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Abstract: The ~ decay of highly excited nuclear levels can be described within
the statistical model of nucleus in terms of the level density and a set of pho-
ton strength functions. The knowledge of these quantities enables more accurate
calculations of reaction rates in many different reactions which are important
especially in nuclear astrophysics and in the development of advanced nuclear
reactors. Despite the fact that the photon strength functions have been studied
for decades, there are still contradicting experimental results regarding the low
energy behavior of dipole strength. One of these cases is the shape of electric
dipole photon strength function and the strength of the scissors mode in well-
deformed rare-earth nuclei. In this thesis the analyses of y-ray spectra measured
by two different experimental setups are presented. The two-step 7 cascades
measurements with odd gadolinium targets were performed at the research re-
actor LVR-15 at the Research Centre Rez. In the multi-step v cascades experi-
ments the v rays following resonance neutron capture on '61-163Dy targets were
measured with the highly-segmented ~-ray calorimeter Detector for Advanced
Neutron Capture Experiments in the Los Alamos Neutron Science Center at
Los Alamos National Laboratory. Experimental spectra were compared to their
simulated counterparts obtained by the Monte Carlo based code for simulation
of radiative decay DICEBOX. The common result for all analysed isotopes is the
clear influence of the scissors mode on the decay of excited levels, which persists
quite high in the excitation energy. The preference of the Back Shifted Fermi
Gas model of level density and the Modified Generalized Lorentzian model of
electric dipole photon strength function is also a common feature. The models
best describing present gadolinium data are in agreement with previously pub-
lished multi-step v cascades results on even-even Gd isotopes, confirming the
consistency of two methods. The wealth and precision of the resonance exper-
imental data on dysprosium isotopes enabled, for the first time, the analysis of
fluctuations for a sizeable set of neutron resonances.
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Chapter

Introduction

After discovery of neutron by James Chadwick [1] the questions arrised about
its interaction with matter. Chadwick himself immediatelly started to answer
some of these questions [2], focusing on (n,a) reactions on light nuclei and on
“neutron-proton collisions” — neutron-proton scattering.

A year later, the activation experiments using Po-Be neutron source were
performed in the Physical Laboratory of the University of Rome. E. Fermi and
colleagues observed the “Artificial Radioactivity produced by Neutron Bombard-
ment” [3] — they measured the decays of -radioactive isotopes produced in (n,«)
and (n,p) reactions on very light and light isotopes and in some cases the decays
of the isotopes produced by (n,7y) reaction on medium-heavy and heavy isotopes.
The observation of (n,y) reaction was proved by chemical analysis methods —
some of the produced radioactive isotopes were of the same element as the target
ones.

In succesive work [4] with neutrons slowed down by passing through paraffin,
Fermi’s team measured “surprisingly large values” of nuclear cross section for the
activating impact of a slow neutron for boron, yttrium and cadmium. It was
found that “no activation, or at least no strong activation, corresponds to an
anomalously large absorption (B,Y,Cd). In these cases we might expect that the
capture of the neutron leads to the formation of a stable nucleus. ... if the slow
neutron is simply captured, we might expect that the absorption process should
be accompanied by the emission of a ~-radiation, with energy corresponding to
the binding energy of the neutron.” They were able to measure this emission by
altering their experimental setup, most importantly by including a lead-shielded
Geiger Miiller counter, see Fig. [I.I A “very marked increase” of counts was ob-
served when the counter was surrounded by the “strongly absorbing substances”,
in particular for yttrium and cadmium. The radiative capture of slow neutrons
was measured.

There were, however, “some theoretical difficulties in understanding this cap-
ture process”.

Shortly after Niels Bohr published, aiming to overcome said difficulties, two
articles in Nature [5] and Science [6]. There he formulated, illustrated on me-
chanical model and compared — to then available experimental data — his idea of
compound nuclear reactions.

According to Bohr the first step of the reaction is the relatively long formation
of compound nucleus. He described [5] the key experimental result: “.. the

-3 -



Figure 1.1: The schematic view of the experimental setup in the Physical Labo-
ratory of the University of Rome. The Geiger Miiller counter (C), surrounded by
a layer of lead (in full black) and optionally by a layer of substance under study
(shaded), is shielded by block of lead (L) from the Po-Be neutron source (S). The
whole setup is enclosed by paraffin (empty). The figure is taken from Ref. [4].

surprisingly great tendency even for a fast neutron in collision with a heavy atom
to attach itself to the nucleus with the emission of v-radiation and the formation of
a new isotope which may be stable or radioactive according to the circumstances.
.. it is therefore clear that the duration of the encounter must be extremely long
compared with the time interval, circa 107! sec., which the neutron would use in
simply passing through a space region of nuclear dimensions.” This “phenomena

force us to assume ... the formation of a compound system of remarkable
stability” In his mechanical model EI] Bohr compares the incident neutron to
the billiard ball sent into shallow basin with a number of balls as illustrated in
his famous sketch, see Fig. As in the case of billiard balls’ collisions, the
excess energy (the neutron separation energy S, and the kinetic energy of the
incident neutron) “must in this state be assumed to be temporarily stored in
some complicated motions of all the particles in the compound system, and its
possible subsequent breaking up with the release of some elementary or complex
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nuclear particle may from this point of view be regarded as a separate event not
directly connected with the first stage of the collision process.”

Figure 1.2: Bohr’s mechanical analogy of formation of excited compound nucleus.
The figure is taken from Ref. [6].

In regard to slow neutron capture, Bohr basically just described the experi-
mental results - presence of “selective capture” [4] and the width of the resonances
“as small as a fraction of a volt” [7]. He used this experimental information to
supports his thoughts about the fast neutron interactions regarding the stabil-
ity of the compound nucleus. In Science article [6] he mentions two works that
derived the formula for the resonance cross section — the optical resonance anal-
ogy of Breit and Wigner [8] and the derivation of Bethe and Placzek [9] dealing
more generally with the resonance effects in nuclear processes. Bohr then de-
scribes that the capture probability increases with respect to “neutron escape”
with decreasing neutron energy and mentions that the thermodynamical analo-
gies of evaporation (of a liquid or solid body at low temperature) fail to describe
the capture reaction unlike the higher energy ones with neutron escaping in final
state.

Bohr [6] also pointed out the essential difference between the level density p
at low excitation energies (known experimentally from v spectra after a decay),
excitation energies just above neutron separation energy (known from very selec-
tive excitations by slow neutrons [10-12]) and by a few MeVs higher excitation
energies (indicated from fast neutron reactions), see Fig. [1.3] How the level den-
sity increases with excitation was at that time calculated by Bethe [13}/14] and
will be discussed in more details in Chapter

The characteristic of three regions is as follows: the detailed knowledge of lev-
els in close vicinity of the ground state is usually well determined experimentally
and is a subject of the microscopical calculations. With increasing excitation
energy, i.e. decreasing spacing between levels, the experiments lose the ability
to resolve individual levels. Nevertheless, the spacing between the levels is still
considerably higher than their natural width. This interval of excitation energy
is usually refered to as the quasi-continuum. The continuum then refers to the
domain of even higher excitation energies where the spacing drops so that it
becomes comparable to the natural width of levels.
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Figure 1.3: Bohr’s illustration of “the general character of the distribution of
energy levels for a heavy nucleus”. The dashed line in the lower magnifying glass
represents the neutron separation energy. The figure is taken from Ref. [6].

Inspired by this principial division, we adopt similar, but more practical ap-
proach, as will become aparent in Chapter [ The boundary of the low energy
region, denoted as the critical energy FE.., is determined by the requirement of
the completeness of the presently known decay scheme. Usually, the experiments
can resolve levels to higher excitation energy than the critical energy, but fail to
unambiguosly ascribe their spin and parity and to place the measured transitions
in the level scheme. The levels above the critical energy up to the initial state
of the decay are then believed to be described within the Statistical Model of
nucleus.

The term Statistical Model was first used for the description of a nuclear
reaction in terms of the decay of an equilibrium system of long lifetime in Refs. [15]
16]. Weisskopf and Ewing calculated the cross section and the decay of highly
excited states, characterized by the neutron and radiative widths. The analogy
to the evaporation formula was mentioned and the results were compared to it.
They also compared their results on the radiative width to the ones of Bethe and
Placzek [9].

Similar calculations were performed by Bethe [14], who examined also the
character of  rays related to nuclear processes — the reactions and the radioactive
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decays. Bethe divided the v rays into “two main classes”, the first one being the
“v rays emitted during the nuclear process itself”, i.e. the primary ~ rays, and
the second one the “v rays emitted in a secondary process following the proper
(primary) nuclear process”. In his view the cascade deexcitation after neutron
capture consists of one class 1 7 ray followed by emission of one or more class 2
v rays. Using a simplyfing assumption about the nature of “dipole moment for
transitions between any two states” and his result on the exponential decrease
of the level spacing, Bethe calculated the distribution of primary v rays from
the slow neutron capture on a heavy nucleus, see Fig. [I.4, From the result that
the primary 7 ray most probably carries away a quarter to half of the available
excitation energy, Bethe deduced that the secondary ~y-radiation would usually
be softer than the primary one and the number of v rays emitted in the capture
process, i.e. the multiplicity, would be on average between three and ten.

0 ) 2 3 R 5 6 iy d .9 9 1'

Figure 1.4: The distribution of primary 7 rays from the slow neutron capture on
a heavy nucleus as calculated by Bethe. The abscissa is the ratio of the v-ray
energy to the neutron separation energy and the ordinate is the relative intensity.
The figure is taken from Ref. [14].

A simplyfing assumption similar to Bethe’s was introduced by Ericson in
1960 [17] as the basis of the Statistical Model: “It might however be expected
that the matrix elements have randomly distributed phases due to the randomized
nature of the Compound Nucleus.” Ericson calculated the spectrum of “evapo-
rated 7 rays” within the evaporation approximation which is quite similar to the
estimation of Bethe [14].
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By that time it was well known that the electric-dipole (E£1) transitions play a
dominant role in the decay of compound nuclei at excitations above the neutron
separation energy due to the presence of the Giant Electric Dipole Resonance
(GEDR). The GEDR was discovered by measuring photoabsorption cross section
above neutron separation energy by Baldwin and Kleiber [18]. Few years earlier
Migdal [19] predicted the GEDR as a consequence of collective dipole vibrations
of proton and neutron fluids.

In 1959 Lane and Lynn [20] exploited the experimentally determined charac-
teristic shape of the photoabsorption cross section o, given by the presence of
the GEDR in their calculation of capture cross section. They defined the Pho-
ton Strength Function (PSF) S(E,) by its relation to the photoabsorption cross
section 0., o< E,S(E,). In their calculation they also assumed that the photoab-
sorption cross section for any excited state has the same properties as for the
ground state — this assumption was originally proposed by Brink [21] and is now
known as the Brink hypothesis.

In the work focused on the analysis of primary transitions [22] following
the neutron capture, Bartholomew defined the PSF, which he called “radiation
strength” or “reduced widths”, as a ratio of partial radiative widths to the spac-
ing Dy of levels at neutron separation energy with the same spin and parity as
the capturing state S(E,) = T',(E,)/(E2 Dy).

Within the notion of the PSF introduced by Bartholomew, one can calculate
the primary ~-ray spectrum given the knowledge of the final states, the PSF
S(E,) and the spacing at separation energy Dy, i.e. the level density p(S,).
The comparison to the experimental primary ~-ray spectrum for the wide range
of y-ray energies is complicated by the unavoidable detection of secondary tran-
sitions. Nevertheless, given the knowledge of the level density p(E) at all excita-
tion energies up to the neutron separation energy, we can calculate the secondary
~v-ray spectrum for any intermediate level populated by the primary transition
analogously to the calculation of the primary spectrum and repeat such calcula-
tion until the ground state is reached. Reversely, the analysis of the complete v
cascades — detected by coincident experimental setup — could reveal information
about the LD and PSFs. The present state of the knowledge on PSFs in the rare-
earth nuclei is described in Chapter [3| Such analysis is however complicated by
the fluctuations of involved quantities. For this reason, a trial-and-error approach
of comparing the observables simulated under different assumptions about the LD
and PSFs to their experimental counterparts was adopted. The simulations of
cascades are described in Chapter [

In order to fully register as many cascades of as many multiplicities as possible,
we have to rely on highly efficient detector system with high solid angle coverage
like the Detector for Advanced Neutron Capture Experiments (DANCE) in the
Los Alamos Neutron Science Center at Los Alamos National Laboratory, which
was used to measure the so-called multi-step v cascades (MSC) spectra from
radiative capture of resonance neutrons. Alternatively, we can focus on specific
subset of v cascades exploiting the advantages of high resolution detectors such
as the HPGe detectors. The pair of such detectors was dedicated to measure
two-step v cascades (TSC) following radiative capture of thermal neutrons. The
TSC experimental setup was installed at the research reactor LVR-15 of the
Research Centre Re7 and the measurements were performed in collaboration with
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colleagues from the Nuclear Physics Institute of Czech Academy of Sciences. The
description of both experimental setups is given in Chapter [5

As mentioned above, the information on LD and PSFs was obtained by a
trial-and-error approach of comparing the simulated observables to their exper-
imental counterparts. The results of the TSC and MSC analyses with emphasis
on the MSC measurement of 192Dy (n,7) reaction are presented in Chapter @ The
results of TSC measurement of *>1°7"Gd(n,7) reactions were published and are at-
tached in App.[Aland the MSC analysis of 1:1%3Dy(n,v) reactions was published
and is attached in App. [Bl The conclusions and outlook are given in Chapter [7}
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Chapter

Level Density

Level density (LD) is one of the basic statistical properties of excited nucleus. In
our approach the decay of highly excited level is considered to be described by
the statistical model of nucleud’] Hence the LD is one of the quantities needed
for our modeling of v decay.

2.1 Early Considerations

The formula for LD was derived by Bethe [13] in statistical approach. The com-
plete information on the spectrum of a system is equivalent to the knowledge
of the partition function of the system. For a gas of noninteracting fermions

Bethe obtained LD p
1 exp (2\/ aE)

p(E) = 3 I3 (2.1)

at excitation energy E with a being the so-called level density parameter. For
two-component gas of noninteracting fermions the formula reads

B 1 T exp(Q\/aE)
p( )_4\/3 3aql/2 F5/4 )

In his successive review [14] Bethe derives the level density p(E, J) of levels with
given spin J

(2.2)

g (-0
cT 2cT

p(E,J) = p(E,0) x , (2.3)

where 7 is the nuclear temperature, ¢ is a constant coefficient (for given nucleus)
and p(E,0) is proportional to p(E) in Eq. (2.2).

Driven by then available data on spacing of “slow neutron resonances” D
Newton discussed [23] the influence of shell effects on level densities with em-
phasis on higher energies. He presented a formula for p with a dependence

IPractically, decay of any level above certain excitation energy E.;; is considered statistical
in our simulations. For experimentally well-known levels above FE.. we could, in principle,
determine if their decay is consistent with predictions of statistical model. Such study was not
performed, mainly due to the fact that current version of our simulations does not allow to add
extra levels with defined decay above E..i; to the levels randomly generated from LD.
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~ 1/(2F + 3T)?, where T is the nuclear temperature, with no changes to the
exp (2\/@_E> term, however his derivation was later shown incorrect by Gilbert
and Cameron [24].

