fragmentation chain transfer (RAFT) polymerization.  RAFT polymerization does not 

require use of metal catalysts as ATRP and use azobis(isobutyronitrile) (AIBN) as an initiator. 

Conventional radical polymerization reactions were also employed to coat NDs in polymer. 

These polymerizations are sensitive to oxygen species, which terminate the reaction. PG is 

grown by non-radical ring-opening polymerization that results in hyperbranched structure.  

 

 

Fig. 7 (A) Various approaches of coating polymers on surface of ND: electrostatic, covalent or hydrophobic 

interaction. Covalent grafting can be done by either “grafting to” or “grafting from” approach. (B) Different 

conformation of polymer coils upon surface immobilization (more dense brush, more sparsely attached 

mushroom conformation). Adapted from (Neburkova et al., 2017). 
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Density of polymer coating is crucial parameter alongside with polymer type. Polymer 

coils installed sparsely on the surface in “mushroom” conformation do not provide as good 

“stealth” properties as dense polymer coating in “brush” conformation (Fig. 7B). “Grafting to” 

is considered to be a method ensuring stability in buffers, enabling further modifications, but 

less effective in shielding non-specific interaction. Best results in reducing non-specific 

interactions were shown on polymers created by “grafting from” method.  

1.2.7.6. Examples of ND coating with polymers 

Interesting compromise between protein and polymer coating was shown by Wu et al. 

(Wu et al., 2015) Simplicity of non-covalent adsorption of protein to NDs with better coating 

properties of neutral hydrophilic PEG was combined in coating NDs with albumin-derived 

copolymer. Albumin was first PEGylated, and then unfolded and functionalized by amine 

moieties to increase adsorption efficiency to negatively charged oxidized NDs through non-

specific interaction. NDs were colloidally stable (in 1 M NaCl solution and across a broad pH 

range), internalized and tracked throughout the cells. Doxorubicin was linked to the conjugate 

by acid-cleavable linker a released inside cancer cells. (Wu et al., 2015) PEG polymers are 

installed on NDs covalently by “grafting to” approach. Marcon et al. coated NDs with Zonyl 

polymer (block copolymer based on a perfluoroalkyl chains and PEG chains). Zonyl polymer, 

modified with alkyne groups, reacted with azide-modified NDs. This coating enhanced particle 

stability in buffers such as phosphate-buffered saline (PBS) and reduced protein adsorption of 

bovine serum albumin (BSA) by 30%. (Marcon et al., 2011)  

For targeting experiments, NDs are usually coated with polymer, particularly PEG. 

However, NDs modified with proteins as targeting ligands were except few cases (Rehor et al., 

2015; Wang et al., 2014) not modified with polymer. Particles are stable thanks to the protein 

stabilization; therefore, more stabilization seems to be redundant. However, proper PEG 

coating enhance antifouling properties of the particles and is thus beneficial. In case of 

transferrin-coated NDs, PEG did not help to improve the efficiency of the targeting as was not 

dense enough to decrease non-specific interactions. However, no direct comparison of particles 

with and without PEG was performed. Either optimization of surface coating would be needed, 

or changing the polymerization procedure to “grafting from”. Polymer is always use to coat 

NDs with small-molecule targets. NDs are first modified on activated carboxylic acids using 

amidic coupling with PEG-amine to enhance stabilization and decrease non-specific 

interactions and then modified with folate or HER2 peptide. (Chan et al., 2017; Dong et al., 

2015; Zhang et al., 2009a, 2015) Colloidal stability of the particles was improved, however 
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proper coating to almost eliminate the non-specific interaction was achieved only by (Zhang et 

al., 2009a). Specific interaction of ND-folate particles with HeLa cells in presence of medium 

with serum was 12-fold higher than of non-targeted NDs. This has been one of the highest 

differences between specific and non-specific interaction in case of ND.  

Various types of radical polymerizations were used for methacrylate derivative 

polymers. Hydrophilic poly(methacrylic acid) (PMAA) brushes were first attached to the DNDs 

by Li et al. by ATRP polymerization. First, hydrophobic poly(tert-butyl methacrylate) was 

introduced to the surface, subsequently hydrolyzed by acids to hydrophilic polymer, modifiable 

by protein. (Li et al., 2006) RAFT polymerization was applied to polymerize DNDs with 

PPEGMA and initiator AIBN. Together with PPEGMA polymer, monomer displaying 

macromolecular ligands able to form complex with cisplatin drug was co-polymerized to the 

layer and NDs with loaded drugs were delivered into tumor cells. (Huynh et al., 2013) The ratio 

of polymers was evaluated by thermogravimetric analysis (TGA), method used very often for 

evaluation of content of polymer in ND sample. TGA determines the weight ratio of polymer 

(that degrades above 200°C) and ND (oxidized around 600°C) as a loss during temperature 

increase. (Zhao et al., 2011)  

Non-radical ring-opening polymerization of glycidol was used for preparation of dense 

polymeric layer on NDs. (Zhao et al., 2011) NDs were colloidally stable with antifouling 

properties and were modified using biorthogonal reactions (azide-alkyne cycloaddition 

catalyzed by Cu(I) ions). (Zhao et al., 2014b) The content of hyperbranched polyglycerol layer 

was determined by TGA as high (40:60, PG:ND ratio). Fluorescent NDs were further modified 

with RGD peptide and targeted to cancer cells. Non-specific interaction of non-targeted NDs 

was very low, non-distinguishable from the control of cells only (Fig. 8). This has been the best 

result in effort of reducing non-specific interactions. In general, the potential of particles 

without non-specific interaction is enormous as the low specific interaction can be greatly 

enhanced by optimization of targeting ligand.  
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Fig. 8 Targeting of fluorescent NDs (fND), polyglycerol-coated fNDs (fND-PG), fND-PG modified with RGD 

(fND-PG-RGD) to two different cell lines, (A) integrin receptor overexpressing human glioblastoma U-87 MG 

cell line, (B) non-cancerous HeLa cells. Non-coated fND is highly spontaneously internalized, coating with 

polymer (fND-PG) eliminates the interaction with both cells. fND-PG-RGD particles are internalized dependent 

on the amount of integrin receptors on the cells. Adapted from (Zhao et al., 2014b). 
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2. AIMS OF THE THESIS  
 

The objective of the thesis was to improve surface properties of NPs and show their potential 

in biomedical applications, such as in targeting NPs specifically inside tumor cells. The central 

hypothesis was to reveal if proper surface design leads to principal and significant reduction of 

non-specific interactions and therefore improvement of specific interactions with cancer cells.  

For confirmation of this hypothesis, these specific aims were proposed:  

 Hypothesis: Does polymer coating enhance the colloidal stability of NDs?  

Experimental approach: To prepare ND particles, modify their surface with hydrophilic 

biocompatible polymer coating and characterize their colloidal behavior.   

 Hypothesis: Does colloidal stability of NPs with polymer shell depend on 

polymerization method and type of the polymer?  

Experimental approach: To prepare polymer layer on NDs from various polymers by 

different approaches, measure colloidal stability and non-specific interactions of NDs 

with proteins and cells and optimize the density of polymer coating.  

 Hypothesis: Does biorthogonal reactions increase surface modification yield, provide 

controllable way of attachment, and enhance the activity of molecules on the surface?  

Experimental approach: To examine surface biorthogonal modifications of various 

ligands from small molecules to proteins and find the most efficient reaction and 

conditions.  

 Hypothesis: Is it possible to target efficiently cancer cells using NDs with attached 

targeting ligands?  

