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Abstract:

Circular matter rings are a natural zero approximation of stationary and axially symmetric
structures which appear in astrophysics. If the rings are infinitesimally thin (line sources),
they are singular, which in the general relativistic description typically implies weird de-
formation of space in their vicinity. In particular, and contrary to the Newtonian picture,
such rings even tend to behave in a strongly directional manner. One solution is to consider
non-singular, extended sources (toroids), which may however be difficult to treat exactly
and/or be unsatisfactory in other respects. In this thesis we check another option, namely
to abandon the "real matter" completely and consider a non-singular source represented by
mere curvature arranged, at least at some instant, in a pattern possessing the above sym-
metries. One such solution of Einstein’s equations is known as the Brill waves; we study
its properties at the moment of time symmetry (when it is momentarily static), in order to
compare it with the space-times of matter rings.
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Introduction
Black holes are one of the most notable predictions of general relativity. Despite primary
skepticism about their physical significance, these objects nowadays play a key role in a
standard picture of several types of astrophysical systems, namely galactic nuclei (including
that of our Galaxy), high-mass X-ray binaries and gamma-ray bursts. Besides a broad
evidence inferred from effects caused by interaction of putative black holes with matter,
radiation and fields in accretion systems, a further support for their existence has recently
been provided by direct detections of gravitational waves. Actually, although it was an
inspiral and merger of a neutron-star binary that was expected as the most probable source
of sufficiently strong waves, four of the five events announced so far rather fit numerical
templates generated by black-hole binaries of relatively large masses.

As a result of gravitational attraction and centrifugal repulsion, a typical configuration of
matter inflowing, in a quasi-stationary manner and with a non-zero angular momentum, to a
compact center has the geometry of a disc, a ring or a toroid. In accretion models, gravity of
this "outer" matter is usually neglected, although it may in fact dominate higher derivatives
of the field (curvature). Wishing to model the accretion-system field exactly, one naturally
approximates the accretion matter by some stationary (or even static) and axially symmetric
solution of the Einstein equations whose source (support of the energy- momentum tensor) is
of some of the above shapes. Due to the non-linearity of Einstein’s equations, it is generally
very difficult to "superpose" their solutions, but in some simple cases, like in the static and
axially symmetric one, it is at least partially possible. In particular, a vacuum space-time of
such symmetries can be described by the so-called Weyl metric

ds2 = −N2dt2 +N−2
[
ρ2dφ2 + e2λ(dρ2 + dz2)

]
, (1)

where the lapse N is often being expressed as N ≡ eν in terms of a gravitational potential
ν which satisfies the Laplace equation (and thus superposes linearly like in the Newtonian
theory). The second metric function λ is determined by line integral of an expression given
by gradient of ν; it is zero on the symmetry axis ρ = 0 (at least if no source is there).
The time t and azimuth φ are adapted to the Killing symmetries, the other two coordinates
covering the meridional plane (perpendicular to both the existing symmetries), ρ standing
for the cylindrical radius and z being the "vertical" coordinate. Due to axial symmetry both
metric functions ν and λ only depend on ρ and z.

In such a way, within the static and axisymmetric class of space-times, the description
of the black hole surrounded by an accretion disc, ring or toroid starts from summing the
potential ν corresponding to a Schwarzschild black hole with that due to some of the above
configurations. On the level of potential, the exercise thus reduces to its Newtonian version.
However, in relativity, the second metric function λ is important as well: it affects the
geometry of the meridional plane, so it can strongly modify the original "Newtonian" picture.
The difference between the Newtonian and relativistic pictures is most pronounced for what
is a straightforward counter-part of an ordinary Newtonian ring (infinitesimally thin circle)
– the so-called Bach-Weyl ring. Actually, in that case λ deforms space to such an extent
that the ring ceases to be locally cylindrical, even lying at infinite proper distance when
approached from its "inside" (from the region of lower radii ρ).
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Other ring sources have been proposed as physically more acceptable, most notably the
one obtained within the Majumdar-Papapetrou class of solutions [1] which have λ = 0.
This ring is locally cylindrical and its geometric measures behave much more naturally,
but physically it corresponds to an extremally charged matter, which also does not seem
to be astrophysically realistic. In addition, even such a "more reasonable" ring is anyway
infinitesimally thin, and thus singular (curvature diverges at its location). This can of course
be overcome by considering a toroid (of non-zero cross section) instead of a spatially one-
dimensional ring.

Another option (which we will check in this thesis) is to consider a vacuum space-time
where however curvature peaks on a circle. Such a situation can be expected to be non-
stationary, but one could take its "snapshot" at the moment of time symmetry (provided that
such a moment at all exists). Actually, there exists a solution of Einstein’s equations which
does have such properties: it is called Brill waves and corresponds to an axially symmetric
configuration of gravitational waves which converge to a ring-like pattern (curvature gets
maximal on a circle) and then disperse again in a time-symmetric way. In this thesis, we
wish to compute basic geometrical parameters of Brill-wave space at the moment of time
symmetry and compare them with those characterizing the above mentioned ring sources,
in order to learn whether the momentarily static Brill solution could be employed as a
non-singular approximation of a ring source in general relativity.

The thesis is organized as follows. In Chapter 1, we outline basic features of the Brill
solution in the moment of time-symmetry. In Chapter 2, the thin-ring sources are described.
In Chapter 3, we compute several geometric invariants known about the thin-rings. Chapter
4 introduces some basic methods of the evolution of Brill waves. In Chapter 5, we outline
the consequences of considering the Brill solution static. Chapter 6 covers the second, less
commonly used form of the seed function, which characterizes the Brill space. Finally, in
Chapter 7, we focus on the motion of photons and test particles in the static Brill space-time.
We employ geometrized units i.e. c = G = 1 and Einstein’s summation rule1. Indexes after
a comma stand for a partial derivative with respect to that variable.