Noticing that if a sub-shell in the shell model has a degeneracy and is filled
by k particles, these can be rearranged in n!/k!(n — k)! different, degenerate
configurations at zero excitation energy, Rosenzweig [25] derived a correction to
the excitation energy E. An effective energy E’ replaces excitation energy F
in Eq. with correction depending on mean spacings between states and the
degeneracies of the last-filled neutron and proton shells. This correction decreases
with excitation energy.

|- NE) i
oor ]
s Mn>° FeS7 ]
Feds 1
- € Fe>8 -
|. R
0} a
- N
I 1
:
E MeV
1 1 1 L i 1 1
1 2 3 4 5 6 7

Figure 2.1: The measured total number of levels for isotopes in iron region as
presented in Ref. [26]. %®Fe is an even-even isotope, *>5"Fe are odd (in neutrons)
and %°Mn is an odd-odd isotope. We remind that the presented quantity is the
number of levels N(E).

These two attempts were motivated by the experimental fact that taking F
simply as an excitation energy does not work when looking at LD of neighbouring
odd-odd, odd and even-even nuclei. This was pointed out in several works — first
time by Newton [23], perhaps most convincingly by Ericson with data on number
of levels for isotopes in iron region [26], see Fig. 2.1 Newton [23], besides the
correction mentioned above, introduced the idea of subtracting a pairing energy
from the excitation energy. While the existence of an energy gap in the nuclear
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spectrum was shown before for few models [27,28], the idea of replacing the
excitation energy E in LD formula by effective energy with constant correction
reflecting this energy gap was fully developed by Cameron [29] and later in his
work with Gilbert [24]. In the later work the shell and pairing corrections were
introduced based on semi-empirical mass formula of Cameron and Elkin [30]. To
keep the right-hand side of LD formula as given in Eq. the excitation energy
E is replaced by the effective energy E’ defined as

E' =FE - P(N) - P(2), (2.4)

where the P(e) is the nucleon pairing energy — zero for odd values of N or Z and
positive for even ones. Authors concluded that “there is no systematic difference
left (in LD parameter a) due to odd-even effects. Thus the pairing energies have
fulfilled their intended function”.

The resulting, so-called Back-Shifted Fermi Gas (BSFG) formula is usually

presented in the form
(5) exp (2,/a(E - A))
p _

C12y20aV4(E — A)S/A

(2.5)

where A is an energy shift, in treatment of Gilbert and Cameron equal to A =
P(N)+ P(Z).

Gilbert and Cameron [24] proposed to use another formula to better describe
the experimentally determined low-energy behavior of number of nuclear levels,
e.g. data in Fig. 2.0 The systematic analysis of number of observed levels

N(E) throughout the nuclei chart (from Na isotopes to ***Cm) showed that an
E-E,

exponentially increase according to formula N(E) ~ exp( 7

description, thus the LD is given as

p(E) = 1 exp (E _ EO) . (2.6)

) provides good

T

The two parameters Ey and 7" in this so-called Constant Temperature (CT) for-
mula were obtained for each studied isotope from fitting the N(FE) to the above-
mentioned experimental data.

As their final result Gilbert and Cameron [24] proposed a composite formula,
in which the CT formula is used up to certain excitation energy E, and the BSFG
formula is used above E,, naturally the function is required to be continuous.
They obtained the parameters of the composite formula for each studied isotope
from fitting to then available experimental data on low-lying levels and Dy’s.
From the results on E, the systematic formula was derived

E, = 2.5+ 150/A + P(Z) + P(N)(MeV). (2.7)

This formula is refered to as Composite Gilbert-Cameron (G-C) formula.

As can be seen from Eq. (2.3), the LD of levels with given spin J can be
determined as a product of the total LD p(FE) and the spin distribution f(J). As-
suming the Gaussian distribution of spin projections M, Ericson [17] and Gilbert
and Cameron [24] derived the f(.J) dependent on the so-called spin cut-off pa-
rameter 0. While Ericson used the J(J + 1) approximation in the exponential
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term, Gilbert’s and Cameron’s formula was given in presently used form

F(J) = exp (-‘f) ~exp <—(J+ 1)2> ~ 2w <_(J“/2>2> (2.8)

202 202 202

with the spin cut-off parameter given as

0% = 0.0888A%3,/a(E — A). (2.9)

The question of parity was somewhat tackeled by Ericson [17] and by Gilbert
and Cameron [24]. Using simple combination formula and well known properties
of fermionic states they arrived at a conclusion that the LD of levels with both
parities at high excitation energies should be practically the same.

2.2 Phenomenological Parametrizations

The LD formulae presented above — BSFG, CT and G-C formulae — are often
used with parameters determined by fitting the experimental data, namely the
spectroscopic information on low-lying levels and the spacings of s-wave neutron
resonances.

In such phenomenological approach the LD is usually assumed to have a
separable form

p(E, J,m) = p(E)f(J)g(m), (2.10)

with the total LD p(E), the spin distribution f(J) and the parity distribution
g(m). For the sake of clarity we neglect other possible dependencies of distribu-
tions, they will be specified later in the text and corresponding equations. As
an example, the spin distribution is usually a function of excitation energy E

through the E-dependent o, so we could write f(J,0), f(J,0(E)) or f(J, E).

2.2.1 Back-Shifted Fermi Gas Formula

Two most recent relevant sources of parametrizations are the compilations by von
Egidy and Bucurescu [31,132] and the results of RIPL project [33].

BSFG Formula with Energy Independent Parameters

In both papers von Egidy and Bucurescu use the BSFG formula for p(F) as given
in Eq. with the spin distribution f(J) in the standard form of Eq. (2.8).
In the earlier work [31] the spin cut-off parameter is modified with respect to
Eq. to better account for the region of low excitations

1+\/1+4a(E—A)A5/3 1)

2
= 0.0146
4 2a ’

while in the later work [32] the spin cut-off parameter resembles the A-dependence
of Eq. (2.9), but omits the a-dependence and the coefficients and exponents are
a result of a global fit of low-lying levels of 227 nuclei

o = 0.3914% (E — 0.5Pa’)"*"? (2.12)
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where Pa’ is the deuteron pairing energy calculated from mass or mass excess
values M (A, Z) of the mass tables [34] as

Pd - ; (M(A+2,Z+1)— 2M(A, Z) + M(A—2,7 — 1]. (2.13)

The parity distribution is neglected in both articles, assuming g(+) = g(—) =
[31].

The parameters of LD, namely a and A, are considered free parameters in the
above mentioned fit and are thus uniquely determined for each studied isotope.
They are, together with Pa’ in case of later parametrization, available in con-
vinient tabulated form [31,132]. The resulting total LD p(E) is for '®*Dy shown

in Fig. and for 192Dy Fig. 6 of App. .
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1 Z | |
1079 2 4 6

Excitation energy (MeV)

Figure 2.2: Spin- and parity-summed level density of 3Dy according to the
CT and BSFG formulae and the HFB calculations. The parameters of the CT
and BSFG LDs were taken from Refs. [31] and [32], denoted as (vVEB06) and
(VEB09) respectively. The experimental data p®*°(E) from the Oslo method [35]
labeled (*He,ay)'® Dy are also shown. Different predicted absolute values at S,
= 6.271 MeV originate from different spin distributions in the formulae. The
point corresponding to the s-wave resonance spacing [36] was converted to the
summed LD using the spin distribution with the spin-cutoff parameter from [32].

BSFG Formula with Energy Dependent Parameters

The presence of shell effects that vanish with excitation energy, as mentioned
above [25], motivates the use of more complicated BSFG formulae. In particular,
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following the phenomenological approach [37], the damping of the shell effects is
included in energy dependent LD parameter a

a(E) =a {1 + EézVA 1- eWEA)}} : (2.14)

where 0W is a shell correction energy, v is the damping parameter, a is the
asymptotic level density parameter and A the energy shift. Parameters a and A
are fitted for individual isotopes.

In case of parametrization by von Egidy and Bucurescu [31] the LD formula is
obtained by substituting a in Eqs. and by a(FE) of Eq. . The dis-
tributions f(J) and g(7) remain in the same form with respect to BSFG formula
with energy independent parameters, see Sec. 2.2.1 The damping parameter
v = 0.06 MeV~! comes from a global fit, the shell correction energy dW reflects
the difference between the experimental mass and the mass given by liquid drop
formula corrected for the pairing energy, the individual values are tabulated [31].

Within the RIPL project [33] more complicated formula for p(E) with respect
to Eq. was used with the LD parameter a(FE) given by Eq. (2.14). The
parameters 6W and v are determined in a similar way to Ref. |[31] with a difference
of A-dependent . The values for individual isotopes are tabulated [38]. The
distributions f(J) and g(w) are unchanged with respect to BSFG formula of
Sec. The spin cut-off parameter o is given as a linear combination of a high
energy (for £ > S,) limit

A5/3
o2 = 0.01389— a(E —A) (2.15)

with low energy behavior — the so-called discrete spin cut-off parameter o, deter-
mined from the experimental information on low-lying levels or from the global

systematics
o4 = 0.83A%%, (2.16)

For futher details see Ref. [33].

2.2.2 Constant Temperature Formula

Despite its original purpose described above, the CT formula Eq. is fre-
quently used for the description of the total level density up to excitation energies
as high as neutron separation energy. As in the case of BSFG formula, von Egidy
and Bucurescu [31}32] used the available experimental data to fit the formula
and determine the parameters T" and Ey for number of isotopes. The spin distri-
bution f(J) was taken in the standard form of Eq. (2.8)), the parity distribution
was neglected in both articles, assuming g(+) = g(—) = 5 [31].

The spin cut-off parameter used in their earlier work [31] was taken indepen-
dent on excitation energy in simple form determined before [39)

o =0.984%%, (2.17)

The later version [32] uses the same formula for o as is used for the BSFG formula,

see Eq. (2.12)).

The total LD given by these two parametrizations is for 3Dy shown in Fig. [2.2
and for 192Dy in Fig. 6 of App. .
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2.2.3 Gilbert-Cameron Formula

The composite G-C formula uses the CT formula Eq. (2.6)) up to certain excitation
energy F, and BSFG formula Eq. above F, as described in Sec. . The
spin and parity distributions are usually given by the standard form of Eq.
and g(+) = g(—) = 1, respectively.

Following the derivation in Ref. [24] the spin cut-off parameter is expressed

0% = kAY3\/a(E — A). (2.18)

The constant k was proposed to be k = 0.0888 in [24], later parametrization [40]
suggested k = 0.1146.

In the RIPL project [33] the G-C formula is used with BSFG formula, spin
cut-off parameter and LD parameter as described above, see Sec. 2.2.1]

as

2.3 Microscopical Calculations

We restrict ourselves to describe only the calculations that we consider relevant,
namely the calculations dealing directly with the rare-earth nuclei, the calcu-
lations of well-deformed nuclei showing features that are expected to occur in
well-deformed rare-earth isotopes and the calculations revealing the features that
were experimentally observed in many mass regions including the rare-earths.

Paar and coauthors |41] performed large-scale combinatorial calculations of
level densities for selected well-deformed nuclei using Gaussian polynomial gen-
erating function method (GPM). Despite the fact that they did not choose a
rare-earth isotope, their results showed common features for two distinct nuclear
masses, one lighter and one heavier than rare-earths. The level density in their
approach could be factorized into p(E) x f(J, E). The total LD p(F) was well
fitted by BSFG formula Eq. . Their results were described by a different
form of f(J) with respect to Eq. with some energy dependent factors, for
futher details see Sec. and Ref. [41].

A microscopic combinatorial approach was used to calculate the state and
level densities with fixed exciton numbers in some actinide nuclei by Garcia et
al. [42]. The deformed Woods-Saxon shell model was used as a basis from which
all possible configurations were generated. The pairing interaction was taken into
account by applying the BCS theory to each configuration. Both the spin and
parity distributions were obtained, considering the deformation of 3°U and ?33Th
nuclei. The results were compared to the results of spherical case. Futher remarks
about the spin and parity distributions are given in Sec. and [2.5] respectively.

The authors in Refs. [43]44] used Hartree-Fock-Bogoljubov (HFB) plus a
combinatorial method to obtain the tabulated LD as a function of energy for levels
with each spin and parity, hereafter denoted as HFB LD. These calculated level
densities usually suffer from difficulties in reproducing the cumulative number of
observed low-lying levels as well as the average neutron resonance spacing. In
order to bring the calculations into agreement with experimental data, the HFB
LD was suggested to be renormalized [43]. In our simulations we usually use the
renormalized version in tabulated form. The spin- and parity- summed HFB LD
is plotted in Fig. for %Dy and in Fig. 6 of App. [B| for 1%2Dy. The energy
dependence of the spin- and parity- summed HFB LD is in both cases rather
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close to the BSFG formula with parameters from Ref. [31]. The details about the
distributions of spins and parities are discussed in Sec. and respectively.

The LD of variety of nuclei was calculated within the shell model Monte Carlo
(SMMC) approach, recently including the well-deformed rare-earth isotopes. The
initial work on 62Dy [45] showed the feasibility of such calculations and was fol-
lowed by studies of Nd and Sm isotopical chains that exhibit a transition from
spherical to well-deformed isotopes [46-48|. The energy dependence of LD p(FE)
from SMMC calculations did not show significant deviation from the BSFG for-
mula in any studied rare-earth isotope. In particular, the SMMC LD of 62Dy [45]
is compatible with the BSFG formula with parameters from [32] between E.
and 5,. The results of SMMC calculations on spin and parity distributions are
presented in Secs. and [2.5], respectively.

2.4 Spin Distribution

As already mentioned in Sec. 2.3 a systematic deviation from theoretical spin
distribution formula given in Eq. was calculated within GPM [41]. Never-
theless, the formula describing their results falls between the spin distributions
of two BSFG parametrizations of von Egidy and Bucurescu [31,32] presented in
Sec. The f(J) results from Ref. [42] showcase the difference between de-
formed and spherical actinide nuclei. There is no reason to doubt that the spin
distribution at all relevant excitation energies can be described using Eq.
with properly adjusted, energy dependent o.

In case of even-even isotopes the experimentally well established deviation
from Eq. at low excitation energies, in particular the high abundance of
J = 0 levels and the preference of even spins with respect to odd spins, prompted
both phenomenological studies and theoretical calculations.

This so-called even-odd spin staggering effect in the spin distribution was
explicitly shown in SMMC calculation of *Fe [49] and later in the extension of
the 92Dy calculation [45]. Kaneko and Schiller published results on LD of *Fe
from a thermal and quantum-mechanical treatment of nuclear rotation using the
formalism of static path approximation (SPA) plus random-phase approximation
(RPA) [50]. Their calculation clearly showed an enhanced abundance of J = 0
levels at low excitation energies as well as the transformation to the standard
spin distribution given by Eq. with increasing excitation energy. The HFB
LD calculations [43,44] of even-even rare-earth isotopes exhibit a persisting even-
odd spin staggering at practically all excitation energies below S,,, see example
of 162Dy result in Fig. [2.3]

The effect of even-odd spin staggering was pointed out in the survey of 310
nuclei by von Egidy and Bucurescu [51]. The enhancement factors of J = 0 and
even J levels with respect to Eq. were obtained from a global fit. In the
later paper [32] the spin-cutoff parameter was determined as given in Eq.
and the spin distribution of the even-even nuclei at low excitation energies was
modified using the so-called staggering parameter x

JeeJ) = F(I)(1 + ), (2.19)

where x = 0.227 for even spin, x = —0.227 for odd spin and x = 1.02 for the
zero spin. Authors did not mention the excitation energy dependence of x. The
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SMMC calculation [45] showed that for 19Dy the spin distribution is compatible
with Eq. using parameters from Ref. [32] if the staggering parameter x
decreases linearly with excitation energy and reaches zero at £ = 4 MeV. The
spin distribution following these conclusions is plotted in Fig. 2.3

It is worth pointing out that the width of the spin distribution and the per-
sistence of even-odd spin staggering with excitation energy drastically differs be-
tween SMMC and HFB calculations.

