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Abstract: In this thesis we study algorithmic aspects of balanced group presen-
tations which are finite presentations with the same number of generators and
relations. The main motivation is that the decidability of some problems, such
as the triviality problem, is open for balanced presentations.

First, we summarize known results on decision problems for general finite pre-
sentations and we show two group properties which are undecidable even for
balanced presentations - the property of “being a free group”’ and the property
of “having a finite presentation with 12 generators”.

We also show reductions of some graph problems to the triviality problem for
group presentations, such as determining whether a graph is connected, k-con-
nected or connected including an odd cycle. Then we show a reduction of the
determining whether a graph with the same number of vertices and edges is
a cycle to the triviality problem for balanced presentations. On the other hand,
there is also a limitation of reduction to balanced presentations. We prove that
there is no balanced presentation with two generators ⟨a, b|ap(m)bq(m), ar(m)bs(m)⟩
for p(m), q(m), r(m), s(m) ∈ Z[m] which describes the trivial group if and only if
m is odd.

In the last part of this thesis, we describe a relation between group presentations
and topology. In addition, this thesis contains a program which constructs a
simplicial 2-complex from a group presentation.
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Introduction
Group presentation A group presentation is a tool for describing groups. It
was already known in the 19th century when it was studied by Walther von Dyck
(see [Dyc82]). Every group may be described by a presentation.

We may informally define it as follows. Note that all terms are precisely
defined later. At first, let us consider a set of symbols X and all finite words
on the alphabet X ∪ {x−1; x ∈ X} which are reduced. That is, they do not
contain a pair xx−1 or x−1x for every x. Such set we denote WX . Then we
consider a binary operation on the set WX defined as a concatenation. However,
after this concatenation we have to make the result word reduced by deleting
forbidden pairs of type xx−1 or x−1x. The set WX together with the described
binary operation form a group structure. The neutral element is the empty word
denoted by 1 and the inverse element for a word ω = xe1

1 xe2
2 . . . xes

s is ω−1 =
x−es

s . . . x−e2
2 x−e1

1 where ei ∈ {−1, 1}. Such group is called free.
Now, let us add some relations. For instance, we add a3 = 1 to a free group

defined on a set X = {a} (which is in fact the group Z). It means the word aaa
is equal to the neutral element (the empty word). In this case, we get a group
consisting of three elements:

a = a4 = a−2 = a7 = a−5 = · · · ,

a2 = a5 = a−1 = a8 = a−4 = · · · , and
1 = a3 = a6 = a−3 = a9 = a−6 = · · · ;

hence X = {a} together with the relation a3 = 1 describe the group Z3.
Another example is to use X = {a, b} and add a relation aba−1b−1 = 1. It

is equivalent to requiring ab = ba which means the symbols a, b commute. In
such case, we may express every element of our group as aubv where u, v ∈ Z.
Therefore we get the group Z2.

In the former case we described the group Z3 by two sets X = {a}, R =
{a3 = 1}, in the latter case we described the group Z2 by sets X = {a, b}, R =
{aba−1b−1 = 1}. Such a pair of sets is called a group presentation which is usually
denoted by ⟨X|R⟩ where X is a set of symbols which are called generators, and
R is a set of relations. Note that we usually write relations as ρ instead of ρ = 1.
Therefore in the first example, our presentation was ⟨a|a3⟩ while in the second
example, it was ⟨a, b|aba−1b−1⟩.

In other words, given a presentation ⟨X|R⟩ the presented group is the “most
general” group on the set of words on X which fulfils the equations ρ = 1 for all
ρ ∈ R.

Decision problems for finitely presented groups If the set of generators
and the set of relations are both finite, we have a finite description of some
group called finitely presented. It naturally leads into several decision problems.
Such as:

• Determining whether two words are equal (the word problem).
E.g.: Are the words a5b7 and a3b14a10b3 equal in ⟨a, b|a2b, b3a4⟩?
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• Determining whether the presented group is trivial (the triviality problem).
E.g.: Does ⟨a|a8, a27⟩ describe the trivial group?

• Determining whether two presentation describe the same group (the iso-
morphism problem).
E.g.: Does ⟨a, b|a10, a15, b7, b3⟩ describe the same group as ⟨a|a5⟩?

• Determining whether the presented group has a certain property.
E.g.: Does ⟨a, b|a10, a15, b4, b23⟩ describe a cyclic group?

Unfortunately, most of these problems are algorithmically unsolvable. Novikov
and Boone independently proved that the word problem is unsolvable (see [Nov55]
and [Boo58]). This led into a proof of the undecidability of the triviality problem
and therefore, also to a proof of the undecidability of more general isomorphism
problem. Moreover, these problems are reducible to each other. For more detailed
description see Section 2.1.

Markov property Adian and Rabin proved undecidability for a large class of
group properties called Markov properties (see [Adi55] and [Rab58]). A property
M is Markov if there exists a finitely presented group H+ which has the property
M and a finitely presented group H− such that H− being subgroup of a group K
implies that K does not have the property M. For example, determining whether
presented group is finite, abelian, free or cyclic is algorithmically unsolvable.

Although many of natural group properties are Markov, there are also inter-
esting properties which are not Markov. They can be both decidable, such as the
property of “being a perfect group”, and also undecidable as we can see in Sec-
tion 2.1. An example of such undecidable non-Markov property is the property
of “having a finite presentation with k generators” for k ≥ 2.

Balanced presentation The difference between the set of relation and the set
of generators is called the deficiency of a presentation. If the deficiency is zero
then the presentation is balanced. It follows from the known theorems that the
determining whether a presentation with the deficiency greater then or equal to
12 determines the trivial group is undecidable (see Theorem 2.12). The important
problem connected with topology is to determine whether a balanced presentation
describes the trivial group. It is still open if there exists an algorithm for this
problem.

However, in Section 2.2, we show that the problem of determining whether two
presentation, where at least one of them is balanced, are isomorphic is algorithmi-
cally unsolvable and also that we cannot determine whether balanced presentation
describes a free group. Therefore the property of “being a free group” is a Markov
property which is not decidable even for balanced presentations. Using the fact
that the triviality problem for presentations with the deficiency 12 is undecidable
we also get an example of a property which is neither Markov nor decidable for
balanced presentation. It is a property of “having a finite presentation with 12
generators”.

In Chapter 3, we describe a method how to determine whether balanced pre-
sentation defines a perfect group (see Definition 3.1) using the determinant which
is later used in the following chapter.
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Reductions to the triviality problem for balanced presentation Since
the triviality problem for balanced presentation is still open, it is interesting to
find problems which may be reduced to it. In Section 4.1, we show some intu-
itive reductions of graph problems to the isomorphism problem and the triviality
problem. Such as determining whether a graph is connected, connected including
an odd cycle or k-connected.

It is easy to determine whether a graph with |E| = |V |−1 is a tree using a bal-
anced presentation and it has a natural topological interpretation (see pages 7-8
in [HAMSS93]). We present a balanced presentation which determines whether
a given graph G = (V, E) with |E| = |V | is a cycle. This reduction does not has
such an easy interpretation.

Theorem 4.9. Let G = (V, E) be a graph such that |V | = |E| and v ∈ V . Then
the presentation

⟨V × E|{(v, e); e ∈ E} ∪
⋃

e∈E

{(u, e)(w, e); {u, w} ∈ E \ {e}}⟩

is balanced and it is a presentation of the trivial group if and only if G is a cycle.

Given a natural number m the presentation ⟨a|am, a2⟩ describes the trivial
group if and only if m is odd (See Theorems 1.20 and 4.11, respectively). However,
such presentation is not balanced. In Section 4.2, we conjecture that for m ∈ N,
there is no balanced presentation determining parity with a fixed number of
generators and with relations ri(m) having only integer polynomials of m in their
exponents. That is,

ri(m) = a
p

(i)
1,1(m)

1 . . . a
p

(i)
s,1(m)

s a
p

(i)
1,2(m)

1 . . . a
p

(i)
s,j(m)

s a
p

(i)
1,j+1(m)

1 . . . a
p

(i)
1,t(m)

s . . . a
p

(i)
s,t(m)

s

where p
(i)
j,k(x) ∈ Z[x]. We at least prove it for a special case:

Theorem 4.14. There is no balanced presentation

⟨a, b|ap(m)bq(m), ar(m)bs(m)⟩

for p(m), q(m), r(m), s(m) ∈ Z[m] which defines the trivial group if and only if
m is odd.

However, if we do not demand the fixed number of generators, we succeed.

Theorem 4.17. Let m ∈ N. Then the balanced presentation

⟨a1, . . . , am|a1a2, a2a3, . . . , am−1am, a1a
2
m⟩

is a presentation of the trivial group if and only if m is even.

Topology In the last chapter (Chapter 5), we show the connection between
group presentations and topology. Then we describe a possible method how to
reduce group presentation to a computer representation of simplicial 2-complex.
This method is also implemented.
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1. Preliminaries
In this chapter, we introduce basic definitions, notation and theorems which are
used in the whole thesis.

A note for notation: In this thesis we use both groups and graphs. A graph
is denoted by G, while for groups we use the letters H, K, F .

1.1 Group theory
This section is a brief introduction to the three related parts of group theory:
free group, presentation of a group and free product.

First of all, we recall a few well-know terms. Let H be a group and S ⊆ H.
Then ⟨S⟩ is the smallest subgroup of H containing S. If ⟨S⟩ = H we say that S
generates H. A group H is finitely generated if there exists a finite S such that
⟨S⟩ = H.

The cardinality of the smallest set which generates H is called the rank of H.
More precisely, rank(H) = {min |S|; S ⊆ H, ⟨H⟩ = H}.

If rank(H) = 1 then H is said to be cyclic and such group is either isomorphic
to Zn for some n ∈ N or isomorphic to Z.

Free group

Definition 1.1. A group F is said to be free if there exists a subset X of F such
that for every group H and for every mapping f : X → H, there exists a unique
homomorphism ϕ : F → H extending f .

Such subset X is called a basis of F and it generates F .

Theorem 1.2 (see Theorem 11.4 in [Rot99]). “Let F and G be free groups with
bases X and Y , respectively. Then F ∼= G if and only if |X| = |Y |.”

Therefore we may determine free groups only by the cardinality of their bases.
In this thesis we consider only free groups with finite bases and we denote them
Fn where n ∈ N0 is the cardinality of the basis.

