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Abstract

Economic agents often face situations, where there are multiple competing fore-
casts available. Despite five decades of research on forecast combinations, most
of the methods introduced so far fail to outperform the equal weights forecast
combination in empirical applications. In this study, we gather a wide spectrum
of forecast combination methods and reexamine these findings in two different
classical economic times series forecasting applications. These include out-of-
sample combining forecasts from the ECB Survey of Professional Forecasters
and forecasts of the realized volatility of the U.S. Treasury futures log-returns.
We asses the performance of artificial predictions markets, a class of machine
learning methods, which has not yet been applied to the problem of combin-
ing economic times series forecasts. Furthermore, we propose a new simple
method called Market for Kernels, which is designed specifically for combining
time series forecasts. We found that equal weights can be significantly out-
performed by several forecast combinations, including Bates-Granger methods
and artificial prediction markets in the ECB Survey of Professional Forecasters
application and by almost all examined forecast combinations in the financial
application. We also found that the Market for Kernels forecast performance
is comparable to the best forecast combinations from the literature in both of

the applications.
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Abstrakt

Ekonomic¢ti agenti se casto dostavaji do situaci, kde maji k dispozici néko-
lik odlisnych predpovédi. Navzdory péti dekdadam zkoumani kombinaci pred-
povédi, vétsina metod, kterd byla zatim predstavena, nedokaze v empirickych
aplikacich vyznamné porazet kombinaci predpovédi s rovnomérnymi vahami.
V této studii davame dohromady Siroké spektrum kombinaci predpovédi a
prezkoumavame tyto zjisténi ve dvou riznych aplikacich predpovidani klasick-
ych ekonomickych ¢asovych fad. Tyto zahrnuji mimo-vybérové kombinovani
predpovédi ECB Survey of Professional Forecasters a predpovédi realizované
volatility logaritmickych ziskti futures na americké statni dluhopisy. Hod-
notime vykonnost umélych predikénich trhi, tiidy metod ze strojového ucent,
ktera zatim nebyla aplikovana na problém kombinovani predpovédi ekonomick-
ych casovych tad. Daéle navrhujeme novou jednoduchou metodu nazvanou
Market for Kernels, ktera je navrzend specialné pro kombinovani predpovedi
casovych tad. Zjistili jsme, ze rovnomérné vahy se daji vyznamné porazit néko-
lika kombinacemi predpovédi, které zahrnuji Bates-Grangerovi metody a umélé
predikéni trhy v ECB Survey of Professional Forecasters aplikaci a skoro vsemi
zkoumanymi kombinacemi predpovédi ve financ¢ni aplikaci. Také jsme zjistili,
ze predpoveédni vykonnost Market for Kernels v obou aplikacich je srovnatelna

s nejlepsimi kombinacemi v literature.

Klasifikace JEL C00, C5h3, C58
Klicova slova Kombinace predikci, umelé predikéni trhy,
Market for Kernels, predpovidani eko-
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Motivation When rational economic agents look for optimal economic decisions
under uncertainty, they often need to rely on outcomes of predictive modeling. In
many cases, there is a set of considered prediction models from which a single model
can be selected based on various criteria. However, assuming the considered mod-
els are reasonably diverse and their predictions accurate, a suitable combination of
predictions of these models, i.e. so-called model ensemble, achieves more accurate
results than any of the individual predictors (Dietterich, 2000).

Artificial prediction market is a form of a model ensemble, firstly presented by Lay
& Barbu (2010). Its idea stems from the real prediction market, which is a mechanism
for aggregating disperse information from a number of prediction market participants.
These participants trade contracts with payoffs dependent on unknown future events
(Wolfers & Zitzewitz, 2004). Storkey (2011) showed that various forms of aggregation
can be achieved by using different utility functions of agents participating in artificial
prediction market. Artificial prediction market learning algorithm has been applied
in both classification problems e.g. (Barbu & Lay, 2012), (Millin et al., 2012) or (Hu
& Storkey, 2014) and regression problems e.g. (Lay & Barbu, 2012), (Jahedpari et
al., 2017). Economic agents or policy makers are typically interested in prediction
of future evolution of certain macro or microeconomic variables. Researchers have
been looking for optimal way to combine forecasts since the seminal work of Bates
& Granger (1969). With the aim to contribute to the pool of literature on ensemble
forecasting, I will extend the artificial prediction market methodology for market
agents with new features, suited specifically for time series data and try to outperform
in forecasting the benchmark model ensembles as well as single models, which are

traditionally used for economic time series analysis.
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Hypotheses

Hypothesis #1: The artificial prediction market forecasts better than the

benchmark model ensembles.

Hypothesis #2: The artificial prediction market forecasts better than any of

its single model components.

Hypothesis #3: The artificial prediction market with agents having time series

specific features forecasts better than the basic artificial prediction market.

Methodology In my thesis, I will stick to artificial prediction market in the util-
ity theory based framework presented by Storkey (2011). I will extend it from a
classification problem to a regression problem in a similar fashion as Lay & Barbu
(2012) or Jahedpari et al. (2017) did it for artificial prediction market in a betting
functions framework. As individual model components I will use various econometric
models for time series analysis and forecasting, including models from class ARIMA,
exponential smoothing, regression, vector autoregression models and others. The list
of benchmark model ensembles will include Bagging, AdaBoost and Random Forest,
which are the ensemble methods heavily used in general machine learning problems,
but also combining forecasts methods used in economic environments such as the
Bates and Granger optimal combination, LASSO-based methods or the Bayesian
Model Averaging (BMA). Similarly to Millin et al. (2012), I will experiment with
new types of utility functions of artificial market participants to find the best to suit
the time series forecasting problem. Most importantly, I will introduce agents with
different investment horizons. The key idea is that different agents/models might
be suitable for forecasting different frequency components of the given time series.
The option of giving only certain parts of the frequency spectra to different agents
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on the quality of their forecasts. The accuracy of forecast is generally agreed upon to
be the most important criterion for selection of the best forecasting methods (Yokuma
& Armstrong, 1995). For comparing forecasts on single time series, error measures
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ments for reliability, construct validity, protection against outliers and relationship to
decision making arise and lowest RMSE is no longer a suitable criterion (Armstrong
& Collopy, 1992). Following the guidelines of Armstrong & Collopy (1992) for com-
paring between the forecasting methods, I will employ the Median Relative Absolute
Error (MdRAE) and the Median Absolute Percentage Error (MdAPE) measures.

For the final assessment on the performance of the considered forecast ensembles,
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These agents will have different types of utility functions, different investment hori-
zons and different information sets determined based on spectral analysis. It will be
examined whether these ideas present a possible way to improve the artificial predic-
tion market for time series. Finally, I will compare the performance of both the basic
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Chapter 1
Introduction

Many economic agents, including policy makers, bankers, risk analysts, investors and
even households base their decisions on forecasts or projections of certain economic
variables. Numerous researchers are thus encouraged to develop models and methods
yielding accurate forecasts of economic time series. As a result, the agents striving
for as accurate forecasts as possible often find themselves in situations where there
are multiple competing hypotheses or models available, offering different forecasts.
In such situations, there are in principle two options. The first is to assume that the
true model of the underlying data generating process (DGP) of interest corresponds
to one our considered model specifications. Then, the econometric literature offers
variety of tests and information criteria, based on which it can be determined, which
of the model specifications is most likely the true one. If it is agreed that one of the
competing models is indeed the true model, then forecasts based on this model are op-
timal and the other forecasts can be discarded. The second option is to acknowledge
that the true model specification is likely missing among available ones or that we
do not have a procedure to reliably detect it at our disposal. This acknowledgement
leaves the door open for the possibility that a suitable combination of forecasts could
yield forecasts superior in accuracy to all the individual ones. As Bates & Granger
(1969) note, if the individual forecasts contain independent information stemming
from either different information sets or model specifications, there is a room for
improving upon them by their combination. In a search for optimal forecasts, one
should combine the information sets rather than forecasts (Engle et al., 1984). How-
ever, consider for example the case of European Central Bank (ECB) Survey of
Professional Forecasters (SPF), where individual forecasters from different agencies
contribute by their point forecasts of macroeconomic variables. In such cases, there
is no choice but to apply some sort of forecast combination technique. Since the
seminal work of Bates & Granger (1969), the literature on forecast combinations has

grown substantially in size. Nevertheless, we find that these forecast combinations
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started to revolve around the same ideas and that there is for example a rather
limited amount of empirical literature applying classical methods from the field of
machine learning to the task of economic forecast combinations. Here we should
explain, that by the forecast combination we understand essentially any method,
which can be used to assign weights to individual forecasts and combine them into a
single forecast. The machine learning methods are suitable for modelling arbitrary
functional forms and due to their penalization and dimension reduction techniques
they can deal even with large number of predictors (Gu et al., 2018). This makes
them natural candidates for ideal forecast combinations. The researchers often avoid
using such methods in economic time series forecasting applications, because of the
phenomenon called the forecast combination puzzle, which states that the simple
forecast combinations such as the equal weights (simple average) tend to outperform
the more sophisticated ones (Jeremy & F., 2009). Nevertheless, we see an unexplored
opportunity in the artificial prediction markets, a recent stream of literature started
by Lay & Barbu (2010) and inspired by the real prediction markets (Wolfers & Zitze-
witz, 2004). These methods are quite simple, yet flexible, based on interesting ideas
and could represent a good alternative to the traditional forecast combinations. We
see appropriate to asses the performance of the artificial prediction markets forecast
combinations against the more traditional ones.

In this study, we examine and compare the pseudo-out-of-sample (further re-
ferred to simply as the out-of-sample) performance of a wide spectrum of forecast
combination methods in two different classical economic time series forecasting ap-
plications. The spectrum covers most of the forecast combinations presented in the
literature so far, examples of the artificial prediction markets methods and a method
called Market for Kernels, which is a new simple method we have designed for time
series forecast combining. Our goal is to inspect whether any conclusions can be
made about the performance of the examined forecast combinations in different fore-
casting environments, that could be of use to both academicians and practitioners,
who wish to apply the forecast combination methods to economic time series. Ad-
ditionally, we aim to examine whether the forecast combinations actually improve
upon the individual forecasts in our empirical applications. The first application
presented in this study is the combining of forecasts of macroeconomic variables at
different horizons from the ECB SPF. In the second one, the financial application,
we consider combining forecasts of the realized volatility of the U.S. Treasury futures
log-returns. For the purpose of examination of the forecast performance, we use
mainly the most common accuracy measures and a test of equal forecast accuracy
by Diebold & Mariano (2002). In order to challenge the forecast combination puz-
zle phenomenon, we test the null hypothesis of equal forecast accuracy of the equal

weights forecast combination and the other studied forecast combinations in both
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applications. Furthermore we focus our attention on assessing the performance of
the newly proposed method. We test the null hypothesis of equal forecast accuracy of
the Market for Kernels and the other forecast combination methods in both applica-
tions. Lastly, we test the null hypothesis of equal accuracy of Market for Kernels and
the individual volatility forecasting models considered in the financial application.
The python scripts with our implementation of all the forecast combinations used
as well as scripts we used to produce all the output tables and figures are publicly
available at https://github.com/MarekLipan/master_thesis_sc.

The thesis is structured as follows. After the introduction, in the second chapter,
we review the literature on forecast combinations including the artificial prediction
markets methods. Then, in the third chapter, we in detail describe the methodology
of the studied forecast combinations and present the Market for Kernels method.
In the fourth chapter, we present both of our empirical applications, describe the
data used and the individual realized volatility forecasting models from the financial
application. Next, in the fifth chapter, we describe the accuracy measures, the test
used and present the results from both of our empirical applications. Then, in the
sixth chapter, we discuss our findings in context of the forecast combination literature
and share some of our thoughts and suggestions regarding the topic. Finally, the

chapter seven concludes.
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Chapter 2

Combining Forecasts in the

Literature

There is a plethora of methods suggested for combining forecasts in the literature.
And there are multiple possible ways of how these methods could be sorted into
different groups under various labels and in what order they could be presented, be-
cause there is no consensual approach in that matter in the literature. Some general
reviews or sortings of forecast combination methods were done in e.g. De Menezes
et al. (2000), Stock & Watson (2004), Timmermann (2006) or Genre et al. (2013),
but neither of them encompasses all the methods mentioned here. Therefore a fol-
lowing simple way of sorting methods into sections was chosen. Firstly are presented
the methods, which are usually the most simple ones in terms of implementation,
understanding, computational intensity and most of them were hierarchically pro-
posed among the first ones or were directly derived from them. Then, slightly more
sophisticated methods are summarized including factor analytic (principal compo-
nent) combinations, shrinkage methods and Bayesian model averaging techniques.
Then is presented a selection of methods from the classes of bagging, boosting and
artificial neural network methods. These methods are in this study referred to as the
alternative methods, because they are vastly more applied in the field of general ma-
chine learning rather than the traditional economic forecast combination literature.
Lastly follows the summary of all of the relevant literature from the field of artificial
prediction markets presented so far. The artificial prediction markets methods are
excluded from the class of the alternative (machine learning) methods and receive a
special attention, because our proposed method, the Market for Kernels, is heavily
inspired by this particular stream of literature and would itself emerge within the

class.
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2.1 Simple Forecast Combinations

The origins of combining economic forecasts are often attributed to Bates & Granger
(1969). The authors consider a general case where there are multiple different fore-
casts of a given variable available. They argue that if the primary objective is not
to analyze the relationships in the data but rather to achieve as good forecast as
possible, it is advisable to consider a suitable combination of forecasts rather than to
select and rely on only one of the forecasts. Bates & Granger (1969) recognize two
reasons why a combined forecast might be more precise than each of the individual
forecasts. Firstly, the individual forecasts can be based on different information. Sec-
ondly, there can be different relationships among variables assumed by the individual
forecasts. The usefulness of combining forecasts is demonstrated on the problem of
one period ahead forecasting of monthly passenger miles flown in 1953. It is shown
that a simple average of the Brown’s exponential smoothing forecast and the Box-
Jenkins adaptive forecast yields a combined forecast with a lower mean square error
than both of the individual forecasts. Bates & Granger (1969) then suggest five dif-
ferent methods in which two series of forecasts are linearly combined with the aim to
minimize the mean square error of the composite forecast. The weights of individual
forecasts are calculated based on the past performance of the respective forecasts.
The methods make no assumptions about the underlying model. The authors ex-
plain that in case we assumed a single model specification is correct, the individual
forecast based on this particular model could not be improved by combining it with
forecasts based on other (incorrect) model specifications. An important conclusion
drawn by Bates & Granger (1969) is that methods with changing weights usually
lead to better forecasts than the methods with constant weights, which are calculated
based on all of the observed errors from the sample.

In an empirical study by Newbold & Granger (1974) on a sample of 80 monthly
economic time series, the assessment of forecasting univariate time series performance
using 3 different methods (Box-Jenkins, Holt-Winters and stepwise autoregression) is
made. From the considered methods, the Box-Jenkins method was found to perform
the best. However, it requires more time and skill than Holt-Winters and step-
wise autoregression methods, which are fully automatic. Importantly, Newbold &
Granger (1974) found that by combining the two automatic methods using suitable
weights computed as suggested by Bates & Granger (1969), a performance which is
superior to both individual methods and closely approximates the one of Box-Jenkins
method is achieved. Furthermore, the authors report that Box-Jenkins forecasting
performance can be often improved upon when the forecasts of all the 3 methods are
combined.

Additional empirical evidence suggesting that combining forecasts improved per-
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formance is provided by Stock & Watson (1998a). In their study, 49 linear and
non-linear univariate forecasting methods and various forecast combinations are ex-
amined on a dataset of 215 U.S. macroeconomic monthly time series. The findings
are that even the best performing individual method (autoregressions with unit root
pretest) can be improved upon by combining it with the other methods. Especially,
as the most reliable combining methods have proven to be the ones that place weights
on all of the individual methods (e.g. equal weighting or inverse MSE weighting).

Despite many economic studies find that combining forecast leads to improved
forecast accuracy, Yang (2004) argues that combining forecasts blindly can drastically
worsen the performance due to the large variability in estimating the combining
weights. The author recognizes a potential gain from sharing the strengths of different
individual forecasting models and at the same time the price of combining in terms of
complexity. To achieve a good balance between these two, Yang (2004) proposes the
Aggregated Forecast Trough Exponential Re-weighting (AFTER). This automated
algorithm works with recursively updated weights based on the past performance
of the individual forecasts. It has a property of achieving similar performance as
the best one of the individual forecasts and is easy to implement. This property
is very useful, because we often do not know apriori, which of the forecasts would
perform the best. Yang (2004) concludes that combining the candidate forecasting
models with weights assigned by AFTER leads to more stable predictions and a
better performance than in the case the attempt is made to select the best of the
candidate models based on information criteria.

Zou & Yang (2004) deal with an empirical problem of model selection when
forecasting time series using ARIMA models. They find in a simulation study as
well as on a real data example that selecting a single most appropriate model based
on information criteria often leads to unstable results. Zou & Yang (2004) suggest
instead to convexely combine some of the considered reasonable ARIMA models
using the AFTER algorithm as proposed by Yang (2004), which shows to lead to
improved performance.

Hendry & Clements (2004) show theoretically, how pooling forecasts leads to im-
provement in a case when no single model coincides with the DGP. They explain that
averaging misspecified forecasts provides “insurance" and might provide dominance
in case there is a location shift in some omitted variable. They even argue that
averaging might lead to better performance than using estimated combining weights
in such cases. For practical purposes, Hendry & Clements (2004) advise to robustify
the combination by using median or trimmed mean to identify and discard outlying
forecasts, which could otherwise have a bad impact on the whole combination.

Granger & Jeon (2004) discuss both theoretical and empirical benefits of thick

modelling (i.e. keeping and synthesizing model outputs of close model specifications)
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versus thin modelling (i.e. selecting and keeping output of only one of available
model specifications). In a task such as forecast combining, it is often worth to not
disregard the information available from alternative model specifications. Granger
& Jeon (2004) suggest trimming k% of the lowest and highest forecasts and taking a
simple average of the remaining ones. This procedure is very easy to implement as
it requires no estimation of combining weights. By trimming, we only get rid of the
portion of models which are most likely to be severely misspecified. Although, as
the authors note, it might be sometimes the case in practice that forecasts coagulate
around a value that is not really a good forecast. Using equal weights (simple average)
has a lot of empirical support in the literature. The procedure suggested by Granger
& Jeon (2004) thus appears simple, while effective at the same time.

Quite original approach to combining forecasts is suggested by Engle et al. (1984).
There are two competing model forecasts of U.S. inflation considered in the study.
Both are based on a different information set. One is a stylized monetarist model
(St. Louis equation) and the other is based on markup pricing model. The authors
propose to estimate a bivariate autoregressive conditional heteroskedasticity (ARCH)
model of the forecast errors to determine the combining weights. The weights are
time-varying and calculated from the conditional covariance matrix of forecast er-
rors. If the forecasting performance of one of the considered models improves during
some period of time (i.e. variance of the forecast errors reduces), the weight put
on this particular model in the combination increases. Engle et al. (1984) note that
observing the patterns in the time-varying weights can bring useful insights on how
the descriptive ability of the models evolves over time or in what situations each
model dominates the other.

