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Abstract

Charles University

Faculty of Pharmacy in Hradec Králové

Department of Biophysics and Physical Chemistry

Candidate: Yestay Rakhimov

Supervisor: doc. Erik Jurjen Duintjer Tebbens, Ph.D.

Title of diploma thesis: Mathematics and implementations of physiologically based phar-

macokinetic modeling

The thesis addresses some basic aspects of pharmacokinetic modeling, which is used

to describe pharmacokinetic processes. Understanding these processes is important for

example to determine optimal concentrations of drugs dosing.

The thesis focuses on mathematical proofs of a number of pharmacokinetic equa-

tions, which are often not given in standard books. The derived equations are illustrated

with numerical experiments for a particular drug in the software PharmCalcCl and MAT-

LAB.
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Abstrakt

Univerzita Karlova

Farmaceutická fakulta v Hradci Králové

Katedra biofyziky a fyzikálńı chemie

Kandidát: Yestay Rakhimov

Školitel: doc. Erik Jurjen Duintjer Tebbens, Ph.D.

Název diplomové práce: Mathematics and implementations of physiologically based phar-

macokinetic modeling

Práce se věnuje některým základńım aspekt̊um farmakokinetického modelováńı,

které se použ́ıvaj́ı k popisu farmakokinetických proces̊u. Pochopeńı těchto proces̊u je

d̊uležité např́ıklad pro stanoveńı optimálńıch koncentraćı dávkováńı lék̊u.

Diplomová práce se zaměřuje na matematické d̊ukazy řady farmakokinetických rovnic,

které často nejsou uvedeny ve standardńıch knihách. Odvozené rovnice jsou ilustrovány

numerickými experimenty pro určitý lék v softwaru PharmCalcCl a MATLAB.
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Introduction

Pharmacokinetics contributes to solving the problem of the effectiveness and safety

of pharmacotherapy by investigating the dependence of therapeutic, toxic and side ef-

fects of drugs on their concentrations at the site of action or in the analyzed biological

environment (most often in the blood) and the calculation of optimal modes of drug

administration for creating and maintaining optimal concentrations of drugs [22].

Pharmacokinetic models are used to simplify the study of pharmacokinetics. The

pharmacokinetic model describes the kinetics (change in time) of the distribution of drugs

administered to the body [24]. The pharmacokinetic model allows, within the limits of

certain assumptions, to find changes in the drug concentration in time with different

methods of its administration into the body, to calculate the optimal ratio between the

parameters of input and output of the drug, to provide the necessary therapeutic effect

[20].

In this thesis we focus on most-frequently used one-compartmental and two-compart-

mental models. We give detailed mathematical proofs of pharmacokinetic equations,

which are often not in the standard books. In the first chapter, basics of pharmacokinet-

ics, we describe important pharmacokinetic processes, the main reaction types and we end

the chapter with brief introduction in compartmental theory. In our second chapter we

will consider one-compartmental intravenous injection in single and multiple doses, intra-

venous infusion and discuss about extravascular drug application. We perform numerical

experiments in the software PharmCalcCl [5] for the drug gentamicin [23]. In the next
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third chapter, we discuss about two-compartmental models and describe its typical pa-

rameters. We end our thesis with chapter, approximation of the AUC, describing some

popularly used numerical methods, Trapezoidal and Simpson’s rule, and also perform

numerical experiments in the MATLAB sofware [18].

We end this introduction with the original and official scope of the thesis introduced

in SIS (Studijńı informačńı systém).

The goals of the thesis

The goals of the thesis are:

- to give a thorough description of the mathematics behind modern PBPK (physiologically

based pharmacokinetic) modeling,

- to give a description and evaluation of the implementation of PBPK currently available

in the MATLAB software,

- to work on possible improvements or extensions of that software.

We would like to point out that, we used knowledges about more standard PBPK.

We mainly focused on mathematical proofs of pharmacokinetic equations. In the MAT-

LAB we performed numerical experiments, where we demonstrated how to calculate AUC

and difference between numerical methods. Because of license problems of the MATLAB

software and lack of time, we could not work on possible improvements or extensions of

this software.
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Chapter 1

Basics of pharmacokinetics

In this chapter we briefly introduce some basic notions necessary in the following

chapters. First we start describing pharmacokinetic processes: ADME (Absorption, Dis-

tribution, Metabolism, Excretion), then we introduce rates of reactions: zero-order and

first-order and we end the chapter with a very brief descriptions of one-compartment,

two-compartment and multicompartment models. The descriptions in this chapter are

based on the book [13] and [4].

Pharmacokinetics deals with how the organism acts on the drug, its fate in the

body, how the time course of the drug concentrations changes. Pharmacodynamics, on

the other hand, deals with how the drug affects the body, what are the mechanisms of

drug action [17].

There are 4 main types of pharmacokinetic processes [3] (see Figure 1.1):

1) Absorption - drug movement into the blood from the site of administration (e.g. from

the digestive tract, muscle, subcutaneous tissue).

2) Distribution - distribution of the drug in the blood into the body and into the site of

action, into tissues and organs (in the blood, a lipophilic drug can be bound to serum

proteins).

3) Metabolism (biotransformation) of the drug - metabolic conversion of the drug to an
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Figure 1.1: The key principles of Pharmacokinetics – the study of the effect the body has

on a medicine – are represented in the acronym ADME (the picture is taken from [6]).

inactive substance that is more hydrophilic and easier to remove from the body (sometimes

an inactive drug (pro-drug) can be activated to become an active drug).

4) Excretion - excretion of the substance or its metabolite from the body, most commonly

by kidneys and bile.

These pharmacokinetic processes, often referred to as ADME, determine the drug

concentration in the body when medicines are prescribed.
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1.1 Reaction types

The relationship between the reaction velocity and the composition of the reaction

mixture is expressed by general rate equation. For most reactions, the reaction rate

depends only on the concentration of the starting components. There are several reaction

types, like e.g. zero-order reaction, first-order and second-order reactions. In this chapter

we will describe mainly first and zero-order reactions, because most drugs are subject to

first-order and some drugs are subject to zero-order reactions.

If the following conditions are met: first, the reaction takes place in a closed system,

second, there are no intermediate products, third, there are no other reactions in the

system at the same time, then using a mass balance equation one can prove that

r = −dC(t)

dt
,(1.1)

where r is the reaction rate (in units of concentration over time) and C(t) is the instan-

taneous concentration of the substance [16].

1.1.1 Zero-order reaction

The rate constant of a zero order reaction is independent of the concentration of the

reactants. These reactions are typical for systems where the reaction medium (catalyst,

active surface) is saturated with a reactant. The mathematical relationship for the speed

of these reactions is

r = k,(1.2)

where k is a reaction rate constant (in units of [M
s
]).

Thus the reaction rate r of a zero-order reaction equals the reaction rate coefficient

k:

r = −dC(t)

dt
= k.(1.3)
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If we integrate this differential equation, we obtain the following relationship:

C(t) = −kt+ C0,(1.4)

where C0 is the initial concentration.

The reaction proceeds at a constant rate and it is independent of the concentration

of substance present in the body. Here is a list of some drugs following zero-order kinetics:

phenytoin, phenylbutazone, warfarin, heparin, ethanol, theophylline, tolbutamide, aspirin

and other salicylates.

1.1.2 First-order reaction

These reactions depend on the concentration of one reactant. The rate equation has

the form:

r = k · C(t),(1.5)

where r is reaction rate (in units of concentration over time), k is the reaction rate

coefficient (in units of reversed time), and C(t) is the instantaneous concentration of the

substance.

