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Abstract

Charles University
Faculty of Pharmacy in Hradec Kralové

Department of Biophysics and Physical Chemistry

Candidate: Yestay Rakhimov
Supervisor: doc. Erik Jurjen Duintjer Tebbens, Ph.D.
Title of diploma thesis: Mathematics and implementations of physiologically based phar-

macokinetic modeling

The thesis addresses some basic aspects of pharmacokinetic modeling, which is used
to describe pharmacokinetic processes. Understanding these processes is important for
example to determine optimal concentrations of drugs dosing.

The thesis focuses on mathematical proofs of a number of pharmacokinetic equa-
tions, which are often not given in standard books. The derived equations are illustrated
with numerical experiments for a particular drug in the software PharmCalcCl and MAT-

LAB.



Abstrakt

Univerzita Karlova
Farmaceutickd fakulta v Hradeci Kralové

Katedra biofyziky a fyzikdlni chemie

Kandidat: Yestay Rakhimov
Skolitel: doc. Erik Jurjen Duintjer Tebbens, Ph.D.
Nazev diplomové prace: Mathematics and implementations of physiologically based phar-

macokinetic modeling

Préce se vénuje nékterym zakladnim aspektum farmakokinetického modelovéni,
které se pouzivaji k popisu farmakokinetickych procesu. Pochopeni téchto procesu je
dulezité napriklad pro stanoveni optiméalnich koncentraci davkovani léku.

Diplomova prace se zaméruje na matematické dukazy rady farmakokinetickych rovnic,
které casto nejsou uvedeny ve standardnich knihach. Odvozené rovnice jsou ilustrovany

numerickymi experimenty pro ur¢ity lék v softwaru PharmCalcCl a MATLAB.



Introduction

Pharmacokinetics contributes to solving the problem of the effectiveness and safety
of pharmacotherapy by investigating the dependence of therapeutic, toxic and side ef-
fects of drugs on their concentrations at the site of action or in the analyzed biological
environment (most often in the blood) and the calculation of optimal modes of drug
administration for creating and maintaining optimal concentrations of drugs [22].

Pharmacokinetic models are used to simplify the study of pharmacokinetics. The
pharmacokinetic model describes the kinetics (change in time) of the distribution of drugs
administered to the body [24]. The pharmacokinetic model allows, within the limits of
certain assumptions, to find changes in the drug concentration in time with different
methods of its administration into the body, to calculate the optimal ratio between the
parameters of input and output of the drug, to provide the necessary therapeutic effect
20].

In this thesis we focus on most-frequently used one-compartmental and two-compart-
mental models. We give detailed mathematical proofs of pharmacokinetic equations,
which are often not in the standard books. In the first chapter, basics of pharmacokinet-
ics, we describe important pharmacokinetic processes, the main reaction types and we end
the chapter with brief introduction in compartmental theory. In our second chapter we
will consider one-compartmental intravenous injection in single and multiple doses, intra-
venous infusion and discuss about extravascular drug application. We perform numerical

experiments in the software PharmCalcCl [5] for the drug gentamicin [23]. In the next
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third chapter, we discuss about two-compartmental models and describe its typical pa-
rameters. We end our thesis with chapter, approximation of the AUC, describing some
popularly used numerical methods, Trapezoidal and Simpson’s rule, and also perform
numerical experiments in the MATLAB sofware [18].

We end this introduction with the original and official scope of the thesis introduced

in SIS (Studijni informacni systém).

The goals of the thesis

The goals of the thesis are:
- to give a thorough description of the mathematics behind modern PBPK (physiologically
based pharmacokinetic) modeling,
- to give a description and evaluation of the implementation of PBPK currently available
in the MATLAB software,
- to work on possible improvements or extensions of that software.

We would like to point out that, we used knowledges about more standard PBPK.
We mainly focused on mathematical proofs of pharmacokinetic equations. In the MAT-
LAB we performed numerical experiments, where we demonstrated how to calculate AUC
and difference between numerical methods. Because of license problems of the MATLAB
software and lack of time, we could not work on possible improvements or extensions of

this software.



Chapter 1

Basics of pharmacokinetics

In this chapter we briefly introduce some basic notions necessary in the following
chapters. First we start describing pharmacokinetic processes: ADME (Absorption, Dis-
tribution, Metabolism, Excretion), then we introduce rates of reactions: zero-order and
first-order and we end the chapter with a very brief descriptions of one-compartment,
two-compartment and multicompartment models. The descriptions in this chapter are
based on the book [13] and [4].

Pharmacokinetics deals with how the organism acts on the drug, its fate in the
body, how the time course of the drug concentrations changes. Pharmacodynamics, on
the other hand, deals with how the drug affects the body, what are the mechanisms of
drug action [17].

There are 4 main types of pharmacokinetic processes [3] (see Figure 1.1):

1) Absorption - drug movement into the blood from the site of administration (e.g. from
the digestive tract, muscle, subcutaneous tissue).

2) Distribution - distribution of the drug in the blood into the body and into the site of
action, into tissues and organs (in the blood, a lipophilic drug can be bound to serum
proteins).

3) Metabolism (biotransformation) of the drug - metabolic conversion of the drug to an
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Figure 1.1: The key principles of Pharmacokinetics — the study of the effect the body has

on a medicine — are represented in the acronym ADME (the picture is taken from [6]).

inactive substance that is more hydrophilic and easier to remove from the body (sometimes
an inactive drug (pro-drug) can be activated to become an active drug).
4) Excretion - excretion of the substance or its metabolite from the body, most commonly
by kidneys and bile.

These pharmacokinetic processes, often referred to as ADME, determine the drug

concentration in the body when medicines are prescribed.



1.1 Reaction types

The relationship between the reaction velocity and the composition of the reaction
mixture is expressed by general rate equation. For most reactions, the reaction rate
depends only on the concentration of the starting components. There are several reaction
types, like e.g. zero-order reaction, first-order and second-order reactions. In this chapter
we will describe mainly first and zero-order reactions, because most drugs are subject to
first-order and some drugs are subject to zero-order reactions.

If the following conditions are met: first, the reaction takes place in a closed system,
second, there are no intermediate products, third, there are no other reactions in the

system at the same time, then using a mass balance equation one can prove that

(1.1) r= —%Et),

where 7 is the reaction rate (in units of concentration over time) and C(t) is the instan-

taneous concentration of the substance [16].

1.1.1 Zero-order reaction

The rate constant of a zero order reaction is independent of the concentration of the
reactants. These reactions are typical for systems where the reaction medium (catalyst,
active surface) is saturated with a reactant. The mathematical relationship for the speed
of these reactions is

(1.2) r =k,

where k is a reaction rate constant (in units of [2]).

Thus the reaction rate r of a zero-order reaction equals the reaction rate coefficient
k:
(1.3) r=———-=%.
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If we integrate this differential equation, we obtain the following relationship:
(1.4) C(t) = —kt + Cy,

where () is the initial concentration.