Original and surprisingly simple approach is proposed by Capistran & Timmer-
mann (2009). The study is focused on a problem of forecasting data from various
surveys of experts, which are often subject to entering and exiting of experts, leaving
the researchers with unbalanced panels of data. Capistran & Timmermann (2009)
point out that this incompleteness in the data has large detrimental effect on the
commonly used forecast combination methods and that it is ignored in the litera-
ture more than it should be. The proposed method is done in two stages. In the
first stage, the equal weight forecast (simple average) from all available forecasts is
obtained. In the second stage, the observed target variable of interest is regressed
on a constant and the composite forecast obtained in the first step. It is shown that
this kind of projection on equal weighted forecast leads to adjustment for biases and
noise in the underlying aggregate forecast, which arise from the continual entering
and exiting of experts from the survey. Using equal weights in this method is in-
spired by a general agreement on a good performance of a simple average in forecast

combination tasks. The biggest advantage of the approach proposed here is that it
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enables to utilize all the available data in comparison to combination methods that
require estimation of a complete covariance matrix, which is not possible from un-
balanced panels. The improved performance of the projection on equally weighted
forecast method in comparison to other combination methods is demonstrated in a
Monte Carlo simulation study and empirical application of forecasting inflation from

the Survey of Professional Forecasters.

2.2 Factor Analytic Methods

Chan et al. (1999) consider forecast combinations in a dynamic factor model frame-
work. They consider a panel of individual forecasts with a conditional expectation
as a single unobserved factor. The approach here is to take the first principal com-
ponent of the estimated second moment matrix of individual forecasts and then use
it as the factor estimate. Then the parameter of this factor can be easily estimated
using ordinary least square (OLS) regression. Their analysis is conducted on results
of a Monte Carlo simulation experiments as well as empirical results from univariate
forecasting of U.S. macroeconomic time series. The performance of the presented
factor model is compared, based on the mean squared out-of-sample forecast error,
with other combination methods. Although the main benefits of combining forecasts
are often attributed to gains from pooling forecasts using different information sets,
the authors report an interesting finding that combined forecasts led to solid im-
provement upon the individual forecasts, despite that all the considered individual
forecasts in their example are univariate and are thus based on basically the same
information set. While the principal component (factor analytic) method is shown
to perform well in the simulation experiments, it is outperformed by other simpler
methods such as the simple average, median or the trimmed mean in the empirical
exercise.

In the paper by Stock & Watson (2004), the goal is to forecast quarterly output
growth data from 7 OECD countries in the period 1959-1999. The authors work with
73 different predictors per each country. In situations such as this one, where there are
very large number of predictors available in relative to the number of observations,
approaches such as the simple OLS combining weights (suggested by Granger &
Ramanathan (1984)) are inappropriate. The authors consider for this task several
forecast combining methods, including principal component forecast combination.
The mean squared forecast errors (MSFEs) of these methods are then compared
to a dynamic factor model alternative. The suggested approach is similar to Chan
et al. (1999). Firstly we compute the recursive individual forecasts and then obtain
first m principal components of their matrix of uncentered second moments and

so obtain the estimates of the common factors. Secondly, we regress the sample
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of observed output growth on these factors using OLS and obtain the combining
weights. Finally, we use the estimated weight to compute the combined forecast.
Stock & Watson (2004) use 2 versions of this model with different number of principal
components used. For the selection of number of principal components to be used, the
authors suggest using either the Akaike information criterion (AIC) or the Bayesian
information criterion (BIC). There are several observation made from their empirical
analysis. The dynamic factor model was generally outperformed by the forecast
combination methods. More sophisticated forecast combination methods, especially
those allowing for time varying weights, often perform poorly in comparison to the
simpler methods, which also give more stable results.

Another example of using principal component (factor analytic) combining fore-
cast method can be seen in a work of Genre et al. (2013). Here the authors use
several forecast combination methods including the principal component method as
suggested by Stock & Watson (2004). They use it to investigate whether there is a
potential for improvement in combining quarterly macroeconomic variables forecasts
from ECB Survey of Professional Forecasters. Genre et al. (2013) find that the rel-
ative performance of the examined method depends on both the forecasting horizon
and the target variable. They found that there was not much of an improvement over
the equal weights benchmark in forecasting GDP growth and unemployment, while
there was some decent improvement in case of forecasting inflation. From the meth-
ods they examined, there was none which would generally dominate all the others

across variables and horizons.

2.3 Shrinkage Methods

The first time the (Bayesian) shrinkage appears in the literature on forecast com-
binations is in the paper by Diebold & Pauly (1990). Here the authors propose
a weighted average of OLS regression based combining weights and equal weights
(simple average). As it is often noted, the equal weights, although theoretically sub-
optimal, provide a very solid benchmark, which is not easily beaten by other more
sophisticated combining methods. Here the authors allow the weights to be shrunk
towards but not force to be equal to simple average weights. The amount of shrink-
age is driven by the strength of the prior on the weights, which can be estimated
from the data using the empirical Bayes method proposed by the authors. Based
on the empirical study of combining forecasts of U.S. GNP, Diebold & Pauly (1990)
make several important observations. Firstly, all the individual predictors used in
their example can be outperformed in forecasting precision by using the proposed
combination method. Secondly, it is often necessary to shrink the weights by a rel-

atively large amount. Thirdly, a simple average is the shrinking direction, which
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provides the best final forecast combination. These findings are again indicative of
a very good performance of a simple combining method such as the simple average.
Empirical applications of shrinkage methods can be also found in forecasting
output growth of OECD countries by Stock & Watson (2004) and in forecast of
macroeconomic variables from ECB Suvervey of Professional Forecasters by Genre
et al. (2013). Stock & Watson (2004) in their application withhold from empirical
Bayes estimation approach of their shrinkage parameter s, in comparison to the
approach of Diebold & Pauly (1990), because they deal with a very large number of
predictors in their application. Instead they use several shrinking weights specified
explicitly. Asin Diebold & Pauly (1990), the shrinkage is done towards equal weights.
Genre et al. (2013) directly follow the implementation of Stock & Watson (2004).
One of the most recent approaches towards the forecast combining is presented
in Diebold & Shin (2017). The idea behind the 2-step egalitarian LASSO is inspired
by the fact that a simple average usually performs very well. The reason is that
equal weights always bring error variance reduction when combining forecast with
uncorrelated errors. Also, while the equal weights are theoretically sub-optimal,
they are likely to be close from optimal. Optimally, we want to give bigger weights
to forecasts with lower variance of errors. Also, the 2-step egalitarian LASSO is
designed to deal with a common situation where there are more individual forecast
sets than actual observations. In the first step of the suggested procedure the usual
LASSO, which “selects to 0", is run to discard some of the largely redundant forecasts
and to determine k surviving ones. In the second step, the egalitarian ridge is used
to shrink the remaining weights towards equality (1/k). Diebold & Shin (2017)
show that the 2-step egalitarian LASSO beats the simple average in terms of out-
of-sample forecast RMSE (root mean square error) in forecasting Euro-area real
GDP growth rate data from the European Central Bank’s Survey of Professional
Forecasters. As it is difficult to select the LASSO tuning parameter A, which drives
the strength of regularization, in the real-time with small samples, Diebold & Shin
(2017) further propose the “best average" combinations method. This method is
based on the lessons learned from egalitarian LASSO procedures and is free of any

tuning parameters.

2.4 Bayesian Model Averaging Combinations

Jacobson & Karlsson (2004) explore the idea of using Bayesian Model Averaging
(BMA) for combining forecasts of a large number of models. Their goal is to make
a composite forecast of Swedish consumer price inflation index from a plenty of
individual forecasts from models consisting of various possible combinations of about

80 available indicators. They suggest to use a BMA technique to determine the
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posterior probabilities computed from marginal likelihoods of the models and then
use it as combining weights. The results show that such model combination is quite
robust and yields lower out-of-sample root mean squared forecast error than the
individual models do. The findings of Jacobson & Karlsson (2004) are very supportive
for the use of their methodology. Despite the persistence in the inflation rate, they
successfully show that the BMA forecast combination can with ease outperform a
random walk forecast in the 4 quarters horizon forecasting.

Eklund & Karlsson (2007) consider a Bayesian Model Averaging as an ideal frame-
work for combining forecasts from the theoretical point of view. The BMA combina-
tions have some nice properties grounded in the statistical theory, they can account
for uncertainty in both models and parameters and can deal with situations where
there are plenty of predictors available. Newly, Eklund & Karlsson (2007) propose
to use the out-of-sample predictive likelihood to compute the combining weights and
show why it is a better choice in that matter than the standard marginal likelihood.
While the motivation is the same, the better fitting model from the candidate models
should accumulate greater weight in the resulting combination, the weights computed
based on the marginal likelihood are prone to in-sample overfitting. Eklund & Karls-
son (2007) show that their new method still has good asymptotic properties. It
converges to the true model, if it is present among the candidate ones. Although it
converges at somewhat slower pace than when using the method with weights based
on the marginal likelihood. Nevertheless, in practice, it can be hardly expected that
the true model is among the candidate ones and in such situations the BMA forecast
combination based on the predictive likelihood should provide the largest gains. Ad-
ditionally, it has better small sample properties. Because it considers both in-sample
fit and out-of-sample prediction, it provides some protection against overfitting in
comparison to the standard marginal likelihood based weights. The arguments of
authors are supported by their simulation study and the empirical exercise of fore-

casting Swedish inflation rate.

2.5 Alternative Methods

Donaldson & Kamstra (1996) propose to use artificial neural networks (ANN) as
an instrument to combine forecasts. They explain that ANN should perform better
than traditional linear forecast combination methods in situations where the optimal
forecast combination is nonlinear. Based on the comparison of out-of-sample mean
squared errors and tests of encompassing, Donaldson & Kamstra (1996) show that
ANN outperforms in some of the traditional combining methods in one-step-ahead
forecasting daily volatility of selected stock indices including S&P500, NIKKEI,
TSEC and FTSE. As the individual forecasts for combining the authors used the
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output from the MA variance model (MAV) and the GARCH(1,1) model. Harrald &
Kamstra (1997) enrich the research on combining forecasts with ANNs and optimize
the weights in the nodes of the ANN using the means of evolutionary programming.
Donaldson & Kamstra (1999) follow up on their previous work and again demon-
strate on the application of forecasting of S&P500 stock return volatility that ANN
combination is superior to the traditional linear combination. Donaldson & Kam-
stra (1999) newly explain that the benefits of ANN combining lies in capturing the
interaction effects between the individual forecasts. Their approach thus represents
a way how to incorporate a state-dependency into forecast combination modelling.

We can also consider bootstrap aggregation (bagging) as another option of how
forecasts can be combined. Bagging is a statistical technique designed to reduce
out-of-sample mean squared forecast error in cases where there is a large number of
predictors and where model selecting rules produce unstable results. Inoue & Kilian
(2008) employ bagging with a simple pre-test strategy in a task of forecasting U.S.
CPI inflation and compare the results with standard forecast combination methods,
factor models as well as the bayesian model averaging method. Their results from the
out-of-sample forecasting exercise indicate that bagging as used by Inoue & Kilian
(2008) indeed is a good alternative to other forecast combining methods in case the
data is covariance-stationary.

In a similar way to bagging, one can also use boosting to combine forecasts.
Buchen & Wohlrabe (2011) use componentwise boosting to forecast U.S. industrial
production growth at different horizons using 130 economic time series. The authors
compare the performance of boosting, traditional forecast combinations and dynamic
factor model and find that boosting works as a viable alternative. Adaptive Boosting
(AdaBoost) is a boosting algorithm which was later generalized to Gradient Boosting
(Friedman, 2001). Barrow & Crone (2016) asses the performance of AdaBoost against
bagging and other combining methods in forecasting 111 monthly industrial time
series from NN3 competition!'. They examine multiple different versions of AdaBoost
distinguished by the different choice of meta-parameters such as the loss function,
the stopping criteria or the base model. All forecast combining procedures are found
to be superior to individual best model selection. The authors introduce a novel
algorithm called AdaBoost.BC, which employs the selection of the best AdaBoost
meta-parameters for time series forecasting. Nevertheless, all the AdaBoost versions
are shown to forecast less accurately than bagging or the other examined simpler

forecast combination methods.

'More information about the NN3 competition is available on the following website
http://www.neural-forecasting-competition.com/NN3/
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2.6 Artificial Prediction Markets

The Artificial Prediction Markets is the method conceptually falling within the realm
of the (real) Prediction Markets. According to Wolfers & Zitzewitz (2004), the
prediction markets are financial markets where participants trade contracts whose
payoffs depend on uncertain future outcomes. The main motivation relies on the
efficient market hypothesis — in a an efficient market, the prices all the time fully
reflect all the available information (Fama, 1970). In the fully efficient prediction
markets, the market price represent the best possible predictor of the future events
of interest. Wolfers & Zitzewitz (2004) distinguish three types of prediction markets:
winner-take-all, index and spread. For this thesis are relevant the first two types. In
the winner-take-all market, the contract costs e.g. $p and pays $0 or $1 depending
on whether some future event of interest occurs or not. The price for contract p
thus represents the market’s expected probability of occurrence of the future event.
In the index market, the payoff varies in accordance to some quantity such as e.g.
percentage of votes obtained by a certain candidate in political elections. The market
price thus represents mean value assigned by the market to the given quantity of
interest. Wolfers & Zitzewitz (2004) recognize two base market designs. Firstly,
a continuous double auction, where buyers put their bids and sellers asks and the
market mechanism pairs the two sides whenever possible trade appears. Secondly,
a pari-mutuel system, where market participants place bets in the common pot,
which is later divided among the winning participants. The benefit of prediction
markets is that they provide incentives for truthful revelation, information discovery
and mechanism for aggregating opinions (Wolfers & Zitzewitz, 2004). An example
of an existing application of the prediction markets is https://www.predictit.org/, a
project of Victoria University of Wellington, where the participants trade the futures
on political events. Apart from public prediction markets such as this one, many
companies, including e.g. Microsoft, Siemens or Google, run their internal prediction
markets in order to aggregate the information or beliefs about the future events
dispersed among their employees Cowgill et al. (2009).

Artificial prediction markets were firstly introduced for aggregating classifiers by
Lay & Barbu (2010). The market setup is inspired by a real prediction market —
The Iowa Electronic Market, where the contracts for all possible outcomes of an
event are sold and the one which correctly predicts the outcome pays $1 after it is
realized. The artificial prediction market participants are the individual classifiers.
In the initialization step, the market participants are provided with equal budgets.
In the training process, the participants allocate part of their budget for purchas-
ing contracts according to their assigned betting functions. The betting functions

can be of various types. Lay & Barbu (2010) introduce constant, linear and aggres-
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sive betting functions. Also, they propose an algorithm for numerical derivation of
the market equilibrium price of contracts. After the realized outcome is observed,
the market participants are awarded in a budget updating procedure. This means
that in a trained market, participants which are correct more frequently than the
others accumulate greater share on a total budget and thus have a greater impact
on the equilibrium price. The contract equilibrium price vector can be interpreted
probabilistically as the aggregate classifier result.

Storkey (2011) introduces a utility-based framework to the artificial prediction
markets or the machine learning markets as it is referred to in the paper. In contrary
to the betting framework, here the market constitutes of a set of agents each with
a defined utility function. Each agent acts as to maximize her utility function given
a cost of traded goods, which are bets on individual outcomes. Depending on the
type of the utility functions, market equilibrium price (fixed-point) can be derived,
which can then be interpreted probabilistically. As Storkey (2011) notes, the machine
learning markets represent a very flexible way of combining models. They show that
various existing model combinations used in machine learning can be implemented
using various utility functions and market designs. For example, a linear debt-utility
gives weighted median model combination, a logarithmic utility gives a weighted
mean model combination, exponential decaying negative utility gives a product model
combination and so on. Moreover, the mechanism of the machine learning market
as suggested by Storkey (2011) allows for integration of independent agents with
different types of utility functions. This approach offers even greater versatility in
model combining.

Millin et al. (2012) further build on the previous research of Storkey (2011). They
introduce the agents with isoelastic utility functions and show how it can improve the
market performance over the logarithmic and negative exponential utility functions.
The market equilibrium cannot be computed analytically for a general elasticity
parameter or in the case of inhomogeneous market (i.e. market consisting of agents
with non-identical utility functions). Therefore the authors present an algorithm,
which can be used to find the equilibrium numerically, based on the principle of
minimizing the divergence of cost of the given good and the amount invested in
it. Millin et al. (2012) consider 2 possible wealth updating schemes: online and
batch, which correspond to bayesian model updates and mixing coefficient updates
respectively. The wealth update mechanisms are vital for machine learning markets
as they ensure that the weights are properly distributed among the agents in the
training phase. Millin et al. (2012) demonstrate that inhomogeneous markets of
isoelastic agents outperform some of the state of art classifiers on a number of UCI

datasets?, which are often used for machine learning benchmarking.

2The UCI datasets are available at https://archive.ics.uci.edu/ml/datasets.html
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After the research of Storkey (2011) and Millin et al. (2012), Hu & Storkey
(2014) choose different approach and consider agents whose decisions are driven by
risk measures. In contrary to a general utility function, the risk measures satisfy
a property of translation invariance, which implies that an optimal portfolio of a
particular agent does not depend on her wealth. Hu & Storkey (2014) abandon
interpreting the agent’s wealth as the aggregating weights, because they find the
relationships among them are very inconsistent and vary greatly based on which
utility functions are used. Instead, they propose a framework in which agents trade
with a market maker in a multi-period trading scheme. While each agent separately
is following her own goals, the market is analytically shown to be optimizing a certain
global objective. This allows for establishing a direct connection between the market
and machine learning. Machine learning problems of some form can be transformed
into a market and its solution find by running the market. As the examples Hu &
Storkey (2014) include opinion pooling, bayesian updates and logistic regression.

The first adaptation of artificial prediction market to a regression problem is done
by Lay & Barbu (2012). Because there are uncountably many possible outcomes in
a regression problem, the reward kernel is introduced, which is a density centered
around the true value of the dependent variable. The reward kernel determines the
size of the reward for each agent after the true value is observed. For each given
outcome from the space of possible values of the dependent variable, the reward for
a bet at that given outcome is a function of the absolute difference of the given
outcome and the true value (prediction error). The lower the difference, the greater
the reward. The wealth updating rules depend on a selection of the reward kernel.
Lay & Barbu (2012) present delta updates and Gaussian updates. The authors
show that their artificial regression market significantly outperforms a random forest
regression on a number of UCI datasets.

Most recently, Jahedpari et al. (2017) propose a continuous artificial prediction
market (c-APM) for online regression problems, in which the market is trained on
observations one by one. In c-APM, the pari-mutuel mechanism extended for regres-
sion is used, in which market participants bet on outcomes of their choice and the
aggregated prediction is taken as the average of these outcomes weighted by sizes of
the bets. The most important innovation in a work of Jahedpari et al. (2017) over
the previous research is that the agents are allowed to have adaptive strategies and
can revise their bets based on how bet the other agents in a pari-mutuel mechanism
in multiple rounds and thus incorporate “the wisdom of the crowd". The authors ex-
amine 2 trading strategies: constant trading and Q-learning, which is a reinforcement
learning technique used for finding an optimal action-selection policy. The c-APM is
shown to predict very well when compared with other prediction aggregating models

and the individual predictors, when tested on UCI datasets.



Chapter 3

Methodology of Forecast

Combinations

As discussed in the beginning of the literature review 2, there is no consensual ap-
proach on how the individual forecast combining methods should be categorized into
labelled classes. Nor we believe there is a necessity for making a unified approach or
that it is even possible. The reason is that one can always create a method by com-
bining features of methods from different classes or come up with entirely different
approach to solving the forecast combining problem, which would not convincingly
fit into any of the previously established classes. As it was already explained in 2,
in dividing combination methods between sections, we are guided by the principles
of common idea, complexity, relevance and time hierarchy. The chapter is concluded
by the newly proposed method, the Market for Kernels, which is presented within

the class of artificial prediction markets methods.