The reaction rate r of a first-order reaction equals the reaction rate coefficient k

times concentration C(t):

r = −dC(t)

dt
= k · C(t).(1.6)

By integrating this differential equation we get:

C(t) = C0 · e−kt,(1.7)

where C(t) is the instantaneous concentration of the substance, C0 is the initial concen-

tration. In pharmacokinetics k is denoted as ke - elimination rate constant.

It is assumed that the majority of processes of ADME follow first-order reactions

and most drugs used in clinical practice at therapeutic dosages will show first-order rate

11



processes, i.e. the rate of elimination will be first-order. Drugs following first-order

reaction have the property that as the amount of drug administered increases, the body

is able to react by eliminating the drug at an increased level and accumulation will not

occur. However, if we continue to increase the amount of drug administered then all drugs

will change from showing a first-order process to a zero-order process, for example in an

overdose situation.

1.2 Pharmacokinetic models

A compartment is an abstract region of our body, where we assume substances con-

centrations are homogeneously distributed. It is the building stone of a simplified model

of reality serving to illustrate the ADME processes [1]. The compartments may be small

or large, but they are usually abstract units. Typical examples of compartments include

plasma (also blood), intracellular and extracellular fluid, adipose tissue, organs, cells ect.

They are separated by membranes. The whole system describes a set of compartments

between which substances are exchanged.

1.2.1 One-compartment model

This type of model is the simplest. The entire body is considered as one compartment

(see Figure 1.2). It is assumed that the substance is dispersed quickly and evenly after

application. For this reason, it is impossible to accurately illustrate the distribution of the

substance in the body. This type of model has a meaning when describing and predicting

drug movement, for example, when repeatedly administered [?].

It is important to note that this does not imply that the drug concentration in

plasma is equal to the drug concentration in the tissues. However, changes in the plasma

concentration quantitatively reflect changes in the tissues. A typical relationship between

concentration versus time profile is shown in the Figure 1.4 for a drug with first-order
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Figure 1.2: One-compartment model. ka [h−1] is absorption rate constant, ke [h−1] is

elimination rate constant (drawn in PowerPoint).

reactions.

1.2.2 Two-compartment model

Most substances can not be instantly dispersed throughout the body. To simulate

this, a two-compartment system is used. The first one is central and the other is periph-

eral (see Figure 1.3). We assume that the substance is exchanged between compartments

in order to maintain balance. Although these compartments often have no physiologi-

cal or anatomical meaning, it is assumed that the central compartment includes tissues

that are highly perfused such as heart, lungs, kidneys, liver and brain. The peripheral

compartment includes less well-perfused tissues such as muscle, fat and skin.

In a two-compartment model the drug is administered into the central compartment,

but the drug does not achieve instantaneous homogenous distribution between the two

compartments. The drug distributes between the central and peripheral compartment. A

typical drug concentration versus time profile is shown in the Figure 1.5. The form of the

curve, after taking a sufficient number of blood samples, is used to determine whether we

have 1 or 2 compartments.
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Figure 1.3: Two-compartment model. kp, kc and ke are first-order rate constants: kp is

rate of transfer from peripheral to central compartment, kc is rate of transfer from central

to peripheral compartment, ke is rate of elimination from central compartment.

1.2.3 Multicompartment model

With a growing number of compartments, the system becomes more complex. An

example of a multi-compartment system is a three-compartment system, which consists of

a central compartment and two peripherals. The central one in general is better perfused

with blood than the other two. Graphs of plasma concentration versus time profile of a

drug are shown in Figure 1.6.
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Figure 1.4: One-compartment model: A) plasma concentration C(t) versus time t profile

of a drug; B) log(C(t)) vs time t shows a linear relation (drawn in PowerPoint).
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Figure 1.5: Two-compartment model: A) plasma concentration C(t) versus time t profile

of a drug shows a curve; B) log(C(t)) vs time t plot shows a biphasic response. The figure

is for central compartment (drawn in PowerPoint).
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Figure 1.6: Three-compartment model: A) plasma concentration C(t) versus time t profile

of a drug shows more than one exponential; B) time profile of a drug showing log(C(t))

vs time t (drawn in PowerPoint).
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Chapter 2

One-compartmental models

In this chapter we describe the pharmacokinetics for one-compartmental models.

We will consider one-compartmental intravenous injection, infusion, single and multiple

doses, also extravascular drug application. We give mathematical proofs of pharmacoki-

netic equations and perform numerical experiments in the software PharmCalcCl. The

description in this chapter is based on the books [13] and [4].

2.1 Intravenous injection, single doses

In a one-compartment model, for drugs with first-order elimination, the change in

concentration over time can be expressed according to (1.7) as

C(t) = C0 · e−ket,(2.1)

where:

C(t) [mg
l
] = the plasma drug concentration at time t [h],

C0 [mg
l
] = the initial plasma drug concentration at time t = 0,

ke [h
−1] = the elimination rate constant,

e = Euler’s number (approximately 2.718).

18



If the injected dose is D [mg], then we can express the initial plasma drug concen-

tration by the following equation

C0 =
D

Vd

,(2.2)

where Vd [l] is the volume of distribution, which is defined as that volume of plasma in

which the total amount of drug in the whole body would be required to be dissolved in

order to reflect the drug concentration attained in plasma.

Lemma 2.1.1 The relation between the elimination half-life t 1
2
and the elimination rate

constant ke is given by the equation:

t 1
2
=

ln 2

ke
≈ 0, 693

ke
.(2.3)

Proof: Because C(t) = C0 · e−ket, see (2.1), we have

C0 · e−ket 12 =
C0

2
⇔

e
−ket 1

2 =
C0

2C0

=
1

2
⇔

−ket 1
2
= ln

1

2
= ln 2−1 ⇔

t 1
2
=

ln 2−1

−ke =
− ln 2−1

ke
=

ln 2

ke
≈ 0, 693

ke
. �

It follows that for the elimination rate constant we have

ke =
ln 2

t 1
2

,(2.4)

thus ke in (2.1) can be determined from measurement of t 1
2
.

To determine Vd in (2.2) from measurements, one often uses the area under the

curve. In the field of pharmacokinetics, the area under the curve AC [mg·h
l

], also some-

times abbreviated as AUC, denotes the area under the curve (mathematically computed

as a definite integral) in a plot of concentration of drug in blood plasma against time.
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Typically,theareaiscomputedstartingatthetimethedrugisadministeredandending

whentheconcentrationofplasmaisnegligible.TheACrepresentsthetotaldrugexposure

overtime.Thisisusefulwhentryingtodeterminewhethertwodifferentformulationsof

thesamedose(forexampleacapsuleandatablet)releasethesamedoseofdrugtothe

body.Anotheruseisinthetherapeuticdrugmonitoringofdrugswithanarrowthera-

peuticindex.Forexample,gentamicinisanantibioticthatcanbenephrotoxic(kidney

damaging)andototoxic(hearingdamaging);measurementofgentamicinthroughconcen-

trationsinapatient’splasmaandcalculationoftheAC isusedtoguidethedosageof

thisdrug.Accordingtothefollowinglemma,theACisalsousefultodeterminetheVd.

Lemma2.1.2Inthesingle-compartmentmodel,theACparametersatisfies:

AC=
C0
ke
=
D

keVd
.(2.5)

Proof:

AC=
∞

0

C0e
−ketdt = C0

∞

0

e−ketdt= C0·
e−ket

−ke

∞

0

= C0
e−∞

−ke
−
e0

−ke
=C0 0−

1

−ke
=
C0
ke
.✷

Thusassuminglinearpharmacodynamicswitheliminationrateconstantke,wehave

shownthatACisproportionaltothedosageD.TocomputeVdwecanuse

Vd=
D

ke·AC
.