Now, we show how to elegantly describe a free group. For a finite set X =
{x1, . . . , xn} let X−1 denote the set {x−1

1 , . . . , x−1
n }. We also consider that X ∩

X−1 = ∅ and for each x ∈ X there is a unique x−1 ∈ X and vice versa. Thus we
can define (x−1)−1 = x.

Definition 1.3. A word on X is a finite sequence (a1, . . . , as) where ai ∈ X ∪
X−1. The sequence may be empty and such empty sequence is called the empty
word which we denote 1. As an inverse word of ω = (a1, . . . , as) we consider
(a−1

s , . . . , a−1
1 ) and we denote it ω−1.

The set of words on X we denote WX . Note that for simplification, we often
write a1a2 . . . as instead of (a1, a2, . . . , as). If there is a subsequence of the same
symbol a or a−1 of the length i we shorten it as ai or a−i, respectively.
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Definition 1.4. As a product of two words ω1 = a1 . . . as and ω2 = b1 . . . bt we
consider the sequence a1 . . . asb1 . . . bt and we denote it ω1ω2.
Definition 1.5. Let ω = xe1

1 , . . . , xes
s be a word on X where xi ∈ X and ei ∈

{−1, 1}. Then ω is reduced if xi = xi+1 implies ei = ei+1 for all i ∈ {1, . . . s − 1}.
In other words there is no adjacent pair x, x−1 in ω.

We define a relation ϱ on WX as follows. For two words ω1, ω2 ∈ WX ,
(ω1, ω2) ∈ ϱ if and only if there exists words α, β, ν such that ω1 = αβ and
ω2 = ανν−1β.

Let ∼ be the smallest equivalence which contains ϱ. That is, ω1 ∼ ω2 if and
only if there is a sequence ω1 = γ1, γ2, . . . , γm = ω2 such that either (γi, γi+1) ∈ ϱ
or (γi+1, γ). For ω ∈ WX let [ω]∼ denote equivalence class of ω.

If ω1 ∼ ω2 and ν1 ∼ ν2 then ω1ν1 ∼ ω2ν2 ∼ ω1ν2 ∼ ω2ν1. Thus we may define
an operation [ω1]∼ · [ω2]∼ = [ω1ω2]∼. Such operation is associative, there exists
an identity element [1]∼ and for each [ω]∼ there exists an inverse element [ω−1]∼.
Therefore it defines a group structure on WX /∼ . Moreover such group is free.
Theorem 1.6 (see e.g. Theorem 11.1 in [Rot99]). The group WX /∼ is free with
the basis {[x]∼; x ∈ X}.

Moreover, it can be proved that every equivalence class contains exactly one
reduced word. Consequently, every equivalence class may be represented by a re-
duced word and for simplification, we often write ω1ω2 instead of [ω1]∼ · [ω2]∼.

Presentation of a group Let us define the key term of this thesis.
Definition 1.7. Let X be a set and R ⊆ WX . Let F denote the free group
WX /∼ with the basis X described above. Then the ordered pair ⟨X|R⟩ is called
a presentation of group F

/
NR

where NR is the normal subgroup of F generated
by R. Elements of the set X are called generators and elements of the set R are
called relations.

If X and R are both finite then ⟨X|R⟩ is called a finite presentation. In
fact, every group is a quotient of a free group (see Corollary 11.2 in [Rot99])
and therefore every group has a presentation. But such presentation need not be
finite. If a group has a finite presentation then we call it finitely presented group.

The elements of presented group are equivalence classes [[ω]∼]NR
for ω ∈ WR;

however, we often write only ω instead of [[ω]∼]NR
. We also write ω1 = ω2

and ω1ω2 which formally means [[ω1]∼]NR
= [[ω2]∼]NR

and [[ω1]∼ · [ω2]∼]NR
=

[[ω1ω2]∼]NR
, respectively. Note that a relation ρ ∈ R is sometimes written as

ρ = 1 since [1]∼ ∈ NR.
The group presented by ⟨X|R⟩ is generated by X ({[[x]∼]RN

; x ∈ X}, respec-
tively) and hence its rank is ≤ k.

As an example, let us consider the presentation ⟨{x}|{xn}⟩ which is usually
written as ⟨x|xn⟩. Such presentation defines the cyclic group Zn. Indeed, since
xn = 1 we get

xk+in = xkxn . . . xn = xk 1 = xk

and also x−k = xn−k since xkxn−k = xn = 1. Therefore the elements of the
presented groups are {[[xi]∼]NR

; i ∈ {1, . . . , n}}.
Now, we show some others examples of finite group presentations.
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• ⟨X|∅⟩ defines the free group WX /∼ with the basis {[x]∼; x ∈ X} described
above since R is the empty set. Note that F1 ∼= Z.

• ⟨x, y|x2, y2, x−1y−1xy⟩ describes Z2 ×Z2. The relation x−1y−1xy determines
that the generators x, y (and hence all elements) commute. Indeed, the
relation x−1y−1xy = 1 implies xy = yx.

The important attribute of a presentation is the difference between the number
of generators and the number of relations. We call it the deficiency of a presen-
tation. More precisely:

Definition 1.8. For a presentation ⟨X|R⟩ the deficiency1 is |X| − |R|. A pre-
sentation is balanced if its deficiency is zero.

Note that for given group H a difficult part is to find a presentation with
the minimum deficiency since the deficiency can be easily increased. Indeed, for
instance presentations ⟨X|R⟩ and ⟨X ∪ {a}|R ∪ {a, a2, . . . , as}⟩, where a ̸∈ X,
define the same group.

Free product

Definition 1.9. Let H be a group with a presentation ⟨XH |RH⟩ and K a group
with a presentation ⟨XK |RK⟩ such that XK is disjoint to XH . Then the free product
of H and K is the group H ∗ K defined by the presentation ⟨XH ∪ XK |RH ∪ RH⟩.

There is an alternative definition of the free product which is in fact the
co-product in category theory. However, definition using presentations is more
illustrative and more suitable for our purpose.

We immediately get that Fm∗Fn is Fm+n and H, K are embedded as subgroups
in H ∗ K. Note that if H, K are non-trivial then H ∗ K is infinite.

Lemma 1.10. Free product of two non-trivial groups is an infinite group.

Proof. Let H, K be non-trivial groups with presentations PH = ⟨XH |RH⟩ and
PK = ⟨XK |RK⟩ such that XH ∩ XK = ∅. Then PH∗K = ⟨XH ∪ XK |RK ∪ RH⟩ is
a presentation of H ∗ K. Let ωH be a word from PH such that ωH ̸= 1 and ωK

be a word from PK such that ωK ̸= 1. Then the word (ωHωK)i ̸= 1 ∈ PH∗K for
all i ∈ N and also (ωHωK)i ̸= (ωHωK)j for i ̸= j.

1.2 Computability theory
In this section we, briefly introduce a theory of algorithmic solvability. At the
beginning, we start with basic definitions.

Definition 1.11. As a partial function f : X → Y we consider a function X ′ → Y
where X ′ is a subset of X. If X ′ = X then the function is called total.

Let Σ be a finite set. Then Σ∗ denote the set of all finite sequences on Σ.
Such sequence is called word. Note that it is very similar to the previous section
where the set of words WX on X was in fact (X ∪ X−1)∗.

1Some authors define the deficiency as |R| − |X|.
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Definition 1.12. A language is an arbitrary subset of Σ∗. A decision problem is
to determine whether given word w belongs to the language L. The complement
Σ∗ \ L of the language L is denoted by L.

We interpret words as inputs for a computer program and a language as inputs
having certain property. For instance, the words are graphs (some representations
of them) and the language is the set of connected graphs. Then the corresponding
decision problem is to determine whether a given graph is connected and it is can
be decided by the computer program.

Instead of computer programs we consider a different computational model
called Turing machine which can simulate any computer program; however, it
has a simple formal description.

Consider an infinite memory tape divided into cells. Each cell may contain
a symbol from Σ or a symbol b representing a blank cell. There is a reading head
operating on the tape and also an information about a current state. In each
step, the reading head scans a symbol from the tape, according to the current
state and the scanned symbol writes a defined symbol in the cell, moves one cell
left or right or stays in the same position and finally changes the state. If there is
no defined step for a scanned symbol and the current state then the computation
halts.

At the beginning of the computation, given word w ∈ Σ∗ is written on the
tape and the state is set to q0. If the computation halts and the current state is
one of accepting states then the word w is accepted.

Now we show a formal definition of the described model of computation called
a Turing machine.

Definition 1.13. A Turing machine T is a 6-tuple

T = (Q, Σ, b, δ, q0, F )

where

• Q is a set of states,

• Σ is an alphabet,

• b ̸∈ Σ is the blank symbol,

• δ is a partial function Q × Σ ∪ {b} → Q × Σ × {L, N, R} which is called
the transition function and where L, R represent moving left and right,
respectively, and N represents no move,

• q0 ∈ Q is the initial state,

• F ⊆ Q is the set of accepting states.

Turing machine T recognizes a language L if each w ∈ L is accepted by T
while each u ∈ L is not accepted. That is, either the computation on u never
stops or stops in non-accepting state.

Definition 1.14. A language L is said to be recursively enumerable if there exists
a Turing machine which recognizes L.

8



Turing machines which stop for every input word defines a smaller set of
languages.

Definition 1.15. A language L is said to be recursive if there exists a Turing
machine which stops for every w ∈ Σ∗ and recognizes L.

The description of each Turing machine may be encoded into a sequence
of 0, 1 (see section 9.1.1 in [HMU07]) which defines a natural number. Hence
there is only countable many Turing machines while the number of languages
is uncountable. We get that there exist languages which are not recursively
enumerable.

Since we have a description of a Turing machine we may consider the universal
Turing machine. Let [[T ], w] be a word encoding the Turing machine T together
with the word w. Then the universal machine with the input [[T ], w] simulates
T on w and accepts [[T ], w] if T accepts w.

Therefore the universal Turing machine defines a recursively enumerable lan-
guage Luniv = {[[T ], w]; T accepts w}. The language Luniv is also an example of
a language which is not recursive.

The following theorem gives us a characterization of recursive languages.

Theorem 1.16 (Post, see Theorem 9.4 in [HMU07]). A language L is recursive
if and only if both L and L are recursively enumerable.