3.1 Simple Forecast Combinations

In this largest class of the forecast combination methods presented in this study is the
traditional benchmark from the forecast combination literature — the equal weights
forecast, the original Bates-Granger combinations as well as other traditional com-
bining methods and methods, which we find relatively simple enough to understand,

implement and compute.

3.1.1 Equal Weights

Many researchers report in their empirical works that simple combination meth-
ods such as the equally weighted (simple average) forecast represents a benchmark,

which is tough to beat in the forecast accuracy by other, more sophisticated methods
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(e.g. Stock & Watson (2004), Genre et al. (2013) or Conflitti et al. (2015)). This
phenomenon is known in the literature as the forecast combination puzzle (Smith &
Wallis, 2009). Smith & Wallis (2009) show that in case when the optimal weights are
close to equality, the simple average is expected to give lower mean square forecast
errors (MSFEs) than other methods using estimated weights, due to the estimation
variance. Claeskens et al. (2016) further develop the underlying theory and illus-
trate how estimation of optimal weights leads to bias and increase of variance of the
forecast combination. This helps to explain why the simplest combination method
available, the equal weights combination, although sub-optimal, might perform very
well in comparison with other combination methods in empirical applications. The

equal weights forecast combination at time 7" is defined as follows:

LS
fer==>_fir, (3.1)
K3
where K is the number of available individual forecasts fi,..., fi-

3.1.2 Bates-Granger Optimal Combining Weights

Bates & Granger (1969) present the original idea to combine a pair of forecasts
of a certain variable to obtain a single combined forecast with a lower variance
of forecast error than both of the individual forecasts. It is necessary to assume
that the individual forecasts are unbiased in order to obtain an unbiased combined
forecast. Bates & Granger (1969) believe that an ideal combination method should
have the following three properties. Firstly, the weights should approach the optimal
values as the number of forecasts increases. Secondly, as the relative accuracy of
the individual forecasts evolves, the weights should adapt correspondingly. Lastly,
the weights should not deviate too much from the optimal values. Bates & Granger
(1969) propose five combination methods having these properties, while being simple
enough, so that they can be easily applied in practice. These methods were, however,
described only for a pair of individual forecasts. Here, we present the generalization
of these five methods for a set of K forecast, in a form they were presented later by
Newbold & Granger (1974).

Let’s assume the following linear combination of forecasts at time 7"

fer=wpfr, wpl=1 0<w, <1 for Vi, (3.2)
where fr = (fi,r, ..., fx,r) is the vector of the individual forecasts, w/f = (w17, ..., Wk T)
is the vector of weights and 1 = (1,...,1) is the vector of ones. Let’s further assume

a vector of forecast errors e:
er =yrl — fr, (3.3)
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where yr is the realization of the variable to be forecast at time T'. In what follows

are defined the weights used in the individual methods.

Bates-Granger (1)

-1, -1
t*; Cit
W; T = — (3.4)

’ K [ T-1 -
Z Z G?t
j=1 \t=T—v

where v is the parameter controlling the length of the window used to calculate

weights. We set the v equal to T, in order to utilize all the available training sample
data.

Bates-Granger (2)

—2711 t. 0<w;,7<1 forVi 3.5
wr = ETE st. 0<wr < or Vi (3.5)
where
R T—1
()i, v Z €165,
t=T-v

This method utilizes the theoretical knowledge that the weights

>

“CT = Ts-1

minimize the error variance of the combined forecast (Newbold & Granger, 1974).
In most of the empirical applications, however, the covariance matrix X must be
estimated. The first method (3.4) is the special case of this method, where there are
all the correlations between the individual forecasts assumed to be zero. In case some
of the calculated weights fall out the interval [0, 1], it is possible to replace them by
the appropriate end points (Granger & Newbold, 1986). Again, we set v equal to T

in order to use all the available data.

Bates-Granger (3)

wir = ow;r—1+ (1 — )

T-1 -1
( 5 )
- =T 0<a<l. (3.6)
2\,

The third method convexly combines the weights from the first method (3.4) and

the directly preceding weights. The parameter « influences the pace of the weight
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adaptation. We use « equal to 0.6, and as in the previous two methods, the rolling

window length v equal to T.

Bates-Granger (4)

T-1 -1
> Wte?,t
= W1, (3.7)

The fourth methods resembles the first method (3.4), except that now instead of
controlling the length of the window, it is put exponentially more weight on the
more recent forecast errors using the parameter W. In our applications, we use the
W equal to 1.5.

Bates-Granger (5)

_ BT 0<cwr<1 forvi 3.8
wr = ETE st 0<wir < or Vi (3.8)
where
T-1
. > Whe;rejy
(X)i; = tzl—, W > 1.

T—1
>, wt
=1
The last method resembles the the second method (3.5), except that the weighting

idea is used instead of window controlling as in the fourth method (3.7). Here, we

also apply the weighting parameter W equal to 1.5.

3.1.3 Granger-Ramanathan Combining Weights

Granger & Ramanathan (1984) extend the literature on linear forecast combination
with 3 additional methods. The combining weights in all of these methods can be
obtained using the ordinary least squares (OLS) estimator.

Granger-Ramanathan (1)

The first suggested procedure is to regress the variable to be forecast y; on the

individual forecasts fi4,..., fx+ without a constant, i.e. estimating the model:
y=FpB+e, (3.9)

where F' = (f1,..., fx) is the (T x K) matrix of K individual forecasts, T is the
length of the data sample, B is the (K x 1) vector of combining weights and € is the
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(T x 1) vector of forecast errors. The combined forecast is then calculated as:
fo = FpB,

where 3 is the vector of estimated combining weights from regression (3.9). The
sufficient conditions for fo; to be an unbiased estimator of y; are:

(i) each of the individual forecasts fi,..., fx is unbiased

(ii) the combining weights sum up to one (i.e. 1’8 = 1)
However, it cannot be expected that these conditions will generally hold in practice
(Granger & Ramanathan, 1984).

Granger-Ramanathan (2)

The second method proposed by Granger & Ramanathan (1984) differs from the first
method in a way that the constraint is imposed on the combining weights ,3 such that
their sum equals one (i.e. 1/ ,3 = 1). This constraint ensures that the unbiasedness of
individual forecasts fi4,..., fk, implies unbiasedness of the combined forecast fc.

The weights can be found as a solution to the following minimization problem:
B = arg mﬁln(y —FB)(y— FB)+2)\1'8-1). (3.10)

Computationally equivalent solution can be found by regressing (y; — fx,) on (fi,—

frt)s-- s (fK—1t — frt) without a constant:
y*=F*B" +e, (3.11)

where y* = (y — fx), F*=(f1 — fx,---, fx—1 — fx) is the (T x K — 1) modified
matrix of individual forecasts, 8* is the (K — 1 x 1) vector of first K — 1 weights.

The estimate of the last combining weight Br of the forecast fK+ can be found as:
BK =1- llﬁ*a

where B* is the estimate of the parameter vector 8* from the regression (3.11). As

in the first method, the combined forecast is then computed as:

A

Granger-Ramanathan (3)

Finally, Granger & Ramanathan (1984) suggest an unrestricted linear combination

with a constant term. The weights can be obtained by regressing y; on fi¢,..., fx—14¢
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with a constant. This approach is claimed to be the best of all three proposed
ones, because the resulting combined forecast is unbiased even when the individual
forecasts are biased. Also, such combined forecast can be shown to have the lowest
mean squared error from all the three methods (Granger & Ramanathan, 1984). The

assumed regression model is:
y=al+ FpB+e, (3.12)

where « is the intercept, 1 is the (7" x 1) vector of ones and the rest of the notation

is the same as in the first method (3.9). The combined forecast can be obtained as:
fo=al+ F§,

where & and B are the estimates of parameters from the regression (3.12).

3.1.4 AFTER

Aggregated Forecast Trough Exponential Re-weighting (AFTER) theoretically de-
scribed by Yang (2004) is another method in the class of simple linear forecast com-
binations. Yang (2004) presents several variations of the AFTER algorithm. All but
one of the methods require and incorporate either the known conditional variance
of the variable to be forecast y, estimates of the variance by the individual fore-
casting procedures or the estimates of the conditional distribution. The last method,
which is also presented here, does not require it and is therefore suitable for instances
where y is non-stationary or where we are only provided with the individual point
forecasts to be combined. The combining weight w; 7 for the i-th forecast at time T’

is computed as follows:

T—1
T eXp ()\ ; ¢(ei7t)>

: (3.13)

wiT =

=

K T—1
21 T; exp (—)\ ; d)(ei,t)>

where 7; is the prior weight, K is the number of available individual forecasts, A is
a small enough tuning parameter (set equal to 0.15 in our applications), e;; is the
forecast error and 1 is a non-negative convex loss function, which does not need to
be symmetric around zero. Similarly to Zou & Yang (2004), we set the prior weights

equal to 1/K and use the square loss function. The equation (3.13) thus reduces to:
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Wi =

T—1
exp (—)\ ; (6i,t)2>
. ) (3.14)
A >

K —1
oexp | —A X (e)?
j=1 1
The combined forecast at time 7' is then computed as:
for = fr,
where fr = (fir,...,fxr) is the vector of the individual forecasts and w’ =
(w1, ...,wk) is the vector of combining weights.

3.1.5 Median Forecast

Another simple but useful approach to combining a set of individual forecasts is to
put all weight on the median forecast. Hendry & Clements (2004) suggest it as a
way to neglect the bad influence of outlying forecasts on the combination. They
argue that fixed weights combinations may dominate over estimated combinations
in situations where there is a location shift in the underlying DGP. It is because
previously successful individual forecasting procedures can become very inaccurate

after the shift. The median forecast combination at time 7' is defined as follows:

for = median{ f; r}i—1,.. K, (3.15)

where K is the number of individual forecasts.

3.1.6 Trimmed Mean Forecast

Granger & Jeon (2004) suggest as a part of their “thick modelling" procedure to trim
a certain percentage of the lowest and highest forecasts. This step taken in order to
remove the potential harmful effect of outlying forecasts. Further, they suggest using
the equal weights forecast combination 3.1.1 of the remaining forecasts. Advantages
of this method are its robustness and no requirement for the estimation, which is
useful in situations with many individual forecasts or small samples. The a-trimmed

mean forecast can be obtained as follows:

1 K—|aK|

for = ——F—7 Jay,rs 3.16
r K—zLaKJiZI%KJ“vT (3.16)
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where K is the number of individual forecasts, a € [0,0.5) is the trimming parameter
and f(;) 7 denotes the i-th order statistic. In the empirical applications, we report

the results for « set equal 0.05.

3.1.7 PEW

Projection on equal weights (PEW) method was firstly presented by Capistran &
Timmermann (2009). It is based on the knowledge of the good performance of the
equal weights forecast 3.1.1 and is designed for unbalanced panel data. The idea is to
project the variable to be forecast y on the the simple average of the of the individual
forecasts using the least squares method with an intercept, which is added in order
to remove any bias of the equal weights forecast. Parameters of the following model

are estimated:
1 XK
=qal — i . 1
y=a +B<K;f>+e (3.17)

And then the combined forecast for the period T’ can be computed as follows:
1 E
fer=a4a+p (K Zfi,T) )
i=1

where & and 3 are the estimates of the regression model parameters.

3.2 Factor Analytic Methods

Principal component (factor analytic) forecast, presented by Chan et al. (1999), are
based on the assumption that the panel of forecasts follows the factor model. This
method exploits the factor structure and is suitable for cases, when there is a high
number (K) of highly correlated individual forecasts as it provides a way to reduce
the dimensionality and can deal with the multicollinearity. Considering one-step-

ahead forecasts, we have the following factor model representation:

Yt+1 = Ht + €41, (3.18)

fig+1 = Nipe +e;y for Vi, (3.19)

where y;y1 is the variable to be forecast, p; is the unobserved factor, ;41 is the
innovation, f; ;41 is the i-th individual forecast, \; = 1+ Cov(v;t + Vi, pu)/Var(p),
where 1); ; and v;; are the i-th model specification and estimation errors respectively.

Finally, e;; is the error term, which is uncorrelated with p; (Chan et al., 1999).



3. Methodology of Forecast Combinations 24

Equation (3.19) can be suitably rewritten in a matrix form as:

Jir1 = Ape + e, (3.20)

where fiy1 = (figt1,-- -5 frat1)s A= (A1,..., k) and e; = (e14,...,ext).

3.2.1 Principal Components Forecast
The first step of the principal component forecast method by Chan et al. (1999) is
to estimate the unobserved common factor u; by the first principal component:

e = N fiia, (3.21)

where A is the eigenvector of the matrix of second moments of individual forecasts
71 ZtT;Ol fer1 i1 with the largest eigenvalue. Stock & Watson (1998b) show that
[1; is a consistent estimator of y; under general conditions. The second step is the

estimation of the following regression model by OLS:

Yir1 = By + &, (3.22)

which is shown to give forecasts that are asymptotically efficient (Chan et al., 1999).
According to Stock & Watson (1998b), there is no necessity for using more than the
first principal component in the regression, when K is sufficiently large. The final

principal component combination forecasts for period T is given by:
fer = BN fr,

where /3 is estimate of the coefficient from the regression (3.22).

3.2.2 Principal Components Forecast AIC/BIC

The principal component forecast combination method suggested by Stock & Watson
(2004) is similar to that of Chan et al. (1999). The difference is that Stock & Watson
(2004) consider not one but m common factors in the equation (3.20). Estimates of

these factors are again obtained as principal components:
fig=Nfiq fori=1,...,m, (3.23)

where A; is the eigenvector of the matrix of second moments of the panel of individual

forecasts corresponding to the i-th largest eigenvalue. The factor weights are then
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estimated using OLS:

Yeit1 = Bl + - oo+ Bmfimyt + & (3.24)

Stock & Watson (2004) suggest two different ways how to select the parameter m.
First option is to use the Akaike information criterion (AIC), which is in the case of

OLS with normally distributed errors defined as follows:
AIC = Tlog(6%) + 2P, (3.25)

where T is the length of the sample, P is the number of model parameters and 62 is

the biased estimator of the error variance:
1T
~2 2
= — o 3.26
g T Z:z:l 67, ( )

where ¢; is the i-th model residual (Burnham & Anderson, 2004). The goal is to
select such m from the set {1,2,3,4} (as suggested by Stock & Watson (2004)) that
the AIC from the model (3.24) is minimized. Second option is to use the Bayesian
information criterion, which is in the case of OLS with normally distributed errors
defined as:

BIC = Tlog(6?) + Plog(T), (3.27)

where again we select such m from the set {1,2,3,4} that the BIC from the model
(3.24) is minimized. Finally, the resulting principal component combination forecast

for period T can be obtained as:

for = BN fr+ ...+ Bl fr = (AL + ...+ Bl fr,

where f1, ..., Bm are estimates of the coefficients from the regression (3.24).

3.3 Shrinkage Methods

Shrinkage estimators are naturally well suited for the forecast combination problem.
Many of the previously described methods are based either on the experience with
a good empirical performance of the equal weights combination (section 3.1) or the
theoretical properties of the Bates-Granger optimal combination (section 3.1.2). The
shrinkage methods allow us to obtain weights somewhere in between these two, de-
pending on the data. In some cases, shrinkage estimators can also be used to remove

the redundant individual forecasts by shrinking their weights to zero.
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3.3.1 Empirical Bayes Estimator

The first example of using a shrinkage in a context of forecast combination is pre-
sented in Diebold & Pauly (1990). The authors base their idea on the evidence of
a good performance of the equal weights estimator in the empirical literature and
notoriously known optimal combining weights by Bates & Granger (1969) extended
by Granger & Ramanathan (1984). Here we present only one of the two the methods
suggested by Diebold & Pauly (1990), which is the empirical Bayes estimator. The
advantage of the empirical Bayes estimator over the g-prior estimator is that it does
not require specifying of the parameter g, since the prior precision can be estimated
directly from the data. In the empirical Bayes estimator, the combining weights are
shrunken from the unconstrained OLS combining weights 3 (3.12) towards the equal
weights B (3.1).

Let’s consider a linear forecast combination:
y=Fp+e,

where € ~ N(0,021) is the normally distributed error term. Let’s further assume

the normal prior on 3:

P(Blo) = N(Bo, °A™Y),

where A is the precision matrix and the parameter 7 controls the variance of the

prior. By combining the prior with the likelihood function:

1
L(B,O‘|y,F> X U_Texp <_
202

(v~ FB)(y - Fp))
we obtain the normal posterior:
P(Blo,y) =N (B, (T2 A+ 2F'F)™ Y,
where the posterior mean can be expressed as:
B1 = (7'_2A + O'_2F,F)_1(T_2ABO + 0_2F'F,3).

By substituting A = F'F and replacing ¢? and 72 with the estimators:

s2_ (- FB)(y—Fp)
T )

2 (B=B)'(B—Bo) .o

tr(F'F)~1 ’
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we can obtain the empirical Bayes combining weights (Diebold & Pauly, 1990):
22

Bl = ﬂO + (1 — A20-A2> (,é — ,60) (328)

o+ T

Finally, the forecast combination is computed as:
Jfc = Fpu.

3.3.2 Kappa-Shrinkage

Another example of a usage of a shrinkage method for forecast combination, here
referred to as the Kappa-Shrinkage, can be seen in Stock & Watson (2004) and Genre
et al. (2013). The shrinkage of weights is done from OLS combining weights without
an intercept 3 (3.9) towards the equal weights By (3.1). Considering one-step-ahead

forecasts, the combining weights can be computed as:
w =B+ (1-N)By, (3.29)

where the shrinkage weight A is defined as:

A = max {0, 1—r (y—f—K)} , (3.30)

where K is the number of individual forecasts, v is the length of the the training
sample and x is the parameter, which drives the amount of shrinkage. The larger
the K, the higher the shrinkage towards equal weights. In our empirical applications,

we set k equal to 0.5. Finally, The combined forecast at time 7T is computed as:

for = fr,
where fr = (fir,...,fxr) is the vector of the individual forecasts and w’ =
(wi,...,wk) is the vector of combining weights. The advantage of this method is

that it is suitable for instances where there is a large number of individual forecasts
relative to the sample size (Stock & Watson, 2004). The disadvantage is that the
resulting combination weights largely depend on the parameter x, which needs to be

pre-specified.

3.3.3 2-step Egalitarian LASSO

Diebold & Shin (2017) propose several of Egalitarian LASSO based procedures in-
cluding the 2-step Egalitarian LASSO, which is described here. It was chosen over

the other procedures, as we believe it spells out most the original ideas of Diebold



3. Methodology of Forecast Combinations 28

& Shin (2017). The key property of the 2-step Egalitarian LASSO is that it selects
to zero and shrinks towards equality. Also, the regularization property makes it a
usable method in situations where there is a greater amount of individual forecasts
than the sample length. The set of combining weights is obtained in the following
two steps.

In the first step, a standard LASSO (least absolute shrinkage and selection op-
erator) is used to determine which of the K individual forecasts will be used in the
second step and which will be discarded. The LASSO estimator is defined as:

T

K 2 K
Brasso = arg mﬂin (Z (yt - Zﬁifi,t) A1) |ﬁi|) ; (3.31)
t=1 i=1 i=1

where 8 = (B1, ..., LK) is the (K x 1) vector of weights, T is the length of the sample
and A; is the tuning parameter, which governs the amount of shrinkage. Those k
individual forecasts, for which the estimated weight is non-zero, are then used in the
second step.