Experimental approach: To attach various targeting ligands on the surface of NDs and 

evaluate and compare targeting efficiency of individual systems.  

 Hypothesis: Is targeting efficiency of the particles influenced by properties such as size, 

shape, composition and surface modification?  

Experimental approach: To prepare and modify diverse NPs (bioorganic monodisperse 

virus-like particles, polymeric nanoparticles, polymer-coated NDs) and compare their 

efficiency of targeting cancer cells with NDs.  

 Hypothesis: Are NDs with optimized surface properties useful for bioapplications?  

Experimental approach: To explore applications of NDs such as photothermal ablation 

as therapeutic approach and preparation of ND-based nanosensors. 
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3. METHODS  

 
 This chapter summarizes methods used in this PhD thesis. Detailed information is 

described in related publications. My work (specified in chapter: My contribution to the 

publications) was done at Institute of Organic Chemistry and Biochemistry of the CAS, Czech 

Republic. Within this PhD thesis, we established collaborations with several laboratories, the 

most important are mentioned as follows. NDs were irradiated to become fluorescent at Nuclear 

Physics Institute of the CAS, Czech Republic. Synthesis of monomers for surface 

functionalization was provided by Institute of Macromolecular Chemistry of AS CR, Czech 

Republic. High-resolution transmission electron microscopy was performed at EMAT, 

University of Antwerp, Belgium. Thermogravimetry was measured in service laboratory at 

University of Chemistry and Technology, Czech Republic. Collaboration with Faculty of 

Science, Department of Genetics and Microbiology, Charles University, Czech Republic, 

concerns projects related with virus-like NPs. Gd3+ complexes were synthetized at Faculty of 

Science, Department of Inorganic Chemistry, Charles University, Czech Republic.  

Measurements of T1 relaxation time were done in collaboration with 3. Physikalisches Institut, 

Universität Stuttgart, Germany.  

 Methods used in this thesis were as follows:  

Synthetic methods: 

Modification of NP surface by silica, preparation of gold shell, polymerization of synthetic 

monomers on the surface of NPs, modification of NPs with various structures (e.g. fluorescent 

dyes, peptides, proteins), modification of glycosylic chains of protein transferrin.  

 

Molecular biology methods:  

Transformation of E.coli cells with plasmid, recombinant expression of virus-like particles in 

E.coli, isolation of protein from the cell and purification. 

 

Characterizations: 

Measuring of dynamic light scattering (DLS) and zeta potential of NPs, measuring of absorption 

and fluorescent spectra, transmission electron microscopy (TEM), TGA, measurement of 

surface plasmon resonance (SPR), measurement of inhibition constants in enzymatic assay, 

sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) of modified 
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transferrin, measurement of inductively-coupled plasma mass spectrometry (ICP-MS), 

measurement of T1 relaxation time. 

 

In vitro experiments: 

Cell culturing, incubation of NPs in the cells, measuring of metabolic biocompatible assays, 

flow cytometry, confocal microscopy, laser ablation. 

 

Statistical methods:  

For flow cytometry and viability experiments, statistical methods were utilized. Results were 

measured at least in triplicates or in monoplicates in three independent measurements. The 

results were evaluated by different statistic methods according to the suitability of the chosen 

measurements (student´s t-test, one-way ANOVA, two-way ANOVA).  
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4. SUMMARY OF THE RESULTS  

 
During my PhD studies, I have co-authored ten publications in peer-reviewed journals 

and prepared three manuscripts waiting for either acceptance or submission. Seven of these 

publications are part of this thesis, chronological list of all of my publications (including book 

chapters) can be found at the end of the thesis.  

In this thesis, surface modifications and biological applications of NDs were thoroughly 

studied. NDs need to be first modified with neutral hydrophilic biocompatible polymer to 

become colloidally stable and without non-specific interactions towards proteins and cells. 

Initially, we prepared NDs with PEG coating “grafted to” the surface (Publication 1, (Rehor et 

al., 2014a)). Although this coating ensures colloidal stability and enables further modifications, 

non-specific interactions with protein are reduced, but not eliminated. Therefore, we prepared 

NDs with PHPMA polymer coating using “grafting from” procedure, which creates denser 

polymeric layer eliminating non-specific interactions. (Publication 2, (Rehor et al., 2014b))  

Possibility of targeting cancer cells was shown with RGD peptide attached to the 

surface. (Publication 3, (Slegerova et al., 2015)). Interaction of ND-RGD conjugate with 

integrin receptors overexpressed on cancer cells was 8-times higher than in case of controls. 

We focused further on improvement of the specific interaction and attached to NDs protein 

transferrin (ND-Tf). ND-Tf showed 175-times higher specific interaction than non-specific one. 

(Publication 4, (Neburkova et al., submitted)). Disadvantage of transferrin receptor is its 

presence on non-cancerous cells although in much lower extent. More tissue-specific system is 

therefore needed. Transmembrane protease glutamate carboxypeptidase (GCPII) is expressed 

only in few types of tissues and was used as a target for GCPII inhibitor-modified NDs (ND-

inh). Interaction of ND-inh with GCPII expressing cells was 75-times higher than non-specific. 

(Publication 5, (Neburkova et al., 2018)) 

NDs with proper surface modifications can be used for biological applications. NDs 

with gold shells were used as opto-thermal convertors transforming laser light to heat. This 

effect was used for highly effective killing of cancer cells. (Publication 6, (Rehor et al., 2015)) 

(N-V) centers in NDs are able to sense presence of spin labels in the vicinity of ND surface. 

NDs with Gd3+ complexes attached via cleavable bond were synthetized. Measurable release of 

Gd3+ can be initiated by decrease of pH or increase of glutathione concentration, conditions 

present upon uptake into the cell. (Publication 7, (Rendler et al., 2017)  
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Publication 1: Fluorescent Nanodiamonds Embedded in Biocompatible Translucent 

Shells 

Ivan Rehor, Jitka Slegerova, Jan Kucka, Vladimir Proks, Vladimira Petrakova, Marie-Pierre 

Adam, François Treussart, Stuart Turner, Sara Bals, Pavel Sacha, Miroslav Ledvina, Amy M. 

Wen, Nicole F. Steinmetz, and Petr Cigler 

 

ND, promising material for biological applications, is not colloidally stable in biological 

environment. This is the major disadvantage, which needs to be addressed. Low yields of 

surface direct modifications and high polydispersity of particles (in both size and shape) are 

other problematic features.  

We prepared multiple-layer structure on NDs (Fig. 9A), which improves NDs colloidal 

properties and behavior in solution, however it does not change the fluorescent properties of 

NDs.  

 

Fig 9. (A) The scheme of preparation of the multi-layer structure on NDs. ND is coated wih thick silica shell 

(pink), thin crosslinked aminopropyl-silica shell (violet), and PEG layer (dark violet). Condition of “click” reaction 

with azide-modified ligand are depicted. (B) TEM image of sharp non-coated NDs. (C) TEM image of near-

spherical amino-silica coated NDs.  

