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Abstract

The most basic task in credit scoring is to classify potential borrowers as
"good" or "bad" based on the probability that they would default in the
case they would be accepted. In this thesis we compare widely used lo-
gistic regression, neural networks and tree-based ensemble models. During
the construction of neural network models we utilize recent techniques and
advances in the field of deep learning, while for the tree-based models we
use popular bagging, boosting and random forests ensembling algorithms.
Performance of the models is measured by ROC AUC metric, which should
provide better information value than average accuracy alone. Our results
suggest small or even no difference between models, when in the best case
scenario neural networks, boosted ensembles and stacked ensembles result in
only approximately 1%−2% larger ROC AUC value than logistic regression.
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Abstrakt

Jednou z najzákladnejších úloh kreditného skóringu je klasifikácia poten-
cionálnych klientov žiadajúcich o úver na "dobrých" alebo "zlých", na zák-
lade pravdedepobnosti, že by neboli schopní splácať úver v prípade, že by
im bol odsúhlasený. V tejto práci porovnávame často použivanú logistickú
regresiu, neuronové siete a ensemble modely založené na stromových metó-
dach. Pri konštrukcii neuronových sietí používame nové metódy a poznatky
z oblasti hlbokého učenia, zaťiaľčo v prípade stromov používame populárne
ensemble algoritmy bagging, boosting a náhodné lesy. Modely porovnávame
na základe ROC AUC miery, ktorá by mala poskytnúť väčšiu informačnú
hodnotu ako len samotná presnosť. Výsledky naznačujú malý alebo takmer
žiadny rozdiel medzi modelmi. V najlepšom prípade, dosahujú neuronové
siete, boosted ensemble modely a zložené ensemble modely len približne o
1%− 2% väčšiu ROC AUC hodnotu ako logistická regresia.

Klíčová slova

kreditní skóring, neuronové sítě, rozhodovací strom, bagging, boosting, náhodný
les, ensemble, ROC křivka
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Bachelor Thesis Proposal

Thesis will try to introduce various machine learning techniques to an-
swer the question of whether in terms of loan default prediction, they can
perform comparably or even better than normal linear regression models.
Default predictions used in big institutions are usually exclusively modelled
by logistic regression, therefore I will try to show that machine learning
models can replace/be used together with this normal approach.

Data used for the thesis are from Lending Club from 2007-2017. Lending
Club is the biggest peer-to-peer lending platform in the US. The dataset
contains 300 thousand completed loans with 30 relevant variables. The
dataset will be split into a randomly selected training subset and a smaller
randomly selected testing subset. The models will be constructed using the
training subset and subsequently run on the testing subset to compare the
performance of the models. Selected machine learning models will involve
primarily decision trees & random forests (James et al., An Introduction
to Statistical Learning) and artificial neural networks (Murphy, Machine
Learning: A Probabilistic Perspective).

The thesis will contain a theoretical and an empirical part. In the theor-
etical part I will firstly review the current state of machine learning usage in
economics and secondly review machine learning techniques. In the empir-
ical part I will use the data to create different models for predicting default.
In the final chapter I will compare the results and conclude.
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1 Introduction

One of the functions of lending institution is primarily to act as intermedi-
ary for borrowers and lenders. As relatively small reward is shadowed by
potential large loss stemming from borrowers defaults, early detection of
problematic loans is one of the most important goals of lending institutions.
One of the models used to fulfill this task, is the model, that can reliably
predict probability of borrower’s inability to repay the loan (defaulting),
which can be referred to as credit scoring.

Historic overview of bankruptcy prediction studies by Bellovary et al.
(2007) [1] provides information about trends in model usage in scientific
studies since 1930s. Until Altman in 1968 published study using multivari-
ate discriminant analysis, all studies were using simple ratios of economic
indicators to evaluate companies. After 1968, discriminant analysis models
were primarily used until 1980s, when logistic and probit models became
more popular. Studies using neural networks came in late 1980s however
they didn’t overtook logistic/probit models usage until 1990s.

Louzada et al. (2016) [2] provide natural extension of this study by re-
viewing classification models for credit scoring used between years 1992 and
2015. Their findings reveal that most frequently used models in this period
were neural networks. Second most popular were hybrid models which com-
bine techniques from multiple models together (for example models which
perform feature selection and optimization simultaneously). Other popular
models include ensembles, support vector machines and logistic regression.
Result wise, majority of tested methods were very similar with fuzzy logic
systems and support vector machines being overall slightly better.

Neural networks have been used for a long time, however the largest ad-
vances in these models came in the last 10 years from the fields of deep learn-
ing and AI research. Main points of interest for these fields are "big data"
projects involving image processing, natural language processing, speech and
audio recognition and associated projects like self-driving cars and AI assist-
ants. Even though it is not their primary objective, we will try to explore

1



the potential of these new techniques on a simple classification problem.
Relatively new methods like neural networks, support vector machines

etc. are developed to match or even outperform simpler older models like
linear discriminant analysis, logistic regression or decision trees. Our next
goal will be to construct tree-based models to show that even this simple
method, when used in conjunction with ensembling can match the more com-
plex methods. Ensembling is a process in which group of models is used to
reach final prediction. Twala (2009) [3] measures performance of ensembles
of models on credit datasets with added artificial noise. Overall ensembles
outperform any single model trained on datasets with or without added
noise. Naive Bayes classifier, logistic regression and decision trees performed
the best, while worst performance was achieved by k-nearest neighbors and
neural networks. Similar results, where ensembles of models beat any single
model were presented by multiple studies [4] [5].

Majority of literature which compares models credit scoring models, meas-
ures model performance by classification accuracy and tries to maximize this
statistic. We argue that because it is generally not known what are the costs
associated with accepting bad loan applicant (false positive case) or declining
good one (false negative case), only that certainly second case is preferred
over the first one, we cannot use accuracy as the primary indicator of model
performance. Instead we try to optimize statistic ROC AUC (Receiver Op-
erator Characteristic Area under curve) which tries to capture the whole
classification performance of a model without the need of choosing exact
decision threshold.
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2 Literature Overview

Large amount of literature has been published comparing credit scoring mod-
els. Here we present mostly scientific papers which review overall usage of
methods, but also those with smaller scope which are of great relevancy to
this thesis.

Henley and Hand (1996) [6] review statistical methods used in consumer
credit scoring. They conclude that there is not an universally best method as
this is deeply data specific problem but note that speed of classification and
interpretability of model decisions are additional measures which should be
considered when building a model. In this way logistic regression, k-nearest
neighbors and some tree based methods are preferred to methods such as
neural networks. On the other hand, the authors note that neural networks
are better in the situations, when data structure is not well known as they
can decide which features to use in which way. Simultaneously they argue
that credit scoring has a considerable history with a solid understanding of
data and therefore new classification models are unlikely to improve current
models significantly. The point of possible improvement, in their opinion is
in the collection or engineering of new features or in the fundamental change
of the classification strategy.

West (2000) [7] compares traditional multilayer perceptron architecture
(MLP) of neural network with four different architectures and commonly
used models acting as a baseline. On the two used datasets mixture-of-
experts and radial basis function models perform significantly better than
MLP models but not as good as logistic regression, which is on average
method with the lowest overall error rate. Non-parametric methods k-
nearest neighbors, kernel density estimation and decision trees perform sig-
nificantly worse than all previous methods, which authors partially attribute
to the small size of the used datasets.