In the second step, the combining weights for the remaining k individual forecasts
(denoted as f7,..., fi) are estimated using Egalitarian LASSO, which in oppose to
the standard LASSO shrinks towards simple averages (equality). It is defined as

follows:

T 2 k

k
BEgalLASSO = arg mﬁiﬂ (Z (yt - Z Bif ft) + A2 Z
i=1

t=1 1=1

i ,1\) SCES)

where 8 = (81, ..., B%) is the (kx1) vector of weights and s is the tuning parameter,
which is generally different from A; in (3.31).

The combining weights produced by this procedure largely depend on the selec-
tion of the tuning parameters A\; and A9. Diebold & Shin (2017) suggest to use the ex
ante optimal tuning via leave-one-out cross validation. The ex ante approach of the
tuning parameters selection is used so that the 2-step Egalitarian LASSO remains
comparable with the other presented forecast combination methods. Denoting the

pair of shrinkage parameters (A1, A2) as A, the optimal pair is found as follows:
1 T
A* = arg min | — Z(yt - fqt()\))Q )
A \T =

where

fer(XN) = BA/EgaZLAsso (&, N fE A,

where f;(t,A) = (fi4(t, A), ..., fi,(t, X)) is the (k x 1) vector of individual forecasts
at time ¢ selected by (3.31) using A and the subset of the training sample, which
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includes all but the period ¢. Similarly, B EgalLASSo is the (k x 1) vector of weights
obtained from (3.32) using A and the reduced sample. In order to decrease the
computational intensity in our empirical applications, we apply the standard 5-fold
cross-validation. As in Diebold & Shin (2017), each element of the optimal X is
searched trough a grid of plausible values. We find appropriate to use the grid:

o )
ex — 11—
P 19/ Ji-o,.. 19

in the forecasting of U.S. Treasury futures volatility application and the grid:

8
{exp < * Zl9> }iO,...,19

in the ECB SPF application. Finally, the forecast combination from the complete
2-step Egalitarian LASSO procedure with the ex ante A tuning for the out-of-sample
period T+ 1 can be obtained as:

fori = Biganasso(N) Fri (X9),

where the selection of individual forecasts f7,;(A*) and the weights B}; galLASSO(A")
are obtained using A* from (3.31) and (3.32) respectively.

3.4 Bayesian Model Averaging Combinations

Bayesian model averaging (BMA) is a technique using bayesian inference to solve
the problem of model uncertainty, involving averaging over models including all pos-
sible combinations of predictor variables (Raftery et al., 1997). In this thesis, we
use bayesian model averaging to combine forecasts in a way inspired by Jacobson
& Karlsson (2004) and Eklund & Karlsson (2007), who apply the bayesian model
averaging to forecasting Swedish inflation rate. Here we treat the available individual
forecasts fi,..., fk as the set of potential predictors of the variable of interest y.
We consider a bayesian forecast combination of the forecasts from the set of linear
regression models M = {My,..., My}, where for j = 1,..., M, the model M; is
of the following form:

y=2;0; +e, (3.33)

where Z; = (1, F}), 1 is the (T x 1) vector of ones and F} is the (7' x K;) matrix
containing K; individual forecasts, which are included in the model M}, as columns.
Further, 8; = (a;, 85)" is the ((1+ K;) x 1) vector of coefficients and € is the (7" x 1)
vector of errors drawn from A(0,02I). The set 9 contains all possible models of

this form that the available individual forecasts can give rise to. Because each of the
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individual forecasts f1,..., fx can be either included or excluded from the model, we
have in total 2/ different linear regression models to be combined using the bayesian

model averaging.

3.4.1 Marginal Likelihood Based Weights

Following Jacobson & Karlsson (2004), we consider the following minimum mean

squared error forecast combination at time 7"+ 1:

M
fers =Y Gire1p(Mjly), (3.34)
=1

where ;741 is the forecast of yri; obtained from the regression model M; (3.33)
and the combining weights p(M|y) are the posterior probabilities of the respective
models. The posterior probabilities are obtained using the Bayes rule:
p(y|M;)p(M;)
p(Mjly) = SYZIRTLI) (3.35)
gp(y|Mi)p(Mi)
1=

where p(y|M;) is the marginal likelihood and p(M}) is the prior probability of the
model M;. As in Jacobson & Karlsson (2004), we select a diffuse prior for the

variance:

and for the intercept:

p(ay) o 1.
For the remaining regression coefficients, we use the g-prior:
p(Bjlo?, M) ~ N (0,ca®(FJF) 7)),

where we set ¢ = K2. Although the resulting marginal likelihood m(y|M;) in this

setting is indeterminate, it can be shown that:

T—-1

m(y|M;) oc (c+1)7555 7, (3.36)
where )
Sj = Py 1(?/ Z;i0;) (y — Z;0;) + cr1 1(?! y1)'(y — y1),
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where éj is the OLS estimate of the coefficients from the regression (3.33) and y =
1/T ZtT:l yt. A suggested model prior probability is:

K
p(M;) x H w7 (1 — w;) 7 (3.37)

i=1
where w; is the prior probability of the individual forecast f; being included in
the true model and ~;; is the indicator of whether the individual forecast f; is
in fact included in the model M. Following Jacobson & Karlsson (2004), we set
w; = 1/2 for Vi, which results in all models from 90t having equal prior probabilities.
In summary, the weights for the forecast combination (3.34) (the model posterior
probabilities (3.35)) can be computed using the marginal likelihoods (3.36) and the

model prior probabilities (3.37).

Note that even though we are primarily combining the linear models based on
the individual forecasts rather than individual forecasts themselves, we can rewrite

the combination (3.34) in the following way:

M
fers = Gir+1p(M;ly)
Jj=1

M
- Z ((d]’ + > fi,T—HBi) p(Mj|y))

j=1 Vi: f; €M
M M R
= Z aip(M;ly) + Z Z fir+1B8ip(M;ly)
=1 =1 \Vicfiem,

= Z@jp(Mj\y) +> (fi,T—H ( > ij(Mj’y)>)

i=1 VjifieM,;

K
=wo+ Y firt1wi.
i=1

Thus it is possible express the resulting forecast combination using the BMA method
as a linear combination of the individual forecasts plus a constant.

The disadvantage of the described BMA method is the fast scaling computa-
tional intensity. With each additional individual forecast the number of elements
of the set 9 and so the number of models for which the posterior probability is to
be found increases exponentially. A possible solution is to apply some stochastic
search algorithm to efficiently search the model space. For that purpose (similarly
to Jacobson & Karlsson (2004)), we use the Reversible Jump Markov Chain Monte
Carlo (RJ-MCMC) algorithm proposed by Green (1995). The algorithm is described

as follows. In the beginning of each iteration step the chain is at state defined by the



3. Methodology of Forecast Combinations 32

model M. We attempt the move (1) with the probability p(;) or the move (2) with
the probability 1 — p(1). The moves are:

(1) Draw at random a single individual forecast from the set { fi|i = 1,..., K}, each
with the probability 1/K. If the drawn forecast is included in the model M,
drop it. If it is not included, add it instead. Propose the newly obtained model

M* for the acceptance.

(2) Draw at random a single individual forecast from the set {f;|i = 1,..., K A fi € M},

each with the probability 1/K;, and another individual forecast from the set
{fili=1,...,K N f; ¢ M}, each with the probability 1/(K — Kj;). Swap these
two forecasts in the model M. Propose the newly obtained model M* for the

acceptance.

The proposed model M* is accepted with the probability:

a = min (1, m(y|/\/l*)> ,
m(y|M)
which has been simplified from the original acceptance probability in the general al-
gorithm in Green (1995), because in this case the probability p(M*|M) = p(M|M*)
and the model prior is uniform. If the model M™* is accepted, it becomes the new
M for the next iteration step. Otherwise, the model M is retained (Jacobson &
Karlsson, 2004).

Let us define 9" the set of models visited by the chain during the iteration
process. Although 9t* can be considerably smaller than 9t in size, it can account for
most of the total posterior probability mass, depending on the shape of the posterior
(George & McCulloch, 1997). All the calculations of the posterior model probabilities
and the resulting forecast combination are then done conditionally on 9t*. In the
ECB SPF empirical application, we set the probabilities of both moves types to be
equal (i.e. pqy = 0.5) and we run the RJ-MCMC for 6000 iterations, from which
the first 1000 are discarded as the burnin. In the U.S. Treasury futures volatility
forecasting application, since the amount of individual forecasts and hence the linear
regression models is lower, we find it computationally more efficient to compute the
posterior probabilities for the entire space of models 91 directly, rather than apply
the search via RJ-MCMC.

3.4.2 Predictive Likelihood Based Weights

Eklund & Karlsson (2007) build up on the method by Jacobson & Karlsson (2004)
and suggest using the predictive density instead of the marginal likelihood in the

calculation of the model posterior probabilities (3.35). They divide the sample into
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two parts. First is used to update the prior probabilities on the parameters and
second is used to asses the fit of the model. The vector containing the dependent
variable y of length m + [ is thus divided into the training part y* of length m and
the hold-out part 4 of length /. For each model M; from the set 9, the same applies
to the corresponding ((m + 1) x (1 4+ Kj)) design matrix Z;, which is divided into
(m x (1+ Kj;)) matrix Z7 and (I x (1+ Kj;)) matrix Z;.

Using the same priors as in the previous section, for each posterior predictive
density it holds that:

m 1
- (S¥)Z|A*|2 . 3 o ) 1
p(§|Z;) x — LI (S* 4 (§— Zv;) (T + Z;(A) " Z) NG — Zjv; ,
’ |A§+Z§Zj\é(f &= Z) (I + Z(0) 7 2) 7" (0 = Zyy)
(3.38)
where ,
* C+ * *
A]: c (Zj)lzjv
C  Ax
AR

c A A 1
j ch1(y 107) (y j])+ic+1(y v (y* —y'1),

where é;‘ is the ((14+K)x 1) vector of parameters from the regression (3.33) estimated
on the training sample and y* = 1/T >/, y;. As oppose to Jacobson & Karlsson
(2004), Eklund & Karlsson (2007) use the parameter ¢ equal to K®. The model
posterior probabilities are then calculated as:
pM;lF,y") = Af(y‘y*’Mj)p(Mﬂ , (3.39)
i;p(g|y*,Mi)P(Mi)

where p(g|y*, M) is the predictive density corresponding to the model M. Finally,

the combined forecast is obtained as:

M
fersi =Y 0jrp(@ly*, M;), (3.40)

j=1
In case the dimensionality of the problem is large, the RJ-MCMC algorithm can
be applied again and the posterior probabilities are then calculated conditional on
the set of the model visited by the chain 9t*. The RJ-MCMC algorithm used here is
the same as described in the previous section, with the exception of the acceptance

probability, which is now defined as follows:

o = min <1’p(ﬂ\y , M )>

p(gly*, M)



3. Methodology of Forecast Combinations 34

Eklund & Karlsson (2007) argue that the BMA combination method using weights
based on the predictive likelihood instead of the marginal likelihood is less prone to in-
sample overfitting, while it still leads to a consistent model selection. The drawback
of this method is the trade-off in choosing the length of the training sample and the
hold-out sample. By increasing the length of the hold-out sample [, the predictive
density becomes more stable. On the other hand, less relevant observations are thus
left for updating the prior on parameters. According to empirical findings of Eklund
& Karlsson (2007), about 70% of the sample should be hold-out. We find this setting
suitable for the macroeconomic SPF ECB application, but we reduce the share of the
hold-out sample to 10% for the substantially larger datasets in the forecasting of the
U.S. Treasury futures volatility application. Further, we apply the same RJ-MCMC

parameter setting as in the marginal likelihood based weights method.

3.5 Alternative Methods

The last section contains forecast combinations via use of ANN’s, bagging and boost-
ing. These are frequently used machine learning methods and can be considered
alternative ways of combining forecasts. We therefore considered it worthwhile to

present it along and compare to the more traditional forecast combining methods.

3.5.1 Artificial Neural Network

The idea of using Artificial Neural Networs (ANNs), a semiparametric modelling
technique, for combining forecasts was first presented by Donaldson & Kamstra
(1996). The motivation is such that as oppose to the traditional combining meth-
ods, ANNs are flexible and can capture even highly nonlinear relationships between
the individual forecasts fi,..., fx and the variable of interest y. This includes the
potential interactions among the individual forecasts (Donaldson & Kamstra, 1999).
Donaldson & Kamstra (1996) employ a single hidden-layer ANN with up to three
logistic nodes and the possibility to be complemented with a linear node, formally

written as:
n p
Yt = 50_{' Zﬁkfk,t_‘_zéllll(zta’yl) for t = 17""Ta (341)
k=1 =1

where we consider:
ne{0,K}, pe{0,1,2,63}.
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The logistic node in (3.41) is defined as:

1
\IJ(Zt, ’Yl) = K )
1 +exp <— (’Yi,o + kZ 'Yi,kzk,t>>
=1

with the standardized individual forecasts:

Jrt —
Rkt = —

Sy

where the sample mean y and the sample standard deviation s, of the variable of

interest are computed as:
1

T
T Zylv
=1

g:

1 T
Sy = \l 71 Z(yi — )2

As in Donaldson & Kamstra (1996), the estimation of the ANN is done in the
following way. Firstly, denoting the set {~1,72,v3} as I, 10 I'’s are randomly drawn
from the multivariate uniform distribution ¢ g4 1yx3(—1,1). Secondly, the parame-
ters B and d from the regression (3.41) are estimated by OLS for each drawn I'" and
the model specification further determined by the number of nodes. Excluding the
model with only the intercept, we get 60 different ANNs plus a single fully linear
model specification to be estimated. The optimal specification {n*,p*,T'*} is then
determined in the standard k-fold cross-validation exercise. As in some of the other
methods, we use the 5-fold cross-validation. The final ANN forecast combination for

the out-of-sample period 7'+ 1 can be computed as follows:
A n* A p* A
fer =080+ Befer + >0V (zr, ),
k=1 i=1

where B and & are estimates of the parameters from the regression (3.41) using the

optimal specification {n*, p*,I'*} and the whole sample for the estimation.

3.5.2 Evolving Artificial Neural Network

Much like Donaldson & Kamstra (1996), Harrald & Kamstra (1997) use the ANN to
find a nonlinear combination of forecasts of different volatility models. The consid-
ered single hidden-layer Evolving Artificial Neural Network (EP-NN) is the following:

K 3
ye=DPo+ Y Befrr+ Y 6:iW(z,vi) fort=1,...,T, (3.42)
k=1 =1
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where again the logistic node is defined as:

1
\IJ(Zt, ’Yl) - I% )
1 +exp ( (%’,0 + kz %’,k%t))
=1

Newly, Harrald & Kamstra (1997) utilize the means of evolutionary programming

and search for the optimal set of parameters I'* = {~{,~5,~3} from (3.42) using the
stochastic numerical process. The algorithm for the estimation of their EP-NN has

the following steps:

1) For each parent p € {1,...,n}, make an independent random draw I'j, from the

multivariate uniform distribution U g4 1)x3(—1,1)
2) For each p € {1,...,n}, estimate the model (3.42) by OLS using T,

3) Sort the vector (I'y,...,T',) by the in-sample MSE produced by respective models

from the previous step.
4) For each p > n/2, replace 'y by T'y +n, where n ~ Nk 41)x3(0,0)
5) Repeat steps 2)-4) for g generations.

6) Choose I'y, the set of parameters from the model with the lowest MSE overall,
as the optimal set I'*.

Additionally, as a protective measure against overfitting, Harrald & Kamstra (1997)
propose to run the whole procedure independently 29 times and select the EP-NN
with the median MSE as the final model. We run the procedure only once in order to
accelerate the computations. The results in our empirical applications are reported
for the parameter o equal to 0.05. Further, we use the size of the population n = 16

and evolve the network for g = 200 generations.

3.6.3 Bagging

Bootstrap Aggregation (Bagging) is a method designed for situations, when it is
necessary to deal with a big amount of potential predictors and unstable model
decision rules. Assuming the covariance stationary environment, the use of bagging
is expected to reduce the out-of-sample mean squared forecast error (Inoue & Kilian,
2008). In this thesis, we consider the bagging technique applied to an OLS regression
with a pre-test, as it is done by Inoue & Kilian (2008), a self-contained forecast
combination method.

Let’s consider the following unrestricted regression model:

w=fiB+e fort=1,...T, (3.43)
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where 1 is the forecast of the variable of interest at time ¢, f; is the vector of K
individual forecasts, 8 is the vector of parameters and ¢; is the error term. We can

construct and estimate the following pre-test model using the two sided t-test:
Yo = Fpy + v, (3.44)

where JF3 is the matrix of individual forecasts, containing only those individual fore-
casts fj (j =1,..., K) for which [t;| > 1.96. Where ¢; denotes the t-statistic for the
null hypothesis that §; from the unrestricted model (3.43) equals zero.

Further, consider the set of bootstrap samples {(y;, F;") }s=1,... B, where the indi-
vidual samples are compound of p blocks of size m drawn randomly with replacement

from the following matrix:

vi fix fer .. fra
y2  fi2 fe2 ... [K2
yr fir for .. [kT

Noting that p = |7//m|. This moving block bootstrap is used to retain the serial
dependency of the original series in the bootstrap samples (Gongalves & White,
2004). The block size m was chosen to be equal to | V/T| for simplicity. For the
discussion of admissible block sizes see e.g. Politis et al. (1997). For each bootstrap
sample, we first estimate the unrestricted model and obtain BZ Then, we construct
and estimate the pre-test model and obtain 4;. The t-statistic for pre-testing ]t;‘| is

computed as follows (Inoue & Kilian, 2008):

A

Var
where
Var(B1,) = —= (A7) 87 (A) )
» T Ji
and where
a1l R i} . /
ST = Tn Z ZZ k 1) m—H k l)m—H)(f(k—l)m+j€(k_1)m+j) y
pm = =1
= LS S i)
1)m-+i —1)m~+i/ )
pm k=11=1

where € = y — (f#)'8. The bagging forecast combination at the out-of-sample
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period T + 1 is then computed as:

B
fen = 5 ()5
In both of our applications, we use the number bootstrap replications B equal
to 500. Further, we use the classical 1.96 threshold for the t-statistic as suggested
by Inoue & Kilian (2008) for the ECB SPF application. Nevertheless, we reduce
the threshold to 1.28 for the forecasting of U.S. Treasury futures realized volatil-
ity application, because we find the original threshold too strict for pre-testing in

environments with strongly correlated forecasts.

3.5.4 Componentwise Boosting

Boosting is a functional gradient descent technique, which originated from the ma-
chine learning community and was firstly applied to classification problems (Biihlmann
& Yu, 2003). It is generally suitable for cases where there are high number of po-
tential predictors and some form of information condensation or variable selection is
required (Buchen & Wohlrabe, 2011). The componentwise La-boosting was firstly
presented by Bithlmann & Yu (2003). Here we apply the algorithm as described
by Buchen & Wohlrabe (2011) to the following linear regression forecast combining

model:
E(y|Z,8)=2ZB = ¥(Z,p), (3.45)

where y is the (T x 1) vector of dependent variable, Z = (1, F') is the (7' x (K + 1))
design matrix and F = (f1,..., fi) is the (T x K) matrix of individual forecasts.
The coefficients corresponding to the individual forecasts, which are not selected by
the boosting algorithm are restricted to be zero. We use OLS as the base learner

1(.) and the quadratic loss function:

L(y, ¥(Z,6)) = 1y~ ¥(Z.8))

The steps of the algorithm are following:

~ 1
1) Set m = 0. Initialize ¥y = Tl’y .