2.5 Parity Distribution

As described in Sec. 2.2] the parametrizations of both BSFG and CTF formulae
work with the assumption of parity independence of level density. However, the
parity dependence cannot be a priori excluded — extending the above mentioned
idea [17,124] Cerf |52] and Pichon [53] showed the characteristic behavior for
the model in idealized case and in number of A ~ 50 isotopes, respectively.
One can argue that the observed parity asymmetry would be negligible above
a few MeV’s of excitation energy in heavier spherical nuclei. Futhermore this
asymmetry is supposed to vanish more quickly with a deformation of nuclei.
Garcia and coauthors [42] calculated, for 29U and 23*Th, that the oscillation is
at most 2% (around 1/2) and slowly decreases with excitation energy.

The phenomenological formula

9(+) =1-9(-) = 2 (1 + 1+ exp [ci(E — 5p)]> ’ (2.20)

where 4 or — is chosen in accordance with the dominant spin of low-lying levels,
was used to describe the experimental data for nuclei 20 < A < 110 in Ref. [54].
Authors performed a global fit that yielded ¢, = 3 MeV~! and different ¢, formu-
lae for even-even, odd-even, even-odd and odd-odd nuclei. While the rare-earth
isotopes studied in the present work (A ~ 160) are significantly heavier, we em-
ploy the formula of Eq. in some of our simulations. Futhermore we also test
the values of parameters coming from the systematics proposed by Al-Quraishi
and coauthors, i.e. ¢, =3 MeV~! with, for example, d, = 2.15 and 0.73 MeV for
162Dy and 93Dy, respectively.

One of the results of SMMC calculation [45] was that the parity symmetry
is restored at ~ 3 MeV and the parity distribution could be described using the
formula of Eq.(2.20). Considering the experimental data on low-lying levels we
use the parameters ¢, = 3 MeV~! and §, = 1.5 MeV to describe the SMMC result
on parity distribution in '92Dy.

The HEB LD [43}/44] showed the expected exclusivity of positive parity levels
at very low excitation energies in even-even isotopes. Above certain excitation
energy in even-even isotopes and from zero excitation energy in other isotopes
an oscillation, similar to results in Ref. [42], was observed with much bigger
amplitude (up to 50%) but disappearing much faster — the parity symmetry
(within few percent) is restored at ~ 4 MeV and ~ 3 MeV in 62Dy and 63Dy,
respectively.
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2.6 Experimental Determinations of Level Den-
sity

The pointwise LD can be extracted in the energy range used in our analyses
(Eerit—Sy) from the experimental data within two methods.

The first kind of LD determination is based on the measurements of shapes
of neutron evaporation spectra in various reactions, e.g. (p,n), (d,n), (a,n), ...
The reaction cross sections for number of isotopes including rare-earth ones were
analysed within the Hauser-Feshbach statistical approach and the LDs were found
to reasonably agree with the BSFG formula [55,56]. Some nuclei in the vicinity
of closed shells with A ~ 208 display a CT-like LD [57].

The second source of pointwise LD and PSF is the so-called Oslo method [5§].
The v rays are measured in reactions induced by charged particles — typically by
3He, recently also by protons and deuterons. The initial excitation of compound
nucleus Fj,; is determined by measuring the energy of outgoing charged particle
using the AE — E silicon telescope. The v-ray spectra are recorded by the array
of Nal detectors and analysed in coincidence with the charged particles. After
unfolding of the detector response [59], the so-called first generation matrix, i.e.
the primary v-ray spectra for each bin of accessible excitations Ej,;, are calculated
by sequential substraction of the unfolded v-ray spectra. The Oslo results — LD
PO (E) and PSF S9°(E,) — are a result of a fit of the first generation matrix.

The possible systematic errors of the Oslo method were thoroughly discussed
in a dedicated article [60]. From the perspective of a comparison with our results,
it is important to point out that the fitting procedure of the Oslo method relies on
some assumptions and has an infinite number of solutions which can be obtained
from any particular solution by a transformation

ﬁOSlO(Eini — E,y) = Aexp [Oé(Eini - E’Y)]pOSlO(Eini - E’Y)a (221)

SO(E.) = Bexp (aE,)SO"(E,), (2.22)

where the argument of LD is written in the form of (Ej,; — E,) to emphasize
the way it is calculated. To normalize the Oslo results, the constants A, B and
a have to be fixed using external data on low-lying levels, s-wave neutron reso-
nance spacing and average radiative width of s-wave neutron resonances. We will
restrict the discussion to the favourable case when all three types of the external
data are available from reliable sources.

One of the assumptions of the Oslo method is that the PSF is E-independent,
i.e. follows the Brink hypothesis [21]. In principle one could fit the rows of the
first generation matrix with the condition of a common LD p®s°(E), which would
in general result in E-dependent PSF S9°(E.). However, for practical reasons
the pO*°(E) and SOI°(E,) are, as already mentioned, a result of a fit of the first
generation matrix as a whole, which requires the use of Brink hypothesis.

The p9%°(E) and SO°(E,) are not determined on the full energy interval
that is in principle accessible, i.e. (0,S5,), as can be seen in Fig. [2.2 This
fact implies that the normalization requires an analytic continuation of the Oslo
results, which introduces some degree of model dependence. The s-wave neutron
resonance spacing, which is used for the normalization of p°%°(E), is converted
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to the total LD using the spin distribution with a certain spin-cutoff parametelﬂ
usually taken from one of Refs. [31,61], which adds another source of model
dependence. The normalization of SO¥°(E.) relies also on its transformation to
the average radiative width of s-wave neutron resonances. This includes a use
of normalized p®%°(E), the assumption that only dipole transitions play a role
in the decay and again the use of the spin distribution with certain spin-cutoff
parameter. The specifics of decomposition to the individual components of PSFs,
e.g. scissors mode or pygmy resonances, are discussed later in Sec. [3.4.2 the
comparison of our results with the Oslo results in Sec. [6.3.3]

The convenient circumstance for the comparison of our results with the Oslo
results is that %071%4Dy were analysed within the Oslo method [35,62,/63]. The
pO¥°(E) of 193Dy [35] is shown in Fig.[2.2 The Oslo result for 2Dy [63] is shown
in Fig. 6 of App. B

2If we used the BSFG formula’s spin-cutoff parameter of Eq. from Ref. |31] for the
conversion of the s-wave neutron resonance spacing, the orange datapoint would fall on the
BSFG (vEBO6) curve in the Fig. The difference between the two BSFG curves in the figure
at S, indicates a magnitude of one of the uncertainties in the normalization of the Oslo results.
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Figure 2.3: Spin distribution f(J) of %Dy as obtained from result of HFB cal-
culation [43]44] and as given by different LD parametrizations. The panels (a),
(b) and (c) show the spin distributions at excitation energies of 1.87, 3.0 and
8.2 MeV. These energies correspond to the critical energy FE.;; used in our sim-
ulations, see Sec. [5.2.3], the energy where the parity symmetry of LD is restored
according to SMMC calculation [45], see Sec. and to the neutron separation
energy, respectively. The curve labeled constant ¢ uses the spin cut-off parameter
of Eq. from Ref. [39], the resulting f(J) is used with CT formula with pa-
rameters from Ref. [31]. The curve labeled vEBO6 corresponds to the spin cut-off
parameter of Eq. and the parameters of BSFG formula from Ref. [31]. The
curve labeled vEB09 employs the spin cut-off parameter of Eq. , which is
common for the BSFG and CT formulae when the parameters are taken from
Ref. [32]. To illustrate the effect of even-odd staggering, as defined in Eq. ,
the curve labeled vEB09 staggering is plotted. The effect decreases linearly with
increasing excitation energy and vanishes at ~ 4 MeV in accordance with the
SMMC result [45], see Sec. so the distribution is identical to the vEB09
distribution in panel (c).
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Chapter

Photon Strength Functions

Two possible introductions of photon strength function were mentioned in Chap-

ter [I] In accord with Lane and Lynn [20] the (XA) PSF relates to the (X))

component of the photoabsorption cross section agX A)

1 aI(E,)

(whe)? (2A + ) EX1

S(X/\)<E7) = (3.1)

for a transition of type X (FE = electric or M = magnetic) and multipolarity A.
The PSF is introduced as an average quantity, hence we use the energy smoothed
photoabsorption cross section EgX A)(E,y), as Lane and Lynn naturally did for the
case of GEDR.

Bartholomew defined the PSF using the partial radiative width of neutron
capturing state [22]. In this spirit the PSF as an average quantity can be defined
as

(XA
S(X,\)(E ) = me (Ey)p(Es, Ji, ;)
v 22 +1 )
gl

(3.2)

where fgff/\)(E,y) stands for an average partial radiative width of transitions with

energy E, = E; — Ey of type X and multipolarity A from any initial level i of
spin J; and parity 7; in the vicinity of the excitation energy E; to any accessible
final level f with excitation energy EY, spin J¢ and parity m¢. The accessibility
of final levels is determined by the selection rules for electromagnetic transitions,
which for initial and final spins J; and Jy and multipolarity of the transition A
reads

= Tl <A< [Ty + i, (3.3)

while the parities of the initial and final levels 7; and 7 satisfy the identity
mmy = (—1)* (3.4)
for electric transitions of multipolarity A and
mmy = (—1)* (3.5)
for magnetic transitions of multipolarity .
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For a particular transition between two given levels 7 and 7" with £, = E, —

E., the detailed-balance principle relates the partial radiative width Fgﬁ) and
(XX)

the (X'A) component of the photoabsorption cross section 7.7 as

peoy _BS 2041 oy
T (whe)2 20, 41T

(3.6)

Let us now average the partial radiative widths F(T‘if}\ ) of transitions to level f
from levels 7 in the e vicinity of excitation energy F;. The number of initial
levels is ep(F;, J;, m;). Consider also that the photoabsorption cross section for
transitions from level f to all accessible levels (not just those with spin J; and
parity ;) in € vicinity of excitation energy F; is averaged over the interval e. The
detailed-balance relation Eq. can be then written as

2
By 1 _(xy

—(x))
(mhe)? 2) + 107’JC_>E1'(E7)7

Fivf

showing that two definitions of PSF in Egs. (3.1]) and (3.2)) are identical.

The phenomenological approach of deriving the PSF from the fit of the pho-
toabsorption cross section or the partial radiative widths does not reveal the
relation of the PSF to the properties of individual nuclear levels and transitions

between them. The photoabsorption cross section agffi) can be also expressed as

(X\) 871'362712045*3 k2 A+1
Orry = 5 3 B
B [2A+ DI A
where the reduced transition probability B(X\, 7" — 7) for the transition of type
X and multipolarity L with the energy FE. is defined as

(XN, 7 —71), (3.8)

1
2J +1

2

B(X\, 7 = 7) = (7 | MED7) (3.9)

The operators M are the transition operators of type X (electric or magnetic)
and multipolarity A. From the reduced transition probabilities to the levels 7
with energy E; in the € vicinity of excitation energy E; we can define the photon
strength function SV as

5] 1
SUN(r' = Ej) = p(Bi, Ji,m) B(XA\, 7 = E)) == > B(X\7' = 7).
€ Er€e

(3.10)
Calculating the average photoabsorption cross section from Egs. (3.8)) and ((3.10
we can obtain the relation between S&* and the PSF S defined in Eq. (3.1

G(XL) (E.,) = 8mars A+1 2J.+1
T e(he)) A[(20 + DI 2 4+ 1

SEN (7' 5 E). (3.11)

3.1 Electric Dipole PSF

The phenomenological approach of deriving the PSF from the fit of the photoab-
sorption cross section in the region of GEDR gave raise to the so-called Standard
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Lorentzian (SLO) model of E1 PSF

1 Elg
(E ) = O'G'FG J
T 8he? T (g2 - B2) + By

S$to , (3.12)

where Fg, g, 0q are the energy, width and cross section at the maximum of the
resonance, respectively. An example of such fit is shown in Fig. 3.1} the expected
necessity of using sum of two terms in deformed nuclei is illustrated. In this thesis
we are dealing with well-deformed rare-earth nuclei, so the PSF describing the
GEDR is always the sum of two terms with sets of parameters { Fg;, Tgi, 0gi}2y,
for details see Sec. [6.2.3] For simplicity only one resonance term is assumed in
equations for SPV in this section, so the sets of parameters {Eqs, i, 0ai by
are replaced by a single set {FEg,T'g,0q}. In reality, the sum over two resonance
terms is used in all models. The shape of the SLO model in the energy region
below S, is shown in Figs. 3.2} [3.4] 3 of App.[A]and 5 of App. Bl The shape of
dipole PSF given by the SLO model plus the composite M1 model is then shown
in Figs. 3.3, 3.5 and 5 of App. [B]

The SLO model well describes the E'1 PSF near the peaks of GEDR, however
its inadequacy at lower energies, i.e. below the neutron separation energies, was
shown from compilations of (n,y) data [64,65] as well as from the measurement
of M3Nd(n,ary) reaction [66/68]. The energy dependent E1 PSF with a nonzero
limit for £, — 0 for levels with nonzero nuclear temperature Ty was observed
together with Ty-dependent width I'. The nuclear temperature of the final level
f is usually considered in the form

T; = , (3.13)

which corresponds to the temperature in the BSFG model. Here a and A are the
level density parameter and the energy shift of Eq. .

Kadmenskii, Markushev and Furman [69] proposed a model for spherical nu-
clei with the above-described features using the semi-microscopic shell model
together with Fermi-liquid theory of finite systems. The temperature-dependent
width I'¢ (E,, Tf) has a form

r
Te (B, Ty) = EL; (E2 +47°T7), (3.14)
G

and the so-called KMF model of E1 PSF reads

1 Eole (B, Ty)
Sk (Ey, Ty) = 7 gtkoclc L.
3(mhe) (B2 - E2)

(3.15)

It is evident that this model is not applicable near the peaks of GEDR. Despite
the fact that this model was proposed for spherical nuclei, it is often used for
deformed ones as well. The value Fx = 0.7 is adopted in the KMF model [33,/69).
The shape of the KMF model in the energy region below S, is shown in Figs. 3.2
3 of App. [A]and 5 of App. B] The shape of dipole PSF given by the KMF
model plus the composite M1 model is then shown in Figs. and 5 of App. [B]
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Figure 3.1: The measured photonuclear absorption cross section o(vy,xn) of Nd
isotopical chain. The lines are the fits of the GEDR by the Lorentzian term (in
case of YNd sum of two terms). The widening and eventual splitting of the
GEDR with the increasing deformation (which for this case of isotopical chain
increases with mass) is apparent. The figure is taken from Ref. [70].