Inthiscontext,clearanceCl[l
h
]isdefinedasthevolumeofplasmafromwhichthe

drugiscompletelyremovedperunittimeandsatisfies:

Cl=ke·Vd.(2.6)

Therefore,ACcanbeexpressedas

AC=
C0
ke
=
D

keVd
=
D

Cl
,(2.7)
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and clearance is given by

Cl =
D

AC

.(2.8)

We end the section with an example for illustration of the change in concentration

over time (see (2.1)). We used data from a summary of product characteristics (SPC) of

gentamicin (antibiotic drug) given in [23]. Each 2 ml ampoule of solution for injection

contains 80mg gentamicin (as gentamicin sulfate). We have from [23] that the apparent

volume of distribution is about 0.25 l/kg for gentamicin. Standardly, for a 70 kg person,

we will get Vd = 0, 25 · 70 = 17, 5 l. We therefore calculated C0 for gentamicin as (see

(2.2)):

C0 =
D

Vd

=
80

17.5
= 4.57mg/l.

The elimination half-life was given in [23] as 2.5 h. From that we calculated ke (see 2.4):

ke =
ln 2

t 1
2

≈ 0.693

2.5
= 0.277h−1.

To calculate the change in concentration over time C(t) (see (2.1)), we used the

software Excel (see Figure 2.1).

2.2 Intravenous injection, multiple doses

In practice most drugs are administered over a period of time in several doses. When

we administer a drug at regular dosing intervals, it starts to accumulate in the distribution

area (e.g. most common blood plasma) and the drug concentration will rise until a steady-

state, which occurs when the administered drug amount (in a given time period) is equal

to the eliminated drug amount in that same period. The concentration function is then a

periodic function moving between Cmax and Cmin. The peak Cmax and trough Cmin plasma

concentrations of the drug are similar during all the periods at steady-state conditions

(see Figure 2.2).
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Figure 2.1: Plasma concentration versus time profile of gentamicin using a one-

compartment model (according to values given in [23]).

The concentration at time t after the first dose is:

C1 = C0 · e−ket.

After the dosing interval τ , the concentration at time t after the second dose originating

from the first dose is:

C2 = C0 · e−ke(τ+t).

The contribution from the second dose at time t after the second dose is exactly C1 =

C0 ·e−ket, as for the first dose. Using the principle of superposition, the total concentration
C(t) at time t after the second dose is:

C(t) = C1 + C2

= C0 · e−ket + C0 · e−ke(τ+t)

= C0 · (1 + e−keτ ) · e−ket
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Figure 2.2: Plasma concentration versus time profile of IV doses of 80mg gentamicin

(dosing interval τ is each 8 h) at steady state computed in the software PharmaCalcCL

(see [5]).

= C0 · (1 + e−keτ )(1− e−keτ )
1− e−keτ

· e−ket

= C0 · 1− e−2keτ

1− e−keτ
· e−ket.

In general, after the nth dose, we obtain the following theorem 2.2.1.

Theorem 2.2.1 To calculate the value of C(t) at any time t after the nth dose we can

use the following equation [11]:

C(t) =
D

Vd

· 1− e−kenτ

1− e−keτ
· e−ket(2.9)

where:

n = number of doses,

23



τ = dosing interval [h] and

t = time after the nth dose.

Proof:

The concentration during the first dosing interval is given by:

C(t) = C0 · e−ket, C0 =
D

Vd

.

The concentration during the second interval is, using the principle of superposition:

C(t) = C0 · e−ke(τ+t) + C0 · e−ket = C0 · e−ket(1 + e−keτ ).

Let us denote e−keτ by R.

The concentration during the third interval is, for the same reasons:

C(t) = C0 · e−ke(2τ+t) + C0 · e−ke(τ+t) + C0 · e−ket = C0 · e−ket(R2 +R + 1).

The factor between brackets is the beginning of a geometric series with each term being

R times the following term. For the concentration during the nth dose interval we obtain:

C(t) = C0 · e−ket(Rn−1 +Rn−2 + ...+ 1).

Using

Rn−1 +Rn−2 + ...+ 1 =
1−Rn

1−R
,

this can be simplified to give:

C(t) = C0 · 1− e−nkeτ

1− e−keτ
· e−ket. �

Corollary 2.2.2 At steady state, the following equation can be used to describe the drug

concentration C(t) (e.g. in blood plasma) at any time t within the dosing interval τ :

C(t) =
D · e−ket

Vd · (1− e−keτ )
.(2.10)
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Proof:

We consider steady-state to be the state after infinitely many doses. Then n in (2.9):

n→∞

and thus

e−nkeτ → 0.

This gives (2.10), where the influence of the dose number has disappeared. �

Using corollary 2.2.2, we can describe the maximum plasma concentration Cmax at

steady state (i.e. t = 0, then e−ket = 1) by the following equation:

Cmax =
D · 1

Vd · (1− e−keτ )
=

D

Vd · (1− e−keτ )
.(2.11)

The minimum plasma concentration Cmin (i.e. t = τ in (2.10)) is:

Cmin =
D · e−keτ

Vd · (1− e−keτ )
.(2.12)

We will next derive a frequently used quantity called average steady-state concen-

tration. However, we would like to point out that the average steady-state concentration

is not a mathematical average, it is not the same as the arithmetic mean of (2.11) and

(2.12).

As we mentioned before, steady state occurs when the rate of administered drug

amount is equal to the rate of drug elimination. We can approximate the rate of drug

administration as the dose D per dosing interval τ , i.e as D
τ
[mg
h
]. The rate of drug elim-

ination at steady state can be given by the clearance Cl of plasma times the so-called

average steady-state concentration, Css(τ):

Rate of drug elimination = Cl · Css(τ).

Thus, at steady state:
D

τ
= Cl · Css(τ).
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Rearranging the equation we get the average steady-state concentration Css(τ):

Css(τ) =
D

Cl · τ .(2.13)

From equations (2.4) and (2.6)) we have:

Cl =
ln 2 · Vd

t 1
2

,

then (2.13) changes to

Css(τ) =
D · t 1

2

ln 2 · Vd · τ .(2.14)

Those concentrations depend on the half-life t 1
2
of the drug under consideration.

We see that the average steady-state levels depend on the given amount of the dose

(see (2.14)): the higher the dose - the higher the levels. But the time to achieve steady-

state levels does not depend on the given dose amount, it depends on the exponent −kenτ
in (2.9), i.e. the larger ke, the smaller the time needed to achieve steady state. Note that

the higher the dose, the greater the fluctuations in Cmax and Cmin (see equations (2.11),

(2.12) and see Figure 2.3).

The difference between the dosing interval τ and the half-life t 1
2
can cause 3 different

types of average steady-state levels (see (2.14)):

1) If τ < t 1
2
, greater accumulation occurs, i.e. steady-state levels are higher, but

because of (2.12) there is less fluctuation in Cmax and Cmin (see Figure 2.8-A);

2) If τ > t 1
2
, a lower accumulation occurs with greater fluctuation in Cmax and Cmin

(see Figure 2.8-B);

3) If the dosing interval τ is much greater than the half-time t 1
2
of the drug, then

Cmin approaches zero (see (2.12) and Figure 2.8-C). In this case no accumulation will

occur and the plasma concentration-time profile will be the same as when administering

a series of single doses. In practice, steady-state is often assumed to be reached in 4-5

half-lives. If we assume that a patient is receiving 10 mg doses and half the total amount is
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Figure 2.3: Plasma concentration versus time profile of IV doses of the 80 mg gentamicin

(dosing interval τ is each 8 h), where 5th and 7th doses were increased twice (computed

in the software PharmaCalcCL (see [5])).

eliminated at each half-life, Table 2.1 shows the time to reach a steady-state concentration

in the body.