Baesans et al. (2003) [8] benchmark eight state of the art classification
algorithms. Best obtained results are on average produced by support vector
machines and neural networks, however they are only marginally better and
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basic models like linear discriminant analysis and logistic regression are very
comparable or even better in some specific cases. Authors conclusions are
that this is because most credit scoring datasets are only weakly non-linear,
thus potential gain from using neural networks is minimal.

Alaraj et al. (2014) [9] use simple neural networks (2 hidden layers, 20-
40 neurons) to classify consumer loans candidates using ensembles of neural
networks. They explore new techniques called CV-bagging and Bagging-CV.
CV-bagging creates n bags on each partition which is created during k-fold
cross validation process, creating in total nk neural networks. Bagging-CV
does the same but vice versa, first creates n bags and then partitions each
bag by k-fold cross validation process. Results suggest that these methods
are comparable to the basic k-fold CV, but produce more stable models
with smaller variance. However this can be partially explained by the vast
number of models constructed in this methods compared to the k-fold cross-
validation.

2.1 Internal rating models

Basel II in 2002 introduced internal ratings-based approach, which allows
lending institutions to use their own internal credit risk models.

Belás and Cipovová (2007) [10] summarize guidelines for internal rating
models, as well as provide description of the process of model development.
Some obvious fundamental requirements include objectivity, sufficient ac-
curacy and consistency between multiple models. Banks generally classify
potential loans into multiple rating categories based on the risk instead of
just binary categories, representing good and bad borrower, which are often
used in scientific studies.

Process of internal rating model development involves generation of the
dataset, development of the model itself, calibration, qualitative and at the
end quantitative validation. Dataset generation is composed of data cleans-
ing, dealing with missing values, investigating correlation between features
and collection of enough data to cover whole target population. During cal-
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ibration, outputted probabilities are associated with credit rating category.
Validation is often performed by leave-n-out cross-validation, where models
are trained on datasets without n samples and subsequently tested on those
n samples (this occurs until all samples have been left out). Qualitative
validation involves model design testing, data quality testing and internal
test of model utilization. Quantitative validation is accomplished by back
and stress testing of models. After model passes the whole process, it can
be deployed, but periodical checking of its performance on new data is still
required.

The Single Supervisory Mechanism, which comprises of European Cent-
ral Bank and all central banks of Euro participating countries, provides
extensive guidelines for models predicting probability of default [11]. Some
noteworthy requirements include minimal list of features used in the model,
namely client type, product type, region of client’s location, past delinquen-
cies and maturity of a loan. The model is required to have solid theoretical
assumptions and has to consider possible change of the economic condi-
tions. They also set requirements for rating categories, as well as procedures
associated with their modification, in case of sudden change in economic
conditions or unexpected increase of default rates.

Austrian central bank Oesterreichische Nationalbank (2004) [12] provides
overview of most used practices linked with internal rating models in banks.

Internal rating models of lending institutions can be generally divided
into heuristic, statistical, causal and hybrid form models.

Most notorious heuristic tools are questionnaires, which appoint given
number of points to each question and the end, borrowers who cross some
point threshold are deemed solvent.

Other tools include:

• Qualitative systems, similar to questionnaires, but rate each answer on
a scale.

• Expert systems, which try to create complex rule based models essen-
tially trying to emulate analytical behavior of real human credit experts.
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• Fuzzy logic systems, which introduce fuzzy logic into the expert sys-
tems.

Basic expert systems are very similar to decision trees, but are not al-
gorithmically created. Instead they are designed in advance by human ex-
perts to automate decision process. They use knowledge base, collection of
various credit risk related research, as a source for series of rules to perform
the final decision. More complex expert systems also incorporate statistical
models [13].

Fuzzy logic systems act as an extension of expert system. Compared to
the basic expert systems ratings are not based on some solid threshold but
instead implement the concept of partial truth i.e. decision which rates a
feature as good if it is higher than a, and bad if it is lower or equal, would
in basic expert systems rate value a + ϵ as good where fuzzy logic system
could rate it as 90% bad and 10% good, thus capturing the whole spectrum
instead of just dichotomous decision.

Statistical models use past data to score borrowers in contrast of mostly
subjective scoring in heuristic methods. Most frequently used "classical"
models are Linear Discriminant Analysis (LDA) and Logistic (or probit)
regression (LR). In practice logistic regression and probit are very similar
and LR is mostly preferred just because of the easier interpretability.

In comparison to LR, LDA requires normality of independent variables
and homoscedasticity, assumptions which can be rarely fulfilled. Even if
the LDA assumptions hold, it has been shown that with large sample size
differences in performance between LDA and logistic regression are minimal
[14].

Logistic regression has been also shown to be the most common model
used in the lending institutions [15] [16], partially because of its speed and
easy interpretability. Because of these reasons, we will use logistic regression
as the baseline model in our experiments.

Causal models use financial theory as a key factor in decision making.
Most famous causal models utilize theory from option pricing or cash flow
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models.
Option pricing model, used predominantly for firms, assumes that a de-

fault will happen if the borrower’s debt exceeds the economic value of the
his assets. In this model, loan taken by a firm is considered as an option
which in the case of default awards the firm itself to the lender. At this point
standard option pricing theory is used to calculate the price and probability
of the option’s exercise (which corresponds to the probability of default).

Cash flow models are used to predict future cash flows therefore indir-
ectly probability of default. Cash flows are the sole consideration in this
model, and other borrower’s characteristics are not considered. Option pri-
cing models often utilize cash flow models to impute economic value of the
firm.

Hybrid form of models is the method which combines previous mentioned
models together in order to improve classification performance. Hybrid mod-
els can be generally divided into two categories.

Horizontal linking combines models which are good with quantitative
data (statistical, causal) and models which are good at qualitative data
(heuristic). Final assessment is then function of both models’ outputs.

Vertical linking is characterized by its ability to implement models which
can override decision made from models which are higher in the hierarchy.
For example, credit analyst can modify final classification of the statistical
or causal model on his own discretion. Specification of the exact rules in
which conditions can the classification be modified are strongly needed to
prevent moral hazard and other problems.

7



3 Models

Because lending institutions often gradually rate applicants, higher grade
representing higher risk and higher interest rate, it is possible even for
highly risky loans to be profitable if the interest rate is sufficiently high.
Construction of this kind of classification system is however more complex
and requires further data specific to the each institution.

Our ambition is simpler and more general, that is to categorize loan
applicants into two groups, group which will likely repay the whole loan
without problems and group which will likely be not able to repay. All
models output probability of default and optimal threshold determines the
class. We will treat defaults as a positive case and fully paid loans as a
negative.