Two other phenomenological models use the energy and temperature depen-
dence of T'¢ given in Eq. (3.14). The Generalized Lorentzian (GLO) was intro-
duced [71] as

E\La(Ey, Ty)
2
(B2 — E2)" + E2T%(E,, Ty)

FG(()? Tf)
E}, ’
(3.16)

with aim to describe the F'1 PSF in both low-energy and GDER energy region
in spherical nuclei. The so-called Lorentzian with energy-dependent width (ELO)

+ Fk

1
E1
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model reads
1 ETlq(E,T
S0 (B, Ty) = s06la . zG( v 1)) :
3(mhe) (E2 - E2)" + E2I% (B, Ty)

(3.17)

Some models with a form similar to Eq. with more complicated form of
temperature-dependent width were proposed not long ago, namely the General-
ized Fermi Liquid (GFL) model in Ref. [72], the hybrid model (GH) in Ref. [73],
which is very similar to the KMF model in the energy region £, < S,, and a
family of Modified Lorentzian (MLO) [74] models, which exhibit an additional
energy-dependent scaling factor of the E1 PSF compared to Eq. . The de-
tailed description of the models is given also in Ref. [33]. The shape of the MLO2
model in the energy region below S, is shown in Figs. [3.2] and 5 of App. B|
A phenomenological modification of the width of Eq. was proposed by
Kopecky, Uhl and Chrien [75] to achieve better agreement in case of deformed
nuclei. Aditional ad hoc empirical factors ky and E,; modify the width formula

_ By — By, Xel 2 22
Fg<E,Y,Tf, ko) = k'o + m(l — ko)] Fé (E'y + 47T Tf) . (318)

The E,, ~ 4.5 MeV is recommended [76]. For ko > 1 the width is enhanced with
respect to Eq. (3.14). The so-called Enhanced Generalized Lorentzian (EGLO)
model [75] was introduced by substituting I'c(E,,Ty) with I'¢(E,, Ty, ko) in
Eq. (3.16)). For EGLO model in conjunction with BSFG LD model the system-
atic trend of kg was determined based on the comparison with average radiative
widths of s-wave neutron resonances and with the experimental values of E'1
PSF from the average resonance capture data (ARC) compilation, this system-
atic trend yields a maximum ko = 2.5 for A = 160 [76]. In our simulations we
often observe that the recommended value of k3 does not reproduce the average
radiative width, probably because of different M1 PSF and LD models, hence we
treat ko as a free parameter and determine its value based on the simultaneous
reproduction of measured spectra and average radiative width of s-wave neutron
resonances.

Inserting the width given by Eq. into the Eq. the so-called En-
hanced Lorentzian with energy dependent width (EELO) model is introduced. The
so-called Modified Generalized Lorentzian (MGLO) model [77] was proposed by
inserting the width given by Eq. into the following expression:

O'Grg E,Yrg(E,y, Tf, /{,‘0) Fg47T2Tf2
3 (rhe)? 22 2 + Fie E>
(whe)™ | (B2 — E2)" + E2T4(E,, Ty, ko) G

E
Slg/[(iiO (E’Ya Tf) =

(3.19)
The second term can be also written as F['¢(0,Ty,1)/E%. The MGLO model
was introduced as an alternative to the EGLO model. For the decay of highly
excited states the MGLO model has a similar high energy behavior as the EGLO
model. The MGLO model steadily decreases with decreasing ~-ray energy to
similar values as given by the KMF model, unlike the EGLO model it exhibits
a significantly smaller preference of low-energy transitions. As in the case of
EGLO model the kg is treated as a free parameter and adjusted as described
above. With kg ~ 1.5 — 2 the MGLO model is similar to KMF model. The shape
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of the MGLO model in the energy region below S,, is shown in Figs. 3.4 3
of App. [A]and 5 of App. B] The shape of dipole PSF given by the MGLO model
plus the composite M1 model is then shown in Figs. [3.3] and 5 of App. B]

The calculations of S. Goriely and coauthors are available for rare-earth nu-
clei in the RIPL3 database [38]. These E1 PSFs were determined within the
QRPA+HFB approach based on the SLy4 Skyrme force [78,79] and are shown
in Figs. and 3.4 The HFB results taken from RIPL3 are practically same for
162=164y jsotopes.

Recently, the axially-symmetric-deformed QRPA+HFB calculations were per-
formed employing the finite-range DIM Gogny interaction [80]. These new re-
sults, again very similar for 62-164Dy isotopes, are much closer to the MLO2
model than to the previous calculations with SLy4 Skyrme force with the excep-
tion of more rapid fall below 3 MeV.

3.2 Magnetic Dipole PSF

The decay of excited nuclear states below S,, in well-deformed rare-earth nuclei
is heavily influenced by magnetic dipole (M 1) transitions. The description of the
M1 strength for well-deformed nuclei consists of two modes - the spin-flip mode
(SF) and the scissors mode (SM). The M1 PSF is then composed of Lorentzian
terms Sé%/ﬂ) and Sgﬁ” corresponding to the SF resonance and SM resonance. In
our phenomenological studies we sometimes include a constant term Sé]}\fl) in the
M1 PSF, which corresponds to the M1 strength in the single particle model. The
sum SMY = Séﬁl) + Séjgl) + Séjgl) is denoted as the composite M1 PSF model.
The strict validity of the Brink hypothesis is assumed for all M1 models. We
are aware that there is no theoretical justification for the use of the composite
M1 PSF model. We emphasize that our goal is to describe the experimental
observables with easily adjustable S The shape of the composite M1 PSF
model might mimic more complicated, maybe temperature-dependent behavior

of the M1 PSF.

3.2.1 Spin-Flip Mode

In the SF resonance model the Sé%ﬂ)(Ev) is usually assumed to have a Lorentzian

shape given in Eq. with Eg ~ 7MeV and ' ~ 4 MeV [33]. Experimentally,
the M1 strength corresponding to the SF mode was measured for several rare-
earth nuclei using inelastic proton scattering [81]. A double-humped structure
was observed between 5 and 10 MeV. We adopted a double-resonance Lorentzian
parametrization of the SF resonance in our simulations with the strength adjusted
according to the ARC data [82], see below in Sec.

3.2.2 Scissors Mode

In 1976, Hilton [83] and later Lo Iudice and Palumbo [84], using the geometrical
two rigid rotors model, and Iachello [85], using the proton-neutron interacting
boson model, predicted an isovector M1 collective vibrational mode in deformed
nuclei — the scissors mode.
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The first experimental observation of the mode for ground-state transitions
was made in high-resolution electron inelastic scattering at low momentum trans-
fer in 1"Gd [86] and 91Dy [87]; in Dy the M1 excitation at 3.1 MeV revealed a
transition strength of 1.5(3) u3%.

A systematic study of the mode for the ground-state transitions in rare-earth
nuclei was performed with help of the (,7’) reaction — the so-called nuclear
resonance fluorescence scattering (NRF) experiments [88]. Experimental data
indicated that the total observed M1 strength in even-even nuclei in the energy
range I, ~ 2.5—4.0 MeV is fragmented into several transitions and is proportional
to the square of the nuclear deformation [89]. For well-deformed nuclei the total
M1 strength reaches 3> B(M1) & 3 u% and the centroid of the strength is located
near 3 MeV, almost independent of A [90]; in even-even Dy nuclei the centroids are
at 2.870(5) MeV, 2.956(4) MeV and 3.143(2) MeV while summed M1 strengths
in energy range 2.7 — 3.7 MeV are 2.42(18) u%;, 2.49(13) p4 and 3.18(15) 3, for
160Dy, 162Dy and 91Dy, respectively [91-93].

The scissors mode in odd 3Dy was thoroughly examined using different reac-
tions. The properties of the SM above ground state were again adressed from NRF
- improving the experiment from 90’s [94] a wealth of transitions was observed
around 3 MeV with summed M1 strength 3.3u3; [95]. Data on two-step 7 cascades
(TSCs), following the thermal neutron capture on 2Dy nucleus, revealed that
enhancement of transitions by SM in radiative decay is more general property in-
fluencing even nuclear levels with excitation energy of several MeV [96,097]. The
scissors mode was represented by Lorentzian term in M1 PSF centered at 3 MeV
with integrated strength of 6.2u3; [97]. Meanwhile, isotope chain of dysprosium
nuclei was measured using *He-induced reactions in Oslo Cyclotron Laboratory,
see Refs. [35,/62,/63,98,99]. The Oslo results on SM parameters of 93Dy were
consistent with those coming from TSC data, authors reported the SM strength
of 7.8(22)u% [99].

Futhermore, the strength of SM derived by the Oslo method in neighboring
even-even dysprosium isotopes was claimed to be comparable to SM strength in
163Dy, e.g. 6.8(8)u? in 1®2Dy [63]. On the contrary, the systematic study of SM
in gadolinium isotope chain using data on MSCs accompanying the resonance
neutron capture [77,/100,/101] revealed that the strength of the mode in even-even
nuclei is 2-3 times lower compared to neighboring odd ones, e.g. 2.7(8)u% and
8.0(1.5)u3, in 1*Gd and '"Gd respectively.

As in the case of E'1 PSF, the M1 PSF was calculated using the D1M Gogny
interaction in the QRPA+HFB calculation [102]. For the gadolinium and dyspro-
sium isotopes the shape of M1 PSF somewhat resembles the presence of SM and
SF resonances — the concentration of strength is observed just above £, ~ 2 MeV
and between 6 — 8 MeV.

We usually adjusted the absolute value of the M1 PSF to be consistent with
a ratio of S(F1)/SMY deduced from the ARC data. The value of ~ 7 at 7 MeV
was observed in several rare-earth nuclei in average resonance capture experi-
ments [103]. In the most recent evaluation of ARC data [82] this ratio was found
to be slightly lower. For the nuclei with A ~ 160 the datapoints lie between 2
and 8, the proposed systematics yields the ratio of 5.25 for A = 160 at 6.5 MeV.
The specific values are 7.78 (at E, = 6.8 MeV), 3.76 (at 5.7 MeV), 4.39 (at
7.2 MeV), 7.58 (at 7.4 MeV) and 6.42 (at 6.4 MeV) for 162163.164Dy and 156:158Gq,
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respectively. The uncertainty of these ratios are ~ 10 — 20%.

3.3 Electric Quadrupole PSF

In addition to dipole transitions, electric quadrupole (E2) transitions might also
play a role in the cascade decay after slow neutron capture. If E2 transitions are
not extremely strong, any effect of them is similar to that of M1 transitions due to
the same parity selection rules. The use of the giant quadrupole resonance model
is recommended in Ref. [33]. Nonetheless, we adopted a simple single-particle
model (S 5532) = constant) in the majority of our simulations. Sé%) was adjusted
to reproduce the ratio of partial radiation widths at about 7 MeV measured
in average resonance capture experiments in deformed nuclei (I'(E1)/T'(E2) 2
100) |103]. We note here that under these conditions our results do not depend
on the choice of the £2 PSF model.

3.4 Experimental Determination of Dipole PSF

The description below is restricted to the commonly used sources of experimental
information on dipole PSFs in well-deformed rare-earth nuclei.

3.4.1 Average Resonance Capture Data

The intensities of primary transitions were measured in the average resonance
capture experiments. The pointwise dipole PSFs were derived from these intensi-
ties in the ARC compilation [82] and are shown in Figs. [3.2]and[3.4] The errorbars
on the datapoints correspond to the statistical uncertainties only, the consider-
able spread of the values is due to the Porter-Thomas fluctuations. Because of
these fluctuations the ARC datasets should be understood as a set that can be
tested for a compatibility with a given PSF model, not as a determination of the
value of PSF.

3.4.2 Oslo Method

The pointwise PSF as a function of ., was extracted within the Oslo method for
chain of dysprosium isotopes [63,98,99], see Figs. , and 5 of App. .

The steps regarding the normalization of Oslo results were described
in Sec. [2.6] The parameters of possible SM or pygmy resonances are determined
from SO¥°(E.) assuming that SO°(E,) is an exact sum of F1 and M1 PSFs.
This assumption easily breaks down for lighter nuclei when only levels of one
parity are accessible in considerable interval of low excitation energies.

In this approach the specific model (with all its parameters but an additional
scaling) is chosen for the GEDR part of the E1 PSF as well as for the SF reso-
nance in the M1 PSF. Because the Oslo method relies on the validity of Brink
hypothesis, the authors [63,(98,99] chose to use a modified KMF model - the
KMF prescription with a constant temperature 7y = const. However, in the
studied dysprosium isotopes the temperature given by Eq. changes from
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zero to values bigger than 0.6 MeV in the energy range up to S,,. The determined
temperature Ty ~ 0.3 MeV corresponds to excitation energies £ < 2 MeV.

The scaling factor of GEDR and SF resonance was determined to be as high as
~ 1.8 in case of 193Dy [99]. This factor has no justification and might contradict
the well determined magnitude of GEDR, as well as the SF resonance.

3.4.3 Low-energy Enhancement of Dipole PSF

Recently, the PSF extracted from the measurement of '%%154Sm(p,d~y) reactions
with Ge clover detectors using the Oslo method revealed a strong low-energy PSF
enhancement [104], see Figs. [3.3] and 5 in App. [B|l Similar, albeit stronger,
enhancement was reported earlier in lighter nuclei. The shell model calculations
for lighter nuclei |105-108] indicate the M1 nature of a low-energy enhancement
with the exponentially decreasing dependence on the y-ray energy. Particularly,
Sieja [108] calculated both the E1 and the M1 PSFs in lighter nuclei resulting in
the M1 low-energy PSEF enhancement and a flat, non-zero £1 PSF for £, — 0.
The analysis of the M1 strength in Ref. |[107] shows that the sum of the low-energy
PSF enhancement and the SM strength does not significantly vary throughout the
chain of Fe isotopes. While these calculations deal with lighter nuclei, authors
of Ref. [106] argue that the M1 low-energy enhancement is expected in nuclei
throughout the nuclear chart. There are also calculations suggesting the FE'1
character of the low-energy enhancement, e.g. Ref. [109]. For details about our
tests for the presence of low-energy enhancement of dipole PSF see Sec. [6.2.5]
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Figure 3.2: Dipole photon strength functions of '6*Dy as a function of 7-ray
energy for some of the models used in our simulations. The figure displays the
E1 models as well as the M1 model consisting of the SM and SF modes. The
SM parameters are Esy = 2.9 MeV, I'syp = 1.0 MeV, and ogy = 0.4 mb. If there
are two curves for the £1 PSF model, they indicate how the model changes as a
function of temperature - the lower curve corresponds to Ty = 0 while the upper

one to Ty = \/(Sn — E, — A)/a. The HFB calculation is taken from Ref. [33].

The data points labeled ARC correspond to the primary transitions in 1*3Dy(n,v)
reaction and come from the compilation of average resonance capture data [82],
the full symbols correspond to the E'1 primary transitions, the empty symbols to
M1.
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Figure 3.3: Sum of dipole photon strength functions of 4Dy as a function of
~v-ray energy for some of the models used in our simulations. The E1 and M1
PSF models correspond to the Fig.|3.2|as indicated by the labels. The experimen-
tal data from 3He-induced and '®*»4Sm(p,d~y) reactions are taken from Refs.

and [104], respectively.
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Figure 3.4: Photon strength functions of 3Dy as a function of ~-ray energy for
some of the models used in our simulations. The figure displays the £'1 models as
well as the M1 model consisting of the SM and SF modes. The SM parameters
are Fgyq = 3.1 MeV, I'sy = 1.0 MeV, and ogy = 0.6 mb. If there are two
curves for the £'1 PSF model, they indicate how the model changes as a function
of temperature - the lower curve corresponds to 7y = 0 while the upper one to

Ty = \/(Sn — E, — A)/a.. The HFB calculation is taken from Ref. [33]. The data
points labeled ARC correspond to the primary transitions in 2Dy (n,y) reaction
and come from the compilation of average resonance capture data [82], the full
symbols correspond to the E'1 primary transitions, the empty symbols to M1.
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Figure 3.5: Sum of dipole photon strength functions of %Dy as a function of -
ray energy for some of the models used in our simulations. The E1 and M1 PSF
models correspond to the Fig. as indicated by the labels. The curve labeled
162Dy (n,y7) shows the sum of dipole PSFs deduced in the TSC analysis [97]. The
experimental data from 3He-induced and '%*4Sm(p,dy) reactions are taken from

Refs. and [104], respectively.
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Chapter

Simulations of Statistical v Cascades

About 20 years ago a Monte-Carlo based code for simulation of v decay, known as
DICEBOX [110] was developed. The main aim of the code was to correctly treat the
fluctuations of individual transition intensities, which are believed to be governed
by the x? distribution with one degree of freedom around the expectation value;
which is usually called Porter-Thomas (PT) distribution [111] in nuclear physics.
In addition, it introduced a fluctuation in positions of individual levels.