We remark, that for some drugs it is important to consider its salt factor S. The

salt factor is the proportion of the parent drug contained in the salt, expressed as [12]

weight of parent drug

weight basis of the salt
.

Hence, if it is applicable, then C0 = S·D
Vd

, which looks similar to (2.2), and we will get

instead of (2.10) the following equation with salt factor S:

C(t) =
S ·D · e−ket

Vd · (1− e−keτ )
.(2.15)

It is sometimes important to take into account as well the bioavailability F , which rep-

resents the fraction of an administered dose of unchanged drug that reaches the systemic
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Table 2.1: The table shows the time to reach steady-state concentration in the body,

where we assume that a patient is receiving 10 mg doses.

circulation. This will be relevant mainly for extravascular administration.

Remark: if S and F play a role, then in most equations D must be replaced with

S · F ·D, in particular in equations (2.1) and (2.9) till (2.14).

2.3 Intravenous infusion

Intravenous infusion is used when it is necessary to direct the drug solution into

the blood circulation gradually, either for therapeutical reasons (long-term infusion) or

when because of technical reasons the high amount of solution can not be injected entirely

(short-term infusion). The rate R [mg
h
], which is needed to direct the drug solution into

the organism, is as a rule assumed to be constant and it is expressed by ratio: R = D
T
,

where T is a certain end time of the given infusion. The model illustration is shown in

Figure 2.4.

Theorem 2.3.1 In case of long-term infusion, for the single-compartment model, the
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Figure2.4:Schemeforone-compartmentIVI(intravenousinfusion).Risinfusionrate

constant,keiseliminationrateconstantandClistotalplasmaticclearance(drawnin

PowerPoint).

time-concentrationequationisthefollowingwithfirst-orderreactions:

C(t)=
R

keVd
(1−e−ket).(2.16)

Proof:

ThedifferentialequationforC(t)is[11]:

dC(t)

dt
=
R

Vd
−ke·C(t).

UsingLaplacetransforms(see[21]),itcanbeintegratedtogive(2.16).Infact,the

Laplacetransformsisanverycomplicatedintegraltransform.Thus,tomaketheproof

moresimpleforthereaders,nowwearegoingtoproofthatthederivativeof(2.16)satisfies

thedifferentialequationforC(t),i.e.,that

dC(t)

dt
=
d R

keVd
(1−e−ket)

dt
=
R

Vd
−ke·C(t).

DifferentiatingtheexpressionforC(t)in(2.16),

dC(t)

dt
=
d R

keVd
(1−e−ket)

dt
,
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we get

dC(t)

dt
=

R

keVd

· d(1− e−ket)
dt

=
R

keVd

· (0 + kee
−ket)

=
R

keVd

· kee−ket

=
R

Vd

· e−ket.

On the other hand, if C(t) equals the expression in (2.16), then:

R

Vd

− ke · C(t) =
R

Vd

− ke · R

keVd

(1− e−ket)

=
R

Vd

− keR

keVd

+
keR

keVd

· e−ket

=
R

Vd

· e−ket. �

As it is perceptible from the equation (2.16), during the long-term infusion performed

by constant rate, the drug concentration in the distribution area is getting closer to a

definite value - the plateau concentration, i.e. the steady state concentration Css. In this

case

e−ket = 0,

thus from (2.16) we get:

Css =
R

keVd

.(2.17)

Alternatively, we can show this formula for Css similarly as we have done for multiple

doses before equation (2.13). As the rate of infusion equals the rate of elimination at

steady state

R = ke · Vd · Css,

then we have the steady state concentration Css, which is defined as the ratio of infusion

rate constant R to the total plasmatic clearance Cl:

Css =
R

keVd

=
R

Cl
,(2.18)
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notice the similarity with (2.13).

As for multiple doses steady-state is achieved, which denotes a definite dynamical

balance between the intake rate of the drug by the infusion and its removal by the elimina-

tion processes, where the amount of the drug discharged from the distribution area equals

the amount of the drug incoming into the distribution area per time unit. Concurrently,

gradually increased drug concentration during the infusion leads to increased rate of the

elimination. The increase in concentration per time unit is getting lower and lower till

the drug intake rate draws level with its elimination.

Since the value of the total plasmatic clearance Cl during the infusion is usually

constant and it is affected by functional condition of the elimination organs, the used

infusion rate constant R actually determines the maximal drug concentration, which can

be reached in distribution area for the stated circumstances, see (2.18). The question

whether a therapeutical effect can be reached or not during the long-term infusion depends

on the infusion rate and how long we infuse the drug over a long period. Because effect

of AC , which depends on period length.

On the other hand the formula (2.16) shows that time to approach steady state

concentration Css, does not depend on the infusion rate at all, but only on the elimination

constant of the corresponding drug for a given individual. E.g. if we express the time in

units of half-life, we see that min. 4-5 elimination half-lifes are necessary to obtain a drug

concentration in the distribution area, which deviates less than 6% or 3% from steady

state. If we give observed half-life values of majority drugs, which are usually bigger than

1h, the time to achieve steady state of the drug is relatively long during the long-term

infusion, i.e. 4 to 5 hours.

In clinical conditions the infusion time is limited till a certain end time T , dur-

ing which the drug dose is inserted into blood circulation with the total value D. The
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concentration CT , which we will reach during the time T , equals:

CT =
D

Cl · T · (1− e−keT ).(2.19)

As soon as we finish infusion, the drug elimination stops being compensated by its intake,

thus the drug concentration immediately starts to decrease exponentially like for a single

infusion:

Ct>T = CT · e−ke(t−T ).(2.20)

We end the section with an example for illustration of formula (2.16). We have from

the SPC given in [23] that the infusion of 80mg gentamicin should be given for 30 to 60

minutes. From pervious example we calculated ke, but Vd value was given in [23] as 17.5 l

for a 70 kg patient. From the mean of the proposed infusion times we can find out R as

follows:

R = 80 · 60
45

= 106.67mg/h.

Thus, for the calculation of formula (2.16) we have all values. In Excel we calculated

concentration change for each 1 hour, as we can see in Figure 2.5.

Remark: if salt factor S and bioavailability F play a role, then D must be replaced

with S · F ·D in the equation (2.19).

2.4 Extravascular drug application

Extravascular drug application is a drug administration by any other route than the intra-

venous route. Extravascular drug application is represented in practice in different forms.

According to occurrence frequency first of all is oral administration, further examples are

subcutaneous and intramuscular injection.

However, from the point of view of pharmacokinetic models of the compartment

type model, it is not essential through what specific route the drug is administered to

the organism. At this level of drug modeling, it is crucial that in extravascular mode
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Figure 2.5: Plasma concentration versus time profile of 80mg gentamicin administered in

infusion form (according to values given in [23]).

of administration, unlike intravascular application, the drug must overcome a certain

biological barrier to get into the systemic circulation that we consider to be an integral

part of the distribution area. This process is called absorption of the drug from the

application site. During this process, however, some losses may occur, so that part of the

administered drug will not reach the distribution area (incomplete absorption). These

losses should be taken into account especially when given orally.

Notice that the administered drug amount into the organism by intravenous (100%

drug reaches system circulation) and extravascular way (some part of the drug yields

due to elimination, degradation ect.) is different. That differency is described by the

bioavailability (F ) - it refers to the degree and rate at which an administered drug is

absorbed by the body’s circulatory system, the systemic circulation. It can be computed
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as

F =
AC(e.v.)

AC(i.v.)

,(2.21)

where AC(e.v.)
is the AC of the extravascular drug application, AC(i.v.)

is the AC of the

intravascular drug application, both determined from corresponding blood samples.