1The pair Latin indexes represent the summation over the 3-space coordinates, while the Greek indexes
indicate summation over all 4 dimensions of the space-time. Symbols used for coordinates stand for the
individual components of a given tensor.
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1. Characteristics of the Brill solution
The Brill waves are a axially symmetric vacuum solution of Einstein’s equations whose 3-
metric γii1 in cylindrical coordinates (z, ρ, φ) at the moment of time symmetry is given by [2]

dl̃2 = e2q(ρ̃,z̃)(dρ̃2 + dz̃2) + ρ̃2dφ2, (1.1)
where q = q(ρ̃, z̃) is the seed function which on a regular axis of symmetry has to satisfy
q(z̃, 0) = q,ρ̃(z̃, 0) = 0, and which is usually chosen as2

q(ρ̃, z̃) = A
(
ρ̃

σ

)2
e− (ρ̃−ρ̃0)2+(z̃−z̃0)2

σ2 , (1.2)

where A is a dimensionless measure of amplitude of the wave, and σ is its wavelength. In
this thesis we set z̃0 = 0 m thereby fixing the coordinate center in the "vertical" direction.
We then define the new dimensionless variables according to

ρ = ρ̃

σ
,

ρ0 = ρ̃0

σ
,

z = z̃

σ
.

(1.3)

Equations (1.1) and (1.2) then become

dl2 = e2q(ρ,z)(dρ2 + dz2) + ρ2dφ2,

q(ρ, z) = Aρ2e−(ρ−ρ0)2−z2
,

(1.4)

where we have defined the dimensionless line element l def.= l̃
σ
.

Mainly for the purposes of time evolution, the metric is conformally transformed γii =
ψ4γii such that it has vanishing scalar curvature, Ri

i = 0. The momentum constraint is then
satisfied trivially and the Hamiltonian constraint becomes [2]

4[∇2 ln(ψ) + |∇ ln(ψ)|2] + ∇2q − q,ρ
ρ

= 0, (1.5)

where ∇ denotes the flat-space 3-gradient ∇ =
(
∂
∂x
, ∂
∂y
, ∂
∂z

)
and ψ is the conformal factor.

We also assume that ψ goes to the Schwarzschild form at radial infinity

ψ = 1 + m

2r + o
( 1
r2

)
, as r → ∞, (1.6)

where m denotes the total mass-energy content of the Brill wave space-time and r is the sper-
ical radius which, at least asymptotically, relates to the Weyl coordinates as r =

√
ρ2 + z2.

It can also be shown that the seed function q(ρ, z) falls of as ∼ 1
r2 as r → ∞ [2].

1We choose to denote γij the Brill 3-metric in the moment of time symmetry, γij its conformal transfor-
mation (see Chapter 4) and gµν the 4-dimensional metric given in Chapter 5.

2See Section 6 for another suitable form of the seed function.

5



We will set the imaginary "ring" in the Brill space-time where the radial part of the metric
reaches its maximum, i.e., where

0 = ∂eq(ρ,0)

∂ρ
= 2Aρ[1 − ρ(ρ− ρ0)]e−(ρ−ρ0)2

eq(ρ,0),

which has only one interesting solution (since the axial and reflection symmetry about the
equatorial plane requires q,ρ(0, z) = 0)

ρmax =
ρ0 +

√
ρ2

0 + 4
2 ∈ (0,∞). (1.7)

To visualize the motivation behind this thesis Figure 1.1 shows the radial part of the
metric (1.1) in the moment of time symmetry in the z = 0 and z = 1 plane with A = 1, ρ0 = 1.
Although the maximum of the metric has no invariant meaning, we will see in Chapters 4
and 5 that it approaches an extreme of the Ricci scalar along the ρ-axis in the limit of high
negative/positive values of ρ0 for positive/negative values of the amplitude A.

We will also occasionally transform the metric (1.1) to toroidal coordinates (ζ, φ, ψ),
ζ ∈ [0,∞), ψ ∈ [0, 2π) which are given by

ρ = ρmax
sinh ζ

cosh ζ − cosψ,

z = ρmax
sinψ

cosh ζ − cosψ,

φ = φ,

(1.8)

which gives

dl2 = ρ2
max

e2q(dζ2 + dψ2) + sinh2 ζ dφ2

(cosh ζ − cosψ)2 ,

q(ζ, ψ) = Aρ2
max

sinh2 ζ

(cosh ζ − cosψ)2 exp
(

−(ρmax sinh ζ − ρ0)2 + ρ2
max sin2 ψ

(cosh ζ − cosψ)2

)
.

(1.9)
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Figure 1.1: The radial part of the Brill metric (1.1) for ρ0 = 1 at z = 0 (top) and z = 1
(bottom).
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2. Ring sources
In the static axisymmetric vacuum case, the Einstein equations can in the Weyl coordinates
be reduced to the Laplace equation for the gravitational potential ν and two equations for
the two components of gradient of the second metric function λ (determined by the gradient
of ν). Despite the uniqueness of the Laplace-equation solutions, one can consider different
boundary conditions and thus different solutions even for a similar type of source.

Focusing on the circular ring sources, one can — for instance — consider the Bach-Weyl
(B-W) ring, the Majumdar-Papapetrou (M-P) ring and the Appell ring(s). The Bach-Weyl
ring is the general-relativity counter-part of the “ordinary” Newtonian homogeneous circular
thin ring. In spite of (therefore) being also employed as the simplest ring source in GR, the
geometry is strongly deformed (directional) in its vicinity due to the function λ which has
no Newtonian analog. The Majumdar-Papapetrou—type ring is extremally charged and
corresponds to λ = 0, hence it generates much more satisfactory geometry (in particular,
it is not directional, i.e. it is locally cylindrical). The Appell rings (and specifically their
simplest case) have non-trivial, double-sheeted topology similar to the Kerr solution, namely
their non-singular interior interconnects two distinct asymptotically flat regions, effectively
“switched over” by changing the sign of the ring-mass parameter.

We refer the reader to paper [1] for details on these ring sources (and their comparison
with the stationary Kerr ring source), only reproducing here Table 2.1 where basic geometric
parameters of the above rings are summarized.