During past 20 years the DICEBOX algorithm has been used in many works for
several different purposes. Most often it was exploited for description of the v de-
cay following the slow neutron radiative capture. Several modifications have been
incorporated into the code since late 90’s including the recent introduction of the
so-called nuclear suprarealizations.

In our analyses the v cascades generated with the DICEBOX algorithm are then
folded with the detector response — processed either by the GEANT4 simulation
of the detector setup or analytically using the efficiency curves, see Chapter

4.1 The Assumptions of the Method

The method is based on the validity of the statistical model of v decay and on
other simplifying assumptions:

e The role of the particle channels in the process of cascade deexcitation is
negligible compared to the electromagnetic channels.

e Below a certain excitation energy denoted as the critical energy E..i; a com-
plete level scheme is known, in particular the level energies, spins, parities
and ratios of branching intensities.

e Individual levels of the simulated nucleus above E..;; come from discretiza-
tion of an a priori known LD.

e Each cascade starts from an initial level, that is a single, well-defined level
with a known excitation energy FEj, spin Jy and parity .

e The partial width I',» for an electromagnetic transition 7 — 7’ from a level
7 with excitation energy F. in the interval Fy > E, > FE; is assumed to
be a random quantity whose value is given by Eq. (4.1]).
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e Partial widths for different initial and/or final levels are statistically inde-
pendent.

In a general case, when a mixing of transitions of various types and multipo-
larities is allowed by selection rules, the partial width I',,, is given as

T = (14 am) TN =
XA

(XX) —E.
= (1+a)Y <ygx))2 SEN(E; — E, )

E, — E)PY (41
XA p(ETa JT,WT) ( ) ’ ( )

where ng,) is the partial radiative width for a transition of type X and mul-

tipolarity A\, SXN(E,, ) is the corresponding PSF, p(E,, J,, ;) is the LD at
initial excitation energy F, for levels with spin J. and parity 7., and a,, is the
internal conversion coefficient. The two arguments of SN (E., 3) indicate that
this quantity is a function of y-ray energy E, = FE, — E.» and possibly of other
variables, which are labeled together as 3. The ygf\) is a random number drawn
from the normal distribution with a zero mean and a unit variance. These ran-
dom numbers ensure that the individual partial radiative widths Fgf;\,) fluctuate
according to the PT distribution [111].

The summation in Eq. in principle goes over all allowed X A. In practice,
only EF1, M1 and E2 transitions are considered above E.;;. The only possibility of
mixed transition is then the M1+ E2, for which the internal conversion coefficient
Q. 18 given as

(M1

77!

) 2 (E2)
+ 0%, E2) /(M1
1 + 52 ) 62 - FS"W'?/FE"YT’)? (4'2)

«

Arrr =

where ¢ is the mixing ratio. Within this notation the Eq. (4.1)) can be for the

M1 + E2 mixed transition written as
_ (M1)\ 17(M1) (E2)\ 1(E2)

]-—"TT/ — (1 + OéTT/ ) FT’YT’ + (1 + O{TT/ ) ]‘—‘T’\/T/' <43)

The main hurdle in practical implementations of the above-given assumptions

is the huge number of partial radiative widths. In a typical case of a radiative

capture of slow neutrons on the rare-earth or actinide nucleus, there is about

10° — 107 levels below S, and corresponding large number of partial radiative

widths. This problem can be bypassed by the algorithm described below in

Sec. [4.3]

4.2 Nuclear Realizations and Suprarealizations

The control over the fluctuations of observables in DICEBOX simulations was
accomplished by introducing the concept of nuclear realizations (NR) [110]. Let
us now introduce an additional concept of nuclear suprarealizations (NSs).

In Ref. [110] the nuclear realization wy denoted a set of all levels together with
all partial widths. Let us now define a nuclear suprarealization 6 as a set of [
nuclear realizations {w, }_;. The NRs wy,,i = 1,..., I within a given NS 0, share
an identical set of all levels and partial widths excluding the partial widths of the
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initial level. In other words, two NRs w;; and wj differ only by the intensities
of primary transitions if & = £/, i.e. they belong to the same NS 6.

Similarly to the case of the original definition of nuclear realizations [110],
there exists virtually an infinite number of nuclear realizations wj;, even within a
fixed nuclear suprarealization #,. Within the current definition the same results
are obtained when simulating one NR for each of K NSs, i.e. with the choice of
I =1 leading to a set {w; }5_,, compared to the K NRs in original definition of
Ref. [110], i.e. to a set {wp ;.

The introduction of NSs is motivated by the behavior observed in real nuclei.
The decay of different neutron resonances, or in general any group of initial
levels with a given spin and parity in the close vicinity of excitation energy FEj,
differs only in partial widths of primary transitions, while the levels below FEj
and their partial widths are identical. In this contemplation it is assumed that
the transition probabilities between these initial levels are negligible.

4.3 The Algorithm

The electromagnetic cascades resulting from the decay of a compound nucleus are
generated within the above-mentioned assumptions using the Monte-Carlo tech-
nique. The key element necessary for the following algorithm is a deterministic
random number generator (RNG), which produces a sequence of quasi-random
numbers uniquely predetermined by an adjustable parameter — a seed (,. A ran-
dom number drawn from a uniform distribution on the interval [0, 1) is denoted
7(*) in the present DICEBOX algorithm, which reads:

1. The nuclear level density p(E, J, 7) is discretized to yield energies E, , spins
Jr, and parities 7, of all levels 7, = 14, ..., n, between the critical energy
E.it and the energy FEj of the initial level which is labeled by 0.

2. A seed (;, is ascribed to each level 7, with excitation energy Ey > E, >
E.it and stored in the computer memory. The set of partial widths FTkT};
is generated only at the time of need by the above-mentioned determinis-
tic RNG initialized by the seed (. The seeds (; are to be ascribed to
individual levels randomly.

3. The seed (iF is ascribed to the initial level.

4. The partial widths Fér,; for a full set of possible transitions 0 — 75, from
the initial level to all accessible levels 7;, with ET;Q < FEy are generated. The

RNG is preset using the seed ¢, attributed to the initial level in Item .
The total width of the initial level

r;

is calculated. A full set of branching intensities I(i)ﬂi from the initial level
obtained as
i i ik
[O‘rl,’C - F0‘1'1{6/]‘_\0 (45)
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satisfies by definition the normalizing condition

> I =1, (4.6)
7

and is stored, because it is used as the starting point of each cascade.

5. A level, 7,51), to which the initial level decays, is determined by a random
number M. The choice of r,i” follows from the requirement

701
Z Iiy, <7V < Z Ly (4.7)
Tk—l Tk—l

As a result, the level 7,51) at excitation energy F D of spin J o) and parity

LNOP reached by the first step of the cascade, is determined.

6. If £ e > Fit, the partial Widths I ) for a full set of possible transitions

7',51) — 77 from the level Tk ) to all acces&ble levels 7 with E, < E -0

are generated. The RNG is preset using the seed ¢ q). Analogously to the
k
Item , the total width FT<1) and a full set of branching intensities IT“)T’
k k k
are calculated.

It B ) < Eeit, the set of branching intensities I ), is calculated exclu-
Tk
swely from the experimental data, as stated in Sec. 4

(2)

7. Using the set of branching intensities / ), and a random number r'% a
k k

second level, T,iz) , to which the level T]il) decays, is chosen in a way analogous
to that described in the Ttem [5l

8. The procedure from the Items [6] and [7] is repeated until the n-th step of
a generated cascade reaches the ground stateﬂ Whenever the ground state
is reached, all data characterizing a single cascade are available: energies
Efli.), spins Jﬂi.) and parities (A0 of all encountered levels, as well as the

multipolarities A and types X of individual transitions together with the
multipolarity mixing ratios § and information whether the decay happened
via emission of a photon or a conversion electron. In addition, total radiative
width I' x0) is also available for all levels above E..;. This set of data is at

disposal for calculation of any quantity of interest, which might require an
additional simulation of detector response.

9. The simulation of cascades described in the Items is to be repeated L
times until satisfactory statistical accuracy of a quantity of interest in a
given NR is achieved.

Tn reality, the cascade might not end at the ground but at any “isomeric” state — a state
with no possibility of electromagnetic decay. Absence of any assumed electromagnetic decay
for levels below E.. can also mimic a level with its lifetime longer than the time resolution of
a detection setup.
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10. In order to assess the role of the PT fluctuations of the primary transition
intensities, the algorithm described in Items is to be repeated I times
(¢ = 1,...,I). The nature of many quantities of interest requires the sim-
ulation and analysis of the set of NRs {wix}._, for each NS 6. For some
quantities of interest it might be sufficient to use only one NR wy; within
each NS 6.

11. Finally, to assess the role of the PT fluctuations of transition intensities
below initial level and fluctuations due to the random discretization of the
LD, the algorithm described in the Itemsis to be repeated K times (k =
1,..., K). The details of calculating the measures of a quantity of interest
using the full set {wik}fﬁkzl of NRs within NSs are given in Sec. .

4.4 'The Average Radiative Width

The total width of the initial level T given by Eq. is in general the only
quantity simulated with the DICEBOX code that depends on the absolute values
of the PSFs. The simulated average radiative width I, = % > Lk can be com-
pared to the experimental average radiative width of s-wave neutron resonances
T, without any influence of the detector system descriptio. This comparison
can be used to further restrict the acceptability of the model combinations found
in the comparison of other simulated observables with their experimental coun-

terparts, see Sec. [6.2.6]

2In principle we can compare not only average but also the distribution of simulated and
experimental radiative widths.
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Chapter

Experimental Setups

To obtain the experimental data for our analyses we rely on two different exper-
imental setups. They differ in some aspects — mainly in the energy of incident
neutrons and the detectors used to detect the capture v rays — but share the
nature of a coincidence measurement with well determined initial state of the
cascade deexcitation of the compound nucleus.

In a two-step 7 cascades measurement a specific subset of capture cascades
is analysed — the cascades of multiplicity M = 2 terminating at preselected low-
lying levels, hereafter referred to as T'SC final levels, following the thermal neutron
capture. We used a pair of Ge detectors installed at the thermal neutron beam
guide of the research reactor LVR-15 at the Research Centre Re7. In this TSC
experimental setup the samples were situated between the cylindrical surfaces of
the HPGe detectors in close side-to-side arrangement.

The aim of the multi-step v cascades experiments is to measure the cascades
depositing practically all of their energy in the detector system for as many multi-
plicities as possible. The ~-ray calorimeter Detector for Advanced Neutron Cap-
ture Experiments (DANCE) — the highly-segmented ball of 160 BaF, crystals — is
installed at the flight path 14 of the Manuel Lujan Jr. Neutron Scattering Center
in the Los Alamos Neutron Science Center (LANSCE) at Los Alamos National
Laboratory (LANL). The neutrons coming from the 20 m distant spallation target
impinge on the sample, which is placed in the center of the DANCE detector. The
initial states of analysed cascades — exclusively the s-wave neutron resonances in
well-deformed rare-earth nuclei — are identified using the time-of-flight technique.

5.1 Two-Step v Cascades Experiment

The TSC method was originally proposed by Hoogenboom in 1958 [112] and later
modified for the Ge detectors [113]. As mentioned above, the events of interest
are the cascades of multiplicity M = 2 terminating at the TSC final level (with
excitation energy Ersc), i.e. events for which sum of coincident detector signals
equals to a fixed sum energy Eg., = S, — Ersc. Under these conditions the spec-
trum of energies deposited in one detector contains all transition energies involved
in a TSC deexcitation process — this spectrum is called the TSC spectrum. The
TSC method ensures that a cascade S,, — E; — Ersc via an intermediate level ¢
contributes almost exclusively to the given TSC spectrum by a pair of narrow,
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symmetrically situated lines at y-ray energies £, = S, —E; and E., = FE;, — Ersc.

The typical TSC spectrum of a rare-earth nucleus contains several strong,
well-resolved lines at low and high energies originating from the TSCs via low-
lying levels. The mid-part of the spectrum consists of a number of rather weak
lines coresponding to the TSCs through the levels of the quasi-continuum. The
main goal of our TSC analyses is to find the models of PSFs and LD that can
describe the mid-parts of the TSC spectra.

5.1.1 TSC Experimental Setup

In case of our TSC experiment two Ge detectors were installed at the end of a six
meter long curved mirror neutron guide of the research reactor LVR-15 in Rez.
The basic layout of the experimental setup is shown in Fig.[5.I} The Ge detectors
— one Ge(Li) and one HPGe with efficiencies 12% and 20%, respectively — were
placed in close side-to-side geometry with a sample situated in between their
cylindrical surfaces [114]. The lithium carbonate (°Li;COj) plate with a small
aperture was placed at the entrance to the sample area to reduce and shape the
beam to 20x2 mm? with a uniform neutron flux of 3 x 10® n cm™2 s7!. Same
material was used to shield the detectors from sample-scattered and background
neutrons, the °Li,COs3 parts are depicted in light grey in Fig. |5.1, while the

shielding from the v background made of lead is depicted in dark grey.

detector

neutron

beam Pb
[
‘Li.CO;

Figure 5.1: The layout of the TSC experiment. The shielding is drawn — lead
in dark grey and lithium carbonate (°Li,COs3) in light grey. The figure is taken

from Ref. [115].

The layers of lead between the sample and each detector served an additional
purpose. They reduced the v cross-talk between the detectors — the events when
one of the detectors registers (i) a 7 ray after its backscattering in the other
detector, (ii) an annihilation v ray after pair production and the subsequent
positron annihilation in the other detector, or (iii) a bremsstrahlung coming from
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the other detector or (iv) any combination of (i)-(iii) which deposits the given
FEgum in the detector pailﬂ. The effect of so-called vetoing was also significantly
decreased by this lead shielding. The vetoing is the detection of the decay of a
TSC final level in coincidence with the detection of its feeding by T'SC. It changes
a desired TSC event to a parasitic event corresponding to another low-lying level,
possibly another TSC final level, of lower excitation energy. As the deexcitations
of TSC final levels are usually of low energy (tens or few hundreds of keV’s),
the lead layers significantly decrease the contribution of vetoing. Nevertheless,
we calculated the corrections for vetoing using a decay scheme of each studied
isotope and the energy dependence of the absolute detection efficiencies.
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Figure 5.2: The experimental spectrum of sum energies as measured in the
1%5Gd(n, v)'Gd TSC experiment. All observed TSC final levels are labeled
by their energy Ersc and J™ assignment. The TSC final levels selected for the
analysis are specified later. The single and double escape peaks are marked as
SEP and DEP with the energy of the corresponding TSC final level Ergc. In
the sum energy spectrum of the TSC experiment one can observe also triple and
quadruple escape peaks — these were measured in our experiments and are out of

the plotted ranges.