To sum up, by the Post Theorem we have following types of languages.

1. recursive,

2. recursively enumerable but not a recursive,

3. not a recursively enumerable but the complement is a recursively enumerate,

4. not a recursively enumerable and the complement is not a recursively enu-
merate, either.

Definition 1.17. Decision problems which are described by languages which are
not recursive are called algorithmically unsolvable or undecidable.

Turing machines can be also used as translators and define partial functions
where the image of an input word is a word on the tape when the Turing ma-
chine halts. Such function which can be computed by a Turing machine is called
computable.

Definition 1.18. A language L ⊆ Σ∗
1 is reducible to a language M ⊆ Σ∗

2 if there
exists a total computable function f : Σ∗

1 → Σ∗
2 such that w ∈ L if and only if

f(w) ∈ M .

As an example we consider the language Luniv and an arbitrary recursively
enumerable language L. Hence there exists a Turing machine T which recog-
nizes L. We may map a word w ∈ Σ to [[T ], w] which implies that an arbi-
trary recursively enumerable language is reducible to Luniv. Languages which has
such property (each recursively enumerable language is reducible to it) are called
Turing-complete:

9



Definition 1.19. A language L is said to be Turing-complete if it is recursively
enumerable and each recursively enumerable language is reducible to L.

From the definition of reducibility we get the following consequences.

• If a language L is reducible to a language M which is recursively enumerable
then L is recursively enumerable as well.

• If a recursively enumerable language M is reducible to a language L then
L is not recursive.

• If a Turing-complete language M is reducible to a recursively enumerable
language L then L is itself Turing-complete.

In this thesis we usually consider languages which consist of words [P ] encod-
ing group presentations which have a certain property. For instance

{[P ]; P defines the trivial group}.

As an example we also show a simple reduction to this language.

Theorem 1.20. Let m, n ∈ N. Then the presentation ⟨a|am, an⟩ is a presentation
of the trivial group if and only if m, n are relatively prime.

Proof. Let m ≥ n. We define sequences ui, vi, ri. Let u1 := m and v1 := n. Then

ri = ui mod vi

if vi ̸= 0,

ui+1 = vi,

vi+1 = ri.

From au1 = am = 1 and av1 = an = 1 we get aui = avj = ark = 1 for all i, j, k
such that ui, vi, ri is defined. These sequences in fact describe the Euclidean
algorithm. Therefore if vi = 0 then ui = gcd(m, n) and the given presentation
describes Zgcd(m,n) where gcd denotes the greatest common divisor.

One may interpret this reduction as e.g. a reduction from the language
{ambn; gcd(m, n) = 1}. Applying this theorem inductively we get the following
corollary.

Corollary 1.21. Let m1, . . . , ms ∈ N. Then the presentation ⟨a|am1 , . . . ams⟩
defines the trivial group if and only if m1, . . . , ms are relatively prime.

Reduction of recursive languages Note that we can reduce every recursive
language L to the language

LB
triv := {[P ]; P is balanced and describes the trivial group}

using the following function. Let fL be a function which maps a word w to
⟨a|a⟩ if w ∈ L or to ⟨a|a2⟩ if w ̸∈ L. Such function is total and computable
since L is recursive. However, the whole “complexity” belongs to the function fL.
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Therefore we usually require some properties of a reduction in this thesis. Such
as intuitive and reasonable description or special properties of a Turing machine
which computes a reduction function:

We may consider a three tapes modification of Turing machine which is used
as translator and which is equivalent to a single tape Turing machine (see page 346
in [HMU07]). It uses three tapes:

1. Input tape. Read only tape which contains an input word.

2. Output tape. Write only tape which is used for writing an output word.

3. Working tape. Read-write tape which is used for computation.

One of the special properties we often require from a reduction function is that
during the computation uses only O(log n) cells of the working tape, where n is
a length of the input word.

11



2. Decision problems
In this chapter we summarize known results of decision problems on group pre-
sentations and we show some other aspects connected with the computability
theory and the deficiency.

2.1 Decision problems for general group presen-
tations

Isomorphism problem A finitely presented group can be presented by in-
finitely many presentations. Therefore a natural problem is to determine whether
two given presentations define the same group (isomorphic groups). Such problem
is called the Isomorphism problem.

In 1908 Tietze introduced elementary transformations which transform a given
presentation into another which defines the same group.

Definition 2.1 (Tietze transformations). Let P = ⟨X|R⟩ be a group presenta-
tion. Then the following transformations applied on P give us a presentation of
the same group.

1. Adding a relation. If a word ω = 1 in P then it may be added to the set of
relations.

2. Removing a relation. If a relation can be derived from the other relations
then it may be removed from the set of relations. More precisely, if a relation
ρ ∈ R belongs to the group NR\{ρ} (normal group generated by R \ {ρ})
then ρ can be removed from R.

3. Adding a generator. Let ω be a word on X and y ̸∈ X. Then we can
transform ⟨X|R⟩ into ⟨X ∪ {y}|R ∪ {y−1ω}⟩.

4. Removing a generator. If x = ω for x ∈ X and for a word ω ̸∋ x then x
may be removed from X replacing all instances of x in relations with ω.

Moreover, Tietze also proved that if two presentations define the same group
it is possible to transform one into the another using a finite number of this
transformations.

Theorem 2.2 (Tietze, see e.g. Proposition 2.1 in [LS01]). Let P , T be presenta-
tions of the same group. Then P can be obtained from T by a finite sequence of
Tietze transformations.

We get the following result.

Corollary 2.3. The problem of determining whether two presentations define the
same group is recursively enumerable.

Proof. We may generate a finite sequence of Tietze transformation and apply
them on the first presentation till we get the second one. If they define the same
group then we succeed after a finite number of steps by Theorem 2.2.

12



Word problem Given a presentation P and words ω1, ω2, the word problem is
to determine whether ω1 = ω2 in P . This is in fact equivalent to ω−1

2 ω1 = 1 in
P therefore an equivalent definition of the word problem is to determine whether
given word equals to the empty word.

Theorem 2.4. Let P = ⟨X|R⟩ be a presentation. The problem of determining
whether a word ω equals empty word in P is recursively enumerate problem.

Proof. Note that ω = 1 if and only if ω belongs to the normal group NR generated
by R. We show how to enumerate NR. We construct a sequence of sets N1 ⊆
N2 ⊆ N3 ⊆ . . . ⊆ NR such that ⋃∞

i=1 = NR.

1. N1 = {ρ, ρ−1; ρ ∈ R}.

2. Ni = {xαx−1, x−1αx; x ∈ X, α ∈ Ni−1} ∪ {αβ; α, β ∈ Ni−1}.

It is not difficult to check that if ω ∈ NR then there exists n ∈ N such that
ω ∈ Nn. Our determining process is to construct Ni and check whether given
ω ∈ Ni. If ω ∈ NR we stop after a finite number of steps.

The most important result for us is the Novikov-Boone Theorem.

Theorem 2.5 (Novikov-Boone, see e.g. [Boo58]). There exists a finite presenta-
tion with an unsolvable word problem.

This was first proved by Novikov in 1955 (see [Nov55]) and a different proof
was given by Boone (see [Boo58]). In [Rot99] there is a nice proof which is based
on a reduction from a Turing machine. More precisely, for the Turing machine T
we can construct a presentation B(T ) and a function f such that a word w ∈ L(T )
if and only if f(w) = 1 in B(T ). Therefore the language Luniv can be reduced to
the word problem. Indeed, the word [[T ], w] encoding a Turing machine T and
a word w we may map to the word [[B(T )], f(w)] encoding the presentation B(T )
and the word f(w). This fact together with Theorem 2.4 implies the following.

Corollary 2.6. The language Lword = {[[P ], ω] ; ω = 1 in P} is Turing-complete.

On the other hand, there are also many presentations which has a solvable
word problem. For instance presentations which describe cyclic groups.

Lemma 2.7. Let P be a presentation of a cyclic group. Then it has a solvable
word problem.

Proof. Since we know that P describes a cyclic group there exists n, m and a se-
quence of Tietze transformations of the length at most n which transforms P to
⟨a|∅⟩ or ⟨a|am⟩. Note that we also have to change given word according to this
transformation. After a finite number of steps we get a presentation of one of
described types for which the word problem is easily solvable. Indeed, for ⟨a|∅⟩
there is no word equals to the empty word except the 1 itself. In ⟨a|am⟩ the word
as = 1 if and only if gcd(s, m) = 1.

13



A natural question is what is the simplest presentation with an unsolvable
word problem where simplicity may be defined as the least number of generators,
the least number of generators or the shortest overall length of presentation.

Note that the presentation with only one generator always defines a cyclic
group and has a solvable word problem (see Lemma 2.7). Therefore the lower
bound for the number of generators is 2 which is close since Boone showed there
is a presentation with 2 generators and 32 relations which has an unslovable word
problem (see [Boo58]).

In 1969 Borisov (see [Bor69]) constructed a presentation with an unsolvable
word problem with 4 generators and 12 relations which is still the smallest known
number of relations.

Theorem 2.8 (Borisov, see [Bor69]). There exists a presentation with 4 genera-
tors and 12 relations which has an unsolvable word problem.

Triviality problem The Novikov-Boone Theorem was the crucial result which
led to the proving of an undecidability of other group problems. The following
lemma gives us a tool for reducing the word problem to some others such as the
triviality problem which is to determine whether given presentation is a presen-
tation of the trivial group.

Lemma 2.9 (see page 14 in [Mil92]). Let H be a group and P = ⟨X|R⟩ its
presentation where X = {x1, . . . xn}. Let ω be a fixed word in the generators of
H and let S be the following set of relations:

a−1ba = c−1b−1cbc

a−2b−1aba2 = c−2b−1cbc2

a−3ω−1b−1ωba3 = c−3bc3

a−(3+i)xiba
3+i = c−(3+i)bc3+i, i = 1, 2, . . . , n.

Let Kω denote the group presented by

Pω = ⟨{a, b, c} ∪ X|S ∪ R⟩.