8



Ring Small
circumference

Large
circumference

Proper distance
to/radius

Proper
enclosed

area

ρmax → 0+

limit

M-P Zero Infinite Finite from all
directions Finite

Extreme
R-N

horizon

B-W Infinite (on
ρ < ρmax side) Infinite

Finite/infinite
from ρ ≥

ρmax/ρ < ρmax
( =⇒ infinite
proper radius)

Infinite
Curzon

singularity

Appell
Infinite (on
cos(2ψ) < 0

side)

Finite from
ψ = π side,

Infinite from
elsewhere

Finite/infinite
from

cos(2ψ) ≥ 0/
< 0, ( =⇒

infinite proper
radius)

Finite
Curzon

singularity

Kerr Zero

Finite from
r = 0 side,

Infinite from
elsewhere

Finite from all
directions Finite

Schwarzs-
child

singularity

Table 2.1: Basic features of the ring sources compared with the Brill-wave solution in this
thesis. R-N stands for Reissner-Nordström. Individual coordinates and parameters have
been defined in Chapter 1.
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3. Geometrical invariants of the "ring"
We will now compute several important invariants known for the different thin-ring sources
and compare them with those found for the Brill metric (1.1).

3.1 Small circumference
The "small circumference" l is defined as the circumference of the circle in the meridional
(z−ρ) plane centered at z = 0, ρ = ρmax whose radius goes to zero. For some of the thin-ring
sources this quantity does not vanish due to extreme behavior of the metric in close proximity
of the ring and it may also depend on the direction in which the ring is approached [1], see
Table 2.1. We choose to calculate the small circumference in toroidal coordinates

l = lim
k→∞

∮ √
gψψ(k, ψ) dψ = lim

k→∞

∫ 2π

0
ρmax

eq(k,ψ)

cosh k − cosψ dψ. (3.1)

The integrand behaves as ∼ eAe
1+e−2k

e−k in the limit k → ∞. We can thus find an integrable
function

G(k, ψ) = CeÃe
2
,

such that G(k, ψ) ≥|
√
gψψ(k, φ, ψ) | and therefore we can use the continuous dependence of

an integral on a parameter theorem to get

l = 0,

which is what one would expect from a "well-behaved" metric.

3.2 Large circumference
The "large circumference" L is defined as the circumference of a circle centered at the origin
with the "coordinate" radius ρmax. It can be calculated by

L = lim
k→∞

∮ √
gφφ(k, ψ) dφ = lim

k→∞
2π
√
gφφ(k, ψ) = lim

k→∞

2πρmax sinh k
cosh k − cosψ = 2πρmax. (3.2)

We note that L does not depend on the choice of the seed function and thus any circle of
finite radius centered at the origin in the Brill space-time has a finite circumference since
ρmax can for the purpose of defining toroidal coordinates be chosen arbitrarily.
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3.3 Proper radius and distance
The proper radius of the ring in cylindrical coordinates is given by

b =
∫ ρmax

0

√
gρρ(ρ, 0) dρ =

∫ ρmax

0
eAρ

2e−(ρ−ρ0)2
dρ. (3.3)

Note that the integrand is continuous and finite for all ρ ∈ R, and thus the integral is finite
for all finite radii ρmax. The proper radius b is also monotonically increasing function of A
and ρ0 for positive values of the amplitude A. We will show that by taking the following
derivatives

∂b

∂A
= ∂

∂A

∫ ρmax

0
exp

[
Aρ2e−(ρ−ρ0)2] dρ =

∫ ρmax

0
ρ2e−(ρ−ρ0)2 exp

[
Aρ2e−(ρ−ρ0)2] dρ > 0,

where we have used the fact that the integral is finite to swap differentiation and integration.
The inequality follows from the fact that the integrand is positive ∀A ∈ R and ∀ρ0 ∈ R.

Similarly we get

∂b

∂ρ0
= ∂

∂ρ0

∫ ρmax

0
eAρ

2e−(ρ−ρ0)2
dρ =

∫ ρmax

0

∂

∂ρ0
(eAρ2e−(ρ−ρ0)2

) dρ+ eAρ
2
maxe

−(ρmax−ρ0)2 ∂ρmax

∂ρ0
=

2A
∫ ρmax

0
(ρ− ρ0)ρ2 exp

[
Aρ2e−(ρ−ρ0)2 − (ρ− ρ0)2

]
dρ+ eAρ

2
maxe

−(ρmax−ρ0)2
(1
2 + ρ0

2
√
ρ2

0 + 4
).

The second term is positive, bounded in (0, 1). The first term for A > 0 is positive if

0 <
∫ ρmax

0
(ρ− ρ0)ρ2eAρ

2e−(ρ−ρ0)2 −(ρ−ρ0)2 dρ ⇔∫ ρ0

0
(ρ0 − ρ)ρ2eAρ

2e−(ρ−ρ0)2 −(ρ−ρ0)2 dρ <
∫ ρmax

ρ0
(ρ− ρ0)ρ2eAρ

2e−(ρ−ρ0)2 −(ρ−ρ0)2 dρ ⇔

1 >
∫ ρmax
ρ0

(ρ− ρ0)ρ2 exp
[
Aρ2e−(ρ−ρ0)2 − (ρ− ρ0)2

]
dρ∫ ρ0

0 (ρ0 − ρ)ρ2 exp[Aρ2e−(ρ−ρ0)2 − (ρ− ρ0)2] dρ
def.= Σ, (3.4)

where both integrands (and thus the integrals) are positive for ρ0 ∈ R+. To shows the
behavior of Σ = Σ( 1

ρ0
) and Σ = Σ(ρ0) near the origin i.e. as ρ0 → ∞ and as ρ0 → 0+

respectively we plot the functions in Figure 3.1. It shows that the inequality (3.4) holds
∀ρ0 ∈ R+. For ρ0 ∈ R− the integrand is positive and thus b is a monotonically increasing
function of A > 0 and ρ0 ∈ R. For negative values of the amplitude inequality (3.4) does not
hold ∀ρ0 ∈ R. Figure 3.2 shows the derivative of the proper radius as a funcion of ρ0 and A
in the region of negative amplitudes. The derivative is possitive at certain points. However,
for example for A = −4 and ρ0 = 0 we get

∂b

∂ρ0

.= −0.213,

and thus the proper radius can decrease with the "coordinate" radius ρmax for negative values
of the amplitude A.