For these reasons bioavailability F of the drug becomes an important quantitative

indicator. Therefore, the fact that the bioavailability of the drug may not be complete

(i.e. 100%) for various reasons, must be taken into account when formulating pharmacoki-

netic models, describing the movement of the drug in the organism, after extravascular

administration.

A block diagram of a single-compartment pharmacokinetic model with extravascular

application of the drug is shown in Figure 2.6. From the diagram it can be seen that the

loss of the drug from the site of application is achieved in two concurrently running

processes by absorption into the distribution area and by losses prior to entering the

distribution area. Both of these processes summarize the process of disappearing of the

drug from the site of absorption. For the rate constants characterizing these processes,

therefore, we define:

kd = ka + kl

where kd is the rate constant of the disappearance of the drug from the site of application.

We can look at the disappearance of the drug from the application point as to elim-

ination from a single-compartment model. The time course of this process is described,

like in (2.1), with a monoexponential expression. As the volume of distribution of the

site of absorption is hard to determine, the expression is given in drug amount, instead

of drug concentration.

NA(t) = D · e−kdt,(2.22)

where:
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Figure2.6: Ablockdiagramofasingle-compartmentpharmacokineticmodelwithex-

travascularapplicationofthedrugatitsincompleteavailability: A-applicationsite,

B-distributionarea,ka-absorptionrateconstant,kl-rateconstantoflossprocesses,ke-

eliminationrateconstant(drawninPowerPoint).

NA(t)[mg]=thedrugamountatapplicationpoint,

D[mg]=thegivendoseofthedrug,

kd[h
−1]=therateconstantofthedisappearingdrugfromtheapplicationpoint.

Fromthetherapeuticalpointofviewwearemostlyinterestedintimecoursecon-

centrationchangeinthedistributionarea.Thetimecourseconcentrationisgiveninthe

nexttheorem.

Theorem2.4.1Thetimecourseconcentrationforextravascularapplicationinthecen-

tralcompartmentisgivenby:

C(t)=F·
C0·kd
kd−ke

·e−ket−e−kdt.(2.23)

Proof:

Weuseherethesamemethodasforproving(2.16).Now,wetrytoproofifthederivative
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of(2.23)satisfiesthefollowingdifferentialequation[4]:

dC(t)

dt
=F·kd·CA(t)−ke·C(t),

whereCA(t)isexpressedas:

CA(t)=
NA(t)

Vd
.

Differentiating(2.23)weget:

dC(t)

dt
=
dF·C0·kd

kd−ke
·e−ket−e−kdt

dt

= F·
C0·kd
kd−ke

·kde
−kdt−kee

−ket

= F·
C0·kd
kd−ke

·kde
−kdt−kee

−kdt+kee
−kdt−kee

−ket

= F·
C0·kd
kd−ke

·(kd−ke)·e
−kdt+F·

C0·kd
kd−ke

·(e−kdt−e−ket)·ke

= F·C0·kd·e
−kdt−F·

C0·kd
kd−ke

·(e−ket−e−kdt)·ke

= F·kd·C0·e
−kdt−ke·C(t).✷

Unlikewithintravenousinfusion,thedrugconcentrationascendsasfaraspossible

tillacertainmaximum,thenagaindescends(seeFigure2.7).

Lemma2.4.2Timeofmaximumconcentrationtmax dependsonlyonthevaluesofthe

rateconstantskdandkeaccordingtotheformula:

tmax=
1

kd−ke
·ln
kd
ke
.(2.24)

Proof:

Thetmax isthetforwhichC(t)iszero.Using(2.23):

C(t) =F·
C0·kd
kd−ke

·(−kee
−ket−(−kd)e

−kdt)

= F·
C0·kd
kd−ke

·(kde
−kdt−kee

−ket).
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Figure2.7:Plasmaconcentrationversustimeprofileofi.m.administered80mggentam-

icinforthecentralcompartment.kdvalueishypotheticallytakentwicemorethanke

value(inspiredfrom[13])andcomputedinExcel.

IfC(t)=0,then

F·
C0·kd
kd−ke

·(kde
−kdt−kee

−ket) = 0⇔

kde
−kdt−kee

−ket = 0⇔

ln(kde
−kdt) =ln(kee

−ket)⇔

ln(kd)+ln(e
−kdt) =ln(ke)+ln(e

−ket)⇔

ln(kd)−kdt=ln(ke)−ket⇔

−kdt+ket= −ln(kd)+ln(ke)⇔

kdt−ket=ln(kd)−ln(ke)⇔

t(kd−ke) =ln
kd
ke

⇔

t=
ln(kd
ke
)

kd−ke
⇔
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tmax =
1

kd−ke
·ln
kd
ke
.✷

Ontheotherhand,maximumconcentrationvalueisdirectlyproportionaltothe

drugamount,whichisadministeredtothebloodstream,asshownbythelemmabelow:

Lemma2.4.3

Cmax=
F·D

Vd
·
kd
ke

ke
ke−kd

.(2.25)

Proof:

TofindCmax wereplacetin(2.23)withtmax from(2.24)andcompute:

Cmax=F·
C0·kd
kd−ke

·(e−ketmax −e−kdtmax), tmax=
1

kd−ke
·ln
kd
ke
.

Hence,

e−ketmax −e−kdtmax = e
−ke

ln
kd
ke

kd−ke −e
−kd

ln
kd
ke

kd−ke

= e
− ke
kd−ke

·ln
kd
ke −e

−
kd

kd−ke
·ln

kd
ke

= e
ln

kd
ke

− ke
kd−ke

−e
ln

kd
ke

−
kd

kd−ke

=
kd
ke

− ke
kd−ke

−
kd
ke

−
kd

kd−ke

=
kd
ke

− ke
kd−ke

·



1−
kd
ke

ke
kd−ke

−
kd

kd−ke





=
kd
ke

− ke
kd−ke

·1−
kd
ke

−1

=
kd
ke

− ke
kd−ke

·1−
ke
kd

=
kd
ke

− ke
kd−ke

·
kd−ke
kd

.

Wecomputedthat

e−ketmax −e−kdtmax =
kd
ke

− ke
kd−ke

·
kd−ke
kd

.
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Now,finallywecancomputeCmax following:

Cmax = F·C0·
kd

kd−ke
·
kd
ke

− ke
kd−ke

·
kd−ke
kd

=
F·D

Vd
·
kd
ke

ke
ke−kd

.✷
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Figure 2.8: Difference between the dosing interval τ and the half-life t 1
2
for 80mg gen-

tamicin (computed in the software PharmaCalcCL (see [5])).40



Chapter 3

Two-compartmental models

In this chapter we discuss about two-compartmental models. We will consider single

dose injection and infusion. We give mathematical proofs of pharmacokinetic equations.

The description in this chapter is based on the book [13].

This model consists of two compartments, where the drug is administered into the

central compartment and it is reversibly connected with the peripheral compartment

(see Figure 3.2). The intensity of the reversible transfer of the drug between the two

compartments is expressed by the rate constants kc and kp. Excretion of the drug from

the central compartment, which is most often supposed, is characterized by the rate

constant ke(c), while excretion from the peripheral compartment is characterized by the

rate constant ke(p). All these rate constants are overall denoted as microconstants.

Already decades ago, it was observed that the time course of concentration decline of

intravenously administered drugs in the blood plasma in the first period immediately after

the injection is considerably steeper than would be expected assuming a one-compartment

model. For this reason, two-compartment open models began to be widely used. The term

open model means that the administered drug amount, after its metabolism, is eliminated

by an excretory mechanism.
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Figure 3.1: Changes in the drug concentrations in the central (plasma), blue curve, and

peripheral (tissues) compartment, red dash curve, after IV bolus of a drug that fits two-

compartment model (the picture is taken from [7] and modified in Paint).