 

First, we coated NDs with cross-linked thick shell of silica. This reaction proceeds in 

three steps. First, NDs are mixed with polymer polyvinylpyrrolidone ensuring stability of the 

particles in Stöber conditions during silica shell growth (ethanol with ammonia). A silica shell 

layer from tetraethoxysilane (TEOS) is then grown, followed by growth of crosslinked amino-
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functionalized layer ensuring the stability against hydrolysis. Silica shell modified with amino 

groups serves as a platform for further modifications and changes the shape of NDs from sharp 

NPs (Fig. 9B) to monodisperse near-spherical NPs with ND core (Fig. 9C). Flexible hydrophilic 

polymer (NHS-PEG-alkyne) was grafted to the surface. Alkyne moiety was further reacted in 

“click” reaction with either azide modified fluorogenic dye (coumarin) or radioactively labeled 

peptide (RGDS). Approximate load of small molecules on NDs was 8 µmol/g ND, which 

provides after recalculation using simple spherical model approximately 2000 molecules on 

each particle.  

NDs were stable in PBS and even in 1 M NaCl and in wide range of pH (2-10). PEG-

coated NDs, stable in PBS, were internalized in human prostate adenocarcinoma cells (LNCaP). 

Non-coated NDs aggregated upon introduction to PBS and as their size was increased to large 

aggregates, which were bound to the cell membrane without internalization (Fig. 10). 

Introduction of non-coated NDs to serum-containing media helps the stabilization. Adsorption 

of proteins from serum to the NDs protects NDs from immediate aggregation and promotes 

their internalization toward the cells.  

 

Fig. 10 Confocal microscopy images of PEGylated aminosilica-coated NDs (ND4) and non-coated NDs (ND1). 

Particles were pre-incubated in PBS before adding to the LNCaP cells. In the first row, image of ND fluorescence 

in false colors is present. The second column shows merged ND fluorescence and differential interference contrast 

(DIC).  
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Publication 2: Fluorescent Nanodiamonds with Bioorthogonally Reactive Protein-

Resistant Polymeric Coatings 

Ivan Rehor, Hana Mackova, Sergey K. Filippov, Jan Kucka, Vladimir Proks, Jitka Slegerova, 

Stuart Turner, Gustaaf Van Tendeloo, Miroslav Ledvina, Martin Hruby, and Petr Cigler 

 

Improvement of colloidal stability of NDs is key requirement, however also non-

specific interactions of NDs with proteins and cells need to be eliminated. In this paper, we 

present a new polymerization method on NDs not only ensuring NDs colloidal stability and 

enabling further surface modifications, but also decreasing non-specific interactions with 

proteins to minimum. The photoluminescence properties of NDs remain unchanged after 

polymer coating.  

We coated NDs with ultrathin silica layer, which had less than 1 nm (indistinguishable 

on TEM, detectable by infrared spectroscopy). This layer consist of TEOS and 3-

(trimethoxysilyl)propyl methacrylate mixture, grown under Stöber conditions (NDs first need 

to be stabilized). Methacrylate groups attached to the silica layer further reacted with monomer 

N-(2-hydroxypropyl)methacrylamide (HPMA) in radical polymerization. This radical 

polymerization proceeding directly on the surface (“grafting from” procedure) and initiated by 

AIBN leads to the growth of dense polymer layer of PHPMA (Fig. 11A). This layer is visible 

under high-resolution TEM and is thick few nanometers (2 to 5 nm) (Fig. 11B, C). From 

thermogravimetry, approximately 9% of the total mass of the prepared material was polymer. 

 

 

 

Fig. 11 (A) Scheme of polymer-coated NDs. NDs are first modified with thin silica layer, from which PHPMA 

with chains grow. Small portion of HPMA monomer was replaced by propargylacrylamide introducing alkyne 

moieties in the structure. (B) High resolution TEM image of polymer-coated NDs with few nanometers thick 

polymer layer. (C) area indicated in (B) in white rectangle.  
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A small portion of the HPMA monomer can be replaced by another monomer. In this 

work, either propargylacrylamide or 3-(azidopropyl)methacrylamide were mixed with the 

HPMA monomer and alkyne or azide moieties, respectively, were introduced to the polymer 

structure. Possibility of NDs modification using “click” reaction was confirmed with 

fluorogenic probe coumarin-azide, which becomes fluorescent only after reaction. The loading 

efficiency of the “click” reaction (evaluated by reaction with azide-modified AlexaFluor 488 

fluorescent dye and radioactive RGDS peptide) was found to be approximately in the range of 

tens of micromoles per gram of NDs.  

Colloidal stability of NDs was verified in typical cell biology buffers (0.1 M PBS, 2-

(N-morpholino)ethanesulfonic acid (MES), and 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES)). NDs were stable in a wide range of pH, with lower 

stability in strongly acidic conditions (pH 3). Adsorption of BSA was reduced four-fold in 

comparison to non-coated NDs.  
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Publication 3: Designing the nanobiointerface of fluorescent nanodiamonds: highly 

selective targeting of glioma cancer cells 

Jitka Slegerova, Miroslav Hajek, Ivan Rehor, Frantisek Sedlak, Jan Stursa, Martin Hruby and 

Petr Cigler 

 

Coating NDs in hydrophilic dense polymer layer and optimization of the surface is 

crucial condition for successful biological applications such as cancer cells targeting. In this 

publication, polymer layer was optimized to eliminate non-specific interactions. NDs were 

further modified with cyclic peptide RGD, ligand targeting integrin receptors on cancer cells.  

Polymer-coated NDs (with alkyne moieties) were prepared as described in previous 

publication with slightly different procedure conditions. Radical polymerization was performed 

in more viscous DMSO instead of ethanol, volume of the reaction was 7.5-fold decreased, the 

polymerization temperature was decreased and time was prolonged to 3 days. The change of 

the conditions leads to longer polymeric chains and better surface protection. NDs’ colloidal 

stability improved from previously described 0.15 M NaCl to even 1 M NaCl.  

NDs were modified stepwise with Alexa Fluor 488-azide (because of flow cytometry 

measurement) and cyclic RGD-azide using “click” reaction (Fig. 12). Low molar excess of 

fluorescent dye results in substitution of only small fraction of alkyne moieties on the polymer 

and enables subsequent modification with targeting ligand.  

 

Fig. 12 Scheme of the ND surface modification. NDs are first modified with silica layer and subsequently with 

copolymer of PHPMA and propargylacrylamide. Polymer-coated NDs were modified with Alexa Fluor 488-azide 

and cyclicRGD-azide (cRGD).  

 

We tested toxicity of the particles by cell viability assay quantifying level of adenosine 

triphosphate (ATP) (CellTiter-Glo®). Viability of the cells was not reduced by adding NDs 



47 
 

(Fig. 13A). Interaction of ND particles with cells was measured by flow cytometry (Fig. 13B) 

and confocal microscopy (Fig. 13C).  

 

Fig. 13 (A) Cell viability of U-87 MG cells after addition of either free cyclic RGD, fluorescent ND conjugates 

(fluorescent ND with cyclic RGD (FND-cRGD) or without cyclic RGD (FND)) or apoptosis inducer staurosporine. 

(B) Fluorescence intensity measurements of fluorescent NDs with U-87 MG cells measured by flow cytometry. 

Only conjugate of FND-cRGD interacts significantly (ANOVA, α = 0.01) with cancer cells. Other controls are not 

distinguishable among themselves on the significance level α = 0.01. (C) Image from confocal microscope of U-

87 MG cells treated with FND-cRGD conjugate observed after excitation at 488 nm (fluorescence of Alexa Fluor 

488) and at 561 nm (fluorescence of NDs). Fluorescence of NDs was observed after extensive photobleaching 

throughout the whole spectra.   