11



Figure 3.1: Σ (see Eq. 3.4) as a function of the measure of radius ρ0 and its inverse.

For given values of the parameters A and ρ0 the integral (3.3) can be solved numerically.
For example for A = 1 and ρ0 = 1 we get

b
.= 4.28.

To further illustrate the behavior of the proper radius for positive amplitudes, we plot (3.3)
in Figure 3.3 as a function of the measure of radius ρ0 ∈ (0, 1) and amplitude A ∈ (0, 1).

We next focus on finding the proper distance d to the "ring" from a arbitrary point in
the same meridional plane. In toroidal coordinates (ζ̃ , φ̃, ψ̃) the proper distance d takes a
simple form

d =
∫ ∞

ζ̃

√
gζζ(ζ, ψ̃) dζ =

∫ ∞

ζ̃

ρmaxe
q(ζ,ψ̃)

cosh ζ − cos ψ̃
dζ. (3.5)

The integrand behaves as ∼ e−ζ for ζ → ∞ and is continuous, so the proper distance d is
finite from all points in the meridional plane.

Alternatively, one can perform the calculation in cylindrical coordinates. We are inter-
ested in the proper distance from (0, 0, ρmax, φ) to an arbitrary point (0, z̃, ρ̃, φ) in the same
meridional plane (same φ). The line L connecting the two points in parametric representation
is

ρ = k cosα + ρmax,

z = k sinα, (3.6)

where k ∈ [0, z̃
sinα ] is the line parameter and α = arctan

(
z̃
ρ̃

)
is the angle between the ρ-axis

and the line (3.6). The line element is given by

dι =
√
gµνnµnν dk,

where
nµ = 1√

1 + tan2(α)
(0, tan(α), 1, 0)
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is the tangent vector to the line of unit length. Therefore the proper distance in cylindrical
coordinates is given by

d =
⏐⏐⏐⏐∫

L
dι
⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐
∫ z̃

sinα

0

√
gµνnµnν dk

⏐⏐⏐⏐⏐ =⏐⏐⏐⏐⏐⏐⏐
∫ z̃

sinα

0

√
gρρ(k sinα, k cosα + ρmax)

√(∂ρ
∂k

)2

+
(
∂z

∂k

)2

dk

⏐⏐⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐
∫ z̃

sin α

0
exp

[
A(k cosα + ρmax)2e−(k cosα+ρmax−ρ0)2−k2 sin2 α

]√
cos2 α + sin2 α dk

⏐⏐⏐⏐⏐ =⏐⏐⏐⏐⏐
∫ z̃

sin α

0
exp

[
A(k cosα + ρmax)2e−(k cosα+ρmax−ρ0)2−k2 sin2 α

]
dk
⏐⏐⏐⏐⏐ (3.7)

Figure 3.4 shows a contour plot of the proper distance to the "ring" d for A = 1, ρ0 = 0
and ρ0 = 1.

3.4 Proper area of the "ring"
The area S is given in cylindrical coordinates as

S =
∫ 2π

0

∫ ρmax

0

√
gρρ(ρ, 0)gφφ(ρ, 0) dρdφ = 2π

∫ ρmax

0
ρ exp

[
Aρ2e−(ρ−ρ0)2] dρ. (3.8)

This integral cannot be expressed in terms of standard mathematical functions, but it can
be evaluated numerically. For example, for A = 1 and ρ0 = 1 we get

S
.= 29.47.

This differs from the Euclidean relation

S̃ ≡ πb2 .= 57.55,

where b denotes the proper radius of the "ring". This difference demonstrates the curvature
of space. Figure 3.5 shows the proper area S and the Euclidean area S̃ as a function of
ρ0. Due to the curvature of space the Euclidean area grows faster. Both approach zero for
ρ0 → −∞ since ρmax

ρ0→−∞→ 0+ and thus even r ρ0→−∞→ 0+. We will focus on this limit in the
next Section.
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Figure 3.2: The derivative of the proper radius as a funcion of ρ0 and A in the region of
negative amplitudes.

Figure 3.3: Contour plot of the proper radius b as a function of parameters A and ρ0.
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Figure 3.4: Proper distance from the "ring" in the same meridional plane for A = 1, ρ0 = 0
(left) and ρ0 = 1 (right).

Figure 3.5: Proper area S (solid line) and Euclidean area S̃ (dashed line) as a function of
ρ0.
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3.5 Limit ρmax → 0+

This limit corresponds to the Euclidean radius of the "ring" in the Brill metric going to zero.
In our case the ρmax → 0+ limit due to (1.7) is equivalent to ρ0 → −∞. In this limit the

space part of the metric (1.1) becomes

dl2 = dρ2 + ρ2dφ2 + dz2, (3.9)

which is three metric of a 3D Euclidean space in cylindrical coordinates. From here we
trivially get

l = 0,
L = 2πρmax = 0,

r =
∫ ρmax

0
dρ = 0, (3.10)

d =
⏐⏐⏐⏐⏐
∫ z̃

sin α

0
nµnµ dk

⏐⏐⏐⏐⏐ ∥n∥=1= z̃

sinα =
√
z̃2 + ρ̃2,

S = 2π
∫ ρmax

0
ρ dρ = 0.

We shall see in Section 5.2 that the total mass-energy of a static "snapshot" of the Brill
wave is zero and therefore one would not expect the above limit to produce any singularity.
The thin-ring sources behave very differently since they carry mass and thus their singularity
can be expected. All of the ring sources which we consider in this thesis exhibit extreme
behavior in this limit (see Table 2.1).
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4. Conformal transformation
We will not be discussing the time evolution of the Brill solution in this thesis. However,
we will outline some of the basic methods used as they will prove useful in the following
discussion (see Appendix B).