3.1 Single dose injection

The time course of the decline in drug concentration, after intravenous injection, in

the central compartment of the two-compartment model is represented by a two-phase

concentration curve (see Figure 3.1). Immediately after the injection there is a very rapid

decline, which in the subsequent period is going over in a slower decline. The rapid de-

cline immediately after the injection is only partially caused by the drug secretion, it is

also caused by the transfer of the drug to the peripheral compartment, which occurs in

parallel with the elimination. This is the so-called distribution phase, however, it only

takes place until the drug concentrations in both compartments are balanced. Then, the
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so-called elimination phase begins, in which drug secretion from the central compartment

continues, but movement of the drug molecules between the compartments prevails, unlike

the distribution phase, in the opposite direction. The concentration of the drug in the

peripheral compartment is no longer increasing, because at the moment of concentration

balance the maximum is reached. On the contrary, it gradually declines in proportion

to how the excretion discharges the central compartment. Each amount of drug that is

excreted from the central compartment is partially replaced by the passage of a certain

amount from the peripheral compartment. This also causes the decline in the drug con-

centration in the central compartment to be slower in the elimination phase than would

correspond to the rate of drug elimination.

Mathematically the time course in the central compartment can be expressed by

biexponential dependence:

C(t) = A · e−αt +B · e−βt,(3.1)

where:

α and β = hybrid first order constants for rapid distribution phase and slow

elimination phase respectively,

A and B are additional coefficients defined as:

A =
α−Kp

α− β
· D

Vd(c)

, B =
Kp − β

α− β
· D

Vd(c)

(3.2)

where:

Kp = elimination constant for peripheral compartment,

D = injected dose,

Vd(c) = distribution volume of the drug in the central compartment.

α, β and Kp can be determined experimentally from the decay of plasma concentration.

Vd(c) is determined from C0.

Due to the reversible connection between the central and peripheral compartments,

the α and β constants in this dependence are not simple rate constants that would express
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the intensity of a single pharmacokinetic process, as we have seen in a one-compartmental

pharmacokinetic model. On the contrary, these parameters characterize the course of

actions that are the result of several pharmacokinetic processes. For this reason, they are

also the function of all microconstants describing the model. To distinguish them, they

are therefore often referred to as hybrid constants. The α hybrid constant characterizes

the intensity of the drug concentration decline in its distribution phase, which is also

referred to as the α-phase, whereas the β hybrid constant expresses its intensity in the

elimination phase, also referred to as the β-phase. Because hybrid constants characterize

processes of a more complex nature, their clinical significance is greater than that of

individual microconstants. In practical pharmacotherapy we are much more interested in

how intensive the blood plasma concentration of the drug declines than the intensity of

elimination, so that we can determine the appropriate dosing frequency accordingly.

In the general case where the elimination of the drug is not located in a single

compartment, alongside with the α and β hybrid constants we can only evaluate the rate

constants of the total elimination of the drug (elimination constants) from the individual

compartments. These constants are defined as:

Kc = kc + ke(c) Kp = kp + ke(p)(3.3)

where:

Kc = elimination constant for central compartment,

Kp = elimination constant for peripheral compartment,

kc = rate of transfer from central to peripheral compartment,

kp = rate of transfer from peripheral to central compartment,

ke(c) = rate of elimination from central compartment,

ke(p) = rate of elimination from peripheral compartment.

In variants with exclusive excretion from the central or peripheral compartment,

either ke(c) or ke(p) equals zero. The elimination rate constants therefore have a variable
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interpretation depending on which variant of the two-compartmental pharmacokinetic

model is appropriate.

A widely used variant with exclusive excretion from the central compartment has its

merits. The central compartment volume, determined by the pharmacokinetic analysis,

largely exceed the volume of blood plasma. In view of rapid exchange with some tissues,

therefore, it is assumed that the central compartment contains not only extracellular fluid,

but also highly perfused tissues, including major elimination organs (like liver, kidneys,

lungs). This automatically implies the idea of localizing the overall elimination into the

central compartment. However, in situations where the question of excretion from central

or from peripheral compartment is more or less subject to certain speculations, it is much

more realistic to note that instead of the rate constants of the intercontinuous transfer,

we determine rather the values of the rate constants of the total drug elimination (i.e. Kc

and Kp) from both compartments.

Comparison of all three variants of the two-compartmental pharmacokinetic model,

however, shows that there are definitely characteristics of this model whose value is in-

variant for all three variants. In literature, for such characteristics, the name model-

independent parameters is used. The existence of such parameters makes it possible to

bypass excretion compartments specification. These are parameters that can be expressed

by formulas in which no microconstants emerge. These include:

1. The half-lives of the distribution and elimination phases of the concen-

tration decline of the drug given by the formulas:

t 1
2
(α) =

ln 2

α
≈ 0.693

α
, t 1

2
(β) =

ln 2

β
≈ 0.693

β
;(3.4)

notice the similarity with (2.3). Both t 1
2
(α) and t 1

2
(β) are biological half-lives. In case of

two-compartment kinetics, we can not interpret biological half-life as the time at which

the drug concentration drops to half as for a one-compartment model.

2. The apparent initial concentration of the drug in the central compartment
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C0(t = 0) and from that the derived distribution volume of the central compart-

ment Vd(c). Values of these parameters after a rapid intravenous injection are determined

by the formulas:

Vd(c) =
D

C0

(3.5)

notice the similarity with (2.2).

The concentration of the drug in the central compartment is called ”apparent” con-

centration. Because, there are several reasons. At first, we can not inject the whole does

instantly. It takes some definite time to administer injection dose, which depends on the

volume of the injection. Thus, immediate intravenous injection is actually short-term,

rapid infusion. Secondly, the equation (3.5) was derived assuming an immediate and even

dispersion of the entire administered dose in the central compartment, which is de facto

unrealistic. The dispersion of drug molecules in the central compartment has more likely

gradual character, which is also in line with the concept of volume distribution as a func-

tion of time. Thirdly, notice that, before the drug enters the systemic circulation, first

it must pass through the small pulmonary circulation, where drug can yield to biotrans-

formation. It can cause that, a smaller amount of the administered drug will flow into

the systemic circulation. Therefore, to obtain more realistic values for ”apparent” con-

centration (also volume of distribution), it is recommended to consider each intravenous

injection as a short-term rapid infusion.

3. The area under the curve of the drug concentration in the central com-

partment AC and from that derived the total plasma clearance Cl. In the two-

compartmental model the clearance Cl is computed same as in (2.8), i.e.:

Cl =
D

AC

.

Lemma 3.1.1 In the two-compartment model, the AC parameter satisfies:

AC =
A

α
+

B

β
.(3.6)
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Proof:

AC=
∞

0

(A·e−αt+B·e−βt)dt =
∞

0

A·e−αtdt+
∞

0

B·e−βtdt

= A·
e−αt

−α

∞

0

+ B·
e−βt

−β

∞

0

= A
e−∞

−α
−
e0

−α
+B

e−∞

−β
−
e0

−β

= A 0−
1

−α
+B 0−

1

−β

=
A

α
+
B

β
.✷

TheACvalueisgivenbyallfourparametersofthebiexponentialdependence(see(3.1)),

toobtainthemitisnotneededtospecifyfromwhichcompartmentthedrugisexcreted.

Here,ACisnotobtainedfromanintegrationrule,butforothercompartmentalmodels

thisisingeneralneeded.