 

Fluorescent ND-cRGD conjugates interacted highly with U-87 MG cells, which 

overexpress integrin receptors on the cell membrane. Three control experiments were 

performed. NDs without cRGD did not bind to the cells. Pre-incubation of the cells with free 

cyclic RGD peptide also prevents binding of both ND-cRGD and ND to the cells. Reduction of 

ND-cRGD interaction after incubating cells with free cyclic RGD confirms specific interaction 

of ND-cRGD with integrin receptors, which are blocked upon cyclic RGD preincubation. Flow 

cytometry is quantitative method, however it does not distinguish between attachment of NDs 

on the cell membrane and internalization inside the cells. Internalization of ND-cRGD in the 

cells was shown by confocal microscope. NDs were shown to serve comparably to organic 

fluorescent dye as fluorescent labels with similar pattern. Fluorescence of NDs and Alexa Fluor 

488 strongly overlaps in co-localization test. NDs are likely present in endosomes, not entering 

the nucleus.  
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Publication 4: Polyvalent display of ligand combined with antifouling bionanointerface 

enables extremely selective targeting of NPs to human T lymphoblast cells 

Jitka Neburkova, Miroslav Hajek, Frantisek Sedlak, Stuart Turner, Jan Stursa, Petr Cigler 

 

The difference between specific and non-specific interaction of targeted NDs with 

cancer and normal cells is the crucial aspect of satisfactory targeted carrier. Elimination of non-

specific interaction was already shown in previous publication. The specific interaction is 

dependent on the selection of targeting ligand-receptor system (interaction coefficient, amount 

of receptors on the cells), the amount of ligand on the surface or the attachment method of the 

ligand.  

In this work, we used transferrin as a targeting ligand. As a protein, transferrin has one 

recognizing epitope interacting with transferrin receptor. Therefore, method of attachment 

needs to be considered to enhance interaction with transferrin receptor. There are two glycosylic 

sites present in transferrin (each with two sialic acids) at the distant place far from the 

recognizing epitope. The structure of diol in sialic acid can be cleaved by meta-periodate to 

aldehydes. We modified aldehyde groups with 3-aminooxypropylazide using oxime ligation. 

This reaction is bio-orthogonal to other moieties in the protein. Transferrin-modified with azide 

was coupled to alkyne modified NDs (Fig. 14) Polymer-coated NDs were prepared by the same 

optimized procedure as in previous publication.  

 

Fig.14 Preparation of fluorescent ND conjugate with protein transferrin. Transferrin is firstly oxidized by meta-

periodate (NaIO4) and further reacts with linkage 3-aminooxypropyl-1-azide. Transferrin-azide is conjugated 

using azide-alkyne cycloaddition catalyzed by Cu (I) ions to polymer-coated NDs modified with alkyne 

moieties. 
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First, we measured the toxicity of all fluorescent ND conjugates with metabolic assay 

on three cell types used for targeting experiments (human umbilical vein endothelial cell line 

(HUVEC), human osteosarcoma cancer cell line (U2OS) and human T lymphoblast (CCRF-

CEM)). We observed no toxicity for any ND particle (Fig. 15A). Efficiency of targeting of NDs 

with transferrin (ND-Tf) was measured by flow cytometry. (Fig. 15B)  

 

 

Fig. 15 (A) Viability assay (XTT) of fluorescent ND conjugates (with transferrin, FND-Tf; without transferrin, 

FND) with all three cell lines used in targeting experiment. No apparent toxicity was observed. (B) Fluorescence 

intensity measurements of three cell lines with ND conjugates measured by flow cytometry. Only FND-Tf 

conjugate interacts significantly with all three cell types with the interaction dependent on the amount of transferrin 

receptors on the surface. All negative controls for each cell lines are statistically not distinguishable among each 

other. 

 

Fluorescent ND-Tf conjugate have significantly higher interaction with all tested cell 

lines than negative controls. Pre-incubation with free transferrin blocks the interaction of ND-

Tf suggesting specific uptake of ND-Tf through transferrin receptor. To prove inter-cellular 

selectivity between cells with different amount of transferrin receptor, we cultivated cells in co-

culture. We used simple method how to distinguish between cell types and how to evaluate 

their interaction with NDs. We mixed two cell types (normal and cancer cell line), added NDs 

for 1 hour-incubation, washed the cells, added cell-specific antibodies with different fluorescent 

dyes and measured the fluorescence using flow cytometer. The interaction of ND-Tf conjugate 

with cell lines is proportional to the amount of transferrin receptor presents on the cells (cancer 

cells expressed more transferrin receptors). ND-Tf are localized inside the cells as observed 

with confocal microscope.    
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Publication 5: Inhibitor−GCPII Interaction: Selective and Robust System for Targeting 

Cancer Cells with Structurally Diverse NPs 

Jitka Neburkova, Frantisek Sedlak, Jirina Zackova Suchanova, Libor Kostka, Pavel Sacha, 

Vladimir Subr, Tomas Etrych, Petr Simon, Jitka Barinkova, Robin Krystufek, Hana Spanielova, 

Jitka Forstova, Jan Konvalinka, and Petr Cigler 

 

 Specific interaction is dependent on the selection of targeting ligand-receptor system. If 

the binding affinity is high (as we shown in case of transferrin-transferrin receptor system), the 

internalization of the particles is enhanced. There is uncertainty about the influence of the 

coating density of ligand on the particle surface. Receptors for cancer targeting (such as 

receptors for transferrin, folate or RGD) are usually overexpressed on cancer cells, but present 

also on non-cancerous cells. More tissue-specific receptors are needed, ideally only receptors 

present on cancer cells.   

 In this work, we chose to target more tissue-specific receptor, GCPII. GCPII is a 

membrane protease primarily expressed in the prostate, central nervous system, small intestine 

and kidney, with different functions in these tissues. Expression in other tissues is much lower. 

GCPII is overexpressed by prostate cancer cells and in neovasculature of most solid tumors. 

GCPII can be target either by large antibody or small-molecule inhibitor. We modified NPs 

with inhibitor, which is stable, easy-to-handle and has high affinity to the GCPII (in nanomolar 

range).  

Apart from NDs, other NPs were used in this study. NDs, virus-like NPs and polymer 

NPs were adopted to cover a broad range of representatives. Polydisperse inorganic NDs with 

diameter approximately 54 nm (Fig. 16A) are unable to change their size. Two types of virus-

like particles based on either bacteriophage Qβ or mouse polyomavirus (MPyV) are hollow, 

have bioorganic origin (consist of proteins) and their flexibility is also limited. They are 

expressed in transfected cells and self-composed to spherical NPs. Virus-like particles are all 

monodisperse in size and shape. Qβ NPs are more stable and smaller, with size 27 nm (Fig. 

16B). MPyV have diameter approximately 45 nm (Fig. 16C) and are susceptible to 

disintegration, which complicates their handling, however can be utilized in packing cargoes 

inside. Polymeric NPs stands in the study for small, flexible, hydrophilic particles, very often 

used in biological applications.  
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Fig. 16 TEM image of surface modified (A) MPyV particles, (B) Qβ particles, (C) NDs. (D) Intensity distribution 

of various NPs modified with inhibitor in water measured by DLS.  

 

 NDs were modified with already thoroughly described PHPMA coating bearing azide 

groups. Inhibitor-alkyne was attached using “click” reaction.  Either amidic coupling or “click” 

reaction was used to attach inhibitors to virus-like particles. Virus-like particles are colloidally 

stable without polymer coating; however non-specific interactions occur, especially of MPyV. 