Then the following hold:

1. Kω is generated by two elements: b and ca−1.

2. If ω = 1 in H then Kω is trivial.

3. If ω ̸= 1 in H then H is embedded in Kω via the inclusion of generators.

This lemma immediately implies that the triviality problem is algorithmically
unsolvable. Indeed, let P be a presentation with an unsolvable word problem.
For every word ω in the generators of P we can construct the presentation Pω

such that ω = 1 in P if and only if Pω describes the trivial group.
Note that given presentation P describes the trivial group if and only all

generators are equal to the empty word in P . Determining whether a generator
is equal to the empty word is recursively enumerate problem by Theorem 2.4.
Therefore the triviality problem is also recursively enumerate. This together
with Corollary 2.6 implies following.
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Corollary 2.10. The language

Ltrivial = {P ; P defines the trivial group }

is Turing-complete.

This implies an undecidability of the isomorphism problem since the triviality
problem is the special case of the isomorphism problem. Using Corollary 2.3 we
also get a Turing completeness.

Theorem 2.11. The language

Lisom = {[[P ][T ]]; P define the same group as T }

is Turing-complete.

In this thesis we are interested in the deficiency of presentation. For the
presentation P = ⟨X|R⟩ and the word ω we can construct a presentation using
Lemma 2.9 adding 3 generators and 3 + |X| relations. The number of generators
and relations which are added is independent of the choice of ω. If P = ⟨X|R⟩ has
an unsolvable word problem we can construct a system of presentations {Pω; ω ∈
WX} with the deficiency (|R| + 3 + |X|) − (|X| + 3) = |R| such that ω = 1 if
and only if Pω describes the trivial group. As P we can use the presentation
of Borisov with 12 generators (see Theorem 2.8) which gives us the following
theorem.

Theorem 2.12. The triviality problem for finite presentations with the deficiency
12 is algorithmically unsolvable.

Markov property

Definition 2.13. We say that M is a Markov property of a finite presented group
if:

1. There exists a finitely presented group H+ which has the property M.

2. There exists a finitely presented group H− which does not have the property
M and each group K such that H− is a subgroup of K does not have this
property.

Let us show a few examples of a Markov property:

1. Being an abelian group. As H+ we can choose an arbitrary abelian group,
as H− an arbitrary non-abelian group

2. Being a cyclic group. Similarly, H+ can be an arbitrary cyclic group and
H− an arbitrary non-cyclic group since every subgroup of a cyclic group is
itself cyclic.

3. Being the group H where H is finitely presented. H+ is H in this case and
as H− we can choose for example H ∗ Z.
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Lemma 2.9 is also a tool for proving that the problem of determining whether
given presentation defines a group with the Markov property M is algorithmically
unsolvable.

Theorem 2.14 (Adian-Rabin, see Theorem 12.32 in [Rot99]). “If M is a Markov
property, then there does not exist a decision process which will determine, for an
arbitrary finite presentation, whether the group presented has property M.”

Proof of this theorem is also based on the reduction from the word problem.
For the Markov property M, the presentation P and the word ω we can construct
a presentation PM

ω such that PM
ω describes the group with the Markov property M

if and only if ω = 1 in P (note that for this construction, it is sufficient to know
only presentation of H+ and H−). Since the word problem is Turing-complete by
Corollary 2.10 all recursively problems can be reduced to determining whether
a presentation has the Markov property M. Moreover, if the determining whether
given presentation has the Markov property M is recursively enumerable problem
then it is also Turing-complete by definition.

We show that it holds for the examples of M above.

Theorem 2.15. The language

LM = {P ; P has property M}

where M is one of the following Markov properties

1. Being an abelian group,

2. Being a cyclic group,

3. Being the group H where H is finite presented,

is Turing-complete.

Proof. Let P = ⟨X|R⟩ be the given presentation. We have to show that there is
a decision process which succeed if P has the property M.

1. Being an abelian group. In this case, it is sufficient to check if xy = yx for
all x, y ∈ X. This is recursively enumerate problem since the word problem
is recursively enumerate.

2. Being a cyclic group. We check if there exists a set Z ⊆ X such that z = 1
for each z ∈ Z and y1 = y2 = · · · = ym for all yi ∈ X \ Z. If it holds the
group presented by the presentation has rank ≤ 1 and therefore it is cyclic.
It can be done via the word problem and hence it is recursively enumerable
problem.
Note that in this case we can also determine whether the presented group
is trivial, Zk or Z. We choose an arbitrary generator y ∈ X \ Z and we
substitute the rest of generators from X \ Z with y in all relations. Then
we delete all generators from X in all relations. This gives us either the
presentation ⟨y|∅⟩ or

⟨y|ye1 , . . . yes⟩.

In the former case, the presented group is Z, in the latter case, the presented
group is Zgcd(e1,...,es) (See Theorem 1.20).
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3. Being the finite presented group H. Since H is finite presented this problem
is a special case of the Isomorphism problem which is Turing-complete by
Theorem 2.11.

Now, given a finite presented group H let

LH := {P ; P is a presentation of H}.

Since it is exactly LM where M is being the group H, it follows from the
previous theorem it is a Turing-complete language.

Reduction and deficiency Consider following situation. We have a reduction
of some problem to a determining whether a presentation with the fixed deficiency
d defines the group H. More precisely, for a language L describing our problem,
we have a total computable function P(x) such that w ∈ L if and only if the
presentation P(w) belongs to the language LH .

Now, we would like to reduce the language L to the triviality problem. In
other words, for a word w we would like to get a presentation T (w) such that
T (w) ∈ Ltrivial (is trivial) if and only if w ∈ L. Since both LH and Ltrivial

are Turing-complete there exists a reduction from LH to Ltriv. Since we have
a reduction from L to LH there exists a reduction from L to Ltrivial.

Unfortunately, we do not know the deficiency of T (w) in general. It may be
much more greater then the deficiency of P(w) which is d. We show an example
of such reduction for which we have tools.

1. Given P(w) there exists a Turing machine TH such that P (w) is trivial if
and only if TH stops on P(w) since LH is recursive enumerate language.

2. We construct a presentation B(TH) and a function f such that TH stops on
P(w) if and only if f(P(w)) = 1 in B(TH). Such construction is described
in the proof of Theorem 12.8 in [Rot99].

3. By Lemma 2.9 we can construct a presentation B(TH)f(P(w)) which describes
the trivial group if and only if f(P(w)) = 1 in B(TH). We define T (w) :=
B(TH)f(P(w)).

Other problems By the Post Theorem (Theorem 1.16) the determining whe-
ther a given presentation defines a group which does not have the Markov property
M (has its complement M) is also algorithmically unsolvable. Moreover, if the
determining whether group has the Markov property M is recursively enumer-
ate, then the complement is not recursively enumerate problem again by Post
Theorem. For instance, if M is being an abelian group (see Theorem 2.15).

Observe that the complement M of a Markov property M cannot be itself
a Markov property. Indeed, suppose for contradiction that M is Markov. Then
there exists a group H

− such that each K which contains H
− as a subgroup has

the property M. There exists also a group H− such that each K which contains
H− as a subgroup has the property M. Hence H

− ∗ H− has both M and M.
A contradiction.
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Therefore the complements of Markov properties are examples of properties
which are not Markov and cannot be determined. However, there exists also
a property which is not Markov and its complement is not Markov, either and
determining whether given presentation defines a group with this property is
algorithmically unsolvable.

For instance the property of having a finite presentation with k generators for
k ≥ 2. We denote this property by Pk. Note that for k = 0 it is exactly the
triviality problem and for k = 1 it is determining whether group is cyclic.

First, we show that if k ≥ 2 then Pk is not a Markov property.

Theorem 2.16. The property Pk is not Markov for k ≥ 2.

Proof. Suppose, for contradiction, that it is a Markov property. Let H− be a finite
presented group from Definition 2.13(2) which does not have the property Pk.
That is, every finite presentation of H− has at least k + 1 generators. Let ⟨X|R⟩
be a presentation of H− such that |X| is minimal. This implies x ̸= 1 for each
x ∈ X.

Now, we use Lemma 2.9 to construct a group Kx from H− for an arbitrary
x ∈ X. The group Kx is finitely presented and generated by two elements by
the part (1) of Lemma 2.9. Therefore we can transform a presentation of Kx to
a presentation with two generators using Tietze transformations. By the part (2)
of Lemma 2.9 the group H− is embedded in Kx.

Consequently, for an arbitrary finite presented group H− which does not have
a presentation with k generators, for k ≥ 2, there exists a group which has
a presentation with 2 generators and has the subgroup H−. A contradiction to
the definition of Markov property (Definition 2.13(2)).

Consider a property P such that there exists a finitely presented group HP

having this property and such that HP ∗ K has the property P if and only if K
is trivial. The problem of determining such property has to be algorithmically
unsolvable since the problem of determine whether K is trivial (the triviality
problem) is unsolvable. See page 193 in [LS01].

Now, we show that the property Pk is an example of a property of such type
P described above. Which implies the determining whether a finitely presented
group given by a presentation P has also a finite presentation with k generators
is algorithmically unsolvable. For this purpose we need the theorem of Grushko.

Theorem 2.17 (Grushko, see [Gru40]). Let H, K be finitely generated groups.
Then rank(K ∗ H) = rank(H) + rank(K).

Theorem 2.18. The property Pk is algorithmically undecidable.

Proof. We have to show that there exists a group HPk
having a finite presentation

with k generators such that HPk
∗K has the property Pk if and only if K is trivial.

Let HPk
:= Fk. If K is not trivial then rank(K) ≥ 1. By the Grushko theorem

(Theorem 2.17) rank(Fk ∗ K) = rank(K) + rank(Fk) ≥ 1 + k. Therefore K ∗ Fk

cannot have a presentation with k generators.

Note that the complement of the property of “having a finite presentation
with k generators” is not a Markov property, either. Indeed, every group H
which has a finite presentation with k generators can be embedded into a group
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which cannot be presented by a presentation with k generators. For example
H ∗ Fk+1 has rank ≥ k + 1 by the Grushko Theorem (Theorem 2.17) and hence
cannot be presented by a presentation with k generators.

In the end of this section, we show that the problem of determining whether
the group presented by P has also a presentation with k generators is recursively
enumerable and Turing-complete.

Theorem 2.19. Let k ≥ 2. Then the language

L(k)
pre = {P ; P defines a group with the property Pk}

is Turing-complete.