As mentioned in Chapter 1, the metric (1.1) can be conformally rescaled such that it has
vanishing scalar curvature Ri

i. The new form of the metric is then given as

γij = ψ4γij, (4.1)

where ψ is the conformal factor. The Hamiltonian constraint then takes the form

∇2ψ − 1
8

3Rψ = 0, (4.2)

where 3R is the spatial part of the Ricci scalar curvature associated with theconformally
transformed 3−metric γij. We will calculate the scalar curvature from the Riemann tensor,
which is given by

R
l

mns = −Γlmn,s + Γlms,n + ΓemsΓ
l

en − ΓemnΓl es, (4.3)

where Γlmn are the Christoffel symbols associated with a given 3-metric (1.1) by

Γlmn = 1
2γ

ls
(
γsn,m − γmn,s + γsm,n

)
. (4.4)

Nontrivial Christoffel symbols for the metric given by (1.1) are listed in Appendix A, Eq.
(7.23).

The Ricci tensor is given as a contraction over the first and third index of the Riemann
tensor

Rij = R
k

ikj. (4.5)
The scalar curvature is in turn defined as a contraction of the Ricci tensor,

3R = R
i
i = γijRji, (4.6)

which comes out to be

3R = −2e−2q(ρ,z)[q,zz(ρ, z) + q,ρρ(ρ, z)]. (4.7)

Figure 4.1 (left) shows the Ricci scalar for A = 1 and ρ0 = 0 along the ρ-axis. It does not
reach its maximum on a "ring" in the equatorial plane. For the above choise of parametrs
the maximum occurs at

ρ
.= 0.87.

Figure 4.1 (right) also shows the maxium of the radial part of the 3-Ricci scalar 3R and
the coordinate "ring" radius ρmax along the ρ-axis as a function of the parameter ρ0. Both
approach zero since for ρ0 → −∞ the space becomes flat (see Section 3.5). We also note that
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numerical plotting shows that the scalar curvature develops two local maxima at ρ0
.= 0.79.

The maximum in Figure 4.1 is the global maximum corresponding to lower values of the
cylindrical radius ρ.

Using (4.7) Eq. (4.2) becomes

∇2ψ + 1
4e

−2q(ρ,z)[q,zz(ρ, z) + q,ρρ(ρ, z)]ψ = 0. (4.8)

For the seed function given by (1.2) Eq. (4.2) becomes

∇2ψ + A

2
(
2ρ4 + 2ρ2ρ2

0 − 4
(
ρ2 − 1

)
ρρ0 + 2ρ2

(
z2 − 3

)
+ 1

)
exp

[
−2Aρ2e−(ρ0−ρ)2−z2 − (ρ0 − ρ)2 − z2

]
ψ = 0, (4.9)

where the flat Laplace operator in cylindrical coordinates takes the form

∇2 = ∂2

∂ρ2 + 1
ρ

∂

∂ρ
+ ∂2

∂z2 . (4.10)

This equation has no known analytical solutions. However, it can be solved numerically by
means of pseudo-spectral method, i.e., by writing the conformal factor as [3, 4]

ψ(ρ, z) = 1 +
Nρ∑
i=1

Nz∑
j=1

aijSBi(ρ)SBj(z), (4.11)

where Ni is the number of grid points in the i-direction, aij are the unknown coefficients and
SBi(x) are the "rational Chebyshev functions" given by

SBi(x) = sin
(

(i+ 1) arccot
(
x

Lx

))
, (4.12)

where Lx is the mapping parameter along x-axis. The numerical solution of (4.9) itself goes
beyond the scope of this thesis.

Figure 4.1: 3D Ricci scalar (4.7) for A = 1 and ρ0 = 0 along the ρ-axis [left figure], and
maximum of the radial part of the 3-Ricci scalar 3R (solid line) and the coordinate "ring"
radius ρmax (dashed line)[right figure].
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5. Static solution
The Brill waves are vacuum axially symmetric solution of Einstein equations. However, it is
not a static solution. The time evolution of Brill waves is rather complicated and we will not
discuss it in this thesis1. We will instead fix the space metric (1.1) and consider the solution
static. This can be justified if one studies the wave near the moment of time symmetry only
for a short amount of time. Keeping the solution static would require a certain nontrivial
source Tµν which we will discuss in Section 5.2.

5.1 General form of the Weyl metric
The Brill solution at the moment of time symmetry is given in so called Weyl canonical
coordinates. It can be shown that if the space-time is static and axially symmetric with the
energy-momentum tensor satisfying the condition [5]

T ρρ + T zz = 0, (5.1)

then the complete 4-metric can be written in terms of two functions A and B as

ds2 = −e2Adt2 + e2(B−A)(dρ2 + dz2) + e−2Aρ2dφ2. (5.2)

This static Brill solution is not vacuum for the reasons mentioned above, so the condition
(5.1) is not automatically satisfied. However, we shall see in Section 5.2 that the condition
(5.1) is met.

Comparing (1.1) to (5.2) we get

A = 0,
B = q(ρ, z),

(5.3)

and thus the full metric of the Brill wave in the fixed moment of time symmetry can be
written as

ds2 = −dt2 + e2q(ρ,z)(dρ2 + dz2) + ρ2dφ2. (5.4)

The space-time exhibits two Killing symmetries

ηµ = (1, 0, 0, 0),
ξµ = (0, 0, 0, 1).

(5.5)

5.1.1 Curvature of the equatorial plane
The Gauss curvature is an important invariant giving insight into the geometry of a given
surface in the space-time. We are going to be mainly interested in the curvature of the
equatorial plane {t = const., z = 0} where the "ring" is situated. The Gauss curvature is

1The papers concerning the time evolution of Brill waves include [3, 4, 6], for example.
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defined as half of the corresponding Ricci scalar. For the equatorial plane and the general
form of Weyl metric (5.2) the 2-dimensional Ricci scalar is

2R

2 = Geq. = −2e2(A(ρ,0)−B(ρ,0)) (A,ρ(ρ, 0) (ρB,ρ(ρ, 0) − 1) − ρA,ρρ(ρ, 0) −B,ρ(ρ, 0))
ρ

. (5.6)

Using (5.3) and (1.2) we get

Geq. = e−2q(ρ,0)q,ρ(ρ, 0)
ρ

= −4A
(
ρ0ρ− ρ2 − 1

)
exp

[
(ρ− ρ0)2 − 2Aρ2e(ρ−ρ0)2]

. (5.7)

Figure 5.1 shows the Gauss curvature of the equatorial plane as a function of the cylindrical
radius ρ for A = 1 and ρ0 = 0. For A > 0 the Gauss curvature reaches its maximum of
4Aeρ2

0 at the origin and the plane is asyptotically flat. For negative values of the amplitude
the bavior of the Gauss curvature near the origin depends on the choice of the parameter
ρ0, however, the solution asyptotically approaches negative infinity ∀ρ0 ∈ R. This is not
analogous to any of the ring sources considered above as the Gauss curvature vanishes at
the radial infinity for all the ring sources.