OL(y, V)
O

2) Increase m by 1. Compute the negative gradient vector — evaluated at

";m—l(zué[mil}) tu=Y - ’lz’m—l(Zv B\[mil])

3) For k = 1,..., K regress u on fr and compute the sum of squared residuals
SSRk = 1/(11, - ékfk)Q.

4) Find k* = arg mkin SSRy.
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5) Update @m(Z, ﬁ[m]) = '&m,l(Z, B[m_l]) + V0 Frr.
6) Repeat steps 2-5 until m = M.

The shrinkage parameter v was set equal to 0.1. It was found that this boosting
algorithm is not very sensitive to the choice of v (Buchen & Wohlrabe, 2011). The
number of boosting iterations M was determined in a standard 5-fold cross-validation

exercise. The function ¥(Z, B) is finally estimated as:
¥(z, M) = (2, 8M).

The componentwise boosting forecast combination for the out-of-sample period 7'+ 1

is then computed as:

A

fC,T+1 - ‘i’(ZT+1, /B[M])7

where zri1 = (1, firs1, -5 frr4+1)

3.5.5 AdaBoost

The AdaBoost is a commonly applied Boosting Algorithm (Barrow & Crone, 2016).
Barrow & Crone (2016) empirically test different choices of AdaBoost metaparame-
ters on time series data. They introduce the AdaBoost.BC method, which combines
the metaparameters that came out best in the test. Here we follow their methodology
and use AdaBoost.BC to combine individual forecasts.

In the beginning of each iteration step of the AdaBoost algorithm, we sam-
ple a training set of length size T from the original sample with replacement. In
the i — th step, for t = 1,...,T, the vector (ys, fis,...,fx+) has the probability
pi = wi/ ST w! of being drawn. The initial weights w} are set equal to 1 for all
observations, thus inducing a uniform distribution. Then we train the base learner,
which is in this case the multilayer perceptron (MLP). The MLP has one hidden
layer and two hidden nodes. We use the hyperbolic tangent activation function for
the hidden nodes and linear activation function for the output node. Further, we use
the L-BFGS, an optimizer from the class of quasi-Newton methods, to optimize the
weights in the MLP. For details on MLP’s refer to Zhang et al. (1998) and Demuth
et al. (2014).

Using the OLS, the parameters of the following regression model are then esti-

mated on the training sample:
y=FpB+e, (3.46)

where y is the dependent variable of interest, F = (f1,..., fx) is the matrix of

individual forecasts, B is the vector of parameters and € is the vector of errors.



3. Methodology of Forecast Combinations 40

Next, the threshold-based loss Lt is calculated for each observation:

i 1, if ARE} > ¢,
L=
0, else,

where the absolute relative error is computed as:

Yt — 177?
Yt

ARE! =

where 7! is the prediction produced from the trained MLP. Then the weighted average

loss is computed as:
T
L'=> "piLi.
t=1
We use the threshold parameter ¢ equal to 0.1. Next, we calculate the model confi-

5 =tog (1)

The observation weights are then updated according to the following rule:

dence measure:

witt = wipl .

The algorithm is run for 50 iterations. Finally, the forecast combination at time
T +1 is computed by simply averaging over the predictions produced from the MLP’s

trained at different iterations:
150
fery1 = — Z U1
50 i=1

This last step is the inspiration from the research on forecasts combinations (Barrow
& Crone, 2016).

3.6 Artificial Prediction Markets

From the various types and modifications of the artificial prediction market methods
summarized in the literature review 2.6, we apply in our applications the two vari-
ants of continuous Artifical Prediction Markets, because they are readily usable for
the combining of the time series forecast data, unlike most of the rest of the artifi-
cial prediction market methodology, which is dedicated to the classification problems
only. Also, we present the original Market for Kernels method, which is our mod-
est attempt to extend artificial prediction market literature for a method directly

applicable to time series regression problems.
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3.6.1 Continuous Artificial Prediction Markets

The continuous Artificial Prediction Markets (c-APM) is the prediction or in our
case forecast combination method designed by Jahedpari et al. (2017) for regression
problems. The c-APM agents participate in the artificial prediction markets with the
parimutuel betting mechanism and a market maker. Jahedpari et al. (2017) suggest
two variants of their method: c-APM with agents having constant betting functions,
c-APM with agents who observe predictions of other agents and adapt their strategies
via the reinforcement technique called Q-learning. The c-APM training algorithm is
following (Jahedpari et al., 2017):

1) Initialize agents with equal budgets.

2) Initialize the market for the prediction of the variable y;. Repeat the steps 2 — 11
fort=1,...,T.

3) In the first round of the market, every agent bets a MaxRPT (maximum rate

per transaction) share of her budget on her own individual prediction (forecast).
4) For all remaining rounds of the market, repeat the steps 5) and 6).

5) Each agent decides about her prediction and how much she bets on it, depending
on the type of the agent. In the c-APM (Constant), the agents with constant
betting functions simply bet a fixed share (MaxzRPT) of their budget on their
own individual prediction in every round. Whereas in the ¢c-APM (Q-learning),
the agents observe the market prediction announced by the market maker at the
end of each round and have two options. They can either preserve their current
predictions or adjust them. Firstly, each agent estimates the error of her current
prediction:

estError;, = Prediction — predictiony,,

where Prediction is the market prediction from the previous round. Based on
the estimated error, each agents identifies the state s she is in, which is defined
by the current round number and the cluster into which the error falls (small,
medium, large). The agents then have the option to change their predictions in

a following way:
predictiony, < predictiony, + 0y s X estErrory,

where d, ¢ is the parameter from the interval [0, 1] reflecting the confidence in the
wisdom of the crowd of the k-th agent in the state s. The agents always choose
the action (“preserve" or “change"), which has the higher Q-value for the given

agent and state. Further, the agents decide how much to bet. They estimate the
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scores of their newly chosen predictions:
score), = log(accuracyy,),

where

accuracy], = max {100 (1 B |Predzctzon0—etpredzctzonkl> ’ 1} 7
where oet is the outlier error threshold from the previous market. If the score}, of
the k-th agent is greater than or equal to 1, the agent expects that a bet at this
prediction will result in her winning money and is thus motivated to bet as much
as possible (MaxRPT). In the opposite case of score), < 1, the agent expects to

lose money and thus bets as little as possible (MinRPT).

At the end of the round, the market maker aggregates individual predictions of

all agents into a single market prediction:

K
> bety, X predictiony,

Prediction = *=1

)

K
Z betk
k=1

where K is the number of agents in the market. Sizes of bets represent natural
weights of predictions as they reflect the confidence of respective agents in their
own predictions. Also, this weighting scheme promotes the principle, that agents
who are often more accurate in predictions and so accumulate greater budgets,

have greater impact on the aggregated market prediction.

At the end of the market, the true outcome y; is revealed and the outlier error

threshold (eot) for the current market is computed using the inter-quartile range.

The error clusters are recomputed using the online k-means clustering algorithm
(MacQueen et al., 1967).

Agents obtain revenue for each of their bet according to the formula:
revenue = score X bet,

where

score = log(accuracy),

and

— predicti
accuracy = max {100 (1 — [y, = predic Z0n|) ,1} .

oet
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10) Agents calculate the potential revenue (pot Revenue) they could have earned for
each action in each state they have visited in the market and update the respective

Q-values in a following way:
Qk,s < (1 — @)Qp,s + a X pot Revenue,

where « is the learning rate parameter from the interval [0, 1].

11) Agents update their confidence in the wisdom of the crowd parameter for each

state the have visited in the market:

yp — predictiony g
Ops < (1 — a)dr s + a X truncate ’
ks ( )O%.s (Predictions — predictionhs)

where
0, ifz<0,
truncate(z) =<1, ifx>1,
xz, else.

The parameter setting used is similar to Jahedpari et al. (2017). We set MazRPT
0.9 for the first round, so the influence the agent’s original prediction on her budget
remains strong. For all the other round, we set MazRPT = 0.01 and MinRPT =
0.0001. Each market is run for 10 rounds and the learning parameter « is set equal
to 0.7. The market predictions from the last round of each market are the c-APM
predictions. The fully trained artificial prediction market, in terms of the budget
distribution, updated Q-values and 0 parameters, then can be used to combine fore-
casts out-of-sample at time 7'+ 1 by simply running the market for yr;; without

further updates.

3.6.2 Market for Kernels

When designing an artificial prediction market mechanism applicable to a forecast
combination or generally a regression problem, one needs somehow overcome the
fundamental problem of transferring either from a countable number of outcomes
on which the agents can bet to an uncountable number of outcomes, when building
up on the idea of Lay & Barbu (2010), or similarly transferring from a countable
number of futures to an uncountable number of futures, when following along the
lines of Storkey (2011), Millin et al. (2012) and Hu & Storkey (2014). Our approach
is inspired by Lay & Barbu (2012), who use density estimates of individual agents
and a reward kernel to reward the agents at the end of the market based on how
close their prediction are from the true values. However, unlike the approach of

Lay & Barbu (2012), ours does not require the complete density estimates from the
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individual agents directly and so is suitable also for combining point forecasts. We
borrow the idea of using kernels in artificial prediction markets from Lay & Barbu
(2012), but we use them in a different way than reward kernels. We let the agents bet
in each market on the probability density represented by a predefined kernel shifted
and scaled according to their choice (hence the term Market for Kernels), which
approximately reflects their beliefs about the probability of all outcomes across the
outcome space. Then, after the true outcome is revealed, we reward the agents based
on the relative values these densities assign to the true outcome and the relative
sizes of their bets. The choice of each agent’s kernel scale and shift is driven by her
expected outcome in the current market and her expected accuracy of her prediction
based on the experience from the previous markets.

The Market for Kernels is trained using the following algorithm:

1) Firstly, all of the K agents, corresponding to the K individual forecasts, are
initialized with equal budgets w; = 1/K for Vi =1,..., K.

2) For each observation at time t in the training sample ¢t = 1,...,T, the single

round market is run by repeating steps 3,4,5.

3) The market allows one dimensional gaussian kernels defined as:

2mo 202

K(z,0) = ! exp (—332> , (3.47)

where o denotes the scale parameter. Each agent specifies the the expected
outcome f;; (prediction), which acts as a shift of the gaussian kernel (3.47) in the
outcome space. Further, each agent specifies the kernel scale parameter o as the

average of her absolute prediction errors from the previous markets:

1 tL
it =y Z |0 e,
=1

assuming the initialization:

031 = 1, for Vi

in the first market. The selected scale reflects the uncertainty of each agent about
her own prediction. Regarding the size of the bet, we assume that the agents bet
their whole budgets in each market. So, it holds that:

bet; ; = budget; ;, for Vi,t.

4) The market maker aggregates the pool of predictions into a single market predic-
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tion using the following formula (as in Jahedpari et al. (2017)):

=

beti s X fi
fop = =L
Ct =
betiyt

i=1

5) The true outcome y; is revealed and the agents are rewarded according to the
accuracy of their predictions and sizes of their bets. The following reward formula

is used:

betj,t X Kj(yt — fj,t)
K
'21 bet; i x Ki(ye — fizt)
1=

reward;; =

The reward function can be in fact understood as a contributing share of the
j-th agent to the market weighted kernel density estimate at the true outcome
y¢. Since the agents bet their whole budgets in every market, current rewards of

all agents directly translate into their next market budget:

budget; 11 = reward;;, for Vi,t.

After the market is fully trained in a sense of the total budget distribution and
the updated kernel scales of individual agents, it can be run on the testing data and
the obtained aggregate market predictions in the step 4 is taken as the resulting
Market for Kernels prediction. The property of infinite support of the gaussian
kernel in combination with our reward function ensure that no agent can ever go
fully bankrupt, which protects the market from a partial information loss. The
design of the market allows each agent to effectively accumulate wealth and thus
increase its influence on the aggregate market prediction after a series of accurate
predictions from an arbitrary starting position.

We deliberately eliminate the possibility for user specified input parameters. We
aim for the method as simple and working as autonomously as possible, while still
keeping some degree of flexibility thanks to the elements of learning and combining
based on the past accuracy. Although, we acknowledge that the Market for Kernels
method is directly extensible by e.g. setting some parameter reducing the window of
last observations the agents take into account when deciding about the scale of their
kernels, such as the parameter v in Bates-Granger methods (3.4), (3.5) and (3.6), or
perhaps by limiting the share of the budget that the agents can bet in each market
by some other parameter, such as MaxRPT in the c-APM presented in the previous
section 3.6.1. Furthermore, please note that our primary goal in this study, regarding
the Market for Kernels, is to asses its performance empirically against other existing

forecast combination methods. We recognise that the Market for Kernels method,
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as presented at this stage, is a mere suggestion of an algorithm, inspired by our
own experience with combining forecasts, absent of any formal proof of the market
convergence towards the theoretically optimal true weights. This work is yet to be

carried out in the future.



Chapter 4
Applications

In this thesis, we apply the described forecast combination methods in two distinct
application. The time series used in these applications differ completely in their
nature and size, which allows us to make a broader assessment of the performance
of the individual methods. In the following two sections are presented both the

macroeconomic and the financial application.

4.1 ECB Survey of Professional Forecasters

Since the January of 1999, the European Central Bank (ECB) runs the quarterly
Survey of Professional Forecasters (SPF) about the anticipation of the future growth
of real gross domestic product, inflation and unemployment in the euro area. The
results of the survey are published periodically in the ECB Monthly Bulletin. Among
the contributors to the survey are relevant professionals affiliated with both financial
and non-financial institutions from the European Union (EU) (ECB, 2018). Apart
from the forecasts themselves, the SPF contains information about the level of un-
certainty of individual forecasts and the mean forecast for each of the macroeconomic
variable of interest. The contributing professionals are asked for forecasts at multi-
ple horizons. The ECB SPF data together with the list of contributors is publicly
available!.

Accurate forecasts of the key macroeconomic variables such as those in the SPF
are of great value to all sorts of economic agents including policy makers, investors
and households. The individual SPF forecasts may differ substantially depending on
the information set and the methodology used of the particular contributor. There-
fore, naturally, a research has been done on how to optimally combine these forecasts
in order to improve accuracy and more specifically, whether there is a combining

strategy that could consistently out-perform the simple average of these individual

Thttp://www.ech.europa.eu/stats/ecb_surveys/survey of professional forecasters/html
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forecasts (e.g. Genre et al. (2013), Diebold & Shin (2017) and Conflitti et al. (2015).
Our motivation in this is application is to tackle the problem of combining forecasts
from SPF with a broad range of methods, some of which are rarely seen in economic
applications and to our knowledge were not previously applied to this problem, and
asses whether any new insights can be drawn. We aim to discuss our experience with

combining SPF forecasts in contrast with the up to date findings of other researchers.

4.1.1 Data

In this study, we focus on forecasts of the yearly percentage change of real gross
domestic product (RGDP) as according to the definition of European system of
national and regional accounts (ESA), yearly percentage change of the Harmonised
Index of Consumer Prices as published by Eurostat (HICP, harmonised inflation)
and unemployment rate (UNEM) as calculated by Eurostat over 1-year and 2-year
horizons. All the considered variables are expressed in percentage points. For a
complete and thorough description of the ECB’s SPF including details about the
history and design of the questionnaire you may refer to Garcia (2003) and Bowles
et al. (2007). We obviously only work with forecasts with up to the current date
horizons, so their actual accuracy can be assessed. The forecasts from the SPF
for different macroeconomic variables target different months, nevertheless all the
forecast series are quarterly. The real GDP growth forecast series is composed of
73 observation from July 1999 to July 2017 for the 1 year forecast horizon and
of 69 observations from July 2000 to July 2017 for the 2 years forecast horizon.
The harmonised inflation forecast series is composed of 73 from December 1999 to
December 2017 for the 1 year forecast horizon and of 69 observations from December
2000 to December 2017 for the 2 years forecast horizon. The unemployment forecast
series is composed of 73 from November 1999 to November 2017 for the 1 year
forecast horizon and of 69 observations from November 2000 to November 2017 for
the 2 years forecast horizon. The table 4.1 summarizes the descriptive statistics of
the SPF target macroeconomic variables series. Note that the 1 year and 2 year
forecast horizon series for respective variables differ only by the first year of the
survey (1999), which is not present in the 2 year forecast horizon series. From the
three examined variables, the unemployment rate has the least variance in relative
to its mean, which suggests it might be easiest one to predict. In contrast, the real
GDP growth has a variance relative to its mean. Most of it is induced by the global

financial crisis slump, which is apparent from the figure 4.1.
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Table 4.1: Descriptive statistics of the SPF target macroeconomic
variables for the euro area

Statistic RGDP HICP UNEM
1Y 2Y 1Y 2Y 1Y 2Y

Mean 1.16 1.05 | 1.77 1.74 | 941 942
Median 1.50 1.40 | 2.00 2.00 | 9.10 9.00
Mode 1.60 1.60 | 2.10 2.10 | 830 8.30
Std. Dev. | 1.56 153 | 099 1.01 | 1.39 1.43
Variance 244 234 | 098 1.01 | 1.93 2.04
Minimum | -4.80 -4.80 | -0.30 -0.30 | 6.90  6.90
Maximum | 3.70 3.40 | 4.00 4.00 | 12.20 12.20
Kurtosis 294 3.17 | -0.38 -0.47 | -0.72 -0.84
Skewness | -1.42 -1.53 |-0.43 -0.37| 0.29 0.27
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4.1.2 Individual Forecasts

An important feature of the SPF dataset to mention is that its individual contribu-
tors often enter and exit the survey since its beginning. Moreover, the contributors
occasionally provide the forecasts for only some of the variables used in this study
in a given questionnaire. These facts leave us with unbalanced panels of data to be
dealt with. Because majority of the forecast combining methods presented in the
chapter 3 require balanced panels, with the exception being e.g. the PEW 3.1.7 of
Capistran & Timmermann (2009), it necessary to pre-process the data. In balancing
the panels, we follow the process of Genre et al. (2013). Firstly, only the forecasters
with no more than 4 consecutive missing observations are kept. Secondly, the missing
observations are imputed using the linear filter. The parameter 5 which defines the

filter is obtained by estimation of the following model by OLS:
5,5 = ﬁét—l + €, for Vt, (41)

where ; is the deviation from the mean forecast of all forecasters at time ¢. The
final number of individual forecasters in the balanced datasets is The estimated beta
is then used to impute forward the missing observations and, for simplification, also
the missing observations in the very beginning of the sample (in case there are any).