The reaction proceeds at a constant rate and it is independent of the concentration
of substance present in the body. Here is a list of some drugs following zero-order kinetics:
phenytoin, phenylbutazone, warfarin, heparin, ethanol, theophylline, tolbutamide, aspirin

and other salicylates.

1.1.2 First-order reaction

These reactions depend on the concentration of one reactant. The rate equation has
the form:

(1.5) r=k-C(t),

where r is reaction rate (in units of concentration over time), k is the reaction rate
coefficient (in units of reversed time), and C(t) is the instantaneous concentration of the
substance.

The reaction rate r of a first-order reaction equals the reaction rate coefficient &

times concentration C'(t):
dC(t)

1. =——>=Fk-C(t).
(1.6 r=-C0 — k)
By integrating this differential equation we get:

(1.7) C(t)=Cy-e ™,

where C(t) is the instantaneous concentration of the substance, Cy is the initial concen-
tration. In pharmacokinetics k£ is denoted as k. - elimination rate constant.
It is assumed that the majority of processes of ADME follow first-order reactions

and most drugs used in clinical practice at therapeutic dosages will show first-order rate
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processes, i.e. the rate of elimination will be first-order. Drugs following first-order
reaction have the property that as the amount of drug administered increases, the body
is able to react by eliminating the drug at an increased level and accumulation will not
occur. However, if we continue to increase the amount of drug administered then all drugs
will change from showing a first-order process to a zero-order process, for example in an

overdose situation.

1.2 Pharmacokinetic models

A compartment is an abstract region of our body, where we assume substances con-
centrations are homogeneously distributed. It is the building stone of a simplified model
of reality serving to illustrate the ADME processes [1]. The compartments may be small
or large, but they are usually abstract units. Typical examples of compartments include
plasma (also blood), intracellular and extracellular fluid, adipose tissue, organs, cells ect.
They are separated by membranes. The whole system describes a set of compartments

between which substances are exchanged.

1.2.1 One-compartment model

This type of model is the simplest. The entire body is considered as one compartment
(see Figure 1.2). It is assumed that the substance is dispersed quickly and evenly after
application. For this reason, it is impossible to accurately illustrate the distribution of the
substance in the body. This type of model has a meaning when describing and predicting
drug movement, for example, when repeatedly administered [?].

It is important to note that this does not imply that the drug concentration in
plasma is equal to the drug concentration in the tissues. However, changes in the plasma
concentration quantitatively reflect changes in the tissues. A typical relationship between

concentration versus time profile is shown in the Figure 1.4 for a drug with first-order
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_— Single compartment

Figure 1.2: One-compartment model. k, [h™!] is absorption rate constant, k. [h™'] is

elimination rate constant (drawn in PowerPoint).

reactions.

1.2.2 Two-compartment model

Most substances can not be instantly dispersed throughout the body. To simulate
this, a two-compartment system is used. The first one is central and the other is periph-
eral (see Figure 1.3). We assume that the substance is exchanged between compartments
in order to maintain balance. Although these compartments often have no physiologi-
cal or anatomical meaning, it is assumed that the central compartment includes tissues
that are highly perfused such as heart, lungs, kidneys, liver and brain. The peripheral
compartment includes less well-perfused tissues such as muscle, fat and skin.

In a two-compartment model the drug is administered into the central compartment,
but the drug does not achieve instantaneous homogenous distribution between the two
compartments. The drug distributes between the central and peripheral compartment. A
typical drug concentration versus time profile is shown in the Figure 1.5. The form of the
curve, after taking a sufficient number of blood samples, is used to determine whether we

have 1 or 2 compartments.

13



Peripheral

Drug in ke

Figure 1.3: Two-compartment model. k,, k. and k. are first-order rate constants: k, is
rate of transfer from peripheral to central compartment, k. is rate of transfer from central

to peripheral compartment, k. is rate of elimination from central compartment.

1.2.3 Multicompartment model

With a growing number of compartments, the system becomes more complex. An
example of a multi-compartment system is a three-compartment system, which consists of
a central compartment and two peripherals. The central one in general is better perfused
with blood than the other two. Graphs of plasma concentration versus time profile of a

drug are shown in Figure 1.6.
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Figure 1.4: One-compartment model: A) plasma concentration C(t) versus time t profile

of a drug; B) log(C(t)) vs time ¢ shows a linear relation (drawn in PowerPoint).
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c(t)

log(C(t)

Figure 1.5: Two-compartment model: A) plasma concentration C'(t) versus time ¢ profile

of a drug shows a curve; B) log(C(t)) vs time ¢ plot shows a biphasic response. The figure

is for central compartment (drawn in PowerPoint).
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log(C(t))

Figure 1.6: Three-compartment model: A) plasma concentration C(t) versus time ¢ profile

of a drug shows more than one exponential; B) time profile of a drug showing log(C(t))

vs time ¢ (drawn in PowerPoint).
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Chapter 2

One-compartmental models

In this chapter we describe the pharmacokinetics for one-compartmental models.
We will consider one-compartmental intravenous injection, infusion, single and multiple
doses, also extravascular drug application. We give mathematical proofs of pharmacoki-
netic equations and perform numerical experiments in the software PharmCalcCl. The

description in this chapter is based on the books [13] and [4].

2.1 Intravenous injection, single doses

In a one-compartment model, for drugs with first-order elimination, the change in

concentration over time can be expressed according to (1.7) as
(2.1) C(t) = Cp - e Fet,

where:
C(t) [%] = the plasma drug concentration at time ¢ [h],
Co [*#] = the initial plasma drug concentration at time ¢ = 0,
ke [h~1] = the elimination rate constant,

e = Euler’s number (approximately 2.718).

18



If the injected dose is D [mg], then we can express the initial plasma drug concen-
tration by the following equation

where V; [I] is the volume of distribution, which is defined as that volume of plasma in
which the total amount of drug in the whole body would be required to be dissolved in

order to reflect the drug concentration attained in plasma.

Lemma 2.1.1 The relation between the elimination half-life t% and the elimination rate

constant k. is given by the equation:

In2 0,693

2. t
(2.3) W ™

N

Proof: Because C(t) = Cy - e %, see (2.1), we have

—ket C
00'6 %:70
e_kEt%—&—lé

20, 2

1
—kti=In-=In2'<
2 2

B In2-1 B —In27! ~ In2 0,693 -
B _ke B ke B ke ~ ke .

It follows that for the elimination rate constant we have

t

VI

_ln2
==

1
2

(2.4) k,

thus k. in (2.1) can be determined from measurement of tL.

To determine V; in (2.2) from measurements, one often uses the area under the
curve. In the field of pharmacokinetics, the area under the curve Ac [%’h], also some-
times abbreviated as AUC, denotes the area under the curve (mathematically computed

as a definite integral) in a plot of concentration of drug in blood plasma against time.
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Typically, the area is computed starting at the time the drug is administered and ending
when the concentration of plasma is negligible. The A represents the total drug exposure
over time. This is useful when trying to determine whether two different formulations of
the same dose (for example a capsule and a tablet) release the same dose of drug to the
body. Another use is in the therapeutic drug monitoring of drugs with a narrow thera-
peutic index. For example, gentamicin is an antibiotic that can be nephrotoxic (kidney
damaging) and ototoxic (hearing damaging); measurement of gentamicin through concen-
trations in a patient’s plasma and calculation of the As is used to guide the dosage of

this drug. According to the following lemma, the A¢ is also useful to determine the V.