The auxiliary measurements of 37Cs and %°Co calibration sources were used
to correct the GEANT3 simulations [116] of the absolute detection efficiencies, the
corrections did not exceed 10%. It is important to note that the detector efficien-
cies for y-ray energies ., > 500 keV remain almost unchanged after inserting the
above discussed lead layers. To estimate the peak detection efficiencies (~ 1% at
500 keV) we used also the measurements of **Ba and '?Eu calibration sources
and a measurement of *Cl(n, v)?Cl reaction. All of these auxiliary measure-

'For example the annihilation + ray from (ii) can undergo backscattering in one of the
detectors and reach the other detector.
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ments were used for the channel-to-energy calibration. The energy resolution
of the detectors is ~ 2 keV at 1332 keV, the combined resolution in the sum
energy spectra is ~ 8 keV at ~ 8 MeV, see Figs. and 5.3l Futher details
of the experimental setup are given in Refs. [1141|116].
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Figure 5.3: The same as in Fig. but for the *7Gd(n,v)'®®*Gd reaction.

5.1.2 TSC Data Acquisition and Data Processing

The data acquisition hardware, a traditional fast/slow coincidence arrangement,
is described in Ref. [114]. Information about each individual event consisting
of amplitudes of both detector signals and their time difference At was recorded
in a list mode for off-line analysis.

When constructing the TSC spectra the background caused by the accidental
coincidences and the Compton effect is removed |114}|116]. By choosing three in-
tervals of sum energy and three time difference intervals we define nine rectangular
regions in the Fg,, x At plane. The central region contains the desired events —
true coincidences terminating at the TSC final level with Eg.,, = S, — Ersc, while
the other eight regions are used for the background subtraction, which is visual-
ized in Fig. 7 of Ref. [114]. The background remaining in the TSC spectra after
the subtraction was estimated using GEANT3 simulations [116]. At most ~ 1%
of cascades with energies F,, and E,, contribute to the spectrum outside of the
E, and E,, lines, the individual contributions of processes (i)-(iii) described in
Sec. and their characteristic energies were identified, see Fig. 5 of Ref. [116].

As an example, the TSC spectrum for 88.97 keV, J™ = 2% TSC final level
in 1Gd is shown in Fig. . In Fig. 1 of App. [A| we plot the TSC spectrum
populating the J™ = 2%, 79.5 keV level in 1**Gd. The high energy half is flipped
and plotted under the low energy half of the spectrum to emphasize its symmetry.
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Figure 5.4: Background-free TSC spectrum for 83.97 keV, J™ = 2% TSC final level
in 'Gd. The symmetry of the spectrum around its midpoint (E, = 4223.71 keV))
is evident (taking into account the effect of detector resolution). For example,
four peaks just above E, = 1000 keV corresponding to the cascades through
levels at 1154.15 keV J™ = 2% 1248.00 keV J™ = 3T, 1276.14 keV J™ = 3~
and 1319.66 keV J™ = 27 are easily identified, the strongest cascade via the
1248.00 keV level was used for the normalization as described in the text.

The background subtraction procedure produces the so-called bipolar struc-
tures [117]. An example of a bipolar structure is shown in Fig. 8 of Ref. [114]. A
bipolar structure originates from a partial detection of a very strong cascade with
E, +E,, > Esm when part of the energy is lost due to the Compton scattering.
The area of a given bipolar structure is zero, its shape depends on widths and
central values of the Fg,,, and At intervals chosen for the background subtraction,
the only free parameter is the magnitude. In principle, the bipolar structures can
be subtracted from the TSC spectra. However, as the visible bipolar structures
practically occur only at the low and high energy parts of TSC spectra, they are
out of the energy intervals of interest. Moreover, as the TSC analyses focusing on
PSFs and LD use the TSC spectra binned into relatively coarse bins with width of
hundreds of keV’s, the bipolar structures often contribute by their integral which
is zero as mentioned above. One of the bipolar structures observed in present
analysis is shown in Fig. 2 and discussed in detail in App. [A]

The TSC final level is in general also fed by three or more step cascades, in
case of the rare-earth isotopes often with higher probability than by two step
cascades. The probability of registration of three and more step cascade by a
pair of relatively low efficient Ge detectors decreases with increasing number of
steps. Nevertheless, the contribution of three and four step cascades is correctly
treated in our simulations, see Sec. [5.1.3]
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In order to express the yields of the experimental TSC spectra in well-defined
intensity units and to normalize the simulated TSC spectra to the experimental
ones, we determine an intensity of at least one distinct TSC cascade via a well-
resolved low-lying level, see Fig. 5.4 The knowledge of the branching intensities
of the involved primary and secondary transitions is essential and sometimes
requires an auxiliary measurement, see Sec. [0.1.4l As a result of this procedure
we can express the yields of all accumulated TSC spectra in units of number of
emitted v rays per neutron capture and unit of y-ray energy.

5.1.3 Specific Features of TSC Simulations

The simulations of TSC experiments are specific compared to simulations of other
experiments. Usually, the capture cascades generated by the DICEBOX code are
fed into the Monte Carlo simulations of the detection system, often based on the
GEANT4 toolkit [118]. However, in the case of TSC analyses the description of
the setup is achieved using the efficiency curves. There are several effects that
need to be taken care of, namely the angular correlation of v rays and a possibility
of detecting three- and more-step cascades. Besides the TSC, we account for the
detection of three- and four-step cascades terminating at the TSC final levels,
which typically represent < 10% of the integrated TSC intensity. We can safely
omit higher multiplicity cascades because the probability of detecting M ~ rays
significantly decreases with increasing M.

The correction for the angular -y correlation between primary and secondary
7 ray is included using the angular correlation function expressed as [119]

W) =1+ > Br(n)AL(y)QrPr(cosb), (5.1)

L=24,...

where By, and Ay, describe properties of the first and second ~ transition, respec-
tively, P;, are the Legendre polynomials of the L™ order and @, are the attenu-
ation coefficients that describe the smearing of the angular correlation function
due to finite detector solid angles. These coefficients can be calculated for a
given detector and experimental setup [120]. In the very close geometry of our
experimental setup the correction due to angular correlation does not exceed
10% for a dipole-dipole cascade. On the other hand mixed (i.e. M1 + E2) and
quadrupole-quadrupole cascades may require a rather large correction.

5.1.4 The Specifics of Gadolinium TSC Measurements

As mentioned in App.[A] the measured samples were enriched in *>Gd and **"Gd
to 91.2 and 82.5 %, weighting 115 and 58 mg, respectively. Both were irradiated
with the uniform neutron flux of 3 x 10%cm=2s~! for 300 hours.

The measured spectra of sum energies are shown in Figs. and [5.3. The
background-free TSC spectra are shown in Figs. and 1 and 3 of App. [Al

The presumably complete decay schemes were taken from the recent evalu-
ations of various experimental data, namely from Refs. [121,]122] for 5¢158Gd,
respectively. The critical energies were chosen as E.i = 1.95 and 2.1 MeV for
156,158 Gd, respectively.

For the normalization of simulated and experimental TSC spectra two cas-
cades in each nucleus, involving 7288- and 6750-keV primary transitions in %¢Gd

— 48 —



and 1°®Gd, respectively, were chosen. The auxiliary measurement of these nor-
malization TSC is described in App. [Al

5.2 Multi-Step v Cascades Experiment

The total absorption technique is one of the four methods to measure the neutron
capture cross sectionﬂ Aiming at the detection efficiency for a v-ray cascade as
close to 100% as possible, high efficiency detectors cover a solid angle as close to
47 as possible.

The DANCE detector is based on the array of 42 BaF, crystals formerly
installed at Forschungszentrum Karlsruhe [123]. This system has proven very
useful in the field of cross-section measurements for nuclear astrophysics with a
low-energy neutron source. The design studies of the DANCE array [124] were
performed using the GEANT4 simulations [11§]. Among other features, they ac-
counted for the difference of the neutron sources. As a results, the DANCE
detector displays higher granularity — it consists of 160 BaFy crystals, which
enables more precise distinction of higher multiplicity y-ray cascades as well as
of the background events induced by sample-scattered neutrons [125]. The cur-
rent knowledge of the DANCE detector response is achieved and routinely ver-
ified using the dedicated Monte-Carlo simulations |126] based on the GEANT4
toolkit [118]. The simulation of the DANCE detector response to cascades gen-
erated by DICEBOX represents an irreplaceable step in our MSC analyses.

5.2.1 MSC Experimental Setup

The DANCE detector is installed at the flight path 14 of the Manuel Lujan Jr.
Neutron Scattering Center in the LANSCE at LANL. The neutrons are produced
by the spallation reaction of 800-MeV protons from the LANSCE linac striking a
tungsten target. The moderated spallation neutron source [127] produces a white
spectrum of energies ranging from sub-thermal to hundreds of MeV at repetition
rate of 20 Hz. The distance from the neutron source to the DANCE detector is
about 20 m.

One hemisphere of the DANCE detector is shown in Fig. 5.5 Each BaF
crystal is wrapped in a PVC foil and glued to a photo multiplier tube (PMT) |125].
The crystal-PMT modules are held by the aluminium housings and supporting
structure. A 6-cm-thick °LiH shell is placed between the sample and the BaF,
crystals in order to reduce the scattered neutron flux striking the crystals.

The energy calibration of the individual DANCE crystals was performed with
a combination of y-ray sources (1*"Cs, 88Y, 22Na). The signals of « particles from
the intrinsic radioactivity in the BaF; crystals due to °Ra and its daughters were
accumulated on a run-by-run basis to provide the stability check of the energy
calibration, i.e. the energy alignment of all crystals for the whole measurement
in the off-line analysis. The energy resolution is about 16% and 7% for 1- and
6-MeV ~ rays, respectively.

2The other methods are activation, level population spectroscopy and total energy technique
(often in conjunction with use of the pulse height weighting function).
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The detection efficiency of the DANCE detector array was measured using
the ®°Co and above mentioned 7-ray sources and verified by the GEANT4 sim-
ulations . For a 1-MeV ~ ray the efficiency is 86% and the total efficiency
for detection of at least one 7 ray from a cascade typically exceeds 95%. In our
MSC analyses we use only cascades that were, roughly speaking, fully detected.
In such case the efficiency falls to several tens of percent, exact value depends on
the measured isotope.

»Bagd

At

Figure 5.5: Left — a cutaway view of one hemisphere of the DANCE calorimeter.
The gray SLiH shell is placed around the target in the center of the detector.
Right — the GEANT4 implementation of the corresponding hemisphere, the colors
indicate the four different shapes of BaF, crystals used in the detector. The
SLiH shell is implemented in the simulations but not shown. The figure is taken

from Ref. [128].

5.2.2 MSC Data Acquisition and Data Processing

The DANCE acquisition system [128] is based on digitization of signals from all
160 BaFy detectors using four-channel Acqiris DC265 digitizers with a sampling
rate of 500 mega samples per second. Intensities of the fast (decay time ~ 600 ps)
and slow (decay time a 600 ns) components of the scintillation signal from each
BaF, detector are collected independently. The typical signals of a v ray and
an « particle are shown in Fig. The a-background comes from natural ra-
dioactivity of Ra in the BaF, crystals [125]. The particle identification procedure
is based on the obvious difference between the signals — the fast component is
lacking in the « particle signals. The ~-ray signals are stored for futher analysis,
the a-particle signals are utilized for the fine energy calibration of the individual
crystals during the measurement. A timestamp of y-ray arrival determined by
the leading edge of the fast component is also stored and all signals are considered
to belong to the same event if they arrive within preset time window, usually set
to few tens of ns.
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Figure 5.6: The signals from a BaF crystal corresponding to left —+ ray and right
— « particle. The characteristic difference between the signals, namely the lack of
a fast component in the a-particle signal, is utilized for the particle identification
in the analysis. The figure is taken from Ref. [12§].

The calibration measurements and simulations show that an emitted ~ ray
does not necessarily deposit its full energy in a single crystal, but rather several,
often neighboring, BaF, crystals [126], see Fig. .71 The number of crystals
that fire during v-ray cascade detection is thus usually higher than the true
multiplicity. We combine all contiguous crystals that have fired during an event
into cluster. In other words, the cluster is a set of all neighboring crystals firing
within preset time window. The number of clusters observed in a capture event
is called the cluster multiplicity M. As pointed out in the App. [B] the results of
our analyses do not depend on the choice between cluster and crystal multiplicity.
The cluster multiplicity tends to be more practical and to better resemble the
real multiplicity. To consider each cluster as the response of the detector array
to a single v ray is not fully correct, as can be seen from Fig. 5.7 The crucial
point is that the procedure of clusterization is identical in the experimental data
reduction and in the detector response simulation.

5.2.3 The Specifics of Dysprosium MSC Measurements

All enriched Dy targets were prepared at the Oak Ridge National Laboratory as
self-supporting metal foils. Their masses and isotopic compositions are specified
in Tab. 5.1} Data were accumulated for approximately one week for each target
during regular beam cycles at LANSCE. The presumably complete decay schemes
were taken from the recent evaluations of various experimental data, namely from
Refs. [129H131] for 12-164Dy, respectively. The critical energies were chosen as
specified in Tab.

The time-of-flight can be calculated as a difference between the v-ray time-
stamp and the time of the initial saturation of the PMT by the relativistic par-
ticles. Alternatively the time information about the protons inducing the spalla-
tion reaction from the LANSCE linac can be used. The geometrical flight path
length is used for the rough conversion of the time-of-flight to neutron kinetic
energy. The final adjustment is performed using the tabulated energies of well-
know resonances [36]. Each detected event, constructed with the preset time
window of 20 ns, is then characterized by corresponding neutron energy, the clus-
ter multiplicity M, the sum of deposited energies Eg,,,, and the individual energies
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Figure 5.7: The visualization of the examples of the DANCE detector response to
one 6 MeV v ray as simulated by the GEANT4 toolkit. The shade of the crystals
indicates the amount of deposited energy, only crystals with more than 50 keV
are shown. The figure is taken from Ref. .

Target Mass Isotopic abundance (%)

(mg) Dy 161y 162y 163Dy 164y
Dy 31 0.33(2) 95.69(37) 252(13) 0.90(3) 0.56(5)
12Dy 69 0.08(2) 1.22(2) 96.26(2) L74(2) 0.69(1)
163Dy 32 0.03(1)  0.36(1)  1.23(2) 96.86(4) 1.52(2)

Table 5.1: Mass and isotopic composition of the measured dysprosium targets.
The abundance is given in atomic percent. The maximum abundance of other
stable dysprosium isotopes is 0.03%. The maximum abundance of other elements
is < 0.2% of Zn and Ce.

deposited in M clusters.

A relevant part of the experimental E, x Fg, spectrum for '*2Dy(n,v)'®3Dy
reaction is shown in Fig. [5.8 Inspecting this spectrum (or its projection on
neutron energy axis) we define the intervals of neutron energies coresponding to
strong, well-resolved resonances with sufficient statistics and unambiguous spin
assignment (in case of odd target nuclei). In the range of inspected neutron ener-
gies we observe only s-wave resonances. For these intervals of neutron energies we
construct the spectra of sums of deposited energies, hereafter called sum-energy
spectra. These spectra are shown in Fig. and Fig. 2 of App.

As explained in App. [B| each sum-energy spectrum consists of (i) a peak near
the neutron separation energy S, see Tab. [5.2] which corresponds to detection of
all y-ray energy emitted in a cascade, and (ii) a low-energy tail, which is formed
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Figure 5.8: The experimental E, X FEg, spectrum for all multiplicities for the
162Dy (n,y)'93Dy reaction. The resonance visible at E,, = 71.10 eV is the first
resonance included in our analysis.

by events where a part of the emitted y-ray energy escapes the detection. For low
multiplicities, M < 3, there is also a strong contribution from background which
dominantly comes from natural g radioactivity in the BaF, crystals at Fy < 3
MeV. Sometimes resonances in different isotopes have very similar energies to
those under study. If there is a strong resonance in some Dy impurity of the
target, a peak at S, from the product nucleus appears in the spectrum. Such
a “parasitic” resonance (from %°Dy target) is clearly visible in the sum-energy
spectrum for the 10.26 eV resonance in 92Dy at ~ 6 MeV, see Fig. 2 of App.