3.1 Logistic regression

Logistic regression is a binary response model, where output of the regression
represents probability of successful event (in our case default). LR can be
seen as a linear model where dependent variable is a logit transformation
of y (also called log odds), xxx is matrix of independent variables (with first
column filled with 1 to allow for intercept) and βββ is a vector of coefficients.

log( P (y = 1|xxx)
1− P (y = 1|xxx)) = xxxβββ (1)

Probability P (y = 1|xxx) is then,

P (y = 1|xxx) = 1
1 + e−xβxβxβ

(2)

Maximum likelihood estimation is the most often used method to estimate
coefficients of logistic regression. To illustrate the process we present simple
algorithm to find optimal βββ. Let P (xxxi,βββ) represent P (y = 1|xxx) for data point
i from the logistic regression with parameters βββ. To simplify calculations we
will work with log-likelihood:

l(βββ) =
N∑

i=1
yi log[P (xxxi,βββ)]+(1−yi) log[1−P (xxxi,βββ)] =

N∑
i=1

yiβββ
Txxxi−log[1+eβββxxxi ]

(3)
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This function is strictly concave therefore to find global maximum, we have
to solve

∂l(βββ)
∂βββ

=
N∑

i=1
xxxi[yi − P (xxxi,βββ)] = 0 (4)

which can be approximately solved by Newton’s iterative method

βββt = βββt−1 −
[

∂2l(βββ)
∂βββ∂βββT

]−1

βββ=βββt−1

[
∂l(βββ)
∂βββ

]
βββ=βββt−1

(5)

In practice this algorithm is slow and does not always guarantee convergence.
Therefore more complex algorithms are used in practice, for example Newton
CG (Newton Conjugate Gradient), SAG (Stochastic Average Gradient) or
SAGA.

3.1.1 Regularization

Main idea behind regularization is to introduce bias by controlling parameter
values, but at the same time reduce variance with the goal of reducing overall
generalization error. This works because models with low bias usually tend
to have larger variance and vice versa.

L1 (Lasso) and L2 (Ridge) norm regularization work by penalizing models
with large coefficients. L1 regularization pushes weights toward zero, thus
also doing feature selection at the same time, while L2 pushes weights toward
small values near zero (both methods require standardized data). Parameter
λ is called shrinkage parameter and influences size of the regularization, with
higher values pushing coefficient closer to 0. In the case of L2 regularization
we want to find βββ which leads into

max
βββ

{ N∑
i=1

[
yiβββ

Txxxi − log[1 + eβββxxxi ]
]
− λ

1
2βββTβββ

}
(6)

and for L1 regularization

max
βββ

{ N∑
i=1

[
yiβββ

Txxxi − log[1 + eβββxxxi ]
]
− λ||βββ||

}
(7)

Solutions to these equations can again be approximated by the iterative
methods, value of λ which minimizes loss function is chosen.
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3.2 Artificial Neural Networks

Artificial neural networks (or just neural network) try to emulate brain neur-
ons and links between them. Every neuron has some function and the cor-
responding strength of the connection between neurons denotes importance
of given neuron in the model.

Neural networks have existed for a long time, from the "electronic brain"
in 1943, perceptron in 1957 and later multi-layered perceptron in 1986. How-
ever their performance was worse then widely used regressions or support
vector machines, which was primarily caused by inadequacy of computa-
tional power, unavailability of large datasets and lack of advanced techniques
used in the learning process.

In 1989 Cybenko [17] proved that neural networks with just one hidden
layer and finite number of neurons can approximate any continuous function
of n variables on compact subset of Rn if it is using sigmoid activation
function. Later Hornik et al. [18] [19] extended the theorem to work with any
sufficiently smooth activation function, however there still wasn’t efficient
way to find the parameters of the network. This theorem is commonly
referred to as the Universal Aproximation Theorem.

At the beginning of the new millennium models like support vector ma-
chines were almost universally better than neural networks. This state con-
tinued until the increase in computational power and new discoveries in the
field caused deep neural networks to slowly beat other methods in various
fields.

Name "neural network" itself can refer to general architecture of nodes
with connections, however it is often used as a shorter term for "multilayer
perceptron" or "feedforward artificial neural network" (which usually refer to
the same architecture).

The goal of a neural network (NN) is to use feature vectors x to find a
function f ∗(xxx) which approximates unknown intrinsic function, mapping x
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Figure 1: Simple neural network with 1 hidden layer
Every neuron in the previous layer is connected with the neuron in the next layer, strength of this connection

is expressed by the weight. Some weights are not annotated for clarity.

to y, such that expected value of a loss function is minimized.

f ∗(xxx) = argmin
F (xxx)

Ey,xxxL(F (xxx), y) (8)

Compared to the most used methods, NN do not assume any functional form
of the intrinsic function and can in theory model any function.

Figure 1 shows simple neural network classifier with one hidden layer.
Input layer h0, with neurons representing elements of vector of features x,
is connected by each neuron to the hidden layer. In this layer function
f1, called activation function, is applied to a weighted sum of inputs using
weights w1. In the next step, we treat this hidden layer as a new input layer
h1 connected to the output layer.

Network is classifying into 2 categories as output layer uses softmax ac-
tivation function, which is an extension of the sigmoid function used for
more than 2 classes. The same result could be achieved by just one node
if sigmoid function was used, but this way we can easily augment output
layer in case we have more than 2 classes. Value of each node in the output
layer represents probability of belonging to the one of the classes. During
training, weights www are modified to better approximate intrinsic function
f ∗(xxx).

Neural network with more than 2 hidden layers is generally called deep
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and its field is called deep learning. Even though Universal Aproximation
Theorem states that one hidden layer is sufficient to approximate any reas-
onable function, this layer can be unattainably large and similar results can
be achieved faster and more efficient by using more layers with lower number
of nodes.

Because neural networks are often build with intentions of processing
large amounts of data, we split dataset into mini-batches and train the net-
work one batch at the time until the whole dataset passes through the net-
work, which is called an epoch. Training involves running as many epochs
as is required for no further improvement in performance.

Overview of ANN training

1. Forward Propagation: Inputs are passed through hidden layers with cor-
responding activation function, outputs are used as input into another hid-
den layer until we reach output layer which outputs class provabilities and
the loss is calculated by the loss function.
2. Backpropagation: Optimizers compute gradient of the loss function and
adjust parameters in order to reduce loss.
3. During training, steps 1 and 2 are repeated and performance on the val-
idation split is periodically checked, until no improvements occur.
4. Model is modified, trained and compared by validation performance to
the previous models until the best model is found.

3.2.1 Forward Propagation

Before the first run of data through the network, weights are initialized ran-
domly from a interval characteristic to each NN (dependent on architecture,
activation functions etc.) [20] [21]. Right weight initialization is crucial, as
wrong initial values can completely disrupt the learning process.

During the first run, weighted sum of nodes in a layer is passed into
activation function f of each node in the next layer.
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This can generally be expressed by

hi = fi(
∑

j

wi
jkaj + bi), (9)

where wi
jk represents the weight going from j-th node in hi−1 layer into k-th

node in hi layer, aj represent output values of the previous layer hi−1 and
bi is an optional bias term, which is the same for each layer and can be
compared to the intercept term in linear regressions which. We refer to the
set of all trainable weights and biases as the parameters θθθ of NN.

Activation functions

Activation functions are generally non-linear monotonic differentiable func-
tions. Formulas 10a - 10d provide currently most used activation functions
and their derivatives.

Sigmoid and hyperbolic tangent are among the most popular activation
functions, however they can suffer from saturating non-linearities/vanishing
gradients problem.

The problem can be illustrated with sigmoid activation function. If we
stack multiple sigmoid layers of a single neuron, with weights set to 1 and
biases set to 0, and send 0 through it, then σ(0) = 0.5 → σ(0.5) = 0.62 →
σ(0.62) > 0.62... until we reach values very close to 1. Now, during back-
propagation, derivative of sigmoid for values near 1 is going to 0 and therefore
learning is very slow or even non existent.