Lemma 2.1.2 In the single-compartment model, the Ac parameter satisfies:

Co D
(2.5) do=2=17

Proof:

oo 00 —ket ]
AC = f C’ge_ketdt = Cﬂ/ C_ketdt = lCO . c ]
0 0 _ke 0

e > el 1 Co
= C, — =Cy,(0— = —. 0O
’ (—ke —ke) ( —ke) ke

Thus assuming linear pharmacodynamics with elimination rate constant k., we have

shown that Ac¢ is proportional to the dosage D). To compute V; we can use

D

Va= Ao

In this context, clearance Cl [£] is defined as the volume of plasma from which the

drug is completely removed per unit time and satisfies:
(2.6) Cl=k.-Va

Therefore, Ac can be expressed as

(2.7) Ao=2=_— =



and clearance is given by

D

We end the section with an example for illustration of the change in concentration
over time (see (2.1)). We used data from a summary of product characteristics (SPC) of
gentamicin (antibiotic drug) given in [23]. Each 2 mil ampoule of solution for injection
contains 80 mg gentamicin (as gentamicin sulfate). We have from [23] that the apparent
volume of distribution is about 0.25 [/kg for gentamicin. Standardly, for a 70 kg person,
we will get V; = 0,25 -70 = 17,51. We therefore calculated Cy for gentamicin as (see

(2.2)): .
_Z_ Sy .
Co =17 = 175 — 40Tmg/l

The elimination half-life was given in [23] as 2.5 h. From that we calculated k. (see 2.4):

m?2 0.
? o V093 ot

ke =
2.5

1
2
To calculate the change in concentration over time C(t) (see (2.1)), we used the

software Excel (see Figure 2.1).

2.2 Intravenous injection, multiple doses

In practice most drugs are administered over a period of time in several doses. When
we administer a drug at regular dosing intervals, it starts to accumulate in the distribution
area (e.g. most common blood plasma) and the drug concentration will rise until a steady-
state, which occurs when the administered drug amount (in a given time period) is equal
to the eliminated drug amount in that same period. The concentration function is then a
periodic function moving between C',,, and C,,;,. The peak C,,,,, and trough C,,;, plasma
concentrations of the drug are similar during all the periods at steady-state conditions

(see Figure 2.2).
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Figure 2.1: Plasma concentration versus time profile of gentamicin using a one-

compartment model (according to values given in [23]).

The concentration at time ¢ after the first dose is:
CL=0Cy- B_ket.

After the dosing interval 7, the concentration at time t after the second dose originating

from the first dose is:

Cy=0Ch- €7k'5(7+t).

The contribution from the second dose at time ¢ after the second dose is exactly C; =
Cy-e~Fet as for the first dose. Using the principle of superposition, the total concentration

C(t) at time ¢ after the second dose is:

C(t) - Cl + 02
_ OO . e—ket + CO . e—ke(T—H)
= Co-(1+ e_k”) ce ket

22
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Figure 2.2: Plasma concentration versus time profile of IV doses of 80mg gentamicin

(dosing interval 7 is each 8 h) at steady state computed in the software PharmaCalcCL

(see [5]).

(1 + e—ker)(l _ e—k]eT)

ket
— . .e
Co 1 — eker
—2keT
_ oo 1o
07 —gher '

In general, after the n** dose, we obtain the following theorem 2.2.1.

Theorem 2.2.1 To calculate the value of C(t) at any time t after the n'™ dose we can

use the following equation [11]:

—kent
_D 1-e '

(2.9) C)= 3 T oir

where:

n = number of doses,
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7 = dosing interval [h] and

t = time after the n'" dose.

Proof:

The concentration during the first dosing interval is given by:

D
t = . _ket = —.
C(t)y=Cyh-e ™, v,

The concentration during the second interval is, using the principle of superposition:

CO(t) = Cy-e ™) 1 Oy e7het = € - ehel (1 4 e7Fe).

Let us denote e %7 by R.

The concentration during the third interval is, for the same reasons:
C(t)=Cp- e ke@r4t) | C, - e ke(m+t) | Co-e ket = - e—ket<R2 +R+1).

The factor between brackets is the beginning of a geometric series with each term being

R times the following term. For the concentration during the n'* dose interval we obtain:

C(t)=Cy-e ™ (R + R"2+ ..+ 1).

Using
1—R"
R+ R4 . +1=
+ + ...+ 11— R’
this can be simplified to give:
1 — efnkeT e
C(t) = Co : W - e O

Corollary 2.2.2 At steady state, the following equation can be used to describe the drug

concentration C(t) (e.g. in blood plasma) at any time t within the dosing interval T:

D . e ket
Vg (1 —eker)’

(2.10) C(t) =

24



Proof:
We consider steady-state to be the state after infinitely many doses. Then n in (2.9):

n— oo

and thus

e R 5 (),

This gives (2.10), where the influence of the dose number has disappeared. O
Using corollary 2.2.2, we can describe the maximum plasma concentration C),,, at
steady state (i.e. t = 0, then e~*! = 1) by the following equation:

D1 D
Vi (L—eker) V- (1—eher)’

(211) Cmax =

The minimum plasma concentration Cy;, (i.e. ¢ =7 in (2.10)) is:

D - efke‘r

(212) szn - ‘/:1 - (1 — e_ke7'>.

We will next derive a frequently used quantity called average steady-state concen-
tration. However, we would like to point out that the average steady-state concentration
is not a mathematical average, it is not the same as the arithmetic mean of (2.11) and
(2.12).

As we mentioned before, steady state occurs when the rate of administered drug
amount is equal to the rate of drug elimination. We can approximate the rate of drug
administration as the dose D per dosing interval 7, i.e as 2[%] The rate of drug elim-
ination at steady state can be given by the clearance Cl of plasma times the so-called

average steady-state concentration, Css(7):
Rate of drug elimination = Cl - Cys(7).

Thus, at steady state:

D
=~ _C]- ‘
. Cl-Cg(1)

25



Rearranging the equation we get the average steady-state concentration Cyy(7):

D
2.1 = .
(2.13) CaslT) = 772
From equations (2.4) and (2.6)) we have:
Ol — In2- Vd’
11
2
then (2.13) changes to
2.14 C —D ‘ t%
(2.14) SS(T)_1n2~Vd-T'

Those concentrations depend on the half-life ¢ 1 of the drug under consideration.

We see that the average steady-state levels depend on the given amount of the dose
(see (2.14)): the higher the dose - the higher the levels. But the time to achieve steady-
state levels does not depend on the given dose amount, it depends on the exponent —k.n71
in (2.9), i.e. the larger k., the smaller the time needed to achieve steady state. Note that
the higher the dose, the greater the fluctuations in C),4, and Ci,;, (see equations (2.11),
(2.12) and see Figure 2.3).