MPyV interacts with several cell receptors and cell-surface glycoproteins and are spontaneously 

internalized inside cells. Therefore, PHPMA coating was introduced to the surface of virus-like 

particles in half of the samples. All NPs were modified with fluorescent dyes. Polymeric 

particles, based on PHPMA polymer, were synthetized and characterized directly with inhibitor 

and dye attached.  

First, we evaluated the interaction of NPs with GCPII in vitro. Interaction of NP-

inhibitor with GCPII presented on the surface of gold chip was measured by SPR (Fig.17).  

 

Fig. 17 SPR measurement of (A) NDs, (B) polymer-coated MPyV. NPs were injected through channel and led to 

interact with either surface with GCPII (GCPII+) or without (GCPII-). After approximately 8 minutes, buffer 

Tris-buffered saline (TBS) was injected and no desorption was observed.  

 

All NP-inh conjugates interacted with GCPII surface and did not bind to the surface without 

GCPII, similarly NPs without inhibitor did not bind to any surface. Inhibition constant (Ki) was 

calculated from interaction of NP-inh with GCPII in the solution. Ki for small-molecule 



52 
 

inhibitor is in nanomolar range. Ki decreases to subnanomolar range after attachment of the 

inhibitor to the polymer and to picomolar range for other NP-inh conjugates.  

Successful targeting of NPs with cells is more demanding with many other factors and 

components present in such system. NPs were added to the cells and fluorescent signal was 

detected using flow cytometry (Fig. 18). NP-inh conjugates show high interaction with GCPII-

expressing cells. For NDs, polymer-coated and uncoated Qβs and polymeric particles, no non-

specific interaction were observed (either of NP-inh with cells without GCPII expression or NP 

without inhibitor with both types of the cells). MPyV particles exhibit high non-specific 

interactions toward the cells (unrelated to GCPII receptor). These interactions were even higher 

than specific interaction of MPyV-inh. Coverage of MPyV with PHPMA polymer reduce the 

non-specific interaction, however, the coverage of few tens of PHPMA polymers seems to be 

insufficient as the non-specific interaction is not eliminated.  

 

Fig. 18 Flow cytometry measurement of NPs (A) with inhibitor and (B) NPs without inhibitor on either 

glioblastoma cells expressing GCPII (U-251+ MG) or without GCPII expression (U-251- MG). Fluorescence is 

normalized to autofluorescence of negative cells and adjusted to the relative fluorescence of particles (to overcome 

the problem of differently fluorescent NPs). Significant difference (on significance level of α = 0.001) between 

NP-inhibitor particles on U-251+ MG cell and all negative controls.  

 

 Confocal microscopy revealed that NP-inh particles are internalized inside the cells in 

peri-nuclear region. (Fig. 19A) From negative controls, MPyV with polymer and above all 

without polymer were also observed to interact with the cells, similarly to the results from flow 

cytometry. MPyV particles non-specifically interacting with cells seem to be located near cell 

membrane (Fig. 19B). 
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Fig. 19 Confocal microscopy of (A) ND particles (labeled with Alexa Fluor 488) interacting with either cells 

expressing GCPII (U-251+ MG) or without GCPII expression (U-251- MG). (B) Non-specific interaction of non-

coated non-modified MPyV particles with U-251 MG cells.  
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Publication 6: Plasmonic Nanodiamonds: Targeted Core–Shell Type NPs for Cancer Cell 

Thermoablation 

Ivan Rehor, Karin L. Lee, Kevin Chen, Miroslav Hajek, Jan Havlik, Jana Lokajova, Milan 

Masat, Jitka Slegerova, Sourabh Shukla, Hamed Heidari, Sara Bals, Nicole F. Steinmetz, Petr 

Cigler  

 

 Once we master the control of NDs’ surface and properties, NDs can be used for broad 

spectrum of biomedical applications. For therapy, special features of NPs such as photothermal 

ablation can be utilized. Certain NPs transform light to heat. Cells that contain NPs are 

illuminated, heated up and killed. Once NPs are targeted only to cancer cells, light can be 

applied to whole tissue using laser with harmful effect only on cells internalizing the NPs. 

Photothermal effect was shown also on ND particles, however gold NPs, explicitly gold 

nanoshells are much suitable material. Gold NPs as noble-metal NPs show quantum size effects, 

such as phenomenon called localized plasmon resonance. Gold nanoshells have very high 

extinction coefficient in a near-infrared imaging window region, where the light penetrate 

favorably into the tissue.   

 In this publication, we prepared multiple-layer structure with gold nanoshell (Fig. 20A) 

and utilized the resulting NPs in thermal ablation of HeLa cells. We prepared NDs (Fig. 20B) 

with a silica layer, making NDs more spherical (Fig. 20C) as shown previously. Small gold 

seeds (2-3 nm) were adsorbed on the surface of silica layer (Fig. 20D) and a compact gold layer 

was then grown from Au3+ salt and reduction agent carbon oxide in the solution (Fig. 20E). 

From common TEM, thickness and compactness of the shell cannot be recognized. Three-

dimensional reconstitution and thickness of the shell (approximately 12.6 nm) was measured 

using electron tomography (HAAF-STEM). Absorption spectrum of prepared blue-colored 

ND@Au particles had maximum at 675 nm. Stability of prepared ND@Au in buffered solution 

(PBS and media with serum) was ensured by polymer coating with 5-kDa PEG. 

Heterobifunctional PEG was attached to the surface by lipoic acid, moiety with affinity to the 

gold. Alkyne groups at the second end of the PEG chains were functionalized further with 

secondary fluorescent label Alexa Fluor 647-azide and transferrin-azide using subsequent 

“click” reaction.  
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Fig. 20 (A) Scheme of ND modification with multi-layer system. First, NDs are coated with thick silica layer, gold 

seeds are attached and further grown to compact gold shell. Second, modification of ND@Au with PEG, Alexa 

Fluor 647 and transferrin followed. TEM images of (B) NDs, (C), silica-coated NDs, (D) silica-coated NDs with 

gold seeds, (E) silica-coated NDs with gold layer (ND@Au). (F) Cell viability of HeLa cells measured by 

luciferase assay with delay 24 hours after laser ablation (1 minute, 37 W/cm2).  

 

Transferrin interacted with transferrin receptors on targeted cells (a human breast cancer cell 

line SKBR3 or HeLa cells) and resulted in higher interaction of ND@Au-Tf particles than non-

targeted particles with cells. ND@Au-Tf particles were internalized inside the cells in contrast 

to non-targeted particles, which, if interacted, co-localized with the membrane according to 

confocal studies. We demonstrated the possibility of killing cancer cell upon red laser 

irradiation. Cells without NPs did not change their viability (according to luciferase assay) upon 

laser irradiation, similarly to non-radiated cells with NPs. Only HeLa cells exposed to both 

ND@Au-Tf and laser irradiation were completely killed after one minute of irradiation (power 

laser 37 W/cm2) (Fig. 20F).  
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Publication 7: Optical imaging of localized chemical events using programmable 

diamond quantum nanosensors 

Torsten Rendler, Jitka Neburkova, Ondrej Zemek, Jan Kotek, Andrea Zappe, Zhiqin Chu, Petr 

Cigler, Joerg Wrachtrup 

 NDs’ optical properties are sensitive to electric and magnetic field. Paramagnetic ions, 

such as Gd3+, create a fluctuating magnetic field that can be sensed by (N-V) relaxometry. T1 

electronic relaxation time of (N-V) center is influenced by the number of spins (Gd3+ 

complexes) within effective (N-V) sensing radius, therefore their detachment from the surface 

can be measured (Fig. 21A). 