Figure 5.1: The Gauss curvature of the equatorial plane for A = 1 and ρ0 = 0. See figure 6
in [1] for the Gauss curvature of the thin-rings.

5.1.2 Kretschmann scalar
Having now derived the full form of the metric in the static case, we can evaluate some of
its 4-dimensional invariants that can reveal potential singularities in the space-time. One of
the most commonly used is the Kretschmann scalar

K ≡ RµνισRµνισ, (5.8)

where Rµνισ is the covariant Riemann tensor given by (4.3). For the metric (5.4) the
Kretschmann scalar is given by a quite long formula which reduces to

K = 16A2(4ρ8 + 8ρ6(z2 − 3) + 2ρ2(3z2 − 8) + ρ4(4z4 − 24z2 + 42) + 3)
exp

[
−2(2Aρ2e−ρ2−z2 + ρ2 + z2)

]
, (5.9)
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for ρ0 = 0. The Kretschmann scalar is everywhere finite and asymptotically (at radial
infinity) goes to zero ∀A, ρ0 ∈ R. Figure 5.2 shows the Kretschmann scalar in the meridional
plane for different choices of the parameters A and ρ0. For ρ0 = 0, K reaches its maximum
at the origin. This is in agreement with [6] who observed that the maximum even stays at
the origin during the time evolution.

The Kretschmann scalar for all the thin-ring sources diverges (at least from a certain
direction) at the ring itself showing the singular character of the thin rings. For the M-P
ring, the behavior of the Kretschmann scalar does not depend on the direction in which the
ring is approached which is also true for the Brill solution. The other rings are strongly
directional. We shall see that a different choice of the seed function can resolve in a similar
directional behavior in Section 6.

Figure 5.2: The Kretschmann scalar in the meridional plane for the values of parameters
[A, ρ0]: [1, 0] (top left), [1, 1] (top right), [−0.1, 1] (bottom left) and [−1, 0] (bottom right).
See figures 8 and 9 in [1] for the Kretschmann scalar within the meridional plane for the
thin-rings.
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5.2 Energy-momentum tensor
As mentioned above, the static metric given by (5.4) is not a vacuum solution. In this Section
we will evaluate the energy-momentum tensor Tµν using Einstein’s equations with the above
metric.

Using (4.3), (4.4) and (4.5) with the metric given by (5.4), the Ricci tensor in the (t, ρ, z, φ)
basis reads

Rµν =

⎛⎜⎜⎜⎜⎝
0 0 0 0
0 1

ρ
∂q(ρ,z)
∂ρ

− ∂2q(ρ,z)
∂z2 − ∂2q(ρ,z)

∂ρ2
1
ρ
∂q(ρ,z)
∂z

0
0 1

ρ
∂q(ρ,z)
∂z

−1
ρ
∂q(ρ,z)
∂ρ

− ∂2q(ρ,z)
∂z2 − ∂2q(ρ,z)

∂ρ2 0
0 0 0 0

⎞⎟⎟⎟⎟⎠ , (5.10)

and the scalar curvature is again given by

R = 3R = −2e−2q(ρ,z)
(
∂2q(ρ, z)
∂z2 + ∂2q(ρ, z)

∂ρ2

)
.

The Einstein tensor, given by
Gµν

def.= Rµν − 1
2Rgµν , (5.11)

thus takes the form

Gµν =

⎛⎜⎜⎜⎜⎜⎜⎝
−e−2q(ρ,z)

(
∂2q(ρ,z)
∂z2 + ∂2q(ρ,z)

∂ρ2

)
0 0 0

0 1
ρ
∂q(ρ,z)
∂ρ

1
ρ
∂q(ρ,z)
∂z

0
0 1

ρ
∂q(ρ,z)
∂z

−1
ρ
∂q(ρ,z)
∂ρ

0
0 0 0 e−2q(ρ,z)ρ2

(
∂2q(ρ,z)
∂z2 + ∂2q(ρ,z)

∂ρ2

)

⎞⎟⎟⎟⎟⎟⎟⎠ .
(5.12)

Using Einstein equations without the cosmological constant

Gµν = 8πTµν , (5.13)

we get

Tµν = 1
8π

⎛⎜⎜⎜⎜⎜⎜⎝
−e−2q(ρ,z)

(
∂2q(ρ,z)
∂z2 + ∂2q(ρ,z)

∂ρ2

)
0 0 0

0 1
ρ
∂q(ρ,z)
∂ρ

1
ρ
∂q(ρ,z)
∂z

0
0 1

ρ
∂q(ρ,z)
∂z

−1
ρ
∂q(ρ,z)
∂ρ

0
0 0 0 e−2q(ρ,z)ρ2

(
∂2q(ρ,z)
∂z2 + ∂2q(ρ,z)

∂ρ2

)

⎞⎟⎟⎟⎟⎟⎟⎠ .
(5.14)

Using this form of the energy-momentum tensor, Eq. (5.1) reads

T ρρ + T zz = e−2q(ρ,z)

8π
1
ρ

∂q(ρ, z)
∂ρ

− e−2q(ρ,z)

8π
1
ρ

∂q(ρ, z)
∂ρ

= 0, (5.15)

so the derivation in Section 5.1 is consistent and the metric (5.4) is really the Weyl-type
metric.

22



As the system is closed we require T µν ;ν = 0 where the comma stands for a covariant
derivative defined as

τµν;ι = τµν,ι + Γµιστσν + Γνιστµσ, (5.16)
where Γµνι are the Christoffel symbols given by (4.4).