Proof. Given a presentation P we can systematically generate presentations with
k generators and check whether describe the same group as P via Tietze trans-
formations. Hence L(k)

pre is recursive enumerable.
In the proof of Theorem 2.18 we reduced Ltriv to L(k)

pre. Therefore since Ltriv is
Turing-complete and L(k)

pre is recursive enumerable it is also Turing-complete.

2.2 Decision problems for balanced group pre-
sentations

In this section we consider a modification of the isomorphism problem for balanced
presentations.

Definition 2.20. The isomorphism problem for balanced presentation is to de-
termine whether a balanced presentation P and a finite presentation T (not
necessary balanced) define the same group.

We show that this problem is also unsolvable. First, we introduce the Nielsen-
Schreier Theorem.

Theorem 2.21 (Nielsen-Schreier, see Theorem 11.44 in [Rot99]). “Every sub-
group H of free group F is itself free.”

This implies the following corollary.

Corollary 2.22. Let F be free group and G be non-free group. Then F ∗ G is
not free.

Proof. The group G is subgroup of F ∗ G and it is not free. Therefore by the
Nielsen-Schreier Theorem (Theorem 2.21) F ∗ G cannot be free.

Theorem 2.23. The isomorphism problem for balanced group presentation is
algorithmically unsolvable.

Proof. By Theorem 2.11 the problem of determining whether general finite pre-
sentation describes the trivial group is unsolvable.

Let ⟨X|R⟩ be a finite presentation. We may assume that |X| ≤ |R|. Other-
wise, we may add a symbol a to X and relations a, a2, . . . , a|X|−|R|+1 to R and we
get a balanced presentation which defines the same group as ⟨X|R⟩.
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Let us denote d := |R| − |X| and C := {c1, . . . , cd}. We assume that C and X
are disjoint. Now we define a balanced presentation ⟨X ∪C|R⟩ and we claim that
⟨X|R⟩ is a presentation of the trivial group if and only if ⟨X ∪C|R⟩ is isomorphic
to the free group Fd of rank d with the presentation ⟨C|∅⟩:

“⇒” If ⟨X|R⟩ is a presentation of the trivial group we get ⟨X ∪ C|R⟩ ∼= ⟨X ∪
C|X⟩ ∼= ⟨C|∅⟩.

“⇐” Let us assume that ⟨X|R⟩ is not a presentation of trivial group. We consider
two cases.

(a) ⟨X|R⟩ is a presentation of free group. Then such group is isomorphic
to the free group Fn of rank n ∈ N. Hence ⟨X ∪C|R⟩ is a presentation
of Fn+d and by Theorem 1.2 Fn+d ̸∼= Fd since they have bases with
different cardinality.

(b) ⟨X|R⟩ is a presentation of a non-free group G. Then ⟨X ∪ C|R⟩ is
a presentation of Fd∗G which is not isomorphic to Fd by Corollary 2.22.

We get that if the isomorphism problem for balanced presentation were solv-
able then the triviality problem for general presentation would be also solvable.
A contradiction.

Note that if we use the balanced presentation ⟨C ∪ {a}|a, a2, . . . , ad+1⟩ of Fd

in the proof then we get the following theorem.

Theorem 2.24. The determining whether two balanced groups define the same
group is algorithmically unsolvable.

Using the same proof as in Theorem 2.23 we also get following result.

Theorem 2.25. The problem of determining whether a balanced presentation
describes a free group is algorithmically unsolvable.

Therefore being a free group is an example of a Markov property which is
undecidable even for balanced presentation.

In the end of this section, we show there exists also a property which is not
Markov and which is not decidable for balanced presentation. It is a property
of ”having a finite presentation with 12 generators” which we denote P12. Such
property is not Markov by Theorem 2.16.

Theorem 2.26. The property P12 for balanced presentations is algorithmically
undecidable.

Proof. By Theorem 2.12 the triviality problem is undecidable for presentation
with the deficiency 12. Let P = ⟨X|R⟩ be a presentation with the deficiency
12 and let H be a group described by P . We add 12 new generators to it and
get P ′ = ⟨X ∪ {c1, . . . , c12}|R⟩ which is a balanced presentation of F12 ∗ H.
By the Grushko Theorem (Theorem 2.17) F12 ∗ H has a presentation with 12
generators if and only if H is trivial. Therefore if we could decide the property
P12 for balanced presentation then the triviality problem for presentations with
deficiency 12 would be also decidable. A contradiction with Theorem 2.12.
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3. Perfect groups
In this chapter we show an easy method to determine whether a balanced pre-
sentation is a presentation of a perfect group. We start with basic definitions.

Let H be a group. For g, h ∈ H we define the commutator as the element
[g, h] = g−1h−1gh. For subgroups A, B of H let [A, B] denote the subgroup
⟨{[a, b]; a ∈ A, b ∈ B}⟩. The group [H, H] is then called the commutator sub-
group. Note that such group is normal.

Definition 3.1. A group H is said to be perfect if the quotient group H
/

[H, H]
is trivial.

Note that the quotient group H
/

[H, H] is abelian. Indeed, for abg−1h−1 ∈
ab[H, H] we get

abg−1h−1gh = baa−1b−1abg−1h−1gh ∈ ba[H, H].

Now we show how we can get the presentation of R
/

[R, R] from the presentation
of R. For this purpose we use the First isomorphism theorem for groups.

Theorem 3.2 (First isomorphism theorem). Let H, K be groups and f : H → K
be a group homomorphism. Then the image of f denoted by Im f is a subgroup
of K, ker f is a normal subgroup of H and H

/
ker f is isomorphic to Im f .

Moreover if f is a surjection then we have H
/

ker f ∼= K.

Lemma 3.3. Let H be a group with presentation ⟨X|R⟩. Then the presentation
⟨X|R ∪ {aba−1b−1; a, b ∈ X}⟩ is a presentation of H

/
[H, H] .

Proof. Let K denote the group defined by ⟨X|R ∪ {aba−1b−1; a, b ∈ X}⟩. We
show K ∼= H

/
[H, H] . Let f : H → K be a mapping defined by

f(ac1,1
1 . . . ac1,m

m a
c2,1
1 . . . aci−1,m

m a
ci,1
1 . . . acn,1

m . . . acn,m
m ) = a

c1,1+···+cn,1
1 . . . ac1,m+···+cn,m

m .

Such mapping is a group homomorphism which is a surjection. We show that
ker f = [H, H].

1. [H, H] ⊆ ker f
Let ω ∈ [H, H]. Then ω = [α1, β2] . . . [αp, βp] for some words αi, βi ∈ H.
The sum of exponents of each generator from [αi, βi] is zero by definition of
a commutator. Therefore f([αi, βi]) = 1 for all i ∈ {1, . . . , p} and f(ω) = 1.

2. ker f ⊆ [H, H]
Let χ ∈ kerf . Then the sum of exponents of each generator from χ is zero.
We show by induction on the length l of χ that χ = γ1 . . . γp where γi are
the commutators.

(a) l = 4.
In this case the only possibility is χ = a−jb−kajbk for a, b ∈ X and
j, k ∈ {−1, 1}. Therefore χ = [aj, bk] ∈ [H, H].
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(b) l > 4
Since the sum of exponents of each generator in χ is zero each generator
must be obtained in χ at least once with positive and at least once
with negative exponent. We can express χ as χ = αajβak for some
words α, β, for non-zero k, l with different sign and the last generator
a. Consequently, χ = αaj+kββ−1a−kβak = αaj+kβ[β, ak]. Since k has
different sign the length of αaj+kβ is smaller then l. Therefore by
induction hypothesis αaj+kβ ∈ [H, H] which implies αaj+kβ[β, ak] =
χ ∈ [H, H].

Moreover, for every word κ ∈ K we have f−1(κ) = κ and therefore f is a surjec-
tion. Since ker f = [H, H] and f is a surjection, the First isomorphism theorem
(Theorem 3.2) implies K ∼= H

/
[H, H] .

Definition 3.4. Let H be a group, ⟨X|R⟩ its presentation and

⟨X|R ∪ {aba−1b−1; a, b ∈ X}⟩

be a presentation of H
/

[H, H] . For a word

ω = a
c1,1
1 . . . ac1,m

m a
c2,1
1 . . . aci−1,m

m a
ci,1
1 . . . acn,1

m . . . acn,m
m ∈ R

we define a vector vω = (c1,1 + · · · + cn,1, . . . , c1,m + · · · + cn,m)T ∈ Zm.

Since ⟨X|R ∪ {aba−1b−1; a, b ∈ X}⟩ is a presentation of H
/

[H, H] , all gener-
ators from X commute. Therefore for words ω, δ ∈ H

/
[H, H] we get

vωδ = vω + vδ,

vω−1 = −vω.

Let us recall that for a group K with the presentation ⟨a1, . . . , an|R⟩ the generator
ai = 1 if and only if ai ∈ NR (normal subgroup generated by R).

Consequently, in the presentation

⟨a1, . . . , am|{ρ1, . . . , ρn} ∪ {a−1
i a−1

j aiaj; ∀i, j}⟩

of H
/

[H, H] , the generator ai = 1 if and only if ai ∈ NR∪{a−1
i a−1

j aiaj ;∀i,j}. Since
H
/

[H, H] is abelian all its subgroups are normal and thus

NR∪{a−1
i a−1

j aiaj ;∀i,j} = ⟨R ∪ {a−1
i a−1

j aiaj; ∀i, j}⟩.

Therefore ai ∈ NR∪{a−1
i a−1

j aiaj ;∀i,j} if and only if there exist d1, . . . dn ∈ Z such that

ai = ρd1
1 . . . ρdn

n

which may be expressed using the vectors vai
, vρ1 , . . . , vρn as

ϵi = vai
= d1vρ1 + · · · + dnvρn =

n∑
i=j

divρi
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⎛⎜⎝2 2 1
1 1 9
0 9 0

⎞⎟⎠

Figure 3.1: An example of matrix MPH
for the presentation PH =

⟨a, b, c|aba, c2a2bc7, b4ab5⟩

where ϵi denotes a unit vector. In other words, ai = 1 if and only if there exists
a vector d ∈ Zn such that ⎛⎜⎜⎜⎝

... ...
vρ1 · · · vρn

... ...

⎞⎟⎟⎟⎠ d = ϵi . (3.1)

Definition 3.5. The matrix of the vectors vρ1 , . . . , vρn from (3.1) is defined by
a presentation PH of group H and we denote it by MPH

. See Figure 3.1.