The difference between the dosing interval 7 and the half-life ¢ 1 can cause 3 different
types of average steady-state levels (see (2.14)):

) Ifr < t%, greater accumulation occurs, i.e. steady-state levels are higher, but
because of (2.12) there is less fluctuation in C),q, and C,;, (see Figure 2.8-A);

2)Ifr >t 1,8 lower accumulation occurs with greater fluctuation in C),,, and Ci;,
(see Figure 2.8-B);

3) If the dosing interval 7 is much greater than the half-time t1 of the drug, then
Chnin approaches zero (see (2.12) and Figure 2.8-C). In this case no accumulation will
occur and the plasma concentration-time profile will be the same as when administering
a series of single doses. In practice, steady-state is often assumed to be reached in 4-5

half-lives. If we assume that a patient is receiving 10 mg doses and half the total amount is
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Figure 2.3: Plasma concentration versus time profile of IV doses of the 80 mg gentamicin
(dosing interval 7 is each 8 h), where 5 and 7" doses were increased twice (computed

in the software PharmaCalcCL (see [5])).

eliminated at each half-life, Table 2.1 shows the time to reach a steady-state concentration
in the body.
We remark, that for some drugs it is important to consider its salt factor S. The

salt factor is the proportion of the parent drug contained in the salt, expressed as [12]

weight of parent drug

weight basis of the salt’

Hence, if it is applicable, then Cy = %, which looks similar to (2.2), and we will get

instead of (2.10) the following equation with salt factor S:
S D-ekt
Vg (1 —ekery

It is sometimes important to take into account as well the bioavailability F', which rep-

(2.15) o)

resents the fraction of an administered dose of unchanged drug that reaches the systemic
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Dose (mg) | Amountin the body (mg) | Amount eliminated (mg) | Number of half-lives
10 10 5 1
10 15 7.5 2
10 17.5 8.75 3
10 18.75 9.375 4
10 19.375 9.6875 5
10 19.6875 9.84375 6
10 19.84375 9.921875 7
10 19.921875 9.9609375 8
10 19.9609375 9.98046875 9

10

19.98046875

9.990234375

[y
(=]

10

19.99023438

9.995117188

[
=

10

19.99511719

9.997558594

oy
N

Table 2.1: The table shows the time to reach steady-state concentration in the body,

where we assume that a patient is receiving 10 mg doses.

circulation. This will be relevant mainly for extravascular administration.
Remark: if S and F' play a role, then in most equations D must be replaced with

S - F - D, in particular in equations (2.1) and (2.9) till (2.14).

2.3 Intravenous infusion

Intravenous infusion is used when it is necessary to direct the drug solution into
the blood circulation gradually, either for therapeutical reasons (long-term infusion) or
when because of technical reasons the high amount of solution can not be injected entirely

(short-term infusion). The rate R [%?], which is needed to direct the drug solution into

the organism, is as a rule assumed to be constant and it is expressed by ratio: R = %
where 7' is a certain end time of the given infusion. The model illustration is shown in

Figure 2.4.

Theorem 2.3.1 In case of long-term infusion, for the single-compartment model, the
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NI S Drug amount kord

Figure 2.4: Scheme for one-compartment IVI (intravenous infusion). R is infusion rate
constant, k. is elimination rate constant and C1 is total plasmatic clearance (drawn in

PowerPoint).

time-concentration equation is the following with first-order reactions:

il (1 — e7ket).

(2.16) C) =1+

Proof:
The differential equation for C(t) is [11]:

dC(t) R
— =7, ke C).

Using Laplace transforms (see [21]), it can be integrated to give (2.16). In fact, the
Laplace transforms is an very complicated integral transform. Thus, to make the proof
more simple for the readers, now we are going to proof that the derivative of (2.16) satisfies
the differential equation for C(t), i.e., that
R —ke
ac (-

R
&t dt =y, ke CO)-

Differentiating the expression for C'(¢) in (2.16),

o 4(Fg—e™)
dt dt '
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we get

dC(t) R d(l—et)
ki dt
= n (0 + ke~ ket
ke Vi ‘
R
— A ke —ket
W
L e
=W e e,
On the other hand, if C(t) equals the expression in (2.16), then:
R R R
— — k- Ot) = — —ke-——(1 —e k!
_ R RRTURR
B ‘}/ﬁl kev;l kevd
_ okt g
7 e

As it is perceptible from the equation (2.16), during the long-term infusion performed
by constant rate, the drug concentration in the distribution area is getting closer to a

definite value - the plateau concentration, i.e. the steady state concentration Cy,. In this

case
e het =0,
thus from (2.16) we get:
R
92.17 Oy = —
21 EV

Alternatively, we can show this formula for Cys similarly as we have done for multiple
doses before equation (2.13). As the rate of infusion equals the rate of elimination at
steady state

R=ke Vq- Cis,

then we have the steady state concentration Cl,, which is defined as the ratio of infusion
rate constant R to the total plasmatic clearance CI:

R R

2.1 = =
(2.18) G kVy CU
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notice the similarity with (2.13).

As for multiple doses steady-state is achieved, which denotes a definite dynamical
balance between the intake rate of the drug by the infusion and its removal by the elimina-
tion processes, where the amount of the drug discharged from the distribution area equals
the amount of the drug incoming into the distribution area per time unit. Concurrently,
gradually increased drug concentration during the infusion leads to increased rate of the
elimination. The increase in concentration per time unit is getting lower and lower till
the drug intake rate draws level with its elimination.

Since the value of the total plasmatic clearance C1 during the infusion is usually
constant and it is affected by functional condition of the elimination organs, the used
infusion rate constant R actually determines the maximal drug concentration, which can
be reached in distribution area for the stated circumstances, see (2.18). The question
whether a therapeutical effect can be reached or not during the long-term infusion depends
on the infusion rate and how long we infuse the drug over a long period. Because effect
of Ac, which depends on period length.

On the other hand the formula (2.16) shows that time to approach steady state
concentration Cy,, does not depend on the infusion rate at all, but only on the elimination
constant of the corresponding drug for a given individual. E.g. if we express the time in
units of half-life, we see that min. 4-5 elimination half-lifes are necessary to obtain a drug
concentration in the distribution area, which deviates less than 6% or 3% from steady
state. If we give observed half-life values of majority drugs, which are usually bigger than
1h, the time to achieve steady state of the drug is relatively long during the long-term
infusion, i.e. 4 to 5 hours.

In clinical conditions the infusion time is limited till a certain end time 7', dur-

ing which the drug dose is inserted into blood circulation with the total value D. The
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concentration Cp, which we will reach during the time 7', equals:

D
2.19 Cr=———-(1—e ")
(2.19) T=Cr T (I—e )
As soon as we finish infusion, the drug elimination stops being compensated by its intake,
thus the drug concentration immediately starts to decrease exponentially like for a single

infusion:

(2.20) Cisp = Cp - e7Fe=T),

We end the section with an example for illustration of formula (2.16). We have from
the SPC given in [23] that the infusion of 80 mg gentamicin should be given for 30 to 60
minutes. From pervious example we calculated k., but Vj; value was given in [23] as 17.51
for a 70 kg patient. From the mean of the proposed infusion times we can find out R as
follows:

R=280- % = 106.67mg/h.