Partially because of this problem, Glorot et al. in 2011 [22] came up with
the activation function called rectified linear unit (ReLU) and also showed
that it has generally better performance than sigmoid or hyperbolic tangent.
There can be a similar problem as in a sigmoid/tanh case, called dying ReLU,
where if weights connecting to one neuron become very negative then during
training it can’t be possible to change them as all gradients passing through
this neuron are zero. Because of this there are many variations of ReLU,
one of them being Leaky ReLU [23] that replaces 0 for negative inputs by
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small multiple of the input.

σ(x) = ex

ex + 1
dσ(x)

dx
= σ(x)(1− σ(x)) (10a)

tanh(x) = e2x − 1
e2x + 1

d tanh(x)
dx

= 1− tanh2(x) (10b)

ReLU(x) = max(0, x) d ReLU(x)
dx

=

⎧⎪⎪⎨⎪⎪⎩
0 x ≤ 0

1 x > 0
(10c)

LReLU(x) = max(0.1x, x) d LReLU(x)
dx

=

⎧⎪⎪⎨⎪⎪⎩
0.1 x ≤ 0

1 x > 0
(10d)

Loss functions

After running data through the network during the training phase, pre-
dicted probabilities and actual labels are used to compute the loss. Loss func-
tion L(ŷ, y), where y in our case represents label 0 or 1 (non-default/default)
and ŷ is the probability of default, is generally required to be continuous
and differentiable on its domain as we need to calculate gradient during the
backpropagation. One of the universal loss functions used in the machine
learning is the mean square error.

MSE(ŷ̂ŷy, yyy) = 1
n

∑
i

(ŷi − yi)2 (11)

Derivative of this loss function for one observation i, given that ŷi = σ(Gi),
where Gi represents weighted sum of inputs from the previous layers with a
bias term, is

∂MSE(ŷ̂ŷy, yyy)
∂Gi

= 2(σ(Gi)− yi)σ(Gi)(1− σ(Gi)) (12)

However, as we can see when the ŷi gets closer to the value of the label,
derivative becomes very small and the learning process slows down. This is
one of the reasons why it is not often used in the deep learning.

Loss functions used nowadays came from information theory, few popular
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of them are negative log-likelihood and cross-entropy.

Binary cross-entropy loss = H(ŷ̂ŷy, yyy) = −
∑

i

[
yi log ŷi + (1− yi) log (1− ŷi)

]
(13)

if we compare its derivative to the MSE function,

∂H(ŷ̂ŷy, yyy)
∂Gi

= −yi(1− σ(Gi)) + (1− yi)σ(Gi) = σ(Gi)− yi (14)

we can see that it is esentially the same expression as in the case of MSE
derivative, just without 2σ(Gi)(1− σ(Gi)), which helps to solve the issue of
slow learning.

3.2.2 Backpropagation

Backpropagation is the most important step in the NN training, it’s the
point when the networks actually "learn". Let output of our model be called
p(xxx;θθθ) = ŷ̂ŷy, where x is input and θθθ are parameters of our model. We try to
find θθθ∗ such that the cost function J(θθθ) which represents sum of all losses
from our data, is minimized.

θθθ∗ = argmin
θ

J(θθθ) = argmin
θ

∑
i

L(p(xxxi;θθθ), yi) (15)

The process of finding the optimum in NN is called the gradient descent.
First, we calculate ∇θJ(θθθ), to get the direction of the steepest increase, and
then we update θθθ to θθθ−α∇θJ(θθθ) to go directly against the steepest increase.
Parameter α is called learning rate and corresponds to how large steps do
we want to take.

This gradient always exists because cross entropy loss function is smooth,
probabilities ŷ̂ŷy are computed from softmax/sigmoid function which are both
smooth and they are from the definition equal to 1 or 0 only in the limit case,
which in practice does not occur. Previously mentioned activation functions
are also smooth, except for ReLU in 0, but this is solved by additional
definition of derivative in 0 to be 0.

Because of the computational restrictions with large datasets, we cannot
use all data during each training iteration so instead stochastic gradient
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descent (SGD) where a single point is randomly sampled from training data
or Mini-batch SGD where small subset is sampled, is used to compute the
gradient.

Mini-batch SGD
Inputs: neural networkf(xxx;θθθ), learning rate α, loss function L(ŷ, y), dataset (xxx, y)

Repeat

Sample a minibatch of size m from (xxx, y)

ggg ← 1
m∇θθθ

∑m
i L(f(xxx(i);θθθ), y(i))

θθθ ← θθθ − αggg

There are some problems associated with SGD. First of them is selection
of the learning rate. Very small value can lead to very slow convergence to
optimal θθθ∗ and large value can lead to divergence.

There were many proposals how to fix this problem, one of them was in-
troducing momentum term (SGD with momentum and SGD with Nestorov
momentum). Simply put, successive iterations of the algorithm utilize in-
formation from previous iterations to accelerate learning if the gradient poin-
ted into the same direction as in the previous iteration. On the other hand
if in a successive iteration gradient pointed into the opposite direction, mo-
mentum slows down the descent.

Momentum term essentially represents the degree of weighting decrease
and each update step is equal to exponential moving average of past gradi-
ents. Momentum largely prevents divergence, but there is still a problem
selecting the right learning rate. Even if we choose the right one, every para-
meter is updated with the same learning rate, which is not always desirable
as we can demand parameters which are not updated frequently to have
larger learning rates and vice versa for parameters which are updated often.

Algorithms with adaptive learning rate aim to solve this issue. Adagrad,
adaptive gradient algorithm [24], allows different learning rates for each para-
meter by scaling gradient value in each iterations. Problem with Adagrad

is that scaling term is increasing in each iteration consequently decreasing
learning rate and eventually stopping the learning process. Adadelta and
RMSProb are very similar algorithms which instead of ever increasing scal-
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ing term use its exponential average, which prevents inevitable end of the
learning.

Another algorithm called Adam - adaptive momentum - [25] builds upon
Adadelta/RMSProb but also allows for different momentum for each para-
meter.

Algorithm 3 ADAM
Input: neural networkf(xxx;θθθ), learning rate α, loss function L(ŷ, y), dataset (xxx, y)

small constant ϵ, momentum β1, momentum β2

sss,rrr, t← 0

Repeat

Sample a minibatch of size m from (xxx, y)

ggg ← 1
m∇θθθ

∑m
i L(f(xxx(i);θθθ), y(i))

t← t + 1

sss← β1sss + (1− β1)ggg

rrr ← β2rrr + (1− β2)ggg2

ŝ̂ŝs← sss
1−βt

1

r̂̂r̂r ← rrr
1−βt

2

θθθ ← θθθ − α√
r̂̂r̂r+ϵ

ŝ̂ŝs

Momenta β1 and β2 are usually in a 0.9 − 0.99 range, ϵ is used just to
prevent division by 0. Value of the learning rate α is less relevant because
of Adam’s properties. Parameters sss and rrr can be understood as a biased
estimate of the first and the second moment of the gradient which, particu-
larly during earlier stages of training, tend to be biased towards 0. This is
why they are scaled and ŝ̂ŝs, r̂̂r̂r are approximately unbiased estimates. For un-
biasedness it is required that both first and second moments of the gradient
are stationary, which is almost always incorrect. Nevertheless the resulting
effect on the training, is that learning rate is lower in the beginning when
the estimate of moments is not precise and gets gradually higher with the
increase of precision. Following Adam, there have been various modifications
to this algorithm, but it is still widely used for general problems.
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3.2.3 Regularization

L1 and L2 regularization is used predominantly in regressions, while for
neural networks other more effective methods are used.