If the presentation PH of H is balanced then the matrix MPH
is square and

therefore H
/

[H, H] is trivial if and only if there exists an integer matrix M−1
PH

such that MPH
M−1

PH
= Im. The following lemma from linear algebra gives us

a characterization of integer matrices which have integer inverses.

Lemma 3.6 (See Lemma 2.11 in [Bap10]). Let M ∈ Zn×n be a matrix. Then M
has integer inverse if and only if det(M) = ±1.

As a corollary we get following.

Theorem 3.7. A balanced presentation PH defines a perfect group if and only if
det(MPH

) = ±1.

This gives us an easy algorithm which determines whether given presentation
defines perfect group which is very simple for presentations with 2 or 3 generators.
Note that it is important to determine whether a presentation defines a perfect
group. Indeed, if does not then does not define the trivial group, either.
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4. Reductions
In this chapter we show some reductions to the triviality and the isomorphism
problems.

4.1 Graph problems
Definition 4.1. Let G = {V, E} be a graph. We define a set of words RG :=
{uv; {u, v} ∈ E} ⊆ WV .

Let us have a look at the presentation ⟨V |RG⟩. First, we assume that the
graph G is connected.

Lemma 4.2. Let G = (V, E) be a connected graph. The presentation ⟨V |RG⟩ for
G defines

1. Z if G has no odd cycle (it is bipartite).

2. Z2 if G has an odd cycle (it is not bipartite).

Proof. We choose an arbitrary vertex v ∈ V . If there is a path v, w, x we have

vw = 1,

wx = xw = 1 .

Therefore we get

vw = xw,

v = x.

Then by induction we get the following.

If there is a path of even length from v to w for v, w ∈ V then v = w. (4.1)

Now we consider two cases.

1. G has an odd cycle C. We choose an arbitrary vertex v from C and let w
be its neighbour in C. Since C is odd there exists an even path from v to
w. Thus v = w by (4.1). Since G is connected, for all x ∈ V there exists an
even path from x either to v or w which are equal and thus all generators are
equal. See Figure 4.1. Therefore in this case we get ⟨V |RG⟩ ∼= ⟨v|v2⟩ ∼= Z2.

2. G has no odd cycle and therefore it is bipartite. Let X, Y denote its parts.
We choose an arbitrary vertex v from the first part X. Since G is connected
there is an even path from v to an arbitrary vertex of X. By (4.1), we get
that all generators of X are equal. Analogically all generators of the second
part Y are equal as well. See Figure 4.2. Therefore ⟨V |RG⟩ ∼= ⟨v, w|vw⟩ ∼=
Z.
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v

w = v

v

w = v

Figure 4.1: Path of even length in odd cycle (left) and from the rest of the graph
(right).

v
w

y = w

x = v

z = v

Figure 4.2: An example of the bipartite case.
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Figure 4.3: Subdivision of each edge of graph.

If the graph G is not connected then ⟨V |RG⟩ ∼= H(1) ∗ · · · ∗ H(k) where H(i)

represents i-th component and it is either Z if i-th component is bipartite or Z2
if it is not (has an odd cycle).

Now let us have a look at the presentation ⟨V |RG ∪ {v}⟩ for an arbitrary
v ∈ V . Let H(i) be the subgroup of ⟨V |RG⟩ corresponding to the component
which contains v. Then the presentation of H(i) with the relation v is either
⟨v|v2, v⟩ ∼= 1 or ⟨v, w|vw, v⟩ ∼= 1. Consequently, ⟨V |RG ∪{v}⟩ ∼= H(1) ∗ · · · H(i−1) ∗
H(i+1) ∗ · · · ∗ H(k) and we get the following.

Theorem 4.3. Let G = (V, E) be a graph and v ∈ V . Then ⟨V |RG ∪ {v}⟩ is
a presentation of the trivial group if and only if G is connected.

Note that if |V | − 1 = |E| then the corresponding presentation ⟨V |RG ∪ {v}⟩
is balanced and such graph is connected if and only if it is a tree.

Corollary 4.4. Let G = (V, E) be a graph such that |V | − 1 = |E| and v ∈ V .
Then the balanced presentation ⟨V |RG ∪ {v}⟩ is a presentation of trivial group if
and only if G is a tree.

The other relation we can add to the presentation ⟨V |RG⟩ is v3 for an arbitrary
v ∈ V . Again, let R(i) be the subgroup of ⟨V |RG⟩ corresponding to the component
which contains v. Then the presentation of R(i) with the relation v3 is either
⟨v|v2, v3⟩ ∼= ⟨e⟩, if the component of v contains odd cycle, or ⟨v, w|vw, v3⟩, if
the component of v is bipartite. In the latter case we get w = v2 and therefore
such group is isomorphic to Z3 and the following holds.

Theorem 4.5. Let G = (V, E) be the graph and v ∈ V . Then ⟨V |RG ∪ {v3}⟩ is
a presentation of trivial group if and only if G is connected and contains an odd
cycle.

Consequently, G is connected and contains an odd cycle if and only if the
presentation ⟨V |RG⟩ defines Z2 if and only if ⟨V |RG ∪ {v3}⟩ defines the trivial
group. In this case, we reduced the determining whether a presentation defines
Z2 to the triviality problem by adding one relation v3 and hence we increased
the deficiency by 1. Compare with the paragraph “Reduction and deficiency” on
page 17.

Now, we use the fact that ⟨V |RG⟩ ∼= Z ∗ · · · ∗ Z ∼= Fk for bipartite G where k
is a number of its connected components to get the following result.

Corollary 4.6. Let G = (V, E) be a graph and let k be a number of its connected
components. Then the presentation ⟨V ∪ E|{ue, ve; e = {u, v} ∈ E}⟩ defines the
free group Fk.
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Figure 4.4: An example of graphs Gei
for presentations Pei

.

Proof. Given presentation is in fact the presentation ⟨V ′|RG′⟩ for the graph G′

which is obtained from G by subdivision of each edge when the name of edge is
used as the name of new vertex. See Figure 4.3. Consequently, such graph has
no odd cycle.

We already know how to determine by a balanced presentation if the graph
G = (V, E), where |V | − 1 = |E|, is a tree (see Corollary 4.4). Now we show how
to determine by balanced presentation if G = (V, E), where |V | = |E|, is a cycle.
First we show more general result.

Definition 4.7. Let k be a positive integer. A graph is said to be k-edge-
connected if it remains connected after removing k − 1 arbitrary edges.

Theorem 4.8. Let G = (V, E) be a graph and v ∈ V . Then the presentation

⟨V × E|{(v, e); e ∈ E} ∪
⋃

e∈E

{(u, e)(w, e); {u, w} ∈ E \ {e}}⟩

is a presentation of the trivial group if and only if G is 2-edge-connected.

Proof. Let P denote the given presentation and m := |E|. We can split P into
m parts Pe1 , . . . , Pem for ei ∈ E:

Pe1 = ⟨V × {e1}|{(u, e1)(w, e1); {u, w} ∈ E \ {e1}} ∪ {(v, e1)}⟩,
...

Pem = ⟨V × {en}|{(u, en)(w, en); {u, w} ∈ E \ {en}} ∪ {(v, en)}⟩.

Let Hei
denote the group presented by Pei

. Each Pei
is in fact the presentation⟨

V × {ei}|RGei
∪ {(v, ei)}

⟩
for graph Gei

with m−1 edges which is obtained from
G by deleting the edge ei. See Figure 4.4. Corollary 4.4 implies that Hei

is trivial
if and only if Gei

is connected. Therefore P is a presentation of the trivial group if
and only if G is 2-connected since the group presented by P is He1 ∗ · · · ∗Hen .

Now we consider G = (V, E) with |V | = |E|. Such graph is 2-edge-connected
if and only if it is a cycle. Furthermore each presentation Pei

is balanced and
thus the presentation P is balanced as well. We get following corollary.
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Corollary 4.9. Let G = (V, E) be a graph such that |V | = |E| and v ∈ V . Then
the presentation

⟨V × E|{(v, e); e ∈ E} ∪
⋃

e∈E

{(u, e)(w, e); {u, w} ∈ E \ {e}}⟩

is balanced and it is a presentation of the trivial group if and only if G is
a cycle.

Note that the determining whether a graph is a tree using a balanced presenta-
tion has a direct topological interpretation. On the other hand, the determining
whether a graph is cycle does not have such interpretation. See pages 7–8 in
[HAMSS93].

We can also analogically construct a presentation for a graph which determines
k-edge-connectivity for k ≥ 3: Let

(
E
l

)
denote set of all l-element subsets of E.

That is,
(

E
l

)
:= {A ⊆ E; |A| = l}.

Theorem 4.10. Let G = (V, E) and v ∈ V . Then the presentation

⟨V ×
(

E

k − 1

)
|{(v, S); S ∈

(
E

k − 1

)
} ∪

⋃
S∈( E

k−1)
{(u, S)(w, S); {u, w} ∈ E \ S}⟩

is a presentation of the trivial group if and only if G is k-edge-connected.

The deficiency of such presentation is
(

|E|
k−1

)
((|E| − k + 2) − |V |). Therefore it

is balanced for graphs with |V | = n vertices and n + k − 2 edges. However, such
graphs are never k-connected for k ≥ 3 and thus, despite the previous situation
when k = 2, corresponding balanced presentation always defines a non-trivial
group. Indeed, for a graph with n+k−2 we get ∑v∈V deg(v) = 2|E| = 2n+2k−4.
Hence there is a vertex which has the degree at most 2 + ⌊2k−4

n
⌋ < 4 for all k.

Moreover, for k = 3 and n > 2 it is less then 3. In other words, there is always a
vertex with the degree less then k and the graph cannot be k-edge-connected.

Space complexity of reductions Note that all reductions described in this
section may be realized using a translator Turing machine whose working tape
uses only O(log n) cells. The working tape has to load either just one edge of
graph or in the case of k-edge-connectivity one edge and a counter of edges. See
the paragraph Reduction of recursive languages on page 10.

4.2 Parity
In this chapter we demonstrate that a very simple problem of determining a par-
ity of m ∈ N can be easily reduced to the triviality problem for presentations
with deficiency 1. However, if we require a balanced presentation we show it is
more complicated. Even, if we require some additional properties of a balanced
presentation it is impossible.