For the Killing coordinates the condition is met trivially. The other two conditions are
also met, regardless of the choice of the seed function. In fact, since the above conditions
restrict only the source Tµν , any source obtained from Einstein’s equations (5.13) by the
procedure above automatically satisfies the covariant divergence conditions T µν ;ν = 0.

5.2.1 Invariants of the energy-momentum tensor
One of the important invariants we will focus on is the trace T µµ of the associated energy-
momentum tensor. Due to the Weyl condition (5.15), the trace reduces to the sum over the
two Killing coordinates,

T ≡ T µµ
(5.15)= T tt + T φφ = q,ρρ(ρ, z) + q,zz(ρ, z)

4π e−2q(ρ,z) =

A[2ρ2
0ρ

2 − 4ρ0(ρ2 − 1)ρ+ 2ρ4 + 2ρ2(z2 − 3) + 1]
2π exp

[
−2Aρ2e−(ρ0−ρ)2−z2 − (ρ0 − ρ)2 − z2

]
.

(5.17)

The trace is thus everywhere finite and vanishes at radial infinity. Due to Einstein’s equations
(5.13) the trace of the energy-momentum tensor is proportional to the Ricci scalar

R = −T, (5.18)

so the minima of the trace T correspond to maxima of the Ricci scalar discussed in the
previous Chapter 4 (see Figure 4.1). For the negative values of A, the position of the extreme
is different. Figure 5.3 shows the position of the extreme near the "ring" (maximum/minimum
for negative/positive values of the amplitude respectively). It also compares it with the "ring"
coordinate radius ρmax. We can see that the solution with negative amplitudes behaves as
we would expect (Ricci scalar has an extreme on the "ring") for high values of the parameter
ρ0 despite the unintuitive features of this solution discussed above.

For ρ0 = 0 and positive values of the amplitude A, the trace reaches its maximum of A
2π

at the origin. Figure 5.4 shows the trace T for A = ±1 in the meridional plane.
Due to the two existing Killing symmetries, the Ttt and Tφφ components of the energy-

momentum tensor are invariants of the space-time. Let us focus of the time component

Ttt = Tµνη
µην = −e−2q(ρ,z)

8π

(
∂2q(ρ, z)
∂z2 + ∂2q(ρ, z)

∂ρ2

)
, (5.19)

whose physical meaning is the local mass-energy density present in the space-time measured
by a static observer. The total mass-energy enclosed in a volume V is given by the volume
integral of the density

EV =
∫
V
Ttt dV = −2π

∫
V (ρ,z)

e−2q(ρ,z)

8π

(
∂2q(ρ, z)
∂z2 + ∂2q(ρ, z)

∂ρ2

)
ρ dρ dz. (5.20)
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Figure 5.3: Position of the extreme of the energy-momentum tensor trace - minimum for
positive A, (solid line), maximum for negative A (dashed line) and the "ring" coordinate
radius ρmax (dot-dashed line).

Using the seed function (1.2) and selecting a special form of V to be a cylinder with radius
k and height of 2k centered at the origin we get

EV (k) = −1
2A

∫ k

−k

∫ k

0
ρ
(
2ρ4 + 2ρ2

(
z2 − 3

)
+ 1

)
exp

[
ρ2(−2Ae−ρ2−z2 − 1) − z2

]
dρ dz.

(5.21)
Figure 5.5 shows the numerical evaluation of the energy EV as a function of the parameter
k. The mass-energy enclosed in the entire space (i.e. k → ∞) for A = 1 is then

EV (k → ∞) .= 0.173.

The total mass-energy EV (k → ∞) is shown in Figure 5.5 as a function of the amplitude A.
Let us note that EV (k → ∞) = 0 for A = 0 as that corresponds to empty space.

Because in the static case Tφφ = Ttt, the trace of the energy-momentum tensor can also
be thought of as twice the mass-energy density in the space-time. We can see from the
Figure 5.4 that there are areas in which the mass-energy density Ttt is positive and negative.
This violates the weak energy condition, which states that for every time like vector field uµ
the term

Tµνu
µuν ,

is non-negative which is not true in our case (consider for example uµ = ηµ). The weak
energy condition is usually considered met "automatically" in most "physically meaningful"
solution of general relativity as its violation indicates the potential existence of closed time-
like curves.
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Figure 5.4: The trace of the energy-momentum tensor T with ρ0 = 0, A = 1 (left) and
A = −1 (right).

Figure 5.5: Energy EV enclosed in a cylinder V as a function of its radius and half-height
(left) and the total mass-energy in the whole space as a function of the measure of amplitude
A (right).
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5.2.2 Total mass-energy of the wave
In the previous Subsection we have presented the formula (5.21) for the mass-energy enclosed
in a volume V of the space-time which along with the "gravitational" energy adds up to the
total mass-energy of the wave. The "gravitation" energy is not defined in a satisfying manner
and so we will focus on the total mass-energy of the space-time which is more relevant to us
as it impacts the asymptotic behavior (1.6) of the conformal factor. We will use the Tolman
integral [7] which gives the mass-energy of volume V of space as

m =
∫
V

(T i
i − T t

t )
√

−g d3x, (5.22)

where √
−g is the square root of the determinant of the covariant metric. Using the general

result (5.14) and Weyl form of the metric (5.4) we get

T ii − T tt
(5.15)= T φφ − T tt = 0, (5.23)

and thus the mass-energy of any volume of space is zero. Using the results given by (5.19)
we can conclude that the "gravitational" energy is negative. This is plausible as one would
expect the "binding" energy to be negative.

The mass m determining the asymptotic behavior of the conformal factor (1.6) equals
the Tolman mass. For a more thorough proof of m = 0 using the second form of the seed
function discussed in Section 6, see Appendix B.
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6. Second form of the seed function
In this Chapter we will focus on a less commonly used form of the seed function, given in
cylindrical coordinates as [4]

q(ρ, z) = a
ρ2

1 +
(√

z2+ρ2

λ

)n , n ≥ 4, (6.1)

where a is a dimensionless measure of the amplitude, λ measure of wavelength with the
units of length and n determines the asymptotic behavior of the seed function. The n ≥ 4
condition is imposed so that q falls of as ∼ 1

r2 as r → ∞ or faster which is a general condition
that the seed function should meet. We note that this choice of the seed function satisfies
q(0, z) = q,ρ(0, z) = 0, and is thus a viable choice.