Early Stopping

Because improving accuracy is often the only goal during NN’s training,
it tends to overfit and reach very high accuracy on the training set. This can
mean that after the network finds out the right model it continues to learn
on the specificities of the training set. This problem can often be solved by
early stopping of the training. [26]

Dropout

Dropout is a simple yet effective regularization method introduced in
Srivastava et al. in 2014 [27] . When applied to a layer of NN, each neuron
is independently "dropped", that is, set to zero with probability p called
dropout rate. This in effect pushes NN to try learning without using por-
tion of both input and NN engineered features, which forces NN to better
generalize.

Dropout is applied only during training and during testing all neurons are
used. However, because at training time average number of used neurons
in a given forward propagation is lower, they tend to have larger weights
to compensate. That’s why during testing, weights are scaled down by the
factor 1-p .

Batch normalization

During training, distribution of inputs from one layer to another tends to
constantly change, because of the weights change. This slows down learning,
because learning rate needs to be lowered in order to achieve better results.
To counter this issue, Ioffe and Szegedy [28] proposed method in which for
every batch, output of the layer is normalized by mean and variance of a
output values of given batch, before it is passed to the next layer. This leads
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into faster convergence, because we can increase learning rate, as we know
that possible values in the activation functions won’t be large (which can
also solve the problem of the saturating non-linearities). At the same time
process of normalization introduces noise into the layers, which helps with
generalization.

During evaluation, data are normalized by mean and variance calculated
by exponential moving average of batches used during training.

3.2.4 Model selection and hyperparameter tuning

Deep neural networks have capability to model complex relationships between
inputs and as such, can perform feature selection themselves, however, be-
cause number of network parameters grows exponentially with number of
features, at least some level of external feature selection is needed to achieve
reasonable training time.

Hyperparameters in NN differ from NN parameters in that they are not
being being trained during the training. In our case they include number of
layers, number of neurons in each layer, learning rate, batch size etc. Most
straightforward way to find optimal hyperparameters is grid search, which
is just trying every combination of hyperparameters whose possible values
are predefined by the user and have to be discrete. This process guarantees to
find optimal set of parameters (if they are present in the predefined values),
but is computationally infeasible.

Similar, but more effective approach is random search which samples
vectors from predefined hyperparameter space (which can be continues).
This approach is much faster and often as good at using grid search [29].

Previously mentioned techniques do not adjust as a response to the train-
ing results, as every iteration is independent. Advanced technique called
Bayesian optimization uses past results to construct Gaussian process
priors (with specific assumptions like similar vectors should yield similar
results) to predict which regions of the hyperparameter space will have bet-
ter results. At each iteration, Bayesian optimization faces exploration vs.
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exploitation problem, that is, if the next sampled vector should be similar to
previous good performing vector or if it should sample from areas of which
there is none or little information about resulting performance. Theory be-
hind Bayesian optimization is over the scope of this thesis and we encourage
readers to read [30] [31] to get deeper understanding of this method.

3.3 Decision Trees

Decision trees (DT) [32] [33] are simple yet effective method for prediction.
They split the predictor space into a number of non-overlapping smaller
regions where every point in the given region has the same predicted value.

Figure 2: Simple decision tree
Inputs are classified into 2 classes based on the best selected conditions

Figure 2 shows simple decision tree. Input data x are split by Condition
1 (example of a simple condition can be a relational operator ≤,≥, = etc.)
into 3 subsets, often called branches, which are further split each into 2
branches by Condition 2-4. Square nodes represent final classification nodes
called terminal nodes or often leaves - all data points in the same terminal
node are predicted as the same class. There are also instances when the tree
decides to continue splitting some subset of data as can be seen on Condition
5.

Process of construction of optimal DT is a NP-complete problem, that is
quickly computationally infeasible with the increasing number of features.
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Instead of finding the most optimal DT, construction methods use greedy

algorithms, which choose decision at each node based on immediate gain in
performance. Using these algorithms does not guarantee convergence to the
optimal DT but by using multiple different trees in an ensemble, this issue
can be diminished.

CART (Classification and Regression Trees) algorithm uses consequent
binary splits which lead into the highest loss decrease. In most implement-
ations of CART, either Information gain characterized by entropy or Gini
index of impurity is used as a loss function, which are both very similar
measures.

During the tree construction, set of samples in a branch is split into 2
subsets, each having its own value of the Gini index, in a way to achieve
the lowest value of the total Gini index. Gini index of impurity, in the
binary classification problem, represents probability that randomly chosen
datapoint in the given subset is misclassified if it is given probability of
belonging to the positive (1) class equal to the proportion of this class in
the subset.

Gini index = 1−
∑

i

p2
i = 1− p2 − (1− p)2 = 2p(1− p), (16)

where pi is a proportion of class i in the subset and we use the fact that in
the binary case if p1 = p→ p2 = (1− p) .

Therefore if we achieve perfect split, where all samples are separated then
proportion of either class in one subset will be either 1 or 0 leading into the
Gini index of 0. On the other hand if we split in a way that each subset has
50% of each class, then randomly chosen datapoint has a probability of 0.5
to be misclassified as it is given probability of belonging to the either class
of 0.5 .

Total Gini index for binary splitting is the weighted sum of Gini indices
for each region, weights correspond to proportion of total number of samples
in the given region.

Total Gini index = n1

n
(2p11p12) + n2

n
(2p21p22), (17)
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where ni is the number of datapoints in region i and pij is a proportion of
classes j in a region i.

Split with the lowest Gini index is chosen until the all datapoints are
separated, which is not optimal as it can very easily lead into overfitting.

To regularize the tree we can perform early stopping when we limit depth
of the tree, we can limit the minimum number of samples in one terminal
node or we can use tree pruning, which deletes last few layers of the tree.
These methods can also act as a feature selection tool. For example, if we
limit the depth, feature which is not relevant will not be split on.

Probably the best regularization technique is not to use a single decision
tree, but instead use many trees in ensemble.

3.3.1 Ensembles of trees

Ensemble learning involves using multiple models, which decide together on
the final prediction. Generally, ensembles outperform any single classifier
in prediction accuracy [3]. Important requirement in order for ensembles to
perform better than any individual model is to not have very high correlation
in predictions between models. In this way mistakes of an individual model
are fixed by the other models.

3.3.2 Bagging

Bootstrap aggregating commonly called bagging, was introduced by Brein-
man (1996) [34]. The whole process involves construction of multiple trees.
For each one, training dataset is randomly sampled with replacement. Final
probability is calculated as an average of probabilities of all trees. Bagging
procedure can be used with any predictor, but it particularly improves de-
cision trees models, as they are very data dependent and relatively small
changes in data can result in widely different trees. Bagging addresses this
problem by significantly reducing variance of the final predictor.
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3.3.3 Random Forests

Random forests [35] provide improvement compared to bagged decision trees
by decreasing correlation between models in bagged predictor.