From the inspection of sum-energy spectra we define the intervals of sum
energies Fy, that contain mainly the events of the fully detected ~ cascades.
The sum-energy spectra are then normalized to the same total number of events
for M > 2 in the Ey intervals listed in Tab. The events with deposited
sum energy falling into Fy, intervals are used to construct the experimental MSC
spectra. For a given resonance, an experimental MSC spectrum for multiplicity M
is constructed by incrementing counts in M bins corresponding to the v energies
deposited in the M individual clusters within an event. The bin width of 100
keV, which is close to energy resolution of crystals for low energies, was chosen.
The experimental MSC spectra inherit the normalization of sum-energy spectra.
Examples of experimental MSC spectra are shown in Fig. [5.11] and Fig. 3 of
App.

The background subtraction and the uncertainties of the MSC spectra are
discussed in the App. together with the number of analysed resonances for
odd Dy targets. For the 92Dy target we obtained experimental MSC spectra
for 17 s-wave resonances with energies from 71.1 eV to 1261.4 eV. We excluded
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Figure 5.9: The examples of experimental sum-energy spectra for individual clus-
ter multiplicities M. The energies and J™ assignments, 1/27 in all cases, of the
resonances from the '2Dy(n,y)!%3Dy reaction are indicated. The shaded areas
represent the Ey interval for Dy as specified in Tab. [5.20 The spectra are
normalized as described in the text.

Target S, (MeV) Eyx (MeV) Eqi (MeV)

161Dy 8.197 7.6 -84 1.87
162Dy 6.271 2.2-6.4 0.89
163Dy 7.658 70-78 1.70

Table 5.2: The analysis conditions for dysprosium targets, namely the neutron
separation energy S, of the product nucleus, the range of sum energies used in
the data processing (Eyx) and the critical energy E;; used in simulations.

the first resonance at energy of 5.44 eV. It was recognized that this resonance
suffers from the effect of detection of more than one cascade within the preset
time window. The experimental F,, X Fg., spectrum exhibits the excess of counts
with Fg, > 10 MeV at neutron energies close to the resonance energy of 5.44 eV
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when compared to the neutron energies lower than 4.5 eV and higher than 6 eV,
see Fig. [5.10
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Figure 5.10: The experimental F,, x Eqm spectrum for the first 2Dy resonance
in the 12Dy (n, v)'%Dy reaction. The effect of detection of more than one cascade
is clearly recognized, see text for explanation. The visible peaks at sum energy
Egum = 8 MeV at neutron energy F, = 3.68 and 4.33 €V are the resonances of
161y,

The fabrication of the mean experimental MSC' spectra is described in App.
The mean experimental MSC spectra for M = 2 — 4 of even Dy products are
shown in Fig. 4 of App. [Bl The mean experimental MSC spectrum for M = 2 of
163Dy product is shown in Fig. together with the experimental MSC spectra
extracted for the different intervals of neutron energies in the vicinity of the first
resonance to illustrate the effect of detection of more than one cascade within
the preset time window on the shape of the experimental MSC spectrum. It
should be noted that the assumption of normally distributed experimental MSC
intensities breaks down at high energies (E > 5 MeV in case of 1%3Dy). The
different fluctuations are expected, because these parts of the spectra correspond
to the few primary transitions feeding the low-lying levels. The distribution of
experimental MSC intensities is then asymmetric and reflects the PT fluctuations
of primary transitions.

In the comparison with simulated MSC spectra the uncertainty of I, as de-
termined from the maximum likelihood fit, see Eq. (1) in App. , is displayed as
full rectangle, while the error bar represents the width of distribution of experi-
mental MSC intensities and is drawn as lexp £ Oexp-
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Figure 5.11: The M = 2 experimental MSC spectra for the '®2Dy(n,~)'%Dy
reaction. Top — the MSC spectra for 5 resonances included in our analysis.
The resonance energies are indicated. Bottom — the MSC spectra of the first
resonance at 5.44 eV are compared to the mean experimental MSC spectra of
other resonances (green) drawn as lex, £ 0exp. The effect of detection of more
than one cascade is illustrated. The spectrum labeled cental part corresponds to
neutron energies F, = 5.245 — 5.605 €V, the higher times part to E,, = 4.550 —
5.100 eV and the lower times part to E,, = 5.800 — 6.200 eV.
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Chapter

Results and Discussion

The information on level density and photon strength functions, in particular
on scissors mode, was obtained by a trial-and-error approach of comparing the
experimental and simulated spectra. Futher selection of model combinations was
performed using the simulated and experimental average radiative width.

6.1 TSC Experiments

The experimental spectra of sum energies are shown in Figs. and for
156,198 G d, respectively. The experimental TSC spectra gathered with a high res-
olution of HPGe detectors, see Fig. [5.4] enabled us to impose limits on spin and
parity of some of the low-lying levels, see Figs. 1 and 2 of App.[A]l The results are
listed in Tab. I of App.|Al the ones for *¥Gd were included in the latest evaluated
nuclear structure data file |[132] (ENSDF).

The neutron separation energies are 8.536 and 7.937 MeV for 1%6:1%8Gd, respec-
tively. The spin and parity of the capturing state in thermal neutron capture is
J™ = 27 for both isotopes due to the presence of resonances at very low energies
(0.0268 and 0.0314 €V in "5157Gd, respectively [133]).

The data gathered during the TSC measurements enabled us to retrieve TSC
spectra for 5 TSC final levels in each nucleus. The levels have spin and parity J" =
0%,2% and 4% in %%Gd and 0%,2%,4%,1~ and 3~ in '"8Gd. For the comparison
with simulations the TSC spectra were binned into bins with width of 100 keV.

Taking into account the SM parameters determined in the MSC analyses [100,
101], namely Egy ~ 2.9 MeV, the TSC spectra could have been expected to have
lower sensitivity to the PSFs, specifically to the SM strength, compared to the
measurement of 2Dy target [9697]. Therein it was shown that the sensitivity
is enhanced for the final state that can be fed by the M1 — M1 cascades with
the cascade energy close to 2Egy. There is no TSC final level that would satisty
these conditions in %°Gd, because all TSC final levels have positive parity and
thus are dominantly fed by £1 — M1 or M1 — E1 TSCs. There are two negative
parity TSC final levels in *®Gd, but the energy of TSCs feeding these levels is
2 6.9 MeV, which is considerably higher than 2Egy =~ 5.8 MeV, and the TSC
spectra for these final levels exhibit higher uncertainties, see Fig. 5 of App. [A]

This expectation was confirmed during the analysis. Consequently, the main
result of the TSC analysis regarding the PSFs is that the TSC spectra are re-
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produced by the PSFs determined in the MSC analyses [100}/101], specifically
with the E1 PSF given by the KMF or MGLO (kg ~ 2) model and with the
composite M1 PSF with the SM parameters Egy =~ 2.9 MeV, I'qq =~ 1.0 MeV
and ogy ~ 0.2 mb and a SP strength Ségl) ~ 2 x 107°MeV 2.

6.2 MSC Experiments

As the main results for the even dysprosium nuclei were published in App. [B], we
focus here on the %Dy results. Some details concerning the LD models in the
analysis of even isotopes are also discussed. We should note here that we do not
explicitly discuss the G-C LD model. The matching energy FE, in the G-C LD
model from the RIPL parametrization [33] is for odd isotope very close to neutron
separation energy S, and for even isotopes E, 2 (S, — 2) MeV, futhermore the
parameters of CT formula within the G-C LD model from Ref. [33] are very
close to the parameters of CT LD model from Ref. [32] making the models very
similar. Consequently, the conclusions from the simulations with G-C LD model
according to RIPL database [33] are the same as for the CT LD model according
to von Egidy and Bucurescu [32].

During the search for an acceptable description of the mean experimental
MSC spectra for all three isotopes, we have simulated one nuclear realization
(I = 1) within each of K = 20 nuclear suprarealizations, i.e. a set {wi}2>,. The
results of simulations, plotted as a gray band, are compared in Figs. with
the mean experimental MSC spectra. The gray band is centered at the average
of the set of simulated MSC intensities {I1;};>, and has a width of two standard
deviations of the set. These fluctuation corridors from simulations should be,
in general, broader than those for experimental spectra — the experimental ones
rather correspond to the fluctuations obtained from simulations of number of
nuclear realizations within a certain nuclear suprarealization 6/, i.e. from a set
{wir H_1-

To verify this expectation and to compare the experimental fluctuations to
properly simulated counterparts, we have performed the extended simulations of
K = 50 nuclear suprarealizations with I = 50 nuclear realizations within each
suprarealization. This comparison is meaningful only for the combinations of PSF
and LD models that yield satisfactory description of the mean experimental MSC
spectra. Futhermore, the extended simulations are very time consuming, so they
were performed only for a couple of combinations of PSF and LD models for the
162,164y The results are presented in Sec. VI. of App. [B} Despite the fact that
we performed several thousands simulations for %Dy, we have not been able to
reach better description of the mean experimental MSC spectra than presented
in Fig. [6.1] so the extended simulations were postponed.

6.2.1 LD in Even Dysprosium Isotopes

The main result, as presented in App. [B] is the clear preference of BSFG model,
see Figs. 7 of App.[Bland [6.2] over the CT, see Fig.[6.3] and G-C models and the
HFB calculation of LD. The simulations using the BSFG formula with param-
eters of either work by von Egidy and Bucurescu [31,32] and with the SMMC
LD [45] are practically identical, compare Figs. 7 of App.[B|[6.2and[6.4 The two
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Figure 6.1: Comparison of *Dy mean experimental MSC spectra with simu-
lations using the BSFG LD model, MGLO E1 PSF model and the composite
M1 PSF model. The kg and M1 PSF parameters were adjusted to best de-
scribe the mean experimental MSC spectra yielding kg = 4, Esmqy = 3.1 MeV,
Isy = 1.0 MeV, ogy = 0.6 mb. The insets show the low-energy parts of the
spectra, note that in the insets the v-ray energy axis is in keV and the Intensity
axis is in logarithmic scale. The full red rectangles show the mean experimental
MSC intensities Iy, with their uncertainties coming from the maximum likeli-
hood fit. The red error bars represent the width of distribution of experimental
MSC intensities, drawn as Iexp £ Oexp, S€€ Sec. m The gray band corresponds
to the result of simulations drawn as a two standard deviation corridor centered
at the average MSC intensity, for details see Sec.

parametrizations of von Egidy and Bucurescu differ mainly in the spin distribu-
tion, namely by the inclusion of the even-odd spin staggering and by the form of
spin cut-off parameter 0. The SMMC LD is the only one with parity distribution
different from g(+) = g(—) = 1.

For the practical reasons and because of the similarities discussed in Secs.

and [2.5] the simulations using SMMC LD were performed using the BSFG
formula with parameters of von Egidy and Bucurescu , the spin distribu-
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tion with the spin-cutoff parameter from the same work and with the even-odd
spin staggering vanishing at 4 MeV and with the parity distribution given by

Eq. @20,

6.2.2 LD in Dy

The prefered LD model is the BSFG formula with the parametrization of Ref. [32].
The best overall description of the mean experimental MSC spectra was found in
combination with the MGLO E1 PSF model and the composite M1 with adjusted
SM parameters, see Fig. [6.11 The simulations with older parametrization [31]
display an overprediction of higher (M > 5) multiplicities, see Fig. [6.5. The
preference of the BSFG formula is consistent with the results for even dysprosium
isotopes.

We were not able to adjust the M1 PSF in conjuction with any E1 PSF and
the CT LD model to achieve a satisfactory matching of the mean experimental
MSC spectra, see e.g. Fig. We conclude that the CT LD model is inap-
propriate for the %3Dy. This conclusion is affirmed by the comparison between
simulated and experimental average radiative width, see Sec. [6.2.6]

As in the case of older parametrization of the BSFG LD model, the simulations
with the HFB LD calculation overpredict higher (M > 5) multiplicities, see e.g.

Fig. [6.7

6.2.3 FE1 PSF in %Dy

Because no (v,xn) data are available for Dy isotopes, the GEDR parameters
from nearby nucleus '°Gd [134] were used. This seems to be fully justified as the
GEDR parameters are expected to vary smoothly with A for nuclei with similar
deformation. Furthermore, the shape of £1 PSF models at E, < S, i.e. in the
region of our interest, is, within uncertainties of the GEDR parameters, almost
indistinguishable when the GEDR parameters are taken from the fit of (,xn)
experimental data for different isotopes. Specifically, we inspected the **Sm,
1%6Gd, 1%9Gd and 'Ho GEDR parameters [134]. The highest deviation of at
most 10% from the SV with '°Gd GEDR parameters was observed with the
165Ho GEDR parameters for all £1 PSF models.

Despite the enormous number of tested model combinations, probably the
best possible description of the mean experimental MSC spectra was achieved
only with the MGLO model after appropriate adjustion of the M1 PSF, see
Fig.|6.1l The value of ky was determined to be kg ~ 3 —4. For the other E1 PSF
models introduced in Sec. the description was always worse, the examples of
simulation with the SLO, KMF and MLO2 models are shown in Figs. [6.8]
and , respectively. The observed trend is that (i) the model combinations
of E1 PSF models that are lower than MGLO model, such as KMF model,
overpredict the mean experimental MSC spectra for higher M 2 4 multiplicities
when adjusted to M = 2 and 3 spectra and (ii) the model combinations of
E1 PSF models that are higher than MGLO model, such as SLO and MLO2
models, underestimate the midpart of M = 2 spectrum when adjusted to M = 3
spectrum.
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6.2.4 M1 PSF in Dy

The parameters of the SM and the Séjl‘)ﬂ) were adjusted separately for combina-
tions of LD and E1 PSF models to find the best possible description of mean
experimental MSC spectra. For a given LD and E1 PSF model, the values of the
SM parameters can be constrained by the requirement of a simultaneous match-
ing of the bumps between F., ~ 2—4 MeV in the mean experimental MSC spectra
of multiplicities M = 2 —4 and the shapes of the high energy parts of the M > 3
spectra. We were never able to reproduce the dip at energy E, ~ 1 MeV in the
experimental MSC spectra of M > 3.

The disagreement in the very low energy (E., < 900 keV) parts of MSC spec-
tra, shown in the insets of Figs. [6.116.14] and the underestimation of measured
intensities in the region of high energy primary transitions £, 2 5 MeV in the
M = 2 MSC spectra might point to an inadequate description of the PSF at
these y-ray energies. On the other hand, the assumption of normally distributed
MSC intensities in the high energy range might be unreasonable — the distribution
might be asymmetric as discussed in Sec. [5.2.3]

As already mentioned, the best possible description was achived only for the
combination of MGLO E'1 model with the BSFG LD model with parameters from
Ref. [32]. The prefered values of ko are between ko ~ 3, see Fig. [6.11] and ko ~ 4,
see Fig. [6.1] The simulations with these values of kg yield the average radiative
widths compatible with the experimental value within uncertainties, see Tab [6.2]

The adjusted parameters of the SM are given in Tab. [6.1] the intervals of
allowed values are determined from the simulations with ky = 3—4. The strength
of the SM listed in Tab. corresponds to the interval ogy = 0.6 — 0.8 mb. The
problems with finding the model combination, that would precisely describe the
mean experimental MSC spectra, might be related to the form of the composite
M1 PSF model. This model has four adjustable parameters and exhibits no
Ty-dependence. If we are unable to reach a model close to reality within our
testing space, we can never find a satisfactory description. It is possible to enlarge
the testing space by introducing for example more complicated structure of the
SM or the Ty-dependence of the components of M1 PSF.