The performance of the individual SPF contributors is summarized in the table
4.2 using the measures defined in the section 5.1. The first observation we can
make from the table is that the performance spread between the best and the worst
individual is quite small across the measures and variables. This indicates that
the forecaster use similar methodologies and make their forecasting decisions based
on similar information sets. This point makes it clear why it is challenging for
any forecast combination method to significantly out-perform the simple average.
Secondly, the mean average percentage errors (MAPESs) are substantially lower for
the unemployment rate than the real GDP growth and the harmonised inflation
series. This again shows that it might be relatively harder to forecast inflation
and GDP growth than the unemployment rate. Thirdly, regarding all the studied
measures a variables, the forecast performance is relatively worse for the 2 year
forecast horizon than for the 1 year forecast horizon. The natural implication is that
forecasting these variables is relatively harder for longer horizons. These findings
are supported by the figure 4.1. The figure shows, for example, that the real GDP
growth slump in 2009 was not at all anticipated in the 2007 SPF, while it was much
more anticipated in the 2008 SPF.
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Table 4.2: Forecast performance (measured in terms of RMSE, MAE
and MAPE) of indindividual forecasters from the ECB
SPF for the target macroeconomic variables and horizons

Measure | Performance RGDP HICP UNEM
1Y 2Y 1Y 2Y 1Y 2Y
Mean 1.19 1.88 0.94 1.03 | 0.71 1.36
Best Individual 1.07 1.77 0.86 0.97 |0.66 1.26
RMSE 0.25 Quantile 1.15 1.84 0.91 1.01 | 0.68 1.29
Median Individual | 1.16 1.88 0.94 1.02 | 0.70 1.33
0.75 Quantile 1.23 1.91 0.95 1.05 | 0.73 1.41
Worst Individual 1.35 2.02 1.05 1.17 | 0.81 1.55
Mean 0.86 1.31 0.76 0.82 | 0.55 1.06
Best Individual 0.78 1.22 0.67 0.75 | 0.50 0.92
MAE 0.25 Quantile 0.84 1.27 0.73 0.79 |0.54 1.02
Median Individual | 0.85 1.29 0.76 0.81 |[0.56 1.05
0.75 Quantile 0.88 1.34 0.78 0.84 |0.57 1.11
Worst Individual 0.96 1.43 0.83 096 |0.62 1.25
Mean 82.95 145.21 | 172.09 219.56 | 5.86 11.00
Best Individual 67.95 129.07 | 144.44 189.86 | 5.22 9.53
MAPE 0.25 Quantile 78.19 138.68 | 164.09 208.20 | 5.77 10.64
Median Individual | 81.74 143.34 | 172.60 220.05 | 5.94 10.94
0.75 Quantile 87.32 152.86 | 176.43 228.77 | 6.03 11.46
Worst Individual | 98.78 160.69 | 210.64 261.36 | 6.49 12.81

Number of Forecasters 21 19 19 20 17 19
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4.2 Forecasting U.S. Treasury Futures Volatility

Volatility of financial assets is a measure, which is of great concern to risk analysts,
portfolio analysts as well as academic researchers. An accurate forecast of volatility
of an asset over a considered holding period is a base for making an investment
decision. Moreover, volatility is the main input in derivative security pricing models
(Poon & Granger, 2003). Therefore, a range of econometric methods were developed
for modelling and forecasting volatility. Here, we estimate several of the most known
volatility models and use it to forecast volatility of log returns of the U.S. Treasury
futures. We test whether any enhancement in the volatility forecasts can be obtained

by combining the forecast from the individual volatility models.

4.2.1 Data

The U.S. Treasury notes and bonds are securities representing a loan to the U.S.
government and providing their holder with semi-annual payments until maturity.
In this thesis, we work with U.S. Treasury futures, which are the securities underlay
by the U.S. Treasury notes and bonds. Generally, futures contracts are agreements
to sell or buy a given security on a specified future date and at a specified price.
The U.S. Treasury futures are liquid assets, which offer an opportunity to speculate
on interest rates or hedge against risks. In Q1 2018, the U.S. Treasury futures were
among top 10 most liquid futures contracts traded at the CME Group, which is the
leading market for derivatives (“Most Traded Futures", 2018). More specifically, we
use futures for the 2-Year, 5-Year and 10-Year Treasury Notes and the U.S. Treasury
Bond with the 30-Year maturity. These are marked with the respective tickers: US,
FV, TY and US. Our sample covers the period from the 1st of July 2003 to the
29th of December 2017, which makes for 3635 daily observations. We can therefore
consider it a representative sample for the noted futures.

Firstly, in the figure 4.2 are depicted daily log-returns (log-differences of daily
closing prices) of the U.S. Treasury futures which, as opposed to the futures prices,
are stationary. The results of the Augmented Dickey-Fuller test (Said & Dickey,
1984) are presented in the table 4.3. The results clearly show we can reject the
null hypothesis of a unit-root presence for all the log-return series. The descriptive
statistics of the log-returns are summarized in the table 4.4. We can confirm that U.S.
Treasury futures log-returns show some of the stylized empirical facts for financial
assets (Cont, 2001). Namely, the positive excess kurtosis signalizes a leptokurtic
underlying distribution with heavy tails for all the studies futures. Moreover, the
significant difference between the TU (2 Year) and US (30 Year) futures implies that

futures underlay by long term bonds are less prone to extreme price movements in



Returns

0.0075

0.0050

0.0025

0.0000 -

—0.0025

—0.0050

—0.0075

Returns

-0.01

—0.02

4. Applications 54

comparison to futures underlay by short term notes. Also, there are clearly noticeable

volatility clusters throughout the examined period in the figure 4.2.
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Figure 4.2: Log-returns of U.S. Treasury futures

Our main variable of interest in this application is the volatility of the U.S.
Treasury futures log-returns. The problem with modelling volatility is that it is in
its nature a latent, unobservable variable. So, in order to be able to assess accuracy,
there is a necessity to choose a suitable volatility proxy. Let us assume the following

diffuse process:

dp(t) = p(t)dt + o (t)dW (t), (4.2)

where p(t) is the logarithm of the price at time ¢, W (t) is a Wiener process, u(t) is
a finite variation process and o(t) is a stochastic process, which is independent of
W (t) (Corsi, 2009). The one day integrated variance of such process is then defined

as:

IV, = / t o?(z)dz, (4.3)

-1

1‘3@
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Table 4.3: Augmented Dickey-Fuller test results for the log-returns of
U.S. Treasury futures

TU (2 Year) FV (5 Year) TY (10 Year) US (30 Year)
Test Statistic -22.7751 -35.4464 -12.5631 -44.9739
P-value 0.0000 0.0000 0.0000 0.0000

Table 4.4: Descriptive statistics of log-returns of U.S. Treasury fu-

tures
Statistic ~ TU (2 Year) FV (5 Year) TY (10 Year) US (30 Year)
Mean 0.0000419 0.0001083 0.0001642 0.0002401
Median 0.0000000 0.0001275 0.0002423 0.0004863
Mode 0.0000000 0.0000000 0.0000000 0.0000000
Std. Dev.  0.0009133 0.0024691 0.0038330 0.0065419
Variance 0.0000008 0.0000061 0.0000147 0.0000428
Minimum  -0.0082636 -0.0161355 -0.0201376 -0.0291463
Maximum  0.0081102 0.0169878 0.0330735 0.0466118
Kurtosis 7.9895092 3.0574585 3.1012147 2.1217655
Skewness  -0.0240245  0.0104678 0.1010453 0.0772974

Now, let us define a daily realized volatility, a measure which can be computed for a
day t in a following way:

RVOL; = \/RV}, (4.4)

where the realized variance is defined as (McAleer & Medeiros, 2008):
ng
RVi =) ri; (4.5)
i=0

where r; ; are intraday returns collected on a day ¢ in high-frequency. It can be shown
that under the condition of no microstructure noise, which can be caused by the bid-
ask spread in the financial markets, the realized variance in equation (4.5) is a con-
sistent estimator of the integrated variance in equation (4.3) (McAleer & Medeiros,
2008). For these reasons, we measure the performance of our volatility models in
forecasting the realized volatility. More specifically, we use the realized volatility cal-
culated from the 5-minute intraday returns, which is a sampling frequency offering a
decent balance between the relevance of the asymptotics and harmful effects of the
microstructure noise (Andersen et al., 2001).

The realized volatility series of log-returns of the studied futures are depicted in
the figure 4.3. All the realized volatilities show persistent behaviour and a period
of increased volatility during the global financial crisis 2007-2009. The results of

the Augmented Dickey-Fuller test in table 4.5 show that we can, as in the case
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of log-returns, reject the null hypothesis of a unit-root for each realized volatility
series and so allow us to estimate the underlying DGP. The descriptive statistics
are summarized in the table 4.6. The high excess kurtosis is again a signal of a
leptokurtic distribution. The positive skewness measure, which is common for each
of the studied realized volatility series, means that high volatility extremes are vastly
more likely than the opposite. Mean level of volatility increases with the longer term

to maturity of the underlying security, which is connected with a greater uncertainty.
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Figure 4.3: Realized volatility of log-returns of U.S. Treasury futures

4.2.2 \Volatility models

In the following subsections are described the individual volatility models used for
forecasting the realized volatility of U.S. Treasury futures. The aim of this study
is not to achieve the most accurate forecasts of the realized volatility possible, but

rather to assess whether any improvements to the forecast accuracy can be made
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Table 4.5: Augmented Dickey-Fuller test results for the realized
volatility of log-returns of U.S. Treasury futures

TU (2 Year) FV (5 Year) TY (10 Year) US (30 Year)
Test Statistic -3.7401 -4.5063 -4.5752 -4.3997
P-value 0.0036 0.0002 0.0001 0.0003

Table 4.6: Descriptive statistics of realized volatility of log-returns of
U.S. Treasury futures

Statistic ~ TU (2 Year) FV (5 Year) TY (10 Year) US (30 Year)
Mean 0.0009713 0.0023081 0.0035978 0.0062063
Median 0.0008033 0.0020238 0.0031799 0.0056792
Mode 0.0003544 0.0006875 0.0012428 0.0024624
Std. Dev. 0.0005017 0.0011171 0.0015791 0.0023289
Variance 0.0000003 0.0000012 0.0000025 0.0000054
Minimum 0.0003544 0.0006875 0.0012428 0.0024624
Maximum  0.0054402 0.0142512 0.0253829 0.0436211
Kurtosis 13.7238906  10.6326379 16.1089503 23.0272817
Skewness 3.0514297 2.3825485 2.6280856 2.7244267

by combining the forecasts in a common application. Therefore, in the selection of
the individual volatility models, we limit ourselves to the set of the most widely
known and applied models. The models are presented approximately in order from

the simplest one to the slightly more complicated ones.

Historical Volatility

The first forecast of the realized volatility in our application is a simple projection
of the historical volatility h steps ahead:
_ 1 2

OT+h =\ 7 t; Tt (4.6)
where T is the length of the training sample and r; is the ¢-th day log-return. We
acknowledge that forecasting realized volatility using the historical volatility on itself
is a naive approach. Nevertheless, we find its inclusion into the set of individual
volatility forecasts interesting in that it allows us to observe how the combining
methods can deal with the presence of such model, which tends to forecast rather
inaccurately. Also, it is a useful performance benchmark for the other volatility

models. The h-steps-ahead forecasts using this method is constant for an arbitrary
h>1.
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RiskMetrics

One of the most widely applied volatility estimators in practice is the RiskMetrics,
the product of J.P. Morgen. RiskMetrics is based on the exponentially weighted
moving average (EWMA) process, which supposedly reflects the finite memory of
the financial markets (Pafka & Kondor, 2001). The model is following:

o1 = $ 1-N> (4.7)
7=0

where the recommended value of the parameter A is 0.94. The equation (4.7) can be

further rewritten as:

Oi41 = \/(1 — AN)r? + Aol

For initialization, we the use the historical volatility (4.6). Because E(r?) = 07,4, it

turns out, yet again, that h-steps-ahead forecasts are constant for an arbitrary h > 1.

HAR

The next individual forecasting model we use is the notoriously known Heterogeneous
Autoregressive model of Realized Volatility (HAR) of Corsi (2009). The motivation
behind this model is that there are investors with different time horizons and hence
volatility can be decomposed into multiple (three) components corresponding to dif-
ferent periods (daily, weekly and monthly), which all in its part influence the future

volatility expectations. The HAR model is defined as follows:
RVOLY, = By + B4RVOLY + 8,RVOL{™ + 8,,RVOL™ + €11, (4.8)

where the individual components are derived from the past realized volatilities as:
, 1
RVOLY = =3 RVOLy 41—,
t =1

The parameters d, w, m are assumed to be equal to 1, 5, 22 respectively. Finally, e;41
is the serially independent error term. The HAR model can be easily estimated via

OLS. The h-steps-ahead forecast of the realized volatility can be obtained recursively.

GARCH

A traditional benchmark model in econometric volatility forecasting literature is the
famous GARCH(1,1). First, Engle (1982) introduced a class of Autoregressive Con-
ditional Heteroskedasticity (ARCH) processes, which distinguish between the con-

stant unconditional variance and a conditional variance, which is allowed to change
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in time. This class was later extended into Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) processes, which allow for a greater flexibility and a
longer memory in volatility (Bollerslev, 1986). In the simplest form, the GARCH(1,1)

is defined as follows:

€t|the—1 ~ N(O» a), (4.9)
0162 = oo + 0416?71 + 510'?71, (4.10)
where

Oé()>0, 0412(), 5120

Here the conditional variance o? is the function of past sample variances €7_; and
lagged conditional variances o7 ; as well. In order for the wide sense stationarity
property to hold, it is sufficient that a; + 31 < 1. The parameters of the process «y,
a1 and B can be estimated using MLE (Bollerslev, 1986). Again, the h-steps-ahead

volatility forecast can be obtained recursively.

VAR

The final individual model used in this thesis is the Vector Autoregressive (VAR)
model. Its use for the multivariate modelling and forecasting of realized volatility is
inspired by Andersen et al. (2003), who use a fractionally-integrated VAR to forecast
logarithmic realized volatility of spot exchange rate. We hypothesise, that volatility
of U.S. Treasury futures may be interrelated, and that broadening the information
sets for more than just a single series could improve the forecasting performance. As
in Andersen et al. (2003), we use 5 lags in each equation, to allow the VAR to capture

even complicated structures in the realized volatility. The model is following:
Y = Ao+ A1y 1 + Aoy o + Azys 3+ Ayyi4 + Asy5 + €, (4.11)

where Ay is the (r x 1) vector of intercepts, Aj, ..., As are the (r x r) matrices
of regression coefficients, y; is the (r x 1) vector containing realized volatilities of
r different futures at time ¢ and €; is the (r x 1) vector of independently, normally
distributed residuals. In building the model, we got inspired by the thought of Bates
& Granger (1969), that a combination of forecasts based on different model spec-
ifications or information sets can be superior in performance to all the combined
forecasts individually. Therefore, we have decided to include all the VARs with dif-
ferent combinations of available futures (TU, FV, TY, US) among the individual

volatility forecasting models. In total, we work with Y74, (ﬁ) = 15 different VAR

3
r

volatility of each different future. Since all the considered VARs are in the reduced

model specifications, from which 3>2_ (?) = 8 can be used to forecast the realized
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form, they can be estimated via OLS equation by equation. The usual diagnostic
checks were applied to the VARs estimated on the whole sample. All the roots of the
characteristic polynomials lie outside the unit circle, implying that the VARs are sta-
ble. Also, the sample autocorrelation functions of residuals of respective VARs do not
reveal any leftover information. The h-steps-ahead forecasts of realized volatilities

can be obtained recursively.

4.2.3 Individual Forecasts

The volatility models described above were estimated on the U.S. Treasury futures re-
alized volatility using a rolling window of length 1000 and the 1, 5 and 22-steps-ahead
forecasts were obtained leaving us with 2635, 2631 and 2614 forecast observations
respectively to be combined for each Treasury. The individual 1, 5 and 22-steps-
ahead volatility forecasts are depicted in the figures 4.4, 4.5 and 4.6 respectively.
The forecast performance is summarized in the table 4.7, where the measures used
are defined further bellow in the section 5.1.

From both the table and figures it is apparent that the Historical Volatility fore-
casts are substantially worse than the forecasts of other models as it was expected.
The RiskMetrics and GARCH model forecasts show similar performance. They both
underpredict the realized volatility the of TU futures in the period 2011-2015. The
most accurate individual forecasting model overall in our application is the HAR
model, followed by the VAR models. Regarding the different VAR model specifica-
tions, it shows that simple specifications such the one variable VAR, which basically
corresponds to an AR(5) model, is more accurate in forecasting the next day real-
ized volatility (h=1), while the complex specifications such the four variable VAR
are more accurate in forecasting the realized volatility in longer horizons (h=22).
The finding supports the claim that past realized volatilities of U.S. Treasury futures
also carry some information about the long-term future realized volatility of U.S.
Treasury futures based on bonds with different maturities. For other futures than
the TU (2 Year), all the individual forecasts, excluding the Historical Volatility, are
very much comparable. Across all the models and futures, the accuracy of forecasts

naturally tends to decrease as the forecast horizon (h) increases.
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Figure 4.4: Individual 1-step-ahead forecasts of the realized volatility
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Figure 4.5: Individual 5-steps-ahead forecasts of the realized volatility
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Table 4.7: Forecast performance (measured in terms of RMSE, MAE
and MAPE) of indindividual volatility models in h-steps-
ahead forecasting of the realized volatility of U.S. Treasury
futures log-returns

Future Volatility Model h=1 h=5 h =22

RMSE MAE MAPE|RMSE MAE MAPE|RMSE MAE MAPE

Historical Volatility 5.50 4.02 40.95 | 553 4.04 41.18 | 5.59 4.09 41.95
RiskMetrics 3.96 296 33.11 | 4.13 3.07 33.84 | 450 3.23 34.49

HAR 272 149 13.44 | 3.13 1.69 15.15| 3.86 2.04 18.05

GARCH 4.08 3.03 33.50 | 424 3.14 34.19| 4.64 3.37 35.95

VAR (TU) 276 1.51 13.67 | 3.32 186 17.06 | 4.52 2.78 27.11

TU (2 Year) VAR (TU, FV) 2.79 153 1395 | 3.34 188 17.44 | 4.45 2.72 26.53
VAR (TU, TY) 2.80 1.54 1396 | 3.38 190 1745 | 4.52 2.78 26.94

VAR (TU, US) 2.80 1.52 13.75| 3.34 185 16.90 | 442 2.67 25.66

VAR (TU, FV, TY) 2.80 1.56 14.28 | 3.37 192 17.82 | 451 279 27.17

VAR (TU, FV, US) 2.81 154 14.03 | 3.35 187 17.13 | 442 2.67 25.78

VAR (TU, TY, US) 2.80 1.55 14.04 | 3.35 1.87 17.13 | 443 2.69 25.76

VAR (TU, FV, TY, US)| 2.80 1.56 14.30 | 3.34 1.89 17.53 | 4.42 2.70 26.16

Historical Volatility 11.88 8.85 44.43 | 11.93 8.89 44.66 | 12.08 9.00 45.48
RiskMetrics 8.19 5.17 21.58 | 8.65 5.60 23.53 | 9.55 6.36 27.13

HAR 7.53 4.74 20.51 | 834 529 2272 | 957 6.26 27.23

GARCH 8.22 529 2281 | 865 5.72 2498 | 9.53 6.62 30.47

VAR (FV) 7.65 4.84 21.30 | 870 5.75 26.06 | 10.62 7.50 36.24

FV (5 Year) VAR (TU, FV) 7.70 490 21.65| 870 5.75 26.26 | 10.41 7.23 35.08
VAR (FV, TY) 7.73 493 21.76 | 876 5.85 26.57 | 10.57 7.53 36.42