Main idea behind RF is following [33]: In the case of bagged DT, expected
value of the average of all predictions is equal to the expected value of any
single tree, however the point of bagging is to decrease variance. In the ideal
case, when predictions by each tree are i.i.d. with variance σ2, their average
has variance 1

B
σ2, B being the number of trees in the ensemble. If they are

not independent but still i.d. with pairwise correlation ρ, then their average
has variance ρσ2 + 1−ρ

B
σ2. To reduce pairwise correlation of predictions, RF

restricts number of possible features at each split.
Normally during bagging, DT can choose any feature at any split. In

random forests set of all features with magnitude p is randomly reduced at
each split, default size of this subset is √p. In comparison to bagging, this
process ensures that if there are any strong predictors, they are not present
in majority of trees and hence correlation between them is reduced.

3.3.4 Boosting

Additive modeling uses sum of simple functions to approximate an unknown
complex function. Boosting follows this idea by using many weak learners
(models with low predictive performance) to construct a well performing
model (strong learner). In comparison to bagging tree models, construction
of individual models used for adaptive boosting is not independent, because
during the given model construction, information of past performance is
used (weights on examples which were misclassified in previous models are
increased and on correctly classified examples are decreased). By doing this
process, later models are more focused on the mistakes made in the earlier
models.

General formula for boosted model is

f(x) =
N∑

i=1
βifi(x; γi) (18)
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where fi are simple classification functions (weak learners) with parameters
γi, and βi are weights assigned to each function. In practice, shallow decision
trees are most often used as fi, as they are often sufficient weak learners.
This is in essence the same formula as the one used to describe a layer of a
neural network.

AdaBoost (versions M1,M2 and R)[36] was the first adaptive boosting
algorithm, which could utilize any weak learner. This algorithm is also re-
ferred to as a Discrete Adaboost, as weak learners used to build the final
classifier output classes instead of probabilities. For our purposes of compar-
ison of predictive powers of different methods, we require algorithm called
Real Adaboost [37] [33] which outputs probabilities.

Real Adaboost
Input: M weak learners Gm(xxx), dataset (xxx, y) with N observations

Initialize observation weights wi = 1
N , i = 1, 2, ..., N

for m = 1 to M

Fit a classifier Gm(xxx) = P̂w(y = 1|xxx) ∈ [0, 1] using weights wi

Set fm(xxx) = 1
2 log Gm(xxx)

1−Gm(xxx)

wi ← wi · e−yifm(xxxi), i = 1, 2, ..., N

Normalize w so that
∑

i wi = 1

G(xxx) = sign(
∑M

m=1 fm(xxx))

For this algorithm y ∈ [−1, 1]. Weight of weak learner Gj(xxx) on the
final prediction is expressed by fj. Sign of fj indicates class and magnitude
indicates confidence in the prediction.
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Gradient boosting introduces gradient descent similar to the one used in
the neural networks. Similarly, it requires differentiable loss function to
ensure existence of its gradient. Standard loss function used in the gradient
boosted models for binary classification, is, as in the case of neural networks,
binary cross entropy loss.

We let our simple functions output log odds instead of probabilities ŷ.
This way, we can sum them to create an additive model. At the end we
use sigmoid function to transform log odds to probabilities ŷi. Then cross
entropy loss becomes

L(y, f(xxx)) = −
∑

i

[
yi log 1

1 + e−f(xi)
+ (1− yi) log e−f(xi)

1 + e−f(xi)

]
(19)

which can be transformed into

L(y, f(xxx)) =
∑

i

f(xi)yi − log (1 + ef(xi)) (20)

with derivative

∂L(y, f(xi))
∂f(xi)

= yi −
1

1 + e−f(xi)
= yi − ŷi. (21)

Gradient boosted trees for binary classification
Input: M weak learners Gm(xxx), dataset (xxx, y) with N observations

Initialize f0(xxx) = 0

for m = 1 to M

Calculate pseudo-response ri = −∂L(y,fm−1(xixixi))
∂fm−1(xixixi) = yi − 1

1+e−fm−1(xixixi) , i = 1, 2, ..., N

Fit a regression tree with targets ri and J terminal nodes which outputs terminal

regions Rjm, j = 1, 2, ..., J

γjm = argminγ

∑
xxxi∈Rjm

L(yi, fm−1(xixixi) + γ), j = 1, 2, ..., J

fm(xxx) = fm−1(xxx) + νγjmI(xxx ∈ Rjm), j = 1, 2, ..., J

Output fM (xxx)

Parameter ν is called shrinking parameter and is used for regularization.
It was shown by Friedmann [38], that for small values ν ≤ 0.1, final models
are more generalized.
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Small modification to this algorithm called Stochastic gradient boost, came
as a reaction to the performance of the models (particularly bagging) which
introduce randomness into their construction process [39]. This procedure
was shown to be especially effective in case of noisy datasets. Stochastic
gradient is very similar to the Mini-batch SGD in the neural networks. Dur-
ing one iteration of the algorithm, only a random subset of size Ñ ≤ N of
datapoints is used to update the final function. Friedmann’s research indic-
ates that on average, stochastic gradient boost improves performance over
the basic gradient boost.

3.4 Evaluation

For the small German Credit dataset, standard k-fold cross-validation is
used to score the models [40]. Whole dataset is shuffled and split into k

even groups, then k models are constructed using k − 1 groups as training
set and the last group as test set. For the reason of imbalanced dataset, we
use stratified k-fold method which ensures that testing set has similar class
distribution as the original dataset.

In the case of LC, training and testing split are used (70%:30%), which
means models are trained on the training set and hyperparameters are tuned
according to performance on testing split. Only after selecting the best
models, k-fold cross validation is used created again by the stratified k-fold
method.

Metrics

Accuracy is the most widely used metric to represent predictive abilities
of the model, but it can be often deceptive. In the case of highly imbalanced
classes, high accuracy can be reached by simple model always predicting
the largest class. Accuracy itself assumes we value absolute number of true
positives the same way as true negatives. This is however not always the
case as it isn’t in the case of loans. We argue that in this case precision,
recall and specificity are better metrics compared to the accuracy alone.

Precision (also called positive predictive value) is the ratio of correctly
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positively predicted cases and all positively predicted cases, while recall

(also called true positive rate TPR or sensitivity) represents ratio of cor-
rectly positively predicted cases and all positive cases. Specificity (also
called true negative rate) measures fraction of correctly predicted negative
cases.

precision = TP

TP + FP
recall = TP

TP + FN

specificity = TN

TN + FP

Receiver operating characteristic (ROC curve) represents points of
all possible values of true positive rate (recall) and false positive rate (1-
specificity). ROC area under curve (ROC AUC) captures the whole range
of possible decision thresholds into one score. AUC represents probability,
that the classifier will rank a randomly chosen positive instance higher than
a randomly chosen negative instance [41]. AUC of 0.5 represents "random
guessing" model and AUC of 1 represents perfect model with 100% true
positive rate and 0% false positive rate.

Threshold

All used classification models output probabilities instead of classes and
threshold value of prediction has to be chosen. Most models, on default,
choose threshold 0.5 and predict cases with p > 0.5 as positive and p < 0.5
as negative. By decreasing this threshold, we raise the recall but at the
same time decrease the precision and specificity. In the lending environment,
where declining good lender costs very little compared to the accepting bad
lender, recall is more important than precision. At the same time it is crucial
to balance recall and specificity. It is on the every lending institution’s own
discretion to balance these factors.