Thus, for the calculation of formula (2.16) we have all values. In Excel we calculated
concentration change for each 1 hour, as we can see in Figure 2.5.

Remark: if salt factor S and bioavailability F' play a role, then D must be replaced
with S+ F'- D in the equation (2.19).

2.4 Extravascular drug application

Extravascular drug application is a drug administration by any other route than the intra-
venous route. Extravascular drug application is represented in practice in different forms.
According to occurrence frequency first of all is oral administration, further examples are
subcutaneous and intramuscular injection.

However, from the point of view of pharmacokinetic models of the compartment
type model, it is not essential through what specific route the drug is administered to

the organism. At this level of drug modeling, it is crucial that in extravascular mode
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Figure 2.5: Plasma concentration versus time profile of 80 mg gentamicin administered in

infusion form (according to values given in [23]).

of administration, unlike intravascular application, the drug must overcome a certain
biological barrier to get into the systemic circulation that we consider to be an integral
part of the distribution area. This process is called absorption of the drug from the
application site. During this process, however, some losses may occur, so that part of the
administered drug will not reach the distribution area (incomplete absorption). These
losses should be taken into account especially when given orally.

Notice that the administered drug amount into the organism by intravenous (100 %
drug reaches system circulation) and extravascular way (some part of the drug yields
due to elimination, degradation ect.) is different. That differency is described by the
bioavailability (F') - it refers to the degree and rate at which an administered drug is

absorbed by the body’s circulatory system, the systemic circulation. It can be computed
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as

(2.21) = Gk

where A¢,  is the A of the extravascular drug application, Ac,  is the Ac of the
intravascular drug application, both determined from corresponding blood samples.

For these reasons bioavailability F' of the drug becomes an important quantitative
indicator. Therefore, the fact that the bioavailability of the drug may not be complete
(i.e. 100 %) for various reasons, must be taken into account when formulating pharmacoki-
netic models, describing the movement of the drug in the organism, after extravascular
administration.

A block diagram of a single-compartment pharmacokinetic model with extravascular
application of the drug is shown in Figure 2.6. From the diagram it can be seen that the
loss of the drug from the site of application is achieved in two concurrently running
processes by absorption into the distribution area and by losses prior to entering the
distribution area. Both of these processes summarize the process of disappearing of the
drug from the site of absorption. For the rate constants characterizing these processes,

therefore, we define:

kg = ko + K

where ky is the rate constant of the disappearance of the drug from the site of application.

We can look at the disappearance of the drug from the application point as to elim-
ination from a single-compartment model. The time course of this process is described,
like in (2.1), with a monoexponential expression. As the volume of distribution of the
site of absorption is hard to determine, the expression is given in drug amount, instead
of drug concentration.

(2.22) Na(t) = D - e7kat,

where:
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[
A . B
|k.

Figure 2.6: A block diagram of a single-compartment pharmacokinetic model with ex-
travascular application of the drug at its incomplete availability: A-application site,
B-distribution area, k,-absorption rate constant, kj-rate constant of loss processes, k.-

elimination rate constant (drawn in PowerPoint).

N4 (t) [mg| = the drug amount at application point,
D [mg| = the given dose of the drug,
k4 [h~!] = the rate constant of the disappearing drug from the application point.
From the therapeutical point of view we are mostly interested in time course con-
centration change in the distribution area. The time course concentration is given in the

next theorem.

Theorem 2.4.1 The time course concentration for extravascular application in the cen-
tral compartment is given by:

Co - kq

(2.23) CH)=F 1

. (e—ket o e—kdt) )

Proof:

We use here the same method as for proving (2.16). Now, we try to proof if the derivative
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of (2.23) satisfies the following

differential equation [4]:

%t(t) =F - kq-Ca(t) — ke C(t),
where Cy(t) is expressed as:
~ Na(t)

Differentiating (2.23) we get:

Co-k
dC(t) d (F ke

(e—ket . e—kdt))

dt O L
. Lok
. Lok
. Lok
= F kg — k.
— F-Cy-ky-
= F.ky-Cy-

dt

N d —hRgl E!e e
(k e kgt k —k t)
. (kde_kdt — kpeFat 4 | e7kat _ kee_kft)
Co-k
. . k4t L0 R kgt ket |
(kg — ke) Z k—i— F — (e e ") - ke
—kgt _ . 0N ket —kgty |
e F — (e e ) - ke
ekt _ L. C(t). O

Unlike with intravenous infusion, the drug concentration ascends as far as possible

till a certain maximum, then again descends (see Figure 2.7).

Lemma 2.4.2 Time of mazimum concentration t,.. depends only on the values of the

rate constants kg and k. according to the formula:

(2.24)

Proof:

1 kq
tma...": — kd— ke . lﬂk—e.

The t,nqs is the t for which C'(t) is zero. Using (2.23):

c'(t) =

C,0 : kd —kgt —ket
F p— (kqe kee™"").
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Figure 2.7: Plasma concentration versus time profile of i.m. administered 80 mg gentam-
icin for the central compartment. k; value is hypothetically taken twice more than k,

value (inspired from [13]) and computed in Excel.

If C'(t) =0, then
Co - ka

. . —kgt _ —ket —
F p— (kqe kee™ ") 0&
kge kit — ke %t = 0o
In(kge*a) = In(k.e™*!) o

In(kq) +In(e7*) = In(ke) 4 In(e™*") <
In(kg) — kgt = In(ke) — kot <
—kgt + kit = —In(kg) + In(k.) <
kgt — ket = In(kg) —In(k.) <
t(kg—k) = In (E—j)@

111(2—:)

ka — ke

37



1 kq
mar — . -—. O
t — In k.

On the other hand, maximum concentration value is directly proportional to the

drug amount, which is administered to the bloodstream, as shown by the lemma below:

Lemma 2.4.3

ke
F-D [ky) %5

Proof:
To find Cy4y we replace t in (2.23) with ¢4, from (2.24) and compute:

C _ F . CO ) k‘d‘ . (e_ketma:l: _ e_kdtma:l:) t _ 1 ln E
maxr — ? maxr — -
kd - ke kd - ke ke
Hence,
k k
X ]n(-Eg) & ]n(&)
e_ketmﬂz _ e_kdtmﬂz e € kg—ke _ 6_ dm

FNE &

I

FNE FIE FIE

We computed that

ke

ka\ TR (kg —k
—ketmazx _ —kdtmazx — _d . d €
o= () T (1)
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Now, finally we can compute C,,,4, following:

ke
Cm_r _ FC@ kd ) (E) kg—ke .kd_ke

kq —ke \ ke ka

ke

_ F-D (kg\FF
Wy ke '
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Figure 2.8: Difference between the dosing interval 7 and the half-life ¢ 1 for 80 mg gen-
tamicin (computed in the software Pharma@ilcCL (see [5])).