In this publication, we attached Gd3+ complexes to the surface of PHPMA-coated NDs 

(prepared by the same procedure as previously in (Slegerova et al., 2015)). Instead of targeting 

ligands, Gd3+ complexes modified with azide were attached to alkyne-modified NDs. Gd3+ 

complexes with cleavable linkage sensitive to either acidic pH (hydrazone linker) or increased 

redox potential (disulfide linker) were prepared (Fig. 21B).  

 
 
Fig. 21 (A) Cartoon showing the sensing mechanism of a ND-polymer-Gd hybrid nanosensor in response to a local 

environmental change. (B) Chemical structure of the polymer interface with Gd3+ complexes attached via a non-

cleavable and two types of cleavable linkers.  

 

The release of Gd3+ complexes was evaluated by ICP-MS (Fig. 22A). Detachment of 

Gd3+ complexes in both acidic pH and increased concentration of glutathione (GSH) occurs in 

a physiologically relevant time (within 1 hour) under physiological conditions (pH 4.5-7.4, 1-

10 mM GSH, which corresponds to condition change after NDs entering the cells) (Fig. 22B). 



57 
 

 
 

Fig. 22 (A) Release kinetics of Gd3+ complexes in redox-sensing particles in the presence of 1, 5 and 10mM 

glutathione (GSH) in buffer analyzed by ICP-MS. (B) Time-dependent ensemble measurement for T1 of the redox-

sensing particles in buffer solution before and after addition of 1mM or 10mM GSH. 

 

 

Perfect stability of polymer-coated NDs in buffers enabled T1 measurement to be done 

in a microfluidic channel that mimics cellular environments. Measurement of T1 relaxation time 

of (N-V) centers corresponds to ICP-MS measurements. The pH sensing system operates in 

quite a broad pH range (pH 2.0-7.4) with accuracy ± 0.7 pH unit (Fig. 23A). We were able to 

distinguish under confocal microscope NPs of various T1 relaxation time, for example NPs 

incubated in acidic pH and new-comers from neutral pH (Fig. 23B).  

 

Fig. 23 (A) Dependence of the fitted T1 changing rate of acidic-sensing NPs on pH. T1 points were measured for 

120 seconds. (B) T1 contrast image of NPs incubated in pH 2.0 and freshly added NPs from pH 7.4 buffer. White 

arrows point to newly added ones. The color bar indicates the T1 value ranging from short (blue) to long (red).   

 

These sensors working under physiological conditions can enable further monitoring of 

intracellular processes that are important for various bioapplications.
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5. MY CONTRIBUTION TO THESE PUBLICATIONS 

The presented data were all result of team effort of all co-authors. Here I summarized my 

involvement in individual publications:  

 

Publication 1: Surface modification of NDs (preparation and optimization of silica and polymer 

coating), imaging of NDs in cells 

 

Publication 2: Surface modification of NDs (preparation and optimization of silica and polymer 

coating) 

 

Publication 3: Surface modification of NDs (preparation of silica, polymer coating, reactions 

with fluorescent dye and targeting peptide), optimization of polymer coating, characterization 

of the particles, cell experiments (cell viability assay, flow cytometry, confocal microscopy), 

preparation of the manuscript 

 

Publication 4: Chemical modification of transferrin, surface modification of NDs (preparation 

of silica, polymer coating, reactions with fluorescent dye and targeting protein), 

characterization of the particles, cell experiments (cell viability assay, flow cytometry, confocal 

microscopy), preparation of the manuscript 

 

Publication 5: Surface modification of NDs (preparation of silica, polymer coating, reactions 

with fluorescent dye and small-molecule inhibitor), expression of Qβ virus-like particles, their 

isolation and modification (polymer coating, modification with fluorescent dye and small-

molecule inhibitor), characterization of the particles (DLS, TEM, SPR, matrix-assisted laser 

desorption/ionization MALDI), cell experiments (flow cytometry, confocal microscopy), 

preparation of the manuscript 

 

Publication 6: Chemical modification of transferrin glycosylic chains with azide moieties, its 

purification and characterization 

 

Publication 7: Surface modification of NDs (preparation of silica, polymer coating, reactions 

with Gd3+ complexes), characterization of the NDs (DLS, zeta potential, TEM), exploration of 

the conditions and kinetics of the Gd3+ release from the surface (ICP-MS measurements)
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6. DISCUSSION  
 

NPs can be used for various biological applications in both diagnostics and therapy. 

Especially, targeted nanomedicine has remarkable potential in cancer related applications. 

Superiority of NPs emerges from their proper size, ability of acquire various functions and 

extreme local concentration of ligands achieved around the NPs resulting in increased affinity 

(phenomenon called avidity). Mastering surface properties and preparation of controllable 

interface are key requirements for all applications. In this PhD thesis, I focused on preparation 

of such surfaces with low non-specific interactions and high specific interaction toward cancer 

cells. The central NPs used in this thesis are biocompatible polydisperse NDs. Many researchers 

previously published polymer coatings on NDs, although the quality of the coating was not 

sufficient to protect NDs from non-specific interactions with cells. Usually, “grafting to” 

procedures introducing PEG on the surface were established. (Dong et al., 2015; Wang et al., 

2014; Zhang et al., 2015)  

We chose PEG and “grafting to” approach for our first attempt to coat NDs with 

polymer. (Rehor et al., 2014a) PEG was grown on amino-modified silica layer on NDs. NDs 

were rounded by thick silica layer and their size polydispersity was reduced. Shape of NPs 

influence their fate in cells. Sharp NPs (including NDs) were shown to disrupt the membrane 

of endosomes and to escape from the vesicle to the cytoplasm. Rounded NPs went through the 

endocytosis pathway and were excreted. (Chu et al., 2014) We were able to ensure ND-PEG 

stability in buffers and therefore fulfill fundamental condition for further applications. 

However, ND-PEG conjugates were internalized spontaneously inside the cells, so their non-

specific interactions with cells were not eliminated. We therefore further focused on 

modification of NDs with “grafting from” approach, which was reported as a method 

introducing denser polymers on surfaces. (Zhao and Brittain, 2000) “Grafting from” method is 

experimentally more demanding; however has potential to provide NPs with polymer coatings 

in conformation of dense brushes. For “grafting from” approach, we selected PHPMA as a 

hydrophilic biocompatible non-immunogenic polymer. First, silica coating was installed on the 

surface of NDs. 3-(Trimethoxysilyl)propyl methacrylate as a part of the silica mixture reduce 

the thickness of the silica shell during the reaction. This molecule block the growth of the layer 

by capping the formed silica layer by organic substituent. This method does not lead to rounded 

NDs, however for many applications we need the close proximity of the polymer shell to the 

core of ND. Thin silica shell (approximately 1-2 nm) does not significantly enlarge the NDs 
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and can be utilized also for other types of NPs as a general approach to NP modification. The 

main motivation of 3-(Trimethoxysilyl)propyl methacrylate presence is preparation of the 

platform from which HPMA monomer further polymerize. Prepared PHPMA-coated NDs were 

colloidally stable and the protein adsorption was four-fold lower than for non-coated NDs. 

(Rehor et al., 2014b) Nevertheless, after further optimization, (Slegerova et al., 2015) we 

achieved NDs with dense polymeric coating and no measurable non-specific interaction with 

cells. The growth of the polymer layer in a more viscous environment and in lower temperature 

resulted in better coating. Stability of these optimized PHPMA-coated NDs was ensured in 

biologically relevant buffers and media and even more harsh conditions such as 1 M NaCl.  