Once again we calculate the position of a maximum of the metric where the imaginary
"ring" would lie. In order to do that we take derivative of the radial metric element along
the z = 0, φ = const. semi-line,

0 = ∂eq(ρ,0)

∂ρ
= aρ

2(1 + ( ρ
λ
)n) − ρnρ

n−1

λn

(1 + ( ρ
λ
)n)2 eq(ρ,0) = aρ

2 + (2 − n)( ρ
λ
)n

(1 + ( ρ
λ
)n)2 eq(ρ,0),

which has only one nontrivial solution

ρmax =
( 2
n− 2

) 1
n

λ. (6.2)

Figure 6.1 shows the maximum of the radial metric ρmax as a function of n for a fixed
parameter λ = 1. We note that it is everywhere positive; the limit ρmax → 0+ can only be
achieved for λ → 0+. If we focus on the limiting cases we trivially get

lim
n→4

ρmax(n, λ) = lim
n→4

( 2
n− 2

) 1
n

λ = λ,

and
lim
n→∞

ρmax(n, λ) = lim
n→∞

( 2
n− 2

) 1
n

λ = λ. (6.3)

We will now focus on the invariant properties of the "ring" which for the first form of the
seed function have already been computed above. Firstly, we will convert the seed function
to spherical coordinates using the standard transformation

x = r cosφ sin θ,
x = r sinφ sin θ,
z = r sinφ,

yielding
q(r, θ) = a

r2 cos2 θ

1 + ( r
λ
)n , (6.4)
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Figure 6.1: Maximum of the radial metric ρmax for λ = 1 as a function of the parameter n.

and to toroidal coordinates given by (1.8) with ρmax given by (6.2), which yields

q(ζ, ψ) = a
ρ2

max
sinh2 ζ

(cosh ζ−cosψ)2

1 + (ρmax
λ

√
sinh2 ζ+sin2 ζ

cosh ζ−cosψ )n
. (6.5)

6.1 Small and large circumference
Following the same procedure as in Section 3.1 we get for the small circumference

l = lim
k→∞

∮ √
gψψ(k, φ, ψ) dψ = lim

k→∞

∫ 2π

0
ρmax

eq(k,ψ)

cosh k − cosψ dψ.

Just as before the integrand is continuous and thus finite ∀k ∈ R+ and we can use the
continuous dependence of an integral on a parameter theorem and get

l = ρmax

∫ 2π

0
lim
k→∞

eq(k,ψ)

cosh k − cosψ dψ,

where
lim
k→∞

eq(k,ψ) = exp
[

aρ2
max

1 + (ρmax
λ

)n

]
= const.,

and thus we get l = 0 again. This result shows that the metric does not behave too wildly
near the imaginary "ring".

As noted in Section 3.2, the large circumference L comes out the same

L = 2πρmax,

as it does not depend on the choice of the seed function.
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6.2 Proper radius
Proper radius of the "ring" is again given by

b(a, λ, n) =
∫ ρmax

0

√
gρρ(ρ, 0) dρ =

∫ ρmax

0
exp

[
a

ρ2

1 + ( ρ
λ
)n

]
dρ. (6.6)

This integral can be computed numerically. The proper radius is a monotonically increasing
function of the parameters a > 0 and λ. To show that we take the respective derivatives.
The proper radius does not depend on the parameter n in this simple way. We will discuss
it later in this Section. For a we simply get

∂b

∂a
= ∂

∂a

∫ ρmax

0
exp

[
a

ρ2

1 + ( ρ
λ
)n

]
dρ =

∫ ρmax

0

∂

∂a
exp

[
a

ρ2

1 + ( ρ
λ
)n

]
dρ =

∫ ρmax

0

ρ2

1 + ( ρ
λ
)n exp

[
a

ρ2

1 + ( ρ
λ
)n

]
dρ ≥ 0,

as the integrand is positive on (0, ρmax). The equality only holds in the trivial case ρmax = 0
i.e. λ = 0.

Similarly,

∂b

∂λ
= ∂

∂λ

∫ ρmax

0
exp

[
a

ρ2

1 + ( ρ
λ
)n

]
dρ =

∫ ρmax

0

∂ exp
[
a ρ2

1+( ρ
λ

)n

]
∂λ

dρ+exp
[
a

ρ2
max

1 + (ρmax
λ

)n

]
∂ρmax

∂λ
=

∫ ρmax

0

naρ2

(1 + ( ρ
λ
)n)2

ρn

λn+1 exp
[
a

ρ2

1 + ( ρ
λ
)n

]
dρ+ exp

[
a

ρ2
max

1 + (ρmax
λ

)n

]
( 2
n− 2) 1

n > 0, (6.7)

where the first term is non-negative for positive values of the amplitude a and is only zero in
the trivial case ρmax = 0 =⇒ λ = 0. The second term is always positive and thus the sum
is positive for a > 0. For negative amplitudes the inequality (6.7) does not generally hold.
However, we can show that it holds on some neighbourhood of a = 0. For zero amplitude
the derivative reduces to

∂b

∂λ
=
( 2
n− 2

) 1
n

> 0,

which was shown above (see Figure 6.1). The derivative is also a continuous function of
the amplitude so there exist δ > 0 such that ∂r

∂λ
> 0, ∀a ∈ (−δ,∞). Figure 6.2 shows the

derivative of the proper radius with respect to λ for n = 4 and λ = 1 as a function of a. For
this choise of the parameters the local extreme of the proper radius with respect to λ occurs
at a .= −3.53.

The dependence b = b(n) is more complicated as we can also see from Figure 6.1 since the
maximum of the radial metric ρmax is not a monotonically increasing function of n. Figure
6.3 shows the proper radius as a function of n and its inverse for fixed parameters λ = 1 and
a = 1. As noted above, in the n → ∞ limit the radius of the "ring" ρmax approaches unity.