Chapter 3

Two-compartmental models

In this chapter we discuss about two-compartmental models. We will consider single
dose injection and infusion. We give mathematical proofs of pharmacokinetic equations.
The description in this chapter is based on the book [13].

This model consists of two compartments, where the drug is administered into the
central compartment and it is reversibly connected with the peripheral compartment
(see Figure 3.2). The intensity of the reversible transfer of the drug between the two
compartments is expressed by the rate constants k. and k,. Excretion of the drug from
the central compartment, which is most often supposed, is characterized by the rate
constant k), while excretion from the peripheral compartment is characterized by the
rate constant k). All these rate constants are overall denoted as microconstants.

Already decades ago, it was observed that the time course of concentration decline of
intravenously administered drugs in the blood plasma in the first period immediately after
the injection is considerably steeper than would be expected assuming a one-compartment
model. For this reason, two-compartment open models began to be widely used. The term
open model means that the administered drug amount, after its metabolism, is eliminated

by an excretory mechanism.
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initial rapid decline

C(t) distribution phase

slow terminal decline
elimination phase

—
—
-.___

Figure 3.1: Changes in the drug concentrations in the central (plasma), blue curve, and
peripheral (tissues) compartment, red dash curve, after IV bolus of a drug that fits two-

compartment model (the picture is taken from [7] and modified in Paint).
3.1 Single dose injection

The time course of the decline in drug concentration, after intravenous injection, in
the central compartment of the two-compartment model is represented by a two-phase
concentration curve (see Figure 3.1). Immediately after the injection there is a very rapid
decline, which in the subsequent period is going over in a slower decline. The rapid de-
cline immediately after the injection is only partially caused by the drug secretion, it is
also caused by the transfer of the drug to the peripheral compartment, which occurs in
parallel with the elimination. This is the so-called distribution phase, however, it only

takes place until the drug concentrations in both compartments are balanced. Then, the
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so-called elimination phase begins, in which drug secretion from the central compartment
continues, but movement of the drug molecules between the compartments prevails, unlike
the distribution phase, in the opposite direction. The concentration of the drug in the
peripheral compartment is no longer increasing, because at the moment of concentration
balance the maximum is reached. On the contrary, it gradually declines in proportion
to how the excretion discharges the central compartment. Each amount of drug that is
excreted from the central compartment is partially replaced by the passage of a certain
amount from the peripheral compartment. This also causes the decline in the drug con-
centration in the central compartment to be slower in the elimination phase than would
correspond to the rate of drug elimination.

Mathematically the time course in the central compartment can be expressed by
biexponential dependence:

(3.1) Clt)y=A-e "+ B-e

where:
«a and [ = hybrid first order constants for rapid distribution phase and slow
elimination phase respectively,
A and B are additional coefficients defined as:
a—K, D K,-p D

3.2 A= — .
(3:2) a—P3 Ve a—P8 Ve

where:
K, = elimination constant for peripheral compartment,
D = injected dose,
Vi) = distribution volume of the drug in the central compartment.
a, B and K, can be determined experimentally from the decay of plasma concentration.
Vi(e) is determined from Cj.
Due to the reversible connection between the central and peripheral compartments,

the o and [ constants in this dependence are not simple rate constants that would express
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the intensity of a single pharmacokinetic process, as we have seen in a one-compartmental
pharmacokinetic model. On the contrary, these parameters characterize the course of
actions that are the result of several pharmacokinetic processes. For this reason, they are
also the function of all microconstants describing the model. To distinguish them, they
are therefore often referred to as hybrid constants. The a hybrid constant characterizes
the intensity of the drug concentration decline in its distribution phase, which is also
referred to as the a-phase, whereas the  hybrid constant expresses its intensity in the
elimination phase, also referred to as the g-phase. Because hybrid constants characterize
processes of a more complex nature, their clinical significance is greater than that of
individual microconstants. In practical pharmacotherapy we are much more interested in
how intensive the blood plasma concentration of the drug declines than the intensity of
elimination, so that we can determine the appropriate dosing frequency accordingly.

In the general case where the elimination of the drug is not located in a single
compartment, alongside with the o and § hybrid constants we can only evaluate the rate
constants of the total elimination of the drug (elimination constants) from the individual

compartments. These constants are defined as:
(3.3) K.=k.+ /{e(c) Kp = kp + k‘e(p)

where:
K. = elimination constant for central compartment,
K, = elimination constant for peripheral compartment,
k. = rate of transfer from central to peripheral compartment,
k, = rate of transfer from peripheral to central compartment,
ke(ey = rate of elimination from central compartment,
ke(p) = rate of elimination from peripheral compartment.
In variants with exclusive excretion from the central or peripheral compartment,

either k.. or k) equals zero. The elimination rate constants therefore have a variable

44



interpretation depending on which variant of the two-compartmental pharmacokinetic
model is appropriate.

A widely used variant with exclusive excretion from the central compartment has its
merits. The central compartment volume, determined by the pharmacokinetic analysis,
largely exceed the volume of blood plasma. In view of rapid exchange with some tissues,
therefore, it is assumed that the central compartment contains not only extracellular fluid,
but also highly perfused tissues, including major elimination organs (like liver, kidneys,
lungs). This automatically implies the idea of localizing the overall elimination into the
central compartment. However, in situations where the question of excretion from central
or from peripheral compartment is more or less subject to certain speculations, it is much
more realistic to note that instead of the rate constants of the intercontinuous transfer,
we determine rather the values of the rate constants of the total drug elimination (i.e. K.
and K,) from both compartments.

Comparison of all three variants of the two-compartmental pharmacokinetic model,
however, shows that there are definitely characteristics of this model whose value is in-
variant for all three variants. In literature, for such characteristics, the name model-
independent parameters is used. The existence of such parameters makes it possible to
bypass excretion compartments specification. These are parameters that can be expressed
by formulas in which no microconstants emerge. These include:

1. The half-lives of the distribution and elimination phases of the concen-

tration decline of the drug given by the formulas:

In2 0.693 In2 0.693
1 = — = t1 =— 8 —;
o) =TSR T ()= A T

notice the similarity with (2.3). Both t1 (o) and t1 (B) are biological half-lives. In case of

(3.4) /

two-compartment kinetics, we can not interpret biological half-life as the time at which
the drug concentration drops to half as for a one-compartment model.

2. The apparent initial concentration of the drug in the central compartment

45



Co(t = 0) and from that the derived distribution volume of the central compart-
ment Vy ). Values of these parameters after a rapid intravenous injection are determined
by the formulas:

D
(3.5) Vi

) = Co
notice the similarity with (2.2).