As a next step, we focused on targeting efficiency of NDs after attachment of targeting 

ligand. Usually, poor targeting efficiency is an outcome of the incomplete polymer layer 

resulting in non-specific interactions. Satisfactory targeting efficiency (12-fold) was previously 

achieved only for targeting folate-modified NDs into HeLa cells. (Zhang et al., 2009a) As we 

are able to eliminate the non-specific interaction of cells, potential of our NDs is high. We 

modified PHPMA-coated NDs with cyclic RGD peptide, ligand for targeting integrin αvβ3 

overexpressed on cancer cells. (Slegerova et al., 2015) Cyclization of RGD improves binding 

efficiency and integrin selectivity by enhancing stability and structural rigidity of the peptide. 

NDs were also labeled with Alexa Fluor 488-alkyne. Introduction of fluorescent dye was 

important in our case, because fluorescence of NDs was not compatible with our flow cytometer 

setup. However, flow cytometry can be used for detection of ND fluorescence. (Zhang et al., 

2009a) We observed 8-times higher interaction of ND-cRGD than interaction of negative 

controls with glioma cancer cells on flow cytometer. As negative controls, NDs without peptide 

and pre-incubation with free cyclic RGD were used. Free cyclic RGD binds to the receptor and 

blocks the receptor from further interactions. If the subsequent interaction of ND-cRGD is 

blocked, as in this case, the interaction is specific and requires the receptor. We observed no 

significant difference between non-treated cells and cells treated with negative controls. 

Therefore, we were successful in our goal of eliminating non-specific interaction. Flow 

cytometry is a quantitative method, but does not provide information about NDs localization. 

According to the results from confocal microscopy, ND-RGD were localized inside the cells. 

Similarly successful in decreasing non-specific interaction of NDs was group of professor 

Komatsu with polymer layer consisting of PG. (Zhao et al., 2014b) However, the increase of 

interaction of ND-PG modified with peptide cyclic-RGD in comparison to controls was only 

50%. 
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Further, we focused on increasing specific interactions, which was in the case of our 

ND-RGD 8-fold. The specific interaction is affected by the system of targeting ligand-receptor 

(and its binding efficiency constant), conformation of more complexed ligands (proteins) and 

their concentration on the surface. Modifications using azide-alkyne cycloaddition catalyzed by 

Cu(I) ions (“click” reaction) was possible for all the prepared coated NDs as NDs have in 

polymer structures either azide or alkyne groups. We prefer biorthogonal reactions on the 

surface of NDs because of the mild conditions of the reactions, high yields and higher 

specificity in reactions with biomolecules. In case of small peptide, such as RGD, the chosen 

reaction does not play such an important role.  

On the other hand, biomolecules such as proteins, contain in their structure many 

potential moieties for attachment using either amidic coupling or disulfide bond formation. 

Many amines in the molecule can be involved in the attachment using amidic coupling making 

it impossible to control conformation and biomolecule exposure on the surface. This control is 

a key for enhancing interaction of ligands on NPs with their targets. Protein transferrin has one 

recognizing epitope towards the transferrin receptor. This reaction site needs to be exposed to 

the environment and not hindered by the ND surface. Site-specific attachment of transferrin on 

far end from the reaction site is needed. We modified the sialic acid in glycosylic chains in the 

structure (four in every transferrin molecule) with clickable moiety. (Neburkova et al., 

submitted) First, the saccharide diol structure was cleaved by meta-periodate to an terminal 

aldehyde. This aldehyde then reacted in biorthogonal reaction with 3-aminooxypropylazide 

linker, forming an aldoxime bond. Cleavage by meta-periodate needs to be carefully optimize 

to prevent adverse cleavage effects in the protein structure. Bioorthogonal reaction (oxime 

ligation) with aminooxy linker ensures introduction of maximally four azide groups in the 

glycosylic structure of the protein on far end from recognizing epitope. 

Transferrin-azide reacted in “click” reaction with alkyne-modified PHPMA-NDs 

already labeled with Alexa Fluor 488-azide. The consecutive “click” reaction is performed with 

low molar excess of first reactive molecule (fluorescent dye) and large excess of second 

molecule (protein transferrin). However, the loading of second molecule is affected by the 

occurrence of first “click” reaction. Loading of transferrin on NDs was evaluated by two 

methods as 6 and 20 per one particle with and without fluorescent dye, respectively. Although 

6 molecules of transferrin per one particle is not particularly high, it was enough for efficient 

targeting. Flow cytometry revealed 175-times higher interaction of ND-Tf with CCRF-CEM 

lymphoblast cells than ND without transferrin or controls with free transferrin pre-incubation. 
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Controls were not distinguishable from each other and from non-treated cells. Polymer surface 

coating fulfilled its function and NDs did not interact non-specifically. We examined interaction 

of NDs with three different cell-lines: two cancer cell lines (U2OS, CCRF-CEM) and one non-

cancerous cell line HUVEC. We performed the experiments in co-culture to imitate cancer 

environment. Cancer cell line was always mixed with endothelial cell line and incubation with 

NDs was done in this mixture of two lines. We proposed the method how to distinguish between 

co-cultured cell lines by labeling them for analysis after experiment without having any 

influence on cell surface structures. Before analysis, specific antibodies towards cell line 

labeled with different fluorescent dyes were introduced. Flow cytometry on three different 

fluorescent channels was measured without overlapping of the fluorescence. For all three cell 

lines, ND-Tf conjugate signal was significantly higher than signal of controls. However, ND-

Tf selectively choose cancer cells over endothelial cells from the mixture. Difference between 

cell lines is dependent on amount of transferrin receptors on the cell surface. Cancer cells 

overexpress transferrin receptors as their iron(III) uptake is higher. Expression of transferrin 

receptors on non-cancerous cells results in specific internalization of certain amount of ND-Tf, 

which nevertheless decrease the difference between cancer and non-cancerous cells. Therefore, 

more tissue-specific targeting system (receptor-ligand) is needed.  

GCPII is expressed only in few tissues such as prostate, central nervous system, small 

intestine and kidney. GCPII is overexpressed on prostate tissue-cancer cells. NDs with the 

PHPMA structure modified with small-molecule inhibitor were prepared as well as other NPs 

included in this study. (Neburkova et al., 2018) We compared the targeting efficiency of one 

ligand within the same experimental setup dependent on various types and characteristics of 

NPs, surface ligand density, surface functionalization and modification method. The interaction 

of NP-inh particles with GCPII was studied in solution, on the artificial surface or on the cell 

membrane. Inhibition efficiency of NP-inh in solution was sustained. Inhibition constants (Ki) 

were for NP-inh conjugates in picomolar range, three orders of magnitude lower than for free 

inhibitors. This decrease is probably caused by avidity effect of inhibitors on the surface of 

NPs. NP-inh selectively interacted with GCPII bound to the gold surface of a chip in SPR 

measurement. Regardless the difference in inhibitor loading, surface chemistry and type and 

size of the NPs, all NPs were able to interact with GCPII on gold chip in a similar manner. We 

observed similar effect also concerning NP-inh interaction with GCPII on cell membrane 

measured by flow cytometry. Only interaction of ND-inh was notably higher (75-fold higher 

than controls), probably because of the combination of optimized bionanointerface with high 
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loading of inhibitors. For NDs, polymer-coated and uncoated Qβs and polymeric particles, no 

non-specific interaction were observed. High non-specific interactions of MPyV (unrelated to 

GCPII receptor) were observed because of MPyV interactions with its primary target (certain 

receptors and glycosylated surfaces) on the cells. Elimination of non-specific interactions was 

the only requirement for the efficient targeting. “Grafting to” polymerization of PHPMA to 

virus-like particles did not provide reasonable yield, probably because of the limited solubility 

of the PHPMA polymer with hydrophobic amine-reactive groups (thiazolidine-2-thiones). 