Isotope FEgy (MeV) Tsm (MeV) S B(SM) (u3%)

162Dy 2.8-3.0 1.0-14 23-43
163Dy 3.0-3.1 0.8-1.2 2.4-9.0
164Dy 2.8-3.0 1.0-14 50.3-75

Table 6.1: The parameters of the scissors mode reproducing both the mean exper-
imental MSC spectra and the average radiative width as deduced in our analysis.

The single particle strength is limited to Ségl) <1 x 107"MeV®, there was
no SP strength in the simulations presented in Figs. and [6.11]

From the comparison of adjusted SM parameters given in Tab.[6.1] namely the
observed strength of SM in %Dy, it is evident that we did not observe the even-
odd effect in the SM strength as in the gadolinium isotopical chain [77,{100L/101].

It is worth reminding that the results on Séjl\fl) in even isotopes, as given in
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App. B}, are very different and might point to more complicated behavior of M1
PSF as a whole.

6.2.5 Low-energy Enhancement of Dipole PSF

We made several tests of a possible influence of the low-energy enhancement
on the decay of 192-164Dy. The enhancement following the Brink hypothesis
was checked. None of the simulations with a low-energy enhancement led to a
satisfactory description of mean experimental MSC spectra, see Fig. and
Fig. 11 of App. [Bl In our simulations we adopted the exponential form of low
energy enhancement with parameters deduced from the *4Sm(p,dv) data [104]
scaled down to the experimental data from *He-induced reactions [63,98,99).
Despite the indications about its M1 character, see Sec. [3.4.3], the enhancement
was tested with a pure E'1 or M1 character and as a 1:1 combination to cover all
possibilities.

In order to test the PSF that is still consistent with the Oslo-type data but
falls to zero for £, — 0, we performed simulations with low-energy resonance.
The parameters of this resonance were determined to describes the trend of the
data from '%24Sm(p,dv) experiment [104] scaled down to the experimental data
from ®*He-induced reactions [63,98,99]. We tested the same possibilities of E1
or M1 nature as in the case of the exponential enhancement. The result of such
simulation for %Dy is shown in Fig. 11 of App.[Bl None of these simulations led
to a satisfactory description of our data. The common result of these simulations
is a strong, unrealistic preference of higher multiplicities.

6.2.6 Average Radiative Width

As mentioned in Sec. , the simulated average radiative width T, is in general
the only detector-independent quantity simulated with the DICEBOX code that
depends on the absolute values of the PSFs. As such it can be used to further
restrict the acceptability of the model combinations found from the comparison
of simulated spectra with their experimental counterparts.

Although the majority of LD and E1 PSF models can be rejected just from
the comparison of mean experimental and simulated MSC spectra, the resulting
fv can provide additional support for such conclusions. The simulations using
the CT LD model give a I, comparable with the experimental value only when
the SLO model of F1 PSF is used, see Tab. However, for this combination
of LD and E1 PSF models we were unable to adjust the M1 PSF to reproduce
the mean experimental MSC spectra.

For other E1 models the 16264Dy simulations with CT LD model could be
rejected solely by the comparison of I',. Futher conclusions for simulations with
BSFG model are enabled by a good precision of the experimental average radiative
widths and too low simulated values of I, see Tab. II of App. .

In case of %Dy the uncertainty of the experimental I, is 18%, which limits
the discrimination power of average radiative width, see Tab. [6.2] The model
combinations that well describe the mean experimental MSC spectra, namely the
BSFG LD model in conjuction with the MGLO E1 PSF model, reproduce also
the experimental average radiative width. On the 3o level only the combination
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of CT LD model and KMF E1 PSF model can be rejected.

T, (meV) LD

PSF BSFG  CT
SLO 191(8) 117(7)
KMF 76(2)  45(

45(2)
MGLO(ko = 3)  90(3)  52(3)
MGLO(kg =4) 104(4) 62(4)
Experiment 112(20)

Table 6.2: The experimental average radiative width of s-wave neutron resonances
compared to the simulated radiative width. The simulations are labeled with the
used LD and F1 PSF model, the M1 PSF was adjusted as described in Sec. [6.2.4]

The experimental value is taken from [306].

6.3 Comparison with Other Experiments

6.3.1 TSC Data

The simulation based on the LD and PSFs models determined in the TSC anal-
ysis [9697] is compared to the mean experimental MSC spectra in Fig.[6.13] An
acceptable description of the M = 2 mean experimental MSC spectra is achieved,
but higher multiplicities M > 3 display an apparent disagreement. This dis-
agreement is induced by the relatively low width of the SM I'syy = 0.6 MeV, the
situation is not salvaged by changing the parametrization of the BSFG LD model
to neither of the recent ones [31,32]. Motivated by this observation, the test with
the TSC data is needed to check their consistency with the best possible model
combination coming from the MSC analysis. Our expectation is that the model
combination from TSC analysis as listed in [97] represents one particular solution
from the set of possible model combinations that are able to describe the TSC
data.

6.3.2 NRF Data

To compare our results with the summed M1 strength as determined in NRF ex-
periments we have integrated all M1 strength in the energy range 2.7 — 3.7 MeV.
The range of values obtained for %Dy using the composite model of M1 PSF
SM1) — Séﬁl) + Sé];[l) + Séjl‘fl) is 3.4 — 5.4 p3, which is compatible with the
summed M1 strength of 3.30(36) u% [95]. We should again note that in case
of 153Dy the SM contributes between 80 and 90% of the strength in the compos-
ite M1 PSF model. The tail of SF resonances and the possible SP strength are
responsible for the rest of this summed M1 strength.

6.3.3 Oslo Results

The mean experimental MSC spectra are compared to the simulations based on
the Oslo results form Refs. [35,99] in Fig. [6.14]
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The SM parameters from the *He-induced reaction in 3Dy were determined
in Ref. [99] — the position Egy = 2.81(9) MeV, which is lower yet compatible with
our result, the width I'syy = 0.86(19) MeV, which nicely agrees with our result,
and the ogy = 0.72(12) mb in excellent agreement with our result.

Contrary to the restricted energy range used to compare all M1 strength
with the NRF data, the total SM strength can be compared to the Oslo results —
excellent agreement is found between our interval of allowed values Y- B(SM) =
5.4 — 9.0 3 and the strength of 7.1(20) p3 from Ref. [99].

This overall good agreement on the SM parameters is in contradiction with
the comparison of MSC spectra in Fig. [6.14] and with the comparison of sum of
dipole PSFs as presented in Fig. |3.5] notice the difference between green data-
points (Oslo) and blue curves (MSC). Judging by our very good description of the
average radiative width as listed in Tab. [6.2] we conclude that the normalization
of Oslo data is questionable and the agreement of the SM parameters might be
coincidental in this case.

— 064 —



N W
o o

—
o

Intensity (arb. units)

60

40

20

0 | | 8
y-ray energy (MeV)

Figure 6.2: Comparison of %Dy mean experimental MSC spectra with simula-
tions using BSFG LD model, MGLO E1 PSF model and the composite M1 PSF
model. The kg, SM and SP parameters were taken the same as in Fig. 7 of App.
with the SM width I'sy; decreased by 0.1 MeV. The full red rectangles show the
mean experimental MSC intensities /o, with their uncertainties coming from the
maximum likelihood fit. The red error bars represent the width of distribution
of experimental MSC intensities, drawn as Iexp, £ Oexp, see Sec. The gray
band corresponds to the result of simulations drawn as a two standard deviation
corridor centered at the average MSC intensity, for details see Sec.
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Figure 6.3: Comparison of 12Dy mean experimental MSC spectra with simula-
tions using the CT LD model, MGLO E1 PSF model and the composite M1
PSF model. The ky, SM and SP parameters were adopted from simulations with
BSFG LD that best described the mean experimental MSC spectra. For addi-
tional details see Fig. 6.2
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Figure 6.4: Comparison of 2Dy mean experimental MSC spectra with simu-
lations using the SMMC-like BSFG LD model, MGLO E1 PSF model and the
composite M1 PSF model. The ks, SM and SP parameters were adopted from
simulations with BSFG LD that best described the mean experimental MSC
spectra. For additional details see Fig. [6.2}
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Figure 6.5: Comparison of 3Dy mean experimental MSC spectra with simu-
lations using the BSFG LD model, MGLO E1 PSF model and the composite

M1 PSF model.

The ky and M1 PSF parameters were adjusted to best de-

scribe the mean experimental MSC spectra yielding ko = 4, Esy = 3.0 MeV,
sy = 1.0 MeV, ogy = 0.8 mb. For additional details see Fig. [6.1
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Figure 6.6: Comparison of 13Dy mean experimental MSC spectra with simula-
tions using the CT LD model, MGLO E1 PSF model and the composite M1 PSF
model. The ky and M1 PSF parameters were kept identical to those in Fig.
For additional details see Fig.
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Figure 6.7: Comparison of %Dy mean experimental MSC spectra with simula-
tions using the HFB LD calculation, MGLO E1 PSF model and the composite
M1 PSF model. The ky and M1 PSF parameters were adjusted to described
the midpart of M = 2 mean experimental MSC spectrum yielding ky = 3,
Esy = 3.0 MeV, I'sqyy = 1.0 MeV and ogy = 0.6 mb. For additional details
see Fig. 6.1
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Figure 6.8: Comparison of 1Dy mean experimental MSC spectra with simula-
tions using the BSFG LD model, SLO E1 PSF model and the composite M1 PSF
model. The SM parameters were adjusted to described the midpart of M = 3
mean experimental MSC spectrum. For additional details see Fig. [6.1]
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Figure 6.9: Comparison of %Dy mean experimental MSC spectra with sim-
ulations using the BSFG LD model, KMF E1 PSF model and the composite
M1 PSF model. The M1 PSF parameters were adjusted to described the mid-
part of M = 2 mean experimental MSC spectrum yielding Fgy = 3.0 MeV,
Tam = 0.8 MeV, ogy = 0.6 mb and Ssp = 2 x 107°MeV 3. For additional details
see Fig. 6.1
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Figure 6.10: Comparison of 3Dy mean experimental MSC spectra with sim-
ulations using the BSFG LD model, MLO2 E1 PSF model and the composite
M1 PSF model. The M1 PSF parameters were taken identical to simulations in
Fig. For additional details see Fig.
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Figure 6.11: Comparison of %Dy mean experimental MSC spectra with simu-
lations using the BSFG LD model, MGLO E1 PSF model and the composite

M1 PSF model.

The ky and M1 PSF parameters were adjusted to best de-

scribe the mean experimental MSC spectra yielding ko = 3, Esmy = 3.1 MeV,
sy = 1.0 MeV, ogy = 0.6 mb. For additional details see Fig. [6.1
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Figure 6.12: Comparison of 3Dy mean experimental MSC spectra with simula-
tions using the LD, E1 and M1 PSF models including the low-energy enhance-
ment in M1 PSF in accord with the Oslo-type analysis [104]. The SM parameters
were Egy = 3.0 MeV, I'spqp = 1.0 MeV and ogy = 0.6 mb. For additional details
see Fig. 6.1}
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Figure 6.13: Comparison of 13Dy mean experimental MSC spectra with simula-
tions using the LD, E1 and M1 PSF models from the TSC analysis [96/97]. The
SM parameters were Fgy = 3.0 MeV, I'syy = 0.6 MeV and ogy = 1.0 mb. For
additional details see Fig.
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Figure 6.14: Comparison of %Dy mean experimental MSC spectra with simu-
lations using the LD, E1 and M1 PSF models from the Oslo analysis [35,99).
The temperature of KMF-T model was determined as 7' = 0.3 MeV, the SM pa-
rameters Fgy = 2.81 MeV, I'sy = 0.86 MeV and ogy = 0.72 mb. For additional
details see Fig. 6.1
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Chapter

Conclusions and Outlook

The coincidence data on 7 cascades from radiative capture of thermal and res-
onance neutrons on well-deformed rare-earth nuclei were analysed within the
statistical model of v decay. Specifically, the spectra for two even gadolinium
isotopes, measured by two-step v cascades experimental setup at the research
reactor LVR-15 in ReZ, enabled a confirmation of preceding findings on level den-
sity and photon strength functions [77,{100}101] deduced from the multi-step
cascades experiments performed with DANCE calorimeter in LANSCE at LANL
with these isotopes. The DANCE setup was also utilized to measure the multi-
step ~v cascades for three dysprosium isotopes. While the gadolinium data proved
a consistency of results from two- and multi-step 7 cascades measurements, the
analysis of 3Dy multi-step 7 cascades encourages us to revisit the two-step v
cascades data [96497].

The common result for all analysed isotopes is the clear influence of the scissors
mode on the decay of excited levels, which persists quite high in the excitation
energy. The preference of the BSFG LD and the MGLO E1 PSF models is also
a common feature. Despite the fact that the success of MGLO is likely achieved
by the ad hoc adjustable parameter kg, the prefered shape (and its change with
excitation energy) of the E1 PSF was determined for all isotopes.

The dysprosium isotopes are the first isotopes that were analysed by the Oslo
method [63,98,99], measured with the nuclear resonance fluorescence scatter-
ing [91-93,95] and studied in the multi-step v cascades experiments. Moreover,
the two-step v cascades data are available for '*Dy [96,97]. This enabled the
direct comparison of results coming from these experimental techniques. With
the exception of %Dy, it can be said that for even-even gadolinium and dyspro-
sium isotopes the M1 strength determined by the Oslo method is the only one
inconsitent with the results of the other methods. On the other hand, the nuclear
resonance fluorescence scattering results for odd isotopes are very likely underes-
timating the M1 strength in well-deformed rare-earth nuclei, which is consistently
found by at least a factor of 2 higher by all other techniques. Keeping in mind
the determined values of the average radiative width, the comparison of dipole
PSF from Oslo method and from multi-step v cascades analyses hints to possible
problems in normalization of 1¢364Dy Oslo data.

The '%'Dy(n,7)'%?Dy reaction was measured using an array of segmented
HPGe clover detectors EXOGAM at the cold neutron beam facility PF1B of
the Institut Laue-Langevin within the EXILL campaign [135]. After validating
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the currently developed GEANT4 description of the setup, the models that best
describe the MSC data are planned to be tested also on the EXILL data, that are
ready for the comparison in the form analogous to the MSC data (M = 2—4) for
several TSC final levels. The data for 1%>157Gd and '*“Er targets are also possibly
available from the EXILL campaign [135] as well.

There is a wealth of MSC data measured by DANCE calorimeter and Total
Absorption Calorimeter [136] installed at n_ TOF facility at CERN [137], that are
being analysed or waiting to be analysed. Within the DANCE collaboration, the
MSC analysis for ' Er compound is ongoing, it will provide another point of view
to the applicability of the Statistical Model of v decay through the comparison
of measured and simulated population of 1.094 MeV K-isomer with halflife of
~ 110 ns.

The results presented in this thesis confirm that at least the mean experi-
mental quantities seem to be consistent with the predictions made within the
Statistical Model of « decay by appropriate choice of Level Density and Photon
Strength Function models. The wealth and precision of the resonance experimen-
tal data enabled, for the first time, the analysis of fluctuations for a sizeable set
of neutron resonances. The results, as puzzling as they are, will hopefully induce
futher studies.
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