The concentration of the drug in the central compartment is called ”apparent” con-
centration. Because, there are several reasons. At first, we can not inject the whole does
instantly. It takes some definite time to administer injection dose, which depends on the
volume of the injection. Thus, immediate intravenous injection is actually short-term,
rapid infusion. Secondly, the equation (3.5) was derived assuming an immediate and even
dispersion of the entire administered dose in the central compartment, which is de facto
unrealistic. The dispersion of drug molecules in the central compartment has more likely
gradual character, which is also in line with the concept of volume distribution as a func-
tion of time. Thirdly, notice that, before the drug enters the systemic circulation, first
it must pass through the small pulmonary circulation, where drug can yield to biotrans-
formation. It can cause that, a smaller amount of the administered drug will flow into
the systemic circulation. Therefore, to obtain more realistic values for "apparent” con-
centration (also volume of distribution), it is recommended to consider each intravenous
injection as a short-term rapid infusion.

3. The area under the curve of the drug concentration in the central com-
partment Ao and from that derived the total plasma clearance Cl. In the two-

compartmental model the clearance C1 is computed same as in (2.8), i.e.:

D

Lemma 3.1.1 In the two-compartment model, the Ac parameter satisfies:
A B

3.6 Ac=—+—=.

(3.6) c=5713
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Proof:

Ao = f (A-e= 4 B.eP)dt
0

The A value is given by all four parameters

/ A-e ™4t + / B-e Pt
0 0

e * e Bt
A. ; [B - ]
—B

0

of the biexponential dependence (see (3.1)),

to obtain them it is not needed to specify from which compartment the drug is excreted.

Here, A¢ is not obtained from an integration rule, but for other compartmental models

this is in general needed.

4. Fractional clearance k; of the drug is defined as the ratio of total plasma

clearance Cl and volume of the central compartment V). It can also be expressed as a

function of both hybrid constants o, f and e

Lemma 3.1.2 There holds:

limination constant K.

Cl a-f
3.7 ke = —
(3.7) = Vg~ K,
Proof:
Cl
Lk =
! T/d',(c)
_ Ac
Vi
0
- Va 4+ 3
B D-a-p
~ Vu(AB + Ba)



D-a-B

o -K Kp—
V-2 (ﬁ(z_ﬁp) + a(afﬁm)

This parameter shows how large the relative proportion of the volume of the central com-
partment is cleared from the drug per unit of time, therefore k; has units h™'. Likewise,
it is far more appropriate to interpret the elimination constant as fractional clearance,
comparison with (2.6).

5. The volume of distribution computed from the area under the curve
of the drug concentration is normally calculated according to the next formula:

D

B-Ac
It is often also called the apparent volume of distribution. By using the equations (2.7)
and (3.4), the equation (3.8) can be modified to:

(3.8) Va(area) =

D D Cl-t1(B)
(3.9) Vi(area) = 5 A tln(é) T~ o ~ 1.44-CL-t1(B).

1
Z
It is evident that, this is the volume, which is cleaned of the drug in about 1.5 biological

half-lives. This parameter is often advantageously used to re-determine the total plasma

clearance based on the formula:
(3.10) Cl = B - Vy(area),

following from (2.8) and (3.8). This makes it possible to bypass the model variant depen-

dent formula:

(3.11) Cl = ke - Vae)

and which is also valid only, if the drug is exclusively excreted from the central compart-

ment.
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6. Time of onset of the maximum concentration of drug ¢,,,. in the periph-
eral compartment:

1
(3.12) b = a

a—p B

notice the similarity with (2.24) and proof is also analogous. It is the only parameter that
characterizes the processes in the peripheral compartment, which is independent of the
two-compartment model variant. However, it should be kept in mind that the maximum

drug concentration in the peripheral compartment occurs when the drug concentration

equals the concentration in the central compartment.

3.2 Infusion

The central compartment of the two-compartmental pharmacokinetic model plays an
important role in infusion drug administration, which fully reflects the two-phase nature
of the drug movement. At the beginning, the concentration of the drug in the central
compartment is rather slower than in the one-compartment model (distribution phase) at
a constant rate of infusion. At this stage, part of the administered drug moves from central
to peripheral compartment, until the concentrations in both compartments are equalized.
In the second phase, due to the reversal of the concentration gradient, the concentration
in the central compartment increases a little faster, comparing to the one-compartment
model.

Nevertheless, to achieve steady-state concentration in a two-compartment model,
as it was with a single-compartment model, is needed a sufficiently long infusion time.
It is also shown in the mathematical expression of the time course of changes in drug
concentration in the central compartment:

R  a-K, R
Cl 04(04—5) Vd(c)

e—at o

K,-8 R
Blao—5) Ve

The steady state concentration Cy, is given by the ratio of infusion rate R and total plasma

(3.13) C(t) = e Pt
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clearance Cl, as it was with the single-compartment pharmacokinetic mode. To achieve
steady state concentration Cly, it is necessary to assess the hybrid constant 3 according to
the number of past half-lives, due to the two-phase kinetics. After the short-term infusion,
the drug concentration in the central compartment starts decrease like two-phase of the

intravenous injection.
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Keto) Ke(o)

Figure 3.2: Variants of two-compartment open model: A) with exclusive excretion from
the central compartment; B) with exclusive excretion from the peripheral compartment;
C) with excretion from the both compartments. k., ky, ke() and kg are first-order rate
constants: k. is rate of transfer from central to peripheral compartment, k, is rate of
transfer from peripheral to central compartment, k) is rate of elimination from cen-
tral compartment, kg, is rate of elimination from peripheral compartment (drawn in

. 51
PowerPoint).



Chapter 4

Approximation of the AUC

In practice, the drug concentration is measured at certain discrete points in time, the
moments when blood samples are taken, and an integration rule is often used to estimate
Ac (though in some cases it can be computed exactly, for example when holds (3.6)).
There are many methods, which are used to numerically approximate definite integrals.
In this chapter we will describe in some detail the Trapezoidal rule and Simpson’s rule to

estimate Ac. We will compare them on numerical experiments in MATLAB [18].

4.1 'Trapezoidal rule

The trapezoidal rule is a numerical method used to approximate any definite integral

L ’ f(z)dz.

The region under the graph of the function f(z) is approximated by a trapezoid (see

of the form

Figure 4.1) and its area is calculated, giving the following approximation [15]:

/L; ’ f(z)dz ~ (b—a) [M} .
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Lemma 4.1.1 The size of the area of the trapezoid in Figure /.2 is given by

(b_“’)w‘

Proof (see Figure 4.2):

From figure we can see that total area of trapezoid S equals:
S — Sl + SQ.

S is defined as:

For S, we have:

(b—a)-(f(a) - f(b))

Sy = 5 .
Then,
S = 5 +5
= (b—a)- f(b) + (b—a)- (fg(a) — f(b))

2-(b—a)- f(O)+(b—a)-f(a) = (b—a)- f(b)
2
(b—a)-f(b)+(b—a)- f(a)

_ @_@lﬂMZf@]_D

We can even better approximate the integral by dividing [a, b] into subintervals and
applying the trapezoidal rule to each subinterval, and summing the gained results. Let
zk,0 < k < n, be a partition of [a, b] such that a = zp < 1 < ... < Zp_1 < z, = b and

Azy be the length of the k-th subinterval (Azy = xp — zx—1), then

b " f(zp_y T
/ T )2+f( Y Ay,
@ k=1

If all Azy, are equal (i.e. Az =22), then we obtain
b n—1
L b—a|f(z) f(zn)
Lf@ﬁ~?1[2 31w + 55
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As the resolution of the partitioning increases (that is, for larger n), the approximation

becomes more accurate.