Therefore, the polymer did not sufficiently lowered non-specific interaction of MPyV. Decrease 

of non-specific interaction and denser coating was provided by PEG-coating of MPyV. 

Although the polymer was attached by “grafting to” approach, the yield was sufficient for 

protection. For targeting with small molecules, elimination of non-specific interactions has to 

be provided by polymeric shell. Contrary, MPyV targeted with large protein transferrin did not 

need to be coated with polymer, since the size of the protein by itself was sufficient to sterically 

hinder the MPyV. (Zackova Suchanova et al., 2017) Qβ do not show non-specific interactions 

with cells even without polymer coating. However, polymer coating would be needed for Qβs 

for in vivo applications, as Qβs are immunogenic. Confocal microscopy confirmed the 

internalization of NP-inh particles. All NP-inh were observed inside the cells in perinuclear 

region. Non-specifically interacting MPyV were localized near the membrane.  

We showed the preparation of bionanointerface consisting of dense polymeric layer and 

various targeting ligands (peptide, protein, small molecule) and successful targeting ability of 

such particles. NDs with surface under control can be used for therapeutic applications. NDs 

(usually DNDs) were shown to be used as small-drug carriers, however from our point of view, 

other types of NPs (such as hollow organic NPs) are more useful for this purpose. Nevertheless, 

nanophototherapy as a therapeutic technique is worth to explore further. NPs with gold 

nanoshells transform very efficiently light (from the laser) to the local heat and kill the cell, in 

which they are internalized. NDs coated with thick silica layer served as a good platform for 

gold shell layer growth. (Rehor et al., 2015) Gold shell is easier to grow on rounded particles, 

which thick silica layer provide. Seeded growth of gold results in a fairly compact layer, 

however with thickness of at least 10 nm. Absorption properties of gold shells depends on the 

size of the core and thickness of the shell. Prepared ND@Au had maximum of the absorption 

peak in near-infrared region at 675 nm, where the light penetration through tissues is easier 

because of the lower tissue absorbance, lower auto-fluorescence and lower NIR light scattering. 

HeLa cells with NDs inside were completely killed after a one-minute irradiation with a pulse 
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750-nm pulse laser (37 W/cm2). These irradiation conditions did not cause any adverse effect 

to cells without ND@Au. We examined the possibility of killing cancer cells with ND@Au in 

parallel with improving the polymer bionanointerface. Therefore, the experiments were done 

on ND@Au coated with PEG and modified with transferrin. Although ND@Au were 

preferentially internalized to cancer cells, the targeting effect is rather weak, because of high 

non-specific interaction. Nevertheless, we confirmed the possibility of killing cell by thermal 

ablation and now we are currently working on preparation of gold layers with PHPMA polymer 

coating “grafted from” the surface.  

PHPMA-coated NDs were used also as a proof-of-concept for further biological 

applications of NDs as sensors of physiological relevant parameters. (Rendler et al., 2017) For 

this project, enhanced colloidal stability and possibility of further functionalization with high 

yield of NDs was needed. NDs with PHPMA coating were modified with Gd3+ complexes. 

Presence of paramagnetic Gd3+ ion shorten T1 relaxation time of (N-V)- center. Three complexes 

were attached, non-cleavable one, sensitive to lower pH, and responsive to higher concentration 

of reduction agents. Kinetics of the cleavage was studied using ICP-MS method, in which only 

Gd3+ released from the surface was measured. It was shown that the cleavage of Gd3+ occur in 

reasonable fast conditions. Too fast or slow cleavage would prevent the use of this system as a 

sensor inside of the cells. All cleavable Gd3+ complexes were cleaved within an hour in 

biologically relevant intracellular conditions (in pH 4.5 or GSH concentration 5 mM). Cleavage 

of pH-sensitive complex occurs also at pH 7.4, but in time scale of few tens of hours. On the 

other hand, at non-physiological pH 2.0, the cleavage is very rapid and finishes in few minutes. 

Similarly the concentration of GSH (1-10 mM) influenced the rate of the cleavage. The T1 

relaxation time and its change can be measured because of the colloidal stability in microfluidic 

channel. The change of T1 relaxation time was caused only by the Gd3+ cleavage, no shrinking 

or swelling of the polymer layer was observed. No change in T1 was observed for controls (NDs 

with non-cleavable Gd3+ complex). The kinetics of T1 relaxation time change (relaxation rate) 

was in agreement with release measurement from ICP-MS and theoretical model. The T1 

relaxation time measurement is fast and the T1 relaxation rate can be fitted with high precision 

from two-minute measurement. For pH sensor, value of pH can be extracted from the relaxation 

rate. NDs with different T1 relaxation time can be distinguished under confocal microscope due 

to the fast T1 measurement. Disadvantage of this sensor is its irreversibility; however, that is 

common feature for all of the NP sensor introduced so far. (Howes et al., 2014) Attempt of 

preparation of even better reversible sensors is of the particular interest.  
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7. CONCLUSIONS  
 

In this thesis, a superior nanobiointerface on NPs was proposed, prepared and studied. NPs with 

optimized biocompatible surfaces were shown to have potential in biomedical applications. The 

particular hypotheses listed within aims of the thesis were successfully answered.  

 NDs were coated with multilayer structure consisting of silica and polymeric shell. They 

were stable in buffer solutions. 

 Different polymerization methods (“grafting to” and “grafting from”) with different 

types of polymers (PEG or PHPMA) provided diverse ability of surface protection. 

Ability of polymer shell to increase colloidal stability, to decrease non-specific 

interactions with proteins and cells and to enable high yield surface modifications was 

studied. Dense polymeric shells from PHPMA “grafted from” the surface of NDs 

showed the best results in eliminating non-specific interactions.  

 PHPMA-NDs were modified with biorthogonal “click” reactions with various ligands 

including fluorescent dyes and targeting ligands (peptide RGD, protein transferrin and 

small-molecule inhibitor of protease). The controlled way of attachment and 

environmental exposition was important especially for transferrin.  

 Successful targeting was shown for all PHPMA-coated ND conjugates with increasing 

targeting effect from peptide, small-molecule inhibitor to protein.  

 Differences in targeting of various types of NPs were studied on NDs, virus-like NPs 

and polymeric NPs modified with small-molecule GCPII inhibitor. The highest 

targeting effect was observed for NDs, although other types of the NPs were also 

successfully targeted to cancer cells overexpressing GCPII. Requirement of proper 

polymerization methods for preparation of dense polymeric shells was again confirmed.  

 Apart from targeting, two other biological applications were studied. First, NDs were 

modified with plasmonic gold nanoshell and their ability to kill the cancer cells using 

photothermal ablation was investigated. The cells with internalized NDs were 

effectively killed upon a short exposition to near-infrared laser. Second, pH and redox 

potential was measured by selective release of Gd3+-complexes from NDs. The release 

resulted in change of T1 relaxation time of NDs enabling optical readout of localized 

chemical processes occurring on an extremely small scale (10–22–10–20 mol) using 

confocal microscopy.
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