First, let us recall Theorem 1.20 for a case when n = 2.

Theorem 4.11 (See Theorem 1.20). Let m ∈ N. Then the presentation ⟨a|am, a2⟩
is a presentation of the trivial group if and only if m is odd.
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This gives us the presentation determining the parity of m. However, such
presentation has deficiency 1. Let us try to construct a balanced presentation
which determines parity.

First of all, we need to clarify which function can be used in exponents of
generators in relations, since one may suggest following presentation

⟨a|a⌊ m+1
2 ⌋−⌊ m

2 ⌋⟩.

However, the whole “complexity” belongs to the floor function. See the paragraph
Reduction of recursive languages on page 10. Therefore we consider following
problem.

Problem 4.12. Find a balanced presentation ⟨a1, . . . as|r1(m), . . . rs(m)⟩ which
determines the parity of m such that

ri(m) = a
p

(i)
1,1(m)

1 . . . a
p

(i)
s,1(m)

s a
p

(i)
1,2(m)

1 . . . a
p

(i)
s,j(m)

s a
p

(i)
1,j+1(m)

1 . . . a
p

(i)
1,t(m)

s . . . a
p

(i)
s,t(m)

s (4.2)

where p
(i)
j,k ∈ Z[m]

In other words, we allow only polynomials with integer coefficients in ex-
ponents. Note that the presentation ⟨a|am, a2⟩ from Theorem 4.11 fulfils this
condition.

Now, assume that such presentation

P(m) := ⟨a1, . . . as|r1(m), . . . rs(m)⟩,

which has the properties described in Problem 4.12, exists and without loss of
generality defines the trivial group if and only if m is odd (otherwise we substitute
m with m+1 in polynomials). Then the presentation ⟨a1, . . . as|r1(m), . . . rs(m)∪
{a−1

i a−1
j aiaj; ∀i, j}⟩ also describes the trivial group for m odd (since the trivial

group is perfect) and therefore the matrix MP(m) (see Definition 3.5) has deter-
minant either 1 or -1 by Theorem 3.7.

Since we allow only integral polynomials in exponents of generators in relations
we may express the matrix MP(m) as

MP(m) =

⎛⎜⎜⎝
p

(1)
1 (m) . . . p(1)

s (m)
... . . . ...

p
(s)
1 (m) . . . p(s)

s (m)

⎞⎟⎟⎠
where Z[m] ∋ p

(i)
j (m) = ∑t

k=1 p
(i)
j,k. Consequently, the determinant of MP(m) is

also some integral polynomial pdet(m) := det(MP(m)) ∈ Z[m] which is equal to 1
or −1 for all odd m. Therefore pdet(m) = u where u ∈ {−1, 1} for infinitely many
m and thus the Fundamental theorem of algebra (reference?) implies pdet(m) is
a constant polynomial equal to u.

Therefore it follows from Theorem 3.7 that P(m) describes the trivial group
if m is odd or a perfect group which is not trivial if m is even.

This property of P(m) is quite suspicious and therefore I conjecture that such
P(m) cannot exist, but I have not managed to prove this.
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Conjecture 4.13. There is no balanced presentation

⟨a1, . . . as|r1(m), . . . rs(m)⟩

such that

ri(m) = a
p

(i)
1,1(m)

1 . . . a
p

(i)
s,1(m)

s a
p

(i)
1,2(m)

1 . . . a
p

(i)
s,j(m)

s a
p

(i)
1,j+1(m)

1 . . . a
p

(i)
1,t(m)

s . . . a
p

(i)
s,t(m)

s

where p
(i)
j,k ∈ Z[m], which defines the trivial group if and only if m is odd.

Now, we at least show that if we require P(m) just with two generators a, b

and with relations ap
(1)
a (m)bp

(1)
b

(m), ap
(2)
a (m)bp

(2)
b

(m) with polynomial exponents we get
a contradiction.

Theorem 4.14. There is no balanced presentation

⟨a, b|ap(m)bq(m), ar(m)bs(m)⟩

for p(m), q(m), r(m), s(m) ∈ Z[m] which defines the trivial group if and only if
m is odd.

Proof. For contradiction, suppose that such presentation exists. First, observe
that from avbw = 1, axby = 1 we get 1 = avbwaxby = av 1 bw = avaxbybw =
av+xbw+y for all v, w, x, y ∈ Z. Therefore also

(avbw)g(axby)h = agvbgwahxbhy = 1 (4.3)

for all g, h ∈ Z.
As we can see above, the determinant of the matrix

MP(m) =
(

p(m) r(m)
q(m) s(m)

)
∈ Z2×2[m]

must be a constant polynomial equal to 1 or -1 for all m. Therefore there exists
the inverse matrix matrix

M−1
P(m) =

(
c(m) e(m)
d(m) f(m)

)
∈ Z2×2[m].

Using (4.3) we get

1 = (ap(m)bq(m))c(m)(ar(m)bs(m))d(m) =
ac(m)p(m)+d(m)r(m)bc(m)q(m)+d(m)s(m) = a,

1 = (ap(m)bq(m))e(m)(ar(m)bs(m))f(m) =
ae(m)p(m)+f(m)r(m)be(m)q(m)+f(m)s(m) = b

for all m. Therefore if P(m) describes the trivial group for all odd m then it has
to describes the trivial group for all m. A contradiction.

In the previous situation we tried to reduce determining parity to the triviality
problem. Now, we show that it is quite easy to find a balanced presentation for m
meeting the requirements from Theorem 4.14 which describes some finite group
H if and only if m is odd. To achieve that, we start with lemma.
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Lemma 4.15. The presentation ⟨a, b|a2, ab2⟩ defines the group Z4.

Proof. From a2 = 1 and ab2 = 1 we get a = b2. From a = b2 and a2 = 1 we get
b4 = 1. Therefore the group consists of words 1, b, b2 = a, b3 and it is generated
by b.

Now, we are able to introduce a balanced presentation for m which defines Z4
if and only if m is odd.

Theorem 4.16. Let m ∈ N. Then the presentation ⟨a, b|amb2, a2⟩ is a presenta-
tion of Z4 if and only if m is odd.

Proof. If m is odd we may transform given presentation into ⟨a, b|a2, ab2⟩ which is
a presentation of Z4 by Lemma 4.15. If m is even we may transform the presenta-
tion into ⟨a, b|a2, b2⟩ which defines an infinite group Z2 ∗Z2 by Lemma 1.10.

At last, we show a different approach to determining parity using balanced
presentation. Contrary to the previous situation where we required fixed number
of generators, we may change the number of generators according to m. Let us
recall that in Theorem 4.5 given presentation for graph defines the trivial group
depending on the existence of an even cycle in a graph. We use the technique
from this theorem to construct a balanced presentation which determines a parity
of m.

Theorem 4.17. Let m ∈ N. Then the balanced presentation

⟨a1, . . . , am|a1a2, a2a3, . . . , am−1am, a1a
2
m⟩

is a presentation of the trivial group if and only if m is even.

Proof. The generators a1, . . . , am together with the relations a1a2 . . . am−1am rep-
resent a path a1, . . . an (see Definition 4.1). As well as in the proof of Lemma 4.2
we get ai = ai+2.

If m is even we get a1 = am−1. Therefore we have relations a1am = 1 and
a1a

2
m = 1 which imply am = 1 = a1 = am−1. Since ai = ai+2 the presented group

is trivial.
If m is odd we get a1 = am. Since ai = ai+2 we may transform the presentation

into ⟨a, b|ab, a3⟩ which is a presentation of Z3.
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5. Topology
In the last chapter, we show how group presentations are connected to topology.

5.1 Basic theory
This section is a brief introduction to basic terms which we use in this chapter.
We denote the n-dimensional ball by Bn and the n-dimensional sphere by Sn.

Simplicial and CW complexes In this paragraph we introduce two impor-
tant types of Hausdorff topological spaces.

Definition 5.1. A simplicial complex is a set K of simplices in Euclidean space
such that:

1. If a simplex belongs to K then also all its faces belong to K.

2. If simplices σ1, σ2 belong to K then their intersection is a face of both σ1
and σ2.

Let k ∈ N. Then simplicial k-complex is a simplicial complex which does not
contain a simplex of dimension greater than k. See Figure 5.1.

For a computer representation it is convenient to use a combinatorial descrip-
tion of simplicial complex:

Definition 5.2. Let S be a set and let P (S) denote a power set of X. Then
K ⊆ P (S) is an abstract simplicial complex if σ ∈ K and σ′ ⊆ σ imply σ′ ∈ K.

Now, we consider a more general construction.

Definition 5.3. A CW-complex K is a union of a collection of disjoint subspaces
{ei}i∈I called cells where each ei has some dimension n ∈ N0 and for each ei of
dimension n there is a continuous mapping χi : Bn → X such that ∂Bn = Sn−1

is mapped into X≤n−1 := {ej; j ∈ I, dim ei ≤ n − 1} and intBn is mapped
homeomorphically onto ei.

We may informally describe an inductive construction of a CW-complex start-
ing with a discrete 0-dimensional space. In each step we “glue” a cell of dimension
k, which is homeomorphic to a ball, by its boundary to the part which was already
made from cells of dimension less then k.

Note that simplicial complex is a special type of CW-complex since simplices
are homeomorphic to balls. We usually write only complex instead of a CW-
complex. If we consider a complex K as a topological space, we in fact consider
an union of its “parts” which forms a topological space we denote |K|. If K is a
simplicial complex then |K| is called polyhedron of the simplicial complex K.

32



Figure 5.1: An example of a simplicial 2-complex.

Homotopy equivalence Let X, Y be topological spaces and f, g continuous
functions from X to Y . A continuous function H : X × [0, 1] → Y is said to
be homotopy between f and g if H(x, 0) = f(x) and H(x, 1) = f(x). If there
is exist such homotopy between f, g then they are homotopic. Note that “being
homotopic” is an equivalence relation.

Definition 5.4. Topological spaces X, Y are said to be homotopy equivalent if
there exist continuous functions f : X → Y and f : Y → X such that f ◦ g is
homotopic to IdX and g ◦ f is homotopic to Idy. Homotopy equivalence between
X and Y is usually denoted by X ≃ Y . A topological space is contractible if it is
homotopy equivalent to a one-point space.