4.2 Simpson’s rule

The essence of the method consists in approximating the function on the segment
[a, b] by an interpolation polynomial of the second degree py(z), with interpolation points
a, b and “‘TH’ [2]. Hence we consider the approximation of the function graph on the

segment by a parabola (see Figure 4.3).

Theorem 4.2.1 Simpson’s formula is the integral for the second degree interpolation poly-

nomial on the segment |a,b]:

4y [ e [ o= "0 [ 14 (U50) 4500

where f(a), f (“T’L‘") and f(b) are the values of the function at the corresponding points
(at the ends of the segment and in its middle).

Proof [9]: Let p2(x) be the quadratic function interpolating at the points (a, f(a)), (b, f(b))
and ((a +b)/2, f((a+b)/2). We have

b b
/ pa(z)dr = / (c2z® + 12 + co)dx

C2$3 + 01332 + b
= |—+——+cox
3 2 7,
B3 B2 3 2
Co + [&] + Cob o Col - C12£1 — ot
b—a [2c(b° — a?) b* — a?
3 6
6 [ b—a oo b—a + 00
The first term between brackets, #, can be simplified using

(b—a)(@®*+b*+ (a+b)?) = a’b+b*+bla+b)*—a®—ab® —ala+b)?
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b — a® + a’b + a*b + 2ab*
+ b —ab® — a® — 2a%b — ab®
= 2(b3 — a3).

Thus, summarizing,

b
b—
/ po(x)dxr = 6 a4 [ea(a® + b° + (a+ b)) + 3e1(b+ a) + 6¢o) -

Because pa(z) interpolates at the points (a, f(a)), (b, f(b)) and ((a + b)/2, f((a + b)/2),

we have
f(a) = e2a® + c1a + co,
f (G—Qi—b) _ e (542—&)2+Cl (6—12—0,) oo,
f(b) = cb* + e1b + ¢

and

at+b

f(a) —|—4f( ) + f(b) = c2a® + cra
+ ey(a+b)* + 2¢i(a + b) + cob® + c1b + 6y
e (a® + (a+b)* +b?)

+ c(a+2a+ 2b+b) + 6¢y,

which completes the proof. O

As with the trapezoidal formula, we will get a more accurate result if the segment
la, b] is divided into m subintervals, and we use each of these formulas in combination. For
simplicity, we take an equidistant partition. Since we take a midpoint in each subsection,
we actually have 2m subsections of length "’Q_—m“‘, Aa=20<T1 < Ty < ... < Tom—1 < Tom = b.
Now we apply an approximate formula on the pairs of neighboring subsections, so that

the middle point is a point with an odd index. We get the following formula [10]

b —a —
] f@de  ~ PO [f(@) + 4f @) + f(ea)] + L [f () + 4f () + faa)] +

6m 6m
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a

+...+ b-a [f (2m—2) +4f (xam—1) + f(ab)],

6m

respectively

b
/ flz)dz =~ %[f(a,) +2[f(z2) + f(za) + ... + f(Tom—2)] +4[f(z1) + f(z3)+
.t f(@am-1)] + F(B)].

This defines Simpson’s rule.

4.3 Computations in MATLAB

For computations in MATLAB [18] we used the first example, which was given for
equation (2.1), where we calculated values for Cy = 4.57mg/l and k., = 0.277h™!. Using
these values we calculated the size of the area under the curve till 10 hour (see Figure

2.1 analytically) following;:

10 e—k‘et 10
f C’ge_ketdt = Cﬂ l :|
0 _ke

0
= %(e_ket—l)
4.57
—0.277
= 15.4644 .

(6—0277-10 —1)

In MATLAB we computed the size of the area under the curve till 10* hour for
both Trapezoidal and Simpson’s rule. Results are 15.5631 and 15.4649 respectively, where
number of intervals were n = 10.

MATLARB code for Trapezoidal rule is:

function [int]=Trapezoidal(Fvalues,n,a,b)

h

int=Fvalues(1)/2;

for k=2:n+1
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int=int+Fvalues (k) ;

end

int=int-Fvalues (n+1)/2;
int=int*(b-a)/n;

MATLAB code for Simpson’s rule is:
function [int]=Simpson(Fvalues,n,a,b)
b
int=Fvalues(1);
for k=2:2:n
int=int+4*Fvalues (k) +2*Fvalues(k+1);
end
int=int-Fvalues(n+1);
int=int*(b-a)/(3*n) ;

Testscript for both rules:
a=0;
b=10;
n=10;

CO=4.57;

ke=0.277;

xvalues(1)=a;

xvalues(11)=b;

for k=2:n+1

xvalues (k)=xvalues (k-1)+(b-a)/n;
end

for k=1:n+1

Fvalues (k)=CO*exp (-kexxvalues(k));

end
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Next, we tried compute with lesser number of intervals, i.e. n = 5. Results were 15.8579
and 14.8479 respectively. From this, we can say that if area is divided into more intervals
- more accurate results we get.

Also, from results we can see that the Simpson’s rule is more accurate than Trape-
zoidal rule. It can be explained e.g. by the difference between theoretical errors. The

error for Trapezoidal rule is expressed following [14]:

(b~ a)?

error = _Wf &),

where n is number of intervals and £ is some number between a and b.

For Simpson’s rule it follows [25]:

__ 1 (b=a\
error = 90( 5 )f (€).

The errors are asymptotically proportional to powers of (b—a), i.e. for Trapezoidal rule it

is (b—a)? and for Simpson’s rule it is (b—a)®. Therefore, Simpson’s rule is more accurate.
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Figure 4.1: An illustration of the Trapezoid Method to Approximate a definite integral
of the f(z) = % function. The yellow area represents the region under the graph. The
striped area represents the approximating trapezoid (computed in Excel and reworked in

Paint).
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f(a)-f(b) -

f(b)

f(b) 51

(b-a)

Figure 4.2: An illustration of trapezoid (drawn in PowerPoint).
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f(x)

P(x

e
i

Figure 4.3: The essence of the method is the approximation of the function f(z) (blue

graph) by the quadratic polynomial »(z) (red), m = %2 (drawn in PowerPoint).
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Conclusion

In our thesis we described pharmacokinetic processes and models. Theoretical knowl-
edges were partially copied from [13] and [4], where was well explained and connected.
But we managed to complement the theoretical knowledges and prove pharmacokinetic
equations, which are not often given in standard books. We believe that to know origins of
these equations could help in deeper understanding of their importance and functioning.
It could help for example in our future researches in this field to better understand phar-
macokinetic computations and improve complicated equations. We performed numerical
experiments in the software PharmCalcCl, which is used for pharmacokinetics simula-
tions, and MATLAB, where we showed difference between numerical methods with real
data (i.e. not fictional). We demonstrated that approximation of AUC can be strongly

dependent on the used integration rule, especially with a small number of blood samples.
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