VAR (FV, US) 7.72 486 21.32 | 870 5.71 25.70|10.43 7.29 34.84

VAR (TU, FV, TY) 7.72 498 2220 | 870 5.84 26.98 | 10.37 7.27 35.54

VAR (TU, FV, US) 7.73 491 21.68 | 870 5.74 26.15|10.36 7.22 34.88

VAR (FV, TY, US) 7.73 497 22.05| 8.66 5.79 26.56 | 10.31 7.28 35.14

VAR (TU, FV, TY, US)| 7.73 5.00 2231 | 8.64 5.79 26.84 | 10.23 7.17 35.04

Historical Volatility 16.47 12.05 34.30 | 16.55 12.11 34.47 | 16.79 12.31 35.13
RiskMetrics 12.00 7.58 19.36 | 12.78 8.23 21.06 | 14.10 9.37 24.20

HAR 10.96 6.93 18.46 | 12.12 7.78 20.50 | 13.73 9.10 24.23

GARCH 11.93 7.66 20.15 | 12.56 8.26 21.90 | 13.76 9.51 26.16

VAR (TY) 11.16 7.10 19.00 | 12.61 8.36 22.78 | 15.05 10.66 30.07

TY (10 Year) VAR (TU, TY) 11.31 7.19 19.20 | 12.69 8.37 22.81 | 14.94 10.42 29.36
VAR (FV, TY) 11.25 7.17 19.23 | 12.66 8.41 22.96 | 14.91 10.54 29.83

VAR (TY, US) 11.20 7.12 19.01 | 12.57 8.28 22.44 | 14.83 10.37 28.99

VAR (TU, FV, TY) 11.29 7.26 19.54 | 12.64 8.46 23.26 | 14.81 10.37 29.44

VAR (TU, TY, US) 11.34 7.23 19.33 | 12.67 8.38 22.80 | 14.84 10.34 29.09

VAR (FV, TY, US) 11.27 7.22 19.44 | 12.60 8.41 23.11 | 14.72 10.34 29.23

VAR (TU, FV, TY, US)| 11.31 7.30 19.67 | 12.59 8.44 23.30 | 14.71 10.30 29.25

Historical Volatility 25.10 18.32 29.13 | 25.22 18.41 29.27 | 25.60 18.73 29.78
RiskMetrics 18.85 12.16 17.81 | 20.41 13.29 19.39 | 22.48 15.06 22.06

HAR 17.39 10.93 16.39 | 19.38 12.28 18.24 | 21.74 14.49 21.69

GARCH 18.75 12.37 18.76 | 20.06 13.40 20.37 | 21.96 15.46 24.13

VAR (US) 17.77 11.17 16.78 | 20.08 13.10 19.89 | 23.45 16.55 25.69

US (30 Year) VAR (TU, US) 17.94 11.22 16.81 | 20.16 13.05 19.71 | 23.52 16.42 25.29
VAR (FV, US) 17.85 11.19 16.81 | 20.09 13.03 19.69 | 23.38 16.32 25.11

VAR (TY, US) 17.77 11.17 16.80 | 19.96 13.01 19.67 | 23.00 16.11 24.82

VAR (TU, FV, US) 18.02 11.37 17.14 | 20.26 13.24 20.19 | 23.50 16.43 25.44

VAR (TU, TY, US) 18.02 11.36 17.16 | 20.07 13.22 20.21 | 22.88 16.07 25.10

VAR (FV, TY, US) 17.84 11.32 17.14 | 19.83 13.13 20.16 | 22.52 15.85 24.83

VAR (TU, FV, TY, US)| 17.99 1145 17.40 | 19.96 13.27 20.48 | 22.71 15.98 25.11

Note: The RMSE and MAE measures are scaled up by the order of 10



Chapter 5
Forecast Performance Assessment

This main purpose of this chapter is to present and asses the results from both of
our empirical applications. First, we define the individual measures of the forecast
accuracy we use to asses the performance of the forecast combinations. Secondly,
we describe the DM test, which is used for testing our hypotheses. Subsequently all
the results from both of the applications are presented. Finally, we rank the forecast

combination methods according to their overall forecast accuracy.

5.1 Measures of the Forecast Accuracy

The most common way of comparing accuracy in forecasting literature is via different
accuracy measures. There exists plenty of measures in the literature, each with its
own pros and cons and allowing us to view the forecast performance of a given model
or method on a given dataset from a different perspective. Here we introduce the
three of the most common measures, which are applied in our empirical application.
For a broader review of possible measures of forecasts accuracy and their properties
see e.g. Hyndman & Koehler (2006).

5.1.1 RMSE

The Root Mean Square Error (RMSE) is the most popular and frequently applied
forecast accuracy measure between both practitioners and academicians (Armstrong
& Collopy, 1992). It is defined as:

T

RMSE = $ %Z(yt — fi)% (5.1)

t=1

where y; is the true outcome, f; is its forecast and T is the length of the (out-of-

sample) time series. It is usually preferred over the Mean Square Error (MSE) as it



5. Forecast Performance Assessment 66

is on the same scale as the data from which it is computed (Hyndman & Koehler,
2006). (Armstrong & Collopy, 1992) argue that RMSE is relevant to decision making

but not a reliable measure of forecasts accuracy.

5.1.2 MAE

The Mean Absolute Error (MAE) is defined as:

1 T
Tt:l

where gy, is the true outcome, f; is its forecast and T is the length of the (out-of-
sample) time series. The main argument for its use over the RMSE (5.3) is that it

is generally less sensitive to outliers (Hyndman & Koehler, 2006).

5.1.3 MAPE

The Mean Absolute Percentage Error (MAPE) is defined as:

MAPFE = 100 E
T+

Yyt — fi
Yt

: (5-3)

where y; is the true outcome, f; is its forecast and T™* is the length of the (out-
of-sample) time series reduced by the number of observations where the outcome
equals 0. The main advantage of MAE is that it is, unlike the two previously de-
scribed measures, a unit-free measure, which allows for cross-series comparisons. The
disadvantage is that it is not suitable for series where a large share of observations is
equal to 0 (Hyndman & Koehler, 2006). Another disadvantage is that this measure
favours models which tend to underpredict versus those which tend to overpredict,

i.e. it is an asymmetric measure of forecast accuracy (Armstrong & Collopy, 1992).

5.2 DM Test

Diebold-Mariano test of equal forecast accuracy (DM test), was introduced by Diebold
& Mariano (2002). It is used to test the null hypothesis of equal expected loss (equal
forecast accuracy) between a given pair of forecasts. The original intention behind
the test was to developed a tool for statistical forecast comparisons in model-free
environments (Diebold, 2015). This is exactly our case, as a considerable share of
forecast combinations in our study is not based on a proper statistical model. We
therefore see the DM test as appropriate tool in our situation and we use it to test

our hypotheses.
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Let us denote dj 2.4 a loss differential defined as:
di,2¢ = L(e1,) — L(ezy)

where, the e, ey are forecast errors of the same given quantity at time ¢ and L(.) is

a loss functions. For the testing in our study, we use the quadratic loss:
L(et) = 63.

Assuming that the following conditions, corresponding to the covariance stationarity
of the loss differentials, hold, is sufficient for the validity of the DM test:

o E(di24) =p, for Vi
o Var(dige) = 0% < 00, for Vt
o Cov(diot,d124—7) =(7), for Vi,

Assuming the conditions hold, under the null hypothesis of equal expected loss (equal
forecast accuracy):
Ho : E(dlyg;t) = 0, for \V/t,

it holds that:

T
Z dl,Q;t

DMy = % 4 N(0,1),

where DM o denotes the test statistic and &1 2 is a consistent estimator of the loss
differential standard error (Diebold, 2015). In order to deal with the autocorrelation
of the loss differentials, induced by e.g. the misspecification of the forecast models,
one can use the heterogeneity and autocorrelation consistent (HAC) standard errors
of Newey & West (1986), with appropriate amount of lags. The use of 4 lags is
a natural choice in our case, as we work the quarterly data series from the ECB
SPF application. The DM statistic can be easily obtained by regressing the loss
differential on an intercept.

In reality, no pair of forecast errors is likely ever to give truly covariance sta-
tionary loss differentials. Nevertheless, we rely on an approximate validity of the
covariance stationarity condition. As Diebold (2015) notes, the forecasts are often
based on similar information sets and may share the non-stationary components in
the errors. Therefore, the non-stationarity may cancel out and not translate into the

loss differentials.
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5.3 ECB Survey of Professional Forecasters

The forecast combinations methods described in the chapter 3 were estimated on the
the forecasts of the real GDP growth, harmonised inflation and unemployment rate
with 1 and 2 year horizons from the ECB SPF. The estimation or training of the
combination methods was done on a rolling basis, using windows of lengths 25, 35
and 45 observations and the 1-step-ahead out-of-sample forecast combinations were
obtained.

The figures 5.1, 5.2 and 5.3 show the forecasts of several combinations methods
and the target variable for the respective lengths of the training window: 25, 35, 45
observations (quarters). For clarity, only the best performing forecast combinations
on a given dataset from each class, as divided into sections in the methodology
chapter 3, were selected to be displayed in the figures. By the best performing
forecast combination, we understand the combination that a on given dataset has the
lowest average rank from the separate rankings of the combination methods according
to the accuracy measures RMSE, MAE and MAPE. Across the window lengths, it
appears that the most erratic forecasts are from the shrinkage methods, mostly the
Kappa-Shrinkage. The reason being that it gives a weighted average of equal weights
and an OLS forecast of weights, which we later show give very inaccurate forecasts
in the ECB SPF application overall. Also, even the best of the Alternative (machine
learning) forecast combinations show a very erratic behaviour, especially in the case
of the harmonised inflation and the unemployment rate. Naturally, it is because
these methods require bigger samples for training than the ECB SPF application
can provide. The plot of the 2 year horizon forecasts of the real GDP growth for
the length of the window 25 shows that all of the combining methods completely
failed in the 2 year horizon forecasting of the global financial crisis slump. However,
since none of the individual forecasts did anticipate the crisis (see figure 4.2), we can
infer that the information was simple not in the data for the forecast combinations
to figure out.

The tables 5.1, 5.2 and 5.3 summarize the forecast performance of the forecast
combination methods in the described accuracy measures for the sample rolling win-
dow lengths of 25, 35 and 45 observations respectively. Firstly. note the main reason
for the dramatic improvement of measures in the window length 45 vs. 35 is explained
by the fact that the testing sample for the window of length 45 does no longer con-
tain most of the financial crisis (see figure 5.3. As for the individual forecasts, the
accuracy measures are generally lower for the 1 year horizons in comparison to the 2
year horizon. The class of simple forecast combinations, including the equal weights,
shows very competitive results across all the ECB SPF datasets. The only exception

being the group of Granger-Ramanathan OLS based forecast combinations, which on
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Figure 5.1: Best combinations of forecasts from the ECB SPF, trained
on a rolling window of length: 25
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Figure 5.2: Best combinations of forecasts from the ECB SPF, trained
on a rolling window of length: 35
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Figure 5.3: Best combinations of forecasts from the ECB SPF trained
on a rolling window of length: 45
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the other hand, perform among the worse methods. The reason is that the training
sample is too short and wide (about 20 individual forecasts) for the estimation. The
shortness of the training sample also reflect in the worst overall performances of the
EP-NN and the Bagging method. The whole class of factor analytic combinations
as well as the artificial prediction markets show a solid performance in relative to
the remaining forecast combinations. Regarding the comparison with the individual
forecasts, the forecast combinations only rarely beat in the selected measures the best
of the individuals (e.g. principal components forecasts of the real GDP growth in 2
year horizon). However, most of the methods from the simple, factor analytic and
artificial prediction market class achieve lower accuracy measures than the median
individual forecaster.

The first hypothesis we test in this study is that the equal weights (simple average)
combination method forecasts of the macroeconomic variables from the ECB SPF
are equally accurate as the forecasts of the other described forecast combinations.
The table 5.4 shows the p-values from the DM test. We can reject the null hypthesis
of equal forecast accuracy in most of the datasets for the Granger-Ramanathan,
majority of the alternative methods, BMA based on the predictive likelihood and for
the shrinkage methods on some of the datasets, as it turns out that these methods
forecast significantly worse than the equal weights. On the other hand, we can
reject the hypothesis for the Bates-Granger methods, namely the Bates-Granger (4),
in most of the cases and for the APM methods in several cases, as it shows these
forecasts are significantly better than the forecasts based on equal weights. The
forecast loss differentials between the equal weights and the factor analytic and some
of the other simple forecast combinations such as the AFTER, Median Forecast and
PEW are generally not significantly different from zero.

Our second hypothesis is that the newly proposed method, the Market for Ker-
nels, forecasts of the macroeconomic variables from the ECB SPF are equally ac-
curate as the forecasts of the other described forecast combinations. The table 5.5
shows the p-values from testing the hypothesis using the DM test. In the vast major-
ity of cases, we can either reject the hypothesis in favour of the Market for Kernels
or we do not have enough evidence to claim the Market for Kernels is significantly
better or worse than other methods. There are only rare cases where the Market for
Kernel is found to perform significantly worse than some other method. For example
the Two-step Egalitarian LASSO and the Q-learning c-APM are shown to signifi-
cantly outperform the Market for Kernels in combining the forecasts of the rate of

unemployment in a 2 year horizon, using the training window of length 45.
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5.4 Forecasting U.S. Treasury Futures Volatility

As in the ECB SPF application, the forecast combinations methods described in the
chapter 3 were estimated (trained) on a rolling windows of lengths 100, 200 and 500
and then the 1-step-ahead out-of-sample forecast combinations of the U.S. Treasury
futures log-returns realized volatility forecasts were obtained. The figure 5.4 shows
the best performing forecast combinations from each class on the TU (2 year) futures
datasets. These include combinations of 1,5 and 22-steps-ahead individual realized
volatility forecasts trained on rolling windows of length 100 and 500. The outputs
of forecasts combinations trained on rolling windows of length 200 are visually very
similar to those trained on rolling windows of length 100 and so we do not display it
for space reasons. The definition of the best in class method used is the same as in
the ECB SPF application results from the previous section. The displayed part of
samples was cut off bellow the 12th of August of 2009, so that they can be aligned
and visually compared. The figure reflects that the individual forecasts of the re-
alized volatility from the volatility models presented in the section 4.2.2, especially
the HAR and VAR models, are already so accurate, that within each class of combi-
nation methods there was atleast one method that was able to filter out the inferior
individual forecasts given by e.g. the Historical Volatility. Disregarding the length
of the rolling window, the forecasts overlay very well with the true realized volatility,
except the occasional sudden jumps for the one-step-ahead individual forecasts (h
= 1) and become substantially more blur as the forecast horizon and so the inaccu-
racy of the combined individual forecasts increases (h=>5, h=22). This implies that
there still is some non-negligible difference in how the different forecast combinations
assign weights. The figures A.1, A.2 and A.3 show combinations of forecasts of real-
ized volatility of the FV, TY and US futures respectively. These figures deliver very
similar message as the TU figure and are therefore presented in the appendix A.
The table 5.6 summarizes the forecast accuracy of the combination methods on
the realized volatility of the TU (2 Year) U.S. Treasury futures log-returns datasets.
The forecast performance across all methods deteriorates with the increasing h (fore-
cast horizon of the individual forecasts) in terms of both RMSE and MAPE. On the
other hand, it notably improves with the increasing w (the length of the training
window). As in the ECB SPF application, the forecasts combinations most of the
methods from the simple, factor analytic and APM classes generally achieve very
decent results in terms of the accuracy measures in both shorter and longer train-
ing windows. With the increasing length of the training window, the OLS based
Granger-Ramanathan methods radically improve and catch up with the other com-
bining methods. Moreover, the outsiders from the ECB SPF application, the BMA

with the weights based on the predictive likelihood and the artificial neural networks
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Figure 5.4: Best combinations of h-steps-ahead forecasts of realized
volatility of TU (2 Year) U.S. Treasury futures log-
returns, trained on a rolling window of length w
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(ANN and EP-NN) start to shine with the increasing sample length and growing
uncertainty of the individual realized volatility forecasts. For h=22 and w=>500 they
even outperform the best individual forecast. Overall, most of the methods perform
relatively comparably with the median forecast individual in short samples and tend
to improve down to the best individual forecast in longer samples. As with the
figures, the inference from the tables of forecast combination accuracy measures in
cases of FV, TY and US futures (tables A.1, A.2 and A.3) is the same in the case of
TU and hence these tables are presented only in the appendix A.

The third hypothesis tested in this work is that the equal weights (simple av-
erage) combination method forecasts of the realized volatility of the U.S. Treasury
futures log-returns are equally accurate as the forecasts of the other described fore-
cast combinations. The tables 5.7 and 5.8 show the p-values from the DM-test for
the US, FV and TY, US futures respectively. We can reject the null hypothesis in
favour of the Bates-Granger in vast majority of the datasets. We can also see that
the Granger-Ramanathan methods significantly underperform the equal weights in
short sample and significantly outperform the equal weights in large samples and
long horizons. The factor analytic combination forecasts tend to significantly out-
perform the equal weights forecasts, especially in the longer horizons. The BMA
methods forecasts as well as the ANN methods forecasts also significantly outper-
form the equals weights forecasts in the longer horizons. The inference about APM is
mixed. While Market for Kernels tends to outperform the equal weights in majority
of cases, the c-APM (especially the constant betting function version) significantly
underperforms the equals weights on numerous TY and US futures datasets. The
overall worst performing forecast combination methods are found to be the Empirical
Bayes Estimator and the Bagging method, for which the null hypothesis is rejected
in favour of equal weights in almost every case.

Our fourth hypothesis is that the newly proposed method, the Market for Kernels,
forecasts of the realized volatility of the U.S. Treasury futures log-returns are equally
accurate as the forecasts of the other described forecast combinations. The tables
5.9 and 5.10 summarize the DM-test p-values for the US, FV and TY, US futures
respectively. The Market for Kernels is found to either significantly outperform or
show a performance statistically indifferent from most of the combination methods
on most of the futures datasets. The exceptions being the factor analytic, BMA
and artifical neural networks methods in large samples and long horizons. The most
striking exception is the Bates-Granger (4) method, for which the hypothesis can be
rejected in favour on very low significance levels on majority of the datasets.

The last hypothesis in this study is that the Market for Kernels forecasts of the
realized volatility of the U.S. Treasury futures log-returns are equally accurate as the

individual forecasts it combines. It shows that we can reject the hypothesis in favour
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of the Market for Kernels on very low significance levels in favour of the Market for
Kernels vast majority of the method on almost all the datasets. The only exception is
the HAR method, the best individual forecast of the realized volatility, for which the
we cannot reject the hypothesis of equal forecast accuracy on all datasets excluding
the TU with 1-day ahead horizons for all the rolling window lengths. This simply
indicates that in most cases, the Market for Kernels learns to put the heaviest weight

on the HAR model and thus their forecasts converge.

5.5 Forecast Combination Ranking

In this section we make an attempt for a fusion of results from both applications and
a simple assessment of overall out-of-sample forecasting performance of the forecast
combination methods across all the studied datasets. We present the table of aver-
age rankings 5.12, where for each dataset, the ranks are assigned to the combining
methods according to the individual accuracy measures RMSE, MAE and MAPE
and then averaged into composite ranks. These ranks are further averaged across all
the rolling window lengths for all the given datasets and then presented in the table.
The subtotals then represent averages of all these ranks across all the datasets in each
given application. The total rank is then a simple average of these subtotals rather
than the individual ranks as we do want to put disproportionately more weight on
the financial application, which covers more datasets.