Fundamental group For a topological space X and a point x ∈ X0 let us
consider a continuous function f : [0, 1] → X such that f(0) = f(1) = x0. Such
mapping is called loop with base point x0. For two loops f, g with the same base
point x0 we can define a binary operation ∗ as follows:

f ∗ g(t) =
{

f(2t) if 0 ≤ t ≤ 1
2

g(2t − 1) if 1
2 ≤ t ≤ 1.

Now, let ∼ denote an equivalence relation “being homotopic” on a set of all loops
with the base point x0 and let us define [f ]∼ ∗∼ [g]∼ = [f ∗ g]∼. The set of
equivalence classes of loops with the base point x0 together with the operation
∗∼ define a group which is called a fundamental group and denoted by π1(X, x0).
Note that we restrict ourselves to the path-connected topological spaces. In this
case, a choice of a different base point gives us the isomorphic fundamental group.
That is, π1(X, x0) ∼= π1(X, y0) for all x0, y0 ∈ X. Therefore we write only π1(X).

Note that contractible space must have a trivial fundamental group. However,
the opposite implication does not hold. For instance, S2 has a trivial fundamental
group but it is not contractible.

Presentation of fundamental group Given a two dimensional CW-complex
we can read off a presentation of its fundamental group. We does not describe
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Figure 5.2: An example of the loops and the discs for the presentation
⟨a, b, c|a2b−1c, ab−1a−1c−1bc−1⟩

this method. It can be found for example on page 7 in [HAMSS93]. However,
important fact is, that the presentation read off from two dimensional complex
according to the method described in [HAMSS93] is balanced and describes the
trivial group if and only if this complex is contractible. This fact is a motivation
for the triviality problem for balanced presentation.

Construction a standard complex of presentation For our purposes the
inverse process is more important. That is, a construction of a 2-complex for
given presentation.

Let ⟨a1, . . . , an|ρ1, . . . , ρm⟩ be a finite presentation. First, we construct a ver-
tex with n loops. Each loop corresponds to one generator and has an orientation.

Then we make a disc for each relation ρi = xe1
1 . . . xes

s where ej ∈ {−1, 1}. We
divide the boundary of the disc into s parts. Each part represents some generator
ej and these parts follow the order of the generators in ρi. Each part has also
an orientation. We choose an orientation for the first part arbitrary then the
orientation of k-th part is changed whenever ek−1 has a different sign from the
sign of ek. For an illustration see Figure 5.2.

Finally, we “glue” each disc to the loops such that each part of disc is glued
to the corresponding loop with the corresponding orientation.

Collapses In this paragraph, we show an operation on complex which preserves
the homotopy type. That is, we get a homotopy equivalent complex as a result.
Such operation is called an elementary collapse.

Definition 5.5. First, we show a definition of elementary collapse for simplicial
complex K of dimension d. Let σ ∈ K be a simplex of dimension d and τ ⊂ σ a
simplex of dimension d − 1 such that no other simplex of dimension d contains τ .
Then removing σ and τ from K is called elementary collapse. See Figure 5.3.

Now, we informally define a generalization for CW-complexes. Let K be
a CW-complex of dimension d. Then the complex L is obtained from K the
elementary collapse if K can be obtained from L by “gluing” the ball Bd along
one of its hemispheres. See definition 11.12 in [Koz07]. For alternative definition
see for example page 13 in [HAMSS93].

A complex is collapsible if there exists a sequence of collapses which lead into
the one-point space. The inverse operation is called anti-collapse.

Link For a simplicial 2-complex and its vertex v we can encode the information
of a neighbourhod v to a graph called link.
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Figure 5.3: An example of collapse on a simplicial 2-complex
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Figure 5.4: An example of a link of the vertex v.

Definition 5.6. Let v be a vertex of simplicial 2-complex K. Then a link of
vertex v is a graph given by edges ef such that {e, f, v} is a triangle in K. See
Figure 5.4

5.2 Andrew-Curtis conjecture
Notice that if a complex is collapsible then it is also contractible, but the converse
is not true. However, there is a conjecture that for any contractible 2-complex
X there exists a sequence of collapses and anti-collapses which lead to the point
and a result of every anti-collapse in this sequence has dimension at most 3. This
conjecture is due to Andrews and Curtis in 1965. See [AC65].

As we mentioned above, the contractible 2-complexes correspond to balanced
presentations of trivial group. The Andrew-Curtis conjecture may be reformu-
lated to the language of presentations as follows.

Conjecture 5.7 (Andrew and Curtis, see [AC65]). Let ⟨a1, . . . , an|ρ1, . . . , ρn⟩ be
a presentation of the trivial group. Than it can be transformed into the empty
presentation by a finite sequence of the following AC-transformations:

1. Replace ρi by ρ−1
i for some i.

2. Replace ρi by ρiρj for some i ̸= j.

3. Replace ρi by ω−1ρiω where ω is a word in the generators for some i.

4. Add a new generator b and a new relation b or if there is a generator in
a set of relation then remove it from the set of generators and the set of
relations.
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{a, c, d} {c, d, f} {d, f, g}

Figure 5.5: An example of a data structure for a simplicial 2-complex

Figure 5.6: An example of a barycentric division on a triangle.

The sequence of such transformations corresponds to the sequence of collapses
and anti-collapses.

The conjecture was widely studied in the algebraic formulation. There are also
several potential counterexamples. That is, balanced presentations of the trivial
group for which we do dot know the sequence of AC-transformations which would
lead into the empty presentation. For instance, there is a potential counterexam-
ple even with only two generators: ⟨a, b|a−1b2ab−3, b−1a2ba−3⟩ (See [BM93]).

5.3 Computer representation
In this section we describe an easy method how to transform a group presentation
to a computer representation of simplicial 2-complex.

Motivation Andrew-Curtis conjecture was widely studied in the algebraic for-
mulation. It may be interesting to study potential counterexamples as corre-
sponding topological spaces using some topological algorithms. To achieve it, we
first need a computer representation for corresponding simplicial 2-complexes.

Data Structure A natural way how to represent a simplicial complex is to use
the corresponding abstract simplicial complex. Hence as a data structure we use
a list of simplices. Each simplex has a list of pointers on its subsimplices and a
list of pointers on simplices which contain it. See Figure 5.5.

Construction of a simplicial complex from a presentation In the previ-
ous section, we described how we can get a CW-complex K from a given group
presentation. In this section we consider a triangulation of K. That is, a sim-
plicial complex isomorphic to K. For this purpose, we need a definition of a
barycentric subdivision.
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Figure 5.7: An example of loops for simplicial complex (left) and “glued” disc for
a relation a of the length 1 (right).
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Figure 5.8: A triangulation a of disc created by a barycentric subdivision for a
relation ab of the length 2.

Definition 5.8. Let K be a simplicial complex of the dimension k. Then we
define a barycentric subdivision of K inductively as follows.

1. For k = 0 we do nothing.

2. For k ≥ 1 we first perform a barycentric subdivision on a subcomplex
consisting of all simplices of dimension < k. Then for all simplices σ of
dimension k we add a point cσ to the “center of gravity” of σ and for all
simplices τ lying on the already subdivided boundary of σ we construct a
cone with the apex c and the base τ .

See Figure 5.6. Note that for a simplicial complex K and a simplicial complex
K ′, created by a barycentric subdivision of K, we have |K| = |K ′|.

Now, we use a similar construction as we used for the case of CW-complex.
First, make a loops for generators of presentation. However, each loop is repre-
sented by a square. See Figure 5.7

Then we create triangulations discs for relations. For a relation of the length 1
we may just add a vertex in the middle of corresponding loop and connect it with
the vertices of this loop. See Figure 5.7

For a relation of the length 2 we start with square with one middle vertex
such that two incident edges represent corresponding generator in relation. Then
we perform a barycentric subdivision on it. See Figure 5.8.
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Figure 5.9: A triangulation of a disc created by two barycentric subdivisions for
a relation aba−1b−1 of the length 4.

For a relation of the length n ≥ 3 we start with an n-gon with one middle
vertex where each side represents corresponding generator in relation. Then we
perform a barycentric subdivision two times. See Figure 5.9.

Finally, we “glue” discs to the loops. Note that after this operation, every
endpoints of parts of disc representing relations are mapped on the middle point
of loops. Hence every two edges incident with different endpoints must be disjoint.
This holds for our triangulations.

Note that the link of the common vertex of loops may be non-planar. This
is a potential problem for reductions to other special simplicial 2-complex which
has certain properties. See page 33 in [HAMSS93].

5.4 Implementation
An additional part of this thesis is also a program which implements the reduction
of a group presentation to the corresponding abstract simplicial 2-complex which
is described in the previous section (Section 5.3). The program is written in the
language C++ using the library Boost1.

Documentation For a documentation please see the file doc/html/index.html
in the folder of the program.

Compilation For a compilation there is a makefile or Visual Studio project
file.

1https://www.boost.org/
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User manual The input of this program is a group presentation in the following
format.

On the first line there is a list of generators. Each generator is represented by
one character. There is no delimiter between characters.

The other lines represent relations whereas each line represents one relation.
The relation line consists of generators and their exponents separated by space.
Each generator is followed by its exponent without any delimiter. As an exam-
ple, let us consider the presentation ⟨a, b, c|a−1b2c4, abc2, a6⟩ Then the input is
following.

abc
a-1 b2 c4
a1 b1 c2
a6

As an output the program prints basic information about corresponding sim-
plicial 2-complex such as the number of edges, vertices and triangles and whether
this complex has vertex with non-planar link (for determining whether a graph
is planar the library Boost is used).

The program may be also run with the following arguments.

• -f filename Reads the input from the input file. Otherwise the input is
read from the standard input.

• -l Prints the link of the common vertex of loops in the format of dot
language2.

• -p Prints the whole simplicial complex. Each simplex is written to one line
followed by a list of simplices which contain it.

Future plans Our future plan is to implement reduction to some special topo-
logical spaces “fake surface” and then to a singular 3-manifold. See page 39 in
[HAMSS93]. Then to study how a singular 3-manifolds obtained from a potential
counterexamples for Andrews-Curtis conjecture differ from a singular 3-manifolds
obtained from presentations for which AC conjecture holds.

2https://graphviz.gitlab.io/_pages/doc/info/lang.html
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