4. Fractionalclearancekfofthedrugisdefinedastheratiooftotalplasma

clearanceClandvolumeofthecentralcompartmentVd(c).Itcanalsobeexpressedasa

functionofbothhybridconstantsα,βandeliminationconstantKp.

Lemma3.1.2Thereholds:

kf=
Cl

Vd(c)
=
α·β

Kp
(3.7)

Proof:

kf =
Cl

Vd(c)

=
D
AC

Vd

=
D

Vd
·
1

A
α
+B
β

=
D·α·β

Vd(Aβ+Bα)
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=
D·α·β

Vd·
D
Vd

β(α−Kp)

α−β
+α(Kp−β)

α−β

=
α·β
Kp(α−β)

α−β

=
α·β

Kp
.✷

Thisparametershowshowlargetherelativeproportionofthevolumeofthecentralcom-

partmentisclearedfromthedrugperunitoftime,thereforekfhasunitsh
−1.Likewise,

itisfarmoreappropriatetointerprettheeliminationconstantasfractionalclearance,

comparisonwith(2.6).

5. Thevolumeofdistributioncomputedfromtheareaunderthecurve

ofthedrugconcentrationisnormallycalculatedaccordingtothenextformula:

Vd(area)=
D

β·AC
.(3.8)

Itisoftenalsocalledtheapparentvolumeofdistribution.Byusingtheequations(2.7)

and(3.4),theequation(3.8)canbemodifiedto:

Vd(area)=
D

β·AC
=

D
ln2
t1
2
(β)
·D
Cl

=
Cl·t1

2
(β)

ln2
≈1.44·Cl·t1

2
(β).(3.9)

Itisevidentthat,thisisthevolume,whichiscleanedofthedruginabout1.5biological

half-lives.Thisparameterisoftenadvantageouslyusedtore-determinethetotalplasma

clearancebasedontheformula:

Cl=β·Vd(area),(3.10)

followingfrom(2.8)and(3.8).Thismakesitpossibletobypassthemodelvariantdepen-

dentformula:

Cl=kc·Vd(c)(3.11)

andwhichisalsovalidonly,ifthedrugisexclusivelyexcretedfromthecentralcompart-

ment.
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6. Time of onset of the maximum concentration of drug tmax in the periph-

eral compartment:

tmax =
1

α− β
· ln α

β
;(3.12)

notice the similarity with (2.24) and proof is also analogous. It is the only parameter that

characterizes the processes in the peripheral compartment, which is independent of the

two-compartment model variant. However, it should be kept in mind that the maximum

drug concentration in the peripheral compartment occurs when the drug concentration

equals the concentration in the central compartment.

3.2 Infusion

The central compartment of the two-compartmental pharmacokinetic model plays an

important role in infusion drug administration, which fully reflects the two-phase nature

of the drug movement. At the beginning, the concentration of the drug in the central

compartment is rather slower than in the one-compartment model (distribution phase) at

a constant rate of infusion. At this stage, part of the administered drug moves from central

to peripheral compartment, until the concentrations in both compartments are equalized.

In the second phase, due to the reversal of the concentration gradient, the concentration

in the central compartment increases a little faster, comparing to the one-compartment

model.

Nevertheless, to achieve steady-state concentration in a two-compartment model,

as it was with a single-compartment model, is needed a sufficiently long infusion time.

It is also shown in the mathematical expression of the time course of changes in drug

concentration in the central compartment:

C(t) =
R

Cl
− α−Kp

α(α− β)
· R

Vd(c)

· e−αt − Kp − β

β(α− β)
· R

Vd(c)

· e−βt(3.13)

The steady state concentration Css is given by the ratio of infusion rate R and total plasma

49



clearance Cl, as it was with the single-compartment pharmacokinetic mode. To achieve

steady state concentration Css, it is necessary to assess the hybrid constant β according to

the number of past half-lives, due to the two-phase kinetics. After the short-term infusion,

the drug concentration in the central compartment starts decrease like two-phase of the

intravenous injection.
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Figure 3.2: Variants of two-compartment open model: A) with exclusive excretion from

the central compartment; B) with exclusive excretion from the peripheral compartment;

C) with excretion from the both compartments. kc, kp, ke(c) and ke(p) are first-order rate

constants: kc is rate of transfer from central to peripheral compartment, kp is rate of

transfer from peripheral to central compartment, ke(c) is rate of elimination from cen-

tral compartment, ke(p) is rate of elimination from peripheral compartment (drawn in

PowerPoint).
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Chapter4

ApproximationoftheAUC

Inpractice,thedrugconcentrationismeasuredatcertaindiscretepointsintime,the

momentswhenbloodsamplesaretaken,andanintegrationruleisoftenusedtoestimate

AC (thoughinsomecasesitcanbecomputedexactly,forexamplewhenholds(3.6)).

Therearemanymethods,whichareusedtonumericallyapproximatedefiniteintegrals.

InthischapterwewilldescribeinsomedetailtheTrapezoidalruleandSimpson’sruleto

estimateAC. WewillcomparethemonnumericalexperimentsinMATLAB[18].

4.1 Trapezoidalrule

Thetrapezoidalruleisanumericalmethodusedtoapproximateanydefiniteintegral

oftheform
b

a

f(x)dx.

Theregionunderthegraphofthefunctionf(x)isapproximatedbyatrapezoid(see

Figure4.1)anditsareaiscalculated,givingthefollowingapproximation[15]:

b

a

f(x)dx≈(b−a)
f(a)+f(b)

2
.
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Lemma4.1.1ThesizeoftheareaofthetrapezoidinFigure4.2isgivenby

(b−a)
f(a)+f(b)

2
.

Proof(seeFigure4.2):

FromfigurewecanseethattotalareaoftrapezoidSequals:

S=S1+S2.

S1isdefinedas:

S1=(b−a)·f(b).

ForS2wehave:

S2=
(b−a)·(f(a)−f(b))

2
.

Then,

S = S1+S2

=(b−a)·f(b)+
(b−a)·(f(a)−f(b))

2

=
2·(b−a)·f(b)+(b−a)·f(a)−(b−a)·f(b)

2

=
(b−a)·f(b)+(b−a)·f(a)

2

=(b−a)
f(a)+f(b)

2
.✷

Wecanevenbetterapproximatetheintegralbydividing[a,b]intosubintervalsand

applyingthetrapezoidalruletoeachsubinterval,andsummingthegainedresults.Let

xk,0≤k≤n,beapartitionof[a,b]suchthata=x0<x1<...<xn−1<xn=band

∆xkbethelengthofthek-thsubinterval(∆xk=xk−xk−1),then

b

a

f(x)dx≈
n

k=1

f(xk−1)+f(xk)

2
∆xk.

Ifall∆xkareequal(i.e.∆xk=
b−a
n
),thenweobtain

b

a

f(x)dx≈
b−a

n

f(x0)

2
+

n−1

k=1

f(xk)+
f(xn)

2
.
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Astheresolutionofthepartitioningincreases(thatis,forlargern),theapproximation

becomesmoreaccurate.

4.2 Simpson’srule

Theessenceofthemethodconsistsinapproximatingthefunctiononthesegment

[a,b]byaninterpolationpolynomialoftheseconddegreep2(x),withinterpolationpoints

a,banda+b
2
[2]. Henceweconsidertheapproximationofthefunctiongraphonthe

segmentbyaparabola(seeFigure4.3).

Theorem4.2.1Simpson’sformulaistheintegralfortheseconddegreeinterpolationpoly-

nomialonthesegment[a,b]:

b

a

f(x)dx≈
b

a

p2(x)dx=
b−a

6
f(a)+4f

a+b

2
+f(b),(4.1)

wheref(a),f(a+b
2
)andf(b)arethevaluesofthefunctionatthecorrespondingpoints

(attheendsofthesegmentandinitsmiddle).