The table signifies the results that were already presented in the previous sections.
Within the ECB SPF application, the best performing methods are the simple Bates-
Granger optimal-combining weights, the AFTER method and the artificial prediction
markets. The factor analytic show a solid performance in the ECB application and
the best performance as a class in the realized volatility application. The only ex-
ception make the cases of large samples and long horizons, where the BMA forecast
combination methods perform better. The Market for Kernels method shows very
decent performance in both applications and is the second overall best combination
method. The overall best combination method, which dominates all the other meth-
ods in both applications is the Bates-Granger (4). The Empirical Bayes Estimator
method and the alternative methods, excluding the simple ANN, are among the

methods with the worst overall performance.
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Table 5.11: P-values from the DM test of equal forecast accuracy:
Market for Kernels against the individual forecasts of U.S.
Treasury futures RVOL
N h=1 h=5 h = 22
Future |Volatility Model TU FV TY US| TU FV TY US | TU0 FV TY US
Historical Volatility 0.00"* 0.00** 0.00°* 0.00*[0.00™* 0.00** 0.00** 0.00"*[0.00* 0.00*** 0.00°* 0.00"**
RiskMetrics 0.00%* 0.00*** 0.00** 0.00**|0.00** 0.05"* 0.00** 0.00*|0.00** 0.07* 0.01** 0.01***
HAR 0.00%t 0.05"  0.54 0.27 | 0.08" 020 0.68 053 | 040 0.39 0.15 0.10
GARCH 0.00%** 0.00*** 0.00** 0.00**|0.00** 0.02** 0.02** 0.01** |0.00*** 0.00*** 0.03** 0.09*
VAR (TU) 0.00%* 0.02* 0.00** 0.00**|0.00** 0.00*** 0.00** 0.07* |0.00*** 0.00*** 0.00** 0.01***
w — 100/ VAR (TU, FV) 0.00°* 0.00*** 0.00** 0.00"*|0.00** 0.00*** 0.02** 0.10 |0.00*** 0.00*** 0.05** 0.02**
~ VIVAR (TU, TY) 0.00%** 0.01*** 0.00** 0.00**|0.00*** 0.00*** 0.01** 0.15 |0.00*** 0.00*** 0.01** 0.08*
VAR (TU, US) 0.00°* 0.06* 0.00* 0.00"*|0.00** 0.02"* 0.05** 0.14 |0.00*** 0.00*** 0.34 0.22
VAR (TU, FV, TY) 0.00°* 0.00*** 0.00** 0.00"*|0.00** 0.00*** 0.00** 0.02** |0.00*** 0.00*** 0.01** 0.03**
(
(

VAR (TU, TY, US)
VAR (TU, FV, TY, US)

0.00"** 0.00*** 0.00*** 0.00***

000*** 0.00***

0.00™** 0.00**

0.00™* 0.00**

022 0.21
021 0.28
0.04™ 0.05*

w = 200

Historical Volatility

RiskMetrics
HAR

GARCH

VAR (TU)
VAR (TU, FV)
VAR (TU, TY)
VAR (TU, US)
VAR
VAR
VAR

NS S S S

TU, FV, TY)
TU, FV, US)
TU, TY, US)
VAR (TU, FV, TY, US)

0.00"* 0.00*** 0.00*** 0.00***
0.00*** 0.00™* 0.00*** 0.00™**
0.007t 0.05"7 0.54 027

0.00™* 0.00*** 0.00*** 0.00***
0.00* 0.02* 0.00*** 0.00™**
0.00*** 0.00™* 0.00*** 0.00™**
0.00"* 0.01*** 0.00*** 0.00***
0.00** 0.06* 0.00*** 0.00™**
0.00*** 0.00™* 0.00*** 0.00™**
0.00*** 0.00™* 0.00*** 0.00™**
0.00*** 0.00™** 0.00*** 0.00™**
0.00** 0.00™* 0.00*** 0.00™**

0.00"** 0.00™**
0.00"** 0.05*
0.08"  0.20

0.00"** 0.02**
0.00"** 0.00™**
0.00*** 0.00™*
0.00"** 0.00™**
0.00** 0.02*
0.00*** 0.00™*
0.00*** 0.00**
0.00*** 0.00™*
0.00*** 0.00™

0.00™* 0.00***
0.00*** 0.00***
0.68 0.53
0.02** 0.01**
0.00** 0.07*
0.02**  0.10
0.01™* 0.15
0.05** 0.14
0.00*** 0.02*
0.01** 0.01*
0.00*** 0.02*
0.00*** 0.00™

0.00™* 0.00**
0.00** 0.07*
0.40 0.39
0.00™* 0.00**
0.00*** 0-00***
0.00*** 0.00™
0.00™* 0.00**
0.00*** 0'00***
0.00*** 0.00™
0.00*** 0.00"*
0.00*** 0'00***
0.00*** 0.00™

0.00™* 0.00***
0.01** 0.01™
0.15 0.10
0.03™ 0.09*
0.00*** 0.01***
0.05** 0.02™
0.01™ 0.08"
0.34 0.22
0.01*** 0.03™
0.22 0.21
0.21 0.28
0.04™ 0.05

w = 500

Historical Volatility

RiskMetrics
HAR

GARCH

VAR (TU)
VAR (TU, FV)
VAR (TU, TY)
VAR (TU, US)

VAR (TU, FV, US)
VAR (TU, TY, US)
VAR (TU, FV, TY, US)

(
E
VAR (TU, FV, TY)
(
(

0.00"* 0.00*** 0.00*** 0.00***
0.00*** 0.00™** 0.00*** 0.00™**
0.00ft 0.05"7 0.54 027

0.00"* 0.00*** 0.00*** 0.00***
0.00* 0.02* 0.00*** 0.00™**
0.00** 0.00™** 0.00*** 0.00™**
0.00"* 0.01*** 0.00*** 0.00***
0.00** 0.06* 0.00*** 0.00™**
0.00*** 0.00™* 0.00*** 0.00™**
0.00"* 0.00** 0.00*** 0.00***
0.00*** 0.00™* 0.00*** 0.00™**
0.00** 0.00™* 0.00*** 0.00™**

0.00*** 0.00***
0.00"** 0.05™
0.08"  0.20

0.00"* 0.02**
O'OO*** 0'00***
0.00*** 0.00™*
0.00*** 0.00***
0.00*** 0.02*
0.00*** 0.00™*
O'OO*** 0.00***
0.00*** 0.00™**
0.00*** 0.00™**

0.00™* 0.00**
0.00*** 0.00"**
0.68 0.53
0.02** 0.01*
0.00*** 0.07*
0.02*  0.10
0.01* 0.15
0.05**  0.14
0.00*** 0.02™
0.01** 0.01"*
0.00*** 0.02*
0.00*** 0.00™**

0.00™* 0.00***
0.00*** 0.07*
0.40 0.39
0.00™* 0.00**
0-00*** 0.00***
0.00*** 0.00™*
0.00™* 0.00**
0.00*** 0.00***
0.00*** 0.00*
0.00™* 0.00**
0.00*** 0-00***
0.00*** 0.00™*

0.00™* 0.00***
0.01** 0.01*
0.15 0.10
0.03™ 0.09*
0.00*** 0.01***
0.05** 0.02™
0.01™ 0.08"
0.34 0.22
0.01** 0.03™
022 0.21
0.21 0.28
0.04** 0.05*

*The Market for Kernels forecasts are significantly better than the given forecasts
**p < 0.01, **p < 0.05, *p < 0.1
tThe Market for Kernels forecasts are significantly worse than the given forecasts
ttp < 0.01, fp < 0.05, tp < 0.1
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Chapter 6
Discussion

This chapter is divided into two sections. Firstly, we discuss the results of both the
macroeconomic and the financial application results in the context of the literature
of other researches. Then, we share some of our thoughts and suggestions based on
our experience with combining forecasts of the classical economic time series in this

study.

6.1 Forecast Combinations in Applications

Regarding the ECB SPF application of forecast combinations, our findings are some-
what different from those of Genre et al. (2013). Genre et al. (2013) find that there
is the strongest scope for improvement in the forecast accuracy in the case of the
harmonised inflation over the equal weights benchmark as opposed to the cases of
the real GDP growth and the unemployment rate regarding the variables, and that
there is only a small scope for improvement in the case of 2 year horizon relatively
to the case of 1 year horizon, regarding the individual forecast horizons. In contrast,
the results of our testing in the table 5.4 suggest that the equal weights benchmark
can be significantly outperformed equally well for all the ECB SPF macroeconomic
variables and that the forecast combinations tend to outperform the equal weights
in the case of the 2 year forecast horizon relatively more frequently than in the case
of the 1 year forecast horizon. Furthermore, while Genre et al. (2013) emphasize
their finding that the best combination methods vary across variables and horizons
in the ECB SPF and so it is hard to make the case against the forecast combination
puzzle, we, on the other hand, find that the Bates-Granger (4) forecast combination
significantly improves upon the equal weights in all the datasets examined in ECB
SPF application. Nevertheless, we find that the majority of forecast combinations
examined in this study does not significantly outperform or are even significantly

outperformed by the equal weights on the majority of datasets, which supports the
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results of Genre et al. (2013) and Diebold & Shin (2017), that the equal weights (or
simple average) indeed represents a strong benchmark for combinations of individual
forecasts from the ECB SPF.

Our results from combining the individual realized volatility forecasts of the U.S.
Treasury futures log-return application suggest that forecast combinations certainly
have their use even in the financial applications. They prove useful in situations when
one does not know a priori which of the individual forecast models will perform the
best. Most of the methods can adjust the weights accordingly and outperform ma-
jority of the individual forecasts. In cases where there is some superior individual
forecast, such as the HAR model in our application, some of the methods (e.g. the
Market for Kernels, refer to tables 5.9 and 5.10) can readily assign most of the weight
to the best performing individual forecast automatically. Our results are consistent
with those of of Donaldson & Kamstra (1996) and Harrald & Kamstra (1997), who
find that the ANN and EP-NN can outperform the simpler forecast combinations
in forecasting the stock market daily volatility. However, regarding the futures in
our application, we find that this result holds mostly for the larger training samples
and longer forecast horizons of individual forecasts, while the neural network meth-
ods are significantly outperformed by nearly all of the other forecast combination
methods in the opposite case. Nevertheless, the superiority of the performance of
artificial neural networks in the case of large training samples and long horizons even
to the best performing individual forecast (refer e.g. to the table 5.6) is an interest-
ing phenomenon, likely attributable to the ability of the non-linear artificial neural
networks to model and benefit from the interaction effects among the individual

volatility forecasts discussed by Donaldson & Kamstra (1999).

6.2 Insights and Suggestions

Our work includes only empirical applications, with limited amount of datasets. We
must therefore most certainly refrain from making any definite global conclusions
about the performance of the studied forecast combinations. Nevertheless, our ap-
plications atleast partially cover combining of forecasts of the most classical of eco-
nomic time series (real GDP growth, inflation, unemployment rate and volatility of
financial asset log-returns). Moreover, to our knowledge, the range of the examined
and compared forecast combination methods in a single study, is the largest up to
date. Therefore, we feel that our results and suggestions might be useful to both
academicians and practitioners applying the forecast combination techniques on a
real data.

We believe that we have gathered some evidence against the forecast combination

puzzle in the economic time series and that when the goal is not the inference but
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rather obtaining as accurate forecasts as possible!, it is worth to combine the forecasts
beyond just the equal weights. In general, for combining macroeconomic forecasts as
in the ECB SPF, where there are usually only small datasets available for training
the combinations, we suggest using either some of the simple Bates-Granger optimal
combining weights procedures, factor analytic (principal components) combinations
or the artificial predictions markets. We cannot suggest using any of the other
examined, usually more sophisticated, combining methods in such applications. For
combining forecasts on large datasets in financial applications, we extend the pool
of our suggested methods for the artificial neural networks and the BMA forecast
combining methods as presented in this study.

We acknowledge that one could argue with our suggestions and object, that we
have not examined the performance of the methods in all different possible parameter
settings. For example, that we have not provided the methods with a sufficient
number of iterations required for their full training or that we have not used enough
cross-validating samples. And hence we cannot claim anything about the bad out-
of-sample forecast performance of these methods. The one would be partially right.
Nevertheless, bear in mind that we have mostly used the parameter settings either
recommended or one of the best performing in a given empirical research. And that
in practice, the amount of computational intensity required by the methods used
often plays an important role. Consider e.g. the fast algorithmic trading on financial
markets. So, we believe that reducing the maximum number of iterations allowed
for each method on each rolling window down to a reasonable number is partially
justified as the assessment of the practical relevance of the examined combination
methods is one of our primary goals.

On the topic of which forecast combination method is generally the best, we do
not believe there is any optimal combination method optimal in all practical situa-
tions, unless some very restrictive global theoretical assumptions are imposed. We
deem that it is even impossible in principle, because there are some contradictory
requirements (or tradeoffs) for its properties. Firstly, the method needs to be sim-
ple enough so it can work or its parameters can converge quickly on short datasets,
while at the same time it needs to be flexible enough so that it can capture even
more complex structures if necessary. See for example the case of the equal weights
vs. the ANN in our applications. Secondly, the method needs to put heavier weights
on the most recent performance of the individual forecasts, because there are more
relevant to the current observation. However, at the same time, the method should
work reliably and combine individual forecasts based on their overall performance
in the sample, because the recent performance might be heavily influenced by the

randomness of the underlying process. Take for example the case of the most success-

! Assuming the square loss function
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ful method in our applications, the Bates-Granger (4), the Market for Kernels and
the factor analytic (principal components) forecast combinations. What the Bates-
Granger (4) and the Market for Kernels share in way is that they quickly transfer
weights to the recently most accurate individual forecasts. This turns out to be a
dominant strategy in both of our empirical applications. However, the factor ana-
lytic methods are based on entirely different principle, use equally the information
from the whole training sample and still turn out to be among the best forecast
combinations in both applications.

Finally, we would like to emphasize that the case has been made, atleast empiri-
cally, for the usefulness of the artificial prediction markets in the economic time series
forecast combining, including the newly proposed Market for Kernels. The Market
for Kernels shows to be a very simple, nonparametric, yet very effective method for
combining forecasts, which performs significantly better or atleast comparably to
the equal weights forecast in both of the empirical applications on almost all of the
datasets. We wish our work would encourage further investigation of possible working

artificial markets mechanisms applicable to economic time series forecasting.



Chapter 7
Conclusion

In this study, we have gathered and described a wide spectrum of forecast combina-
tion methods from the literature up to date and empirically assessed their (pseudo)
out-of-sample forecasting performance in two of the most classical economic time
series forecasting applications. The examined forecast combination methods were
divided into classes: simple, factor analytic, shrinkage, bayesian model averaging,
alternative and artificial prediction markets, roughly according to the principles of
the common idea, complexity, relevance and time hierarchy. The first application in
our work was combining the forecasts of individual contributors to the ECB quar-
terly Survey of Professional Forecasters. These included the individual forecasts of
the real GDP growth, harmonised inflation and unemployment rate in 1 and 2 year
horizons. Our second empirical application was combining the forecasts of the daily
realized volatility of the U.S. Treasury futures log-returns. We examined the futures
for the 2-Year, 5-Year and 10-Year Treasury Notes and the U.S. Treasury Bond with
the 30-Year maturity. For combining, we used the 1, 5 and 22-steps ahead individual
forecasts of the realized volatility from the commonly applied econometric models
including the GARCH, HAR and several specifications of the VAR model. Each of
these applications covers time series of a different length and nature and thus allowed
us to inspect the behaviour and performance of the forecast combinations in various
environments.

Our goal was to asses whether forecast combinations bring any improvements
upon the original individual forecasts, compare the performance of different forecast
combinations against each other and look for common patterns, from which any
insights could be drawn that would be of use to both academicians and practitioners
who wish to apply forecast combination techniques in order to improve accuracy
of their forecasts. Next, we aimed to challenge the forecast combination puzzle,
which states that it is hard in empirical applications to outperform the equal weights

(simple average) forecast combination using other, more sophisticated methods. We
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have also included in the set of evaluated methods the recently proposed artificial
prediction markets methods c-APM (Constant) and c-APM (Q-learning), which is
a class of machine learning methods inspired by the real prediction markets, and,
to our knowledge, has not yet been applied to the problem of combining classical
economic time series such as in our applications. Furthermore, we contribute to
the pool of literature on the artificial prediction markets applicable to time series
problems by introducing a new simple method called Market for Kernels and asses
its forecast performance against the other forecast combination methods in both
of the applications and against the individual forecasts in the financial application.
For assessing the forecast performance we use the common measures of the forecast
accuracy including RMSE, MAE and MAPE, and the test of equal forecast accuracy
by Diebold & Mariano (2002).

Firstly, we found that the best individuals from ECB SPF were only rarely beat
in accuracy measures by forecast combinations. Nevertheless, some of the simple,
factor analytic and artificial prediction market forecasts repeatedly achieved bet-
ter measures of forecast accuracy than the median individuals. In forecasting the
realized volatility, most of the individual forecast combinations started to perform
comparably to the best individual volatility forecasting model with the increasing
sample length and forecast horizon or even surpassed it in case of e.g. ANN, EP-NN
and the BMA forecast combinations. By comparing the performance of forecast com-
binations across all the datasets, we found that some of the simple, factor analytic
and artificial prediction markets performed consistently well in both applications in
relative to the other examined methods and we can suggest their use to practitioners
in general economic times series forecasting problems. In applications, where there is
a large amount of data for training the methods at disposal, we also suggest using the
slightly more complex artificial neural networks and the BMA forecast combinations.
Based on our data, we cannot recommend using the shrinkage methods and most
of the methods in the alternative class as they have been shown to perform rather
poorly in relative to the other methods. Further, we have found out, that a successful
strategy in combining forecasts from both the ECB SPF and the forecasts of realized
volatility of U.S. Treasury futures log-returns is to assign greatest weights to the
most recently best performing individuals as this is the principal on which work the
best method overall in our applications, the Bates-Granger (4) and the second best
method, the newly proposed Market for Kernels. Regarding the forecast combination
puzzle, we have found that the equal weights indeed are a strong benchmark as we
could not reject the null hypothesis of equal forecast performance in favour of most
of the forecast combinations on most of the ECB SPF datasets. Nevertheless, in
contrast to some of the preceding literature, we found that some of the forecast com-

binations, namely the Bates-Granger (4), consistently significantly outperformed the
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equal weights across all the variables and horizons. Moreover, most of the forecast
combinations significantly outperformed the equals weights in our realized volatility
application. Finally, the Market for Kernels method was found to either significantly
outperform or atleast give a comparable performance to almost of all the other fore-
cast combinations on the vast majority of datasets in both applications and also was
found to significantly outperform all but the HAR model in forecasting the realized
volatility.

We believe that this study has provided a useful guidance for anyone who wishes
to apply forecast combination techniques in order to achieve as accurate forecasts
as possible. We have also shown that the scope of useful methods for combining
economic time series forecasts does not limit only to the traditional forecast combi-
nations. The class of artificial prediction markets, including the proposed Market for
Kernels, has been shown to combine forecasts comparably well to the best of the cur-
rent benchmark forecast combinations. We hope that our findings will inspire future
research of not only the artificial prediction markets, but also the non-traditional

combinations of economic time series forecast in general.
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Figure A.1: Best combinations of h-steps-ahead forecasts of realized
volatility of FV (5 Year) U.S. Treasury futures log-
returns, trained on a rolling window of length w
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Figure A.2: Best combinations of h-steps-ahead forecasts of realized
volatility of TY (10 Year) U.S. Treasury futures log-
returns, trained on a rolling window of length w
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Figure A.3: Best combinations of h-steps-ahead forecasts of realized
volatility of US (30 Year) U.S. Treasury futures log-
returns, trained on a rolling window of length w
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