One possibility to find better threshold, without introducing our sub-
jective judgment or without having specific financial information about the
lending institution, is through maximization of metric called Informedness
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[42], also called Youden’s J statistic for binary classification.

J = TPR + TNR− 1 (22)

On the Figure 3 we can see ROC curve and maximized J statistic. Ver-
tical line represents longest distance between "random guess" and ROC
curve, their intersection represents maximized J . Informendness is the prob-
ability that a prediction is informed and not just a random guess, where value
of 1 is perfect classification and 0 random chance, but unlike ROC, J is a
function of the threshold.

Figure 3: ROC curve and Informendness J
Intersection of the longest line between the "random guess" line and ROC curve maximizes

value of the J.

Our objective is to find models with highest ROC AUC, which is threshold
independent, then to better illustrate the results we find threshold by max-
imizing Informedness J .

3.4.1 Test for comparing models

Due to our objective metric ROC AUC and not the accuracy, we cannot use
statistical tests, which are based on confusion matrix (for example McNe-
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mar’s test).
Natural choice would be to use k-fold cross-validation on the same folds

for both models to get 2k metric values and then, use the paired two-sample
t-test. However t-test requires independence of observations in each sample,
which is not true, as during cross-validation, each datapoint is used k − 1
times to calculate final sample of metrics.

Dietterich (1998) [43] showed that using this process to perform t-test
leads into high Type I error, that is, excessive rejecting of the null hypothesis.

To compare 2 models, Dietterich suggests using method called 5x2-fold
cross-validation, which offers compromise between low Type I and II er-
rors and relative speed of evaluation. In this method, 5 different pairs of
folds are used to train 2 models (20 models in total). The requirement for
independence between samples in each 2-fold cross-validation repetition is
still violated, however, experimental results show, that it doesn’t cause large
increase of errors.

Nadeau and Bengio (2003) [44] argue that this method underestimates
variance and they propose improvement by proposing correction of t-statistic,
which leads into low Type I and II errors and at the same time allows to use
gxk-fold validation with k > 2.

If we let xij = m1
ij − m2

ij, i = 1, 2, ...g, j = 1, 2...k represent set of
differences from metrics calculated by model 1 and 2 for the same fold j

in the g-th k-fold cross validation, then corrected t-statistic which follows
t-distribution with gk − 1 degrees of freedom is

t = µ̂√
( 1

gk
+ n2

n1
)σ̂2

, (23)

where µ̂ and σ̂2 are the estimates of mean and variance of the set of xij and
n2
n1

is a ratio of the number of samples used in the testing and the number of
samples used in the training. Null hypothesis used for this test is H0 : µ = 0
.

In our experiments, we will use corrected t-test with 20x4-fold cross-
validation in case of the German dataset and 5x2-fold cross-validation in
case of LC dataset due to its size.
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4 Datasets

First, we use German Credit dataset [45], which is widely used for bench-
marking binary classification models. It contains 1000 observations with 20
features (24 including dummy variables) classifying people as good (70%) or
bad (30%) credit risks.

Second dataset is provided by Lending Club, P2P US lending platform
[46]. LC acts as an intermediary for personal loans up to $40,000. It rates
loan applicants by 7 ratings A-G, with corresponding average interest rate
≈ 7 − 25%. Potential investors can select level of risk they are willing to
face and LC builds diversified portfolio of loans for them. Another way is to
directly choose loan from the marketplace where all unmatched or not fully
financed loans are placed. Although the business model of P2P platform is
not identical to the one of a bank, our goal is simply to compare different
classification models. Additionally Lending Club (LC) is one of the few
institutions that provide large public data.

This dataset contains data on loans with completed status from January
2015 to December 2017, which is 448,890 loans of which 76% loans are fully
paid and 24% are in default, that is payments are 121+ days past due and
repayment is very unlikely. Each loan has 116 features, however large amount
of them is not usable because they are mostly empty, they were recorded
after the loan was accepted or they are features engineered by LC’s internal
models (rating category and interest rate). Few of the potentially important
features are location, length of employment, number of delinquencies, home
ownership, current debt, credit score and other financial indicators.

LC offers two loan terms, 36 or 60 month but doesn’t provide exact date of
loan start, which means potential time frame of approval of loan application
with fully paid status is January 2010 - December 2014. Simultaneously,
because of its unpredictable nature, potential time frame for loan application
with the default status can be anywhere between the middle of 2009 to the
middle of 2017. It is however reasonable to assume, that occurrence of
defaults is more prevalent in the early to mid stages of loan terms rather
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than very close to the end.
The reason why this time frame is important, are underlying economic

conditions. This is because large external shock can be a cause of default
even for people who would normally have no payment problems. Assuming
majority of applications came in between January 2010 and December 2016,
economy of the USA was recovering from 2008-09 financial crisis with con-
tinuous decline of unemployment from its high in 2010 of 9.1% to the 4.9%
in 2016 [47], GDP growth oscillated around 2% with highs of 2.7% in 2010,
2013 and 2014 and lows of 1.3% in 2012 [48]. Overall, economic conditions
were potentially helpful for borrowers and there can be a case when if the
exact same person applied in 2010 his propensity to default would be higher
than if he applied in the end of 2015. However, this problem cannot be easily
solved, as we do not know dates of loan applications, and we disregard it in
our models.

Another issue is LC’s selection process and its own credit risk models. It is
reasonable to assume that LC tries to eliminate all easily predictable defaults
by continuously improving its own models, so that ceteris peribus occurrence
of defaults should be decreasing with time. This is again serious problem,
which skews the data, as we train only on the subset of the population,
which was accepted by LC, therefore results can’t be extended to the whole
population, which nevertheless, is not our goal.
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5 Results

5.1 German dataset

In the case of logistic regression model, recursive feature elimination to-
gether with L2 regularization and just plain L1 regularization were used to
select optimal feature set. Both models selected 21 from 24 features. For
the tree-based methods manual feature selection didn’t significantly improve
the models, as these models have built-in regularization during model con-
struction, which also acts as a feature selection. In neural network models,
manual feature selection did not improve the performance, as the training
itself should select only the relevant features.

ROC AUC Acc. % Recall % Specificity % Prec. % J

Logistic 0.7951 (0.0243) 72.22 (2.66) 71.72 (2.68) 72.44 (2.70) 52.81 (3.34) 0.4415 (0.0530)

NN 0.7943 (0.0238) 72.04 (2.67) 71.27 (2.67) 72.37 (2.70) 52.60 (3.33) 0.4364 (0.0531)

DT 0.7313 (0.0279) 70.52 (2.62) 58.40 (6.32 ) 75.71 (3.34) 50.84 (3.87) 0.3411 (0.0637)

Bagged DTs 0.7958 (0.0206) 72.82 (2.24) 71.97 (2.27) 73.19 (2.29) 53.56 (2.90) 0.4515 (0.0446)

RF 0.7938 (0.0216) 72.60 (2.56) 71.37 (2.65) 73.13 (2.58) 53.32 (3.26) 0.4450 (0.0514)

Adaboost 0.7875 (0.0223) 72.27 (2.62) 69.90 (2.75) 73.29 (2.71) 52.96 (3.42) 0.4319 (0.0521)

GB Trees 0.7903 (0.0207) 71.91 (2.14) 71.18 (2.14) 72.22 (2.20) 52.40 (2.69) 0.4340 (0.0424)

Ensemble 0.8065 (0.0215) 73.40 (2.71) 72.83 (2.61) 73.64 (2.83) 54.32 (3.51) 0.4647 (0.0532)

Table 1: Performance of the best models on German dataset

Even thought we tested deep neural network architectures with up to 5
layers, best networks had only 1 or 2 layers with 40-300 neurons and mostly
used hyperbolic tangent as an activation function, which suggests there are
no strong non-linearities present. For regularization, best models used batch
normalization and dropout with a rate 0.3-0.5 .