Proof[9]:Letp2(x)bethequadraticfunctioninterpolatingatthepoints(a,f(a)),(b,f(b))

and((a+b)/2,f((a+b)/2). Wehave

b

a

p2(x)dx =
b

a

(c2x
2+c1x+c0)dx

=
c2x

3

3
+
c1x

2

2
+c0x

b

a

=
c2b
3

3
+
c1b
2

2
+c0b−

c2a
3

3
−
c1a
2

2
−c0a

=
b−a

6

2c2(b
3−a3)

b−a
+3c1

b2−a2

b−a
+6c0 .

Thefirsttermbetweenbrackets,2c2(b3−a3)
b−a

,canbesimplifiedusing

(b−a)(a2+b2+(a+b)2) =a2b+b3+b(a+b)2−a3−ab2−a(a+b)2
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= b3−a3+a2b+a2b+2ab2

+ b3−ab2−a3−2a2b−ab2

= 2(b3−a3).

Thus,summarizing,

b

a

p2(x)dx=
b−a

6
c2(a

2+b2+(a+b)2)+3c1(b+a)+6c0 .

Becausep2(x)interpolatesatthepoints(a,f(a)),(b,f(b))and((a+b)/2,f((a+b)/2),

wehave

f(a)=c2a
2+c1a+c0,

f
a+b

2
=c2

b+a

2

2

+c1
b+a

2
+c0,

f(b)=c2b
2+c1b+c0

and

f(a)+4f
a+b

2
+f(b) =c2a

2+c1a

+ c2(a+b)
2+2c1(a+b)+c2b

2+c1b+6c0

= c2 a
2+(a+b)2+b2

+ c1(a+2a+2b+b)+6c0,

whichcompletestheproof.✷

Aswiththetrapezoidalformula,wewillgetamoreaccurateresultifthesegment

[a,b]isdividedintomsubintervals,andweuseeachoftheseformulasincombination.For

simplicity,wetakeanequidistantpartition.Sincewetakeamidpointineachsubsection,

weactuallyhave2msubsectionsoflengthb−a
2m
,a=x0<x1<x2<...<x2m−1<x2m=b.

Nowweapplyanapproximateformulaonthepairsofneighboringsubsections,sothat

themiddlepointisapointwithanoddindex. Wegetthefollowingformula[10]

b

a

f(x)dx ≈
b−a

6m
[f(a)+4f(x1)+f(x2)]+

b−a

6m
[f(x2)+4f(x3)+f(x4)]+
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+...+
b−a

6m
[f(x2m−2)+4f(x2m−1)+f(xb)],

respectively

b

a

f(x)dx ≈
h

3
[f(a)+2[f(x2)+f(x4)+...+f(x2m−2)]+4[f(x1)+f(x3)+

+...+ f(x2m−1)]+f(b)].

ThisdefinesSimpson’srule.

4.3 Computationsin MATLAB

ForcomputationsinMATLAB[18]weusedthefirstexample,whichwasgivenfor

equation(2.1),wherewecalculatedvaluesforC0=4.57mg/landke=0.277h
−1.Using

thesevalueswecalculatedthesizeoftheareaunderthecurvetill10thhour(seeFigure

2.1analytically)following:

10

0

C0e
−ketdt = C0

e−ket

−ke

10

0

=
C0
−ke
(e−ket−1)

=
4.57

−0.277
(e−0.277·10−1)

= 15.4644.

In MATLABwecomputedthesizeoftheareaunderthecurvetill10thhourfor

bothTrapezoidalandSimpson’srule.Resultsare15.5631and15.4649respectively,where

numberofintervalsweren=10.

MATLABcodeforTrapezoidalruleis:

function[int]=Trapezoidal(Fvalues,n,a,b)

%

int=Fvalues(1)/2;

fork=2:n+1
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int=int+Fvalues(k);

end

int=int-Fvalues(n+1)/2;

int=int*(b-a)/n;

MATLAB code for Simpson’s rule is:

function [int]=Simpson(Fvalues,n,a,b)

%

int=Fvalues(1);

for k=2:2:n

int=int+4*Fvalues(k)+2*Fvalues(k+1);

end

int=int-Fvalues(n+1);

int=int*(b-a)/(3*n);

Testscript for both rules:

a=0;

b=10;

n=10;

C0=4.57;

ke=0.277;

xvalues(1)=a;

xvalues(11)=b;

for k=2:n+1

xvalues(k)=xvalues(k-1)+(b-a)/n;

end

for k=1:n+1

Fvalues(k)=C0*exp(-ke*xvalues(k));

end
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Next,wetriedcomputewithlessernumberofintervals,i.e.n=5.Resultswere15.8579

and14.8479respectively.Fromthis,wecansaythatifareaisdividedintomoreintervals

-moreaccurateresultsweget.

Also,fromresultswecanseethattheSimpson’sruleismoreaccuratethanTrape-

zoidalrule.Itcanbeexplainede.g.bythedifferencebetweentheoreticalerrors. The

errorforTrapezoidalruleisexpressedfollowing[14]:

error=−
(b−a)3

12n2
f(ξ),

wherenisnumberofintervalsandξissomenumberbetweenaandb.

ForSimpson’sruleitfollows[25]:

error=−
1

90

b−a

2

5

f(4)(ξ).

Theerrorsareasymptoticallyproportionaltopowersof(b−a),i.e.forTrapezoidalruleit

is(b−a)3andforSimpson’sruleitis(b−a)5.Therefore,Simpson’sruleismoreaccurate.

58



Figure 4.1: An illustration of the Trapezoid Method to Approximate a definite integral

of the f(x) = 1
x
function. The yellow area represents the region under the graph. The

striped area represents the approximating trapezoid (computed in Excel and reworked in

Paint).
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Figure 4.2: An illustration of trapezoid (drawn in PowerPoint).
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Figure 4.3: The essence of the method is the approximation of the function f(x) (blue

graph) by the quadratic polynomial 2(x) (red), m = a+b
2

(drawn in PowerPoint).
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Conclusion

In our thesis we described pharmacokinetic processes and models. Theoretical knowl-

edges were partially copied from [13] and [4], where was well explained and connected.

But we managed to complement the theoretical knowledges and prove pharmacokinetic

equations, which are not often given in standard books. We believe that to know origins of

these equations could help in deeper understanding of their importance and functioning.

It could help for example in our future researches in this field to better understand phar-

macokinetic computations and improve complicated equations. We performed numerical

experiments in the software PharmCalcCl, which is used for pharmacokinetics simula-

tions, and MATLAB, where we showed difference between numerical methods with real

data (i.e. not fictional). We demonstrated that approximation of AUC can be strongly

dependent on the used integration rule, especially with a small number of blood samples.
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[18] Mathworks, Inc., MATLAB R2018a, https://www.mathworks.com/products/matlab.html

[19] Rosenbaum S.: Basic pharmacokinetics and pharmacodynamics: an integrated textbook

and computer simulations. Hoboken, New Jersey: John Wiley & Sons, Inc., 2017.

[20] Shargel L., Yu A. B. C.: Applied biopharmaceutics & pharmacokinetics. New York:

McGraw-Hill Education, 2016.

[21] Spiegel M. R., Ph.D.: Schaum’s outline of theory and problems of Laplace transforms. New

York : McGraw-Hill, 2006. 261 p.

[22] Spruill W. J., Wade W. E., DiPiro J. T., Blouin R. A., Pruemer J.M.: Concepts in clinical

pharmacokinetics. Bethesda, MD: American Society of Health-System Pharmacists, 2014.
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