Single decision trees model were regularized by limiting minimal number
of samples in terminal nodes, while bagged decision trees and gradient boos-
ted trees were limited in number of samples used to construct single decision
tree. No regularization was needed during random forests construction. In-
terestingly, the best Adaboost ensemble was trained using random forests
made out of shallow decision trees instead of just using single decision trees.
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Table 1 presents results of the best models and their standard deviations.
All single models, with the exception of a single decision tree model, per-
formed similarly and their results were not statistically different from each
other. The single decision tree model was, as expected significantly worse
than other models.

The best model, which was better than all other single models at 5%
significance level, was created by ensembling all the best models from each
method except for the single DT. Final probability of default was calculated
as an average of probabilities from each model, this method is also called
voting or stacked ensemble. Although this difference was significant, it lead
to only≈ 1% larger value of ROC AUC than other models, which is relatively
minor improvement.

Looking at other metrics of the stacked ensemble model, which were
chosen to maximize value of Informendness J, on average 72.83% of defaults
was successfully predicted, 73.64% of non-default cases were predicted, how-
ever only 54.32% of samples which were predicted as defaults were really
defaults, which means that almost half of potential good borrowers would
be rejected.

5.2 LC dataset

Similarly to the German dataset, we performed feature selection for the
majority of models, however, it did not improve performance.

The best neural network models had 2-5 layers, between 300 and 1500
neurons in each layer and used mostly ReLU activation function. Addition-
ally, networks with batch normalization and dropout rate of 0.3-0.6 per-
formed better that those without them.

The best gradient boosted trees model was heavily regularized by limiting
depth, maximum number of features considered at each split and amount of
training data used in the construction of a single weak learner decision tree.

As was the case in previous results, the best Adaboost ensemble model
was constructed by random forests with shallow decision trees.
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ROC AUC Acc. % Recall % Specificity % Prec. % J

Logistic 0.7172 (0.0011) 65.71 (0.12) 65.71 (0.12) 65.71 (0.12) 37.87 (0.12) 0.3142 (0.0023)

NN 0.7290 (0.0007) 66.62 (0.07) 66.62 (0.07) 66.62 (0.07) 38.83 (0.07) 0.3323 (0.0013)

DT 0.6823 (0.0011) 63.27 (0.14) 62.52 (0.25) 63.51 (0.17) 35.28 (0.14) 0.2603 (0.0031)

Bagged DTs 0.7115 (0.0009) 65.66 (0.18) 64.26 (0.32) 66.11 (0.32) 37.62 (0.12) 0.3037 (0.0012)

RF 0.7194 (0.0008) 65.96 (0.09) 65.51 (0.12) 66.10 (0.12) 38.07 (0.08) 0.3161 (0.0015)

Adaboost 0.7171 (0.0008) 66.07 (0.07) 65.03 (0.24) 66.40 (0.12) 38.10 (0.07) 0.3143 (0.0018)

GB Trees 0.7319 (0.0009) 66.83 (0.07) 66.83 (0.07) 66.83 (0.07) 39.05 (0.08) 0.3366 (0.0014)

Ensemble 0.7303 (0.0010) 66.71 (0.10) 66.71 (0.10) 66.71 (0.10) 38.93 (0.11) 0.3342 (0.0021)

Table 2: Performance of the best models on Lending Club dataset

Table 2 presents results of the best models and their standard deviations.
Variance in the results was, compared to the German dataset, very low,
which is primarily caused by the size of LC dataset.

Overall, best results were obtained by the gradient boosted trees model,
which was better than all models, including stacked ensemble, at 1% signi-
ficance level. The next best results were obtained by neural network, which
was better than all models at 1% significance level, with the exception of
stacked ensemble model, which was worse at the 5% significance level, and
obviously GB trees model.

The third best model was the stacked ensemble model, which had higher
ROC AUC then remaining models at 1% significance level.

The worst model was, again, a single decision tree. From the remain-
ing tree-based models, random forests slightly outperformed other models.
Our baseline logistic regression model outperformed only bagging and single
decision tree at 1% significance level.

If we take closer look at the our best model performance after choosing
threshold, we see, that it is worse than in the German dataset case. Overall,
we were able to predict 66.83% of all defaults and 66.83% of all fully paid
loans, but of all predicted defaults almost 60% were predicted wrongly. This
may seem like a very large fraction, similar to the German dataset, but
as we already mentioned, without knowing further loan details, we can’t
objectively evaluate this number.
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6 Conclusion

This thesis tries to introduce the task of classifying potential borrowers as
"good" and "bad" depending on the probability of their potential default
in the case they are granted a loan. Overview of the credit scoring history
together with introduction to the internal ranking models used in the lending
institutions is presented in order to acquaint the reader about often used
methods.

In order to construct models, two datasets are selected. German dataset
which is the most often used dataset in credit modeling literature and dataset
from the Lending Club, P2P lending platform, which to our knowledge offers
the largest current publicly available dataset related to credit scoring.

Models explored are logistic regression as a baseline model, which is often
used for credit scoring, neural networks, which were in the last few years
greatly improved by the new advances in the deep learning field and tree-
based model ensembles, which utilize simple decision trees to construct more
complex models.

Contrary to the most studies involving this task, average accuracy is not
used as the primary indicator of the model quality. Instead, ROC AUC stat-
istic is used, which in essence captures the whole range of possible accuracies
which could be achieved by the given predicted probabilities.

Overall results on the smaller German dataset suggest that no single
model has significantly better predictive performance and they are all equally
capable. However after the all single models are combined into a stacked
ensemble model, results are significantly better than any single model.

Results on the larger LC dataset are again fairly similar, with the best
model gradient boosted trees, differing only by ≈ 2% with the worst model.
Neural networks achieve above average performance, while stacked ensemble
performs worse than the best single model.

Even if there are cases when stacked ensembles or neural networks beat
any single model, they achieve ≈ 1% more ROC AUC score than logistic re-
gression. Given the time requirements for training and tuning the networks,
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there could plausibly exist cases when logistic regression is preferred to the
neural networks or stacked ensembles even if it is worse.

Further research should focus on directly tying loss function used in the
algorithms with potential losses or gains in order to find out the method
to find the most profitable decision threshold. Underlying economic factors
together with the selection bias problem, should also be incorporated into the
scoring process. Research focused only on the models created by ensembling
could explore how to most optimally construct single models whose sole
purpose is to act as a part of a stacked ensemble model and they could also
explore application of bagging and boosting algorithms on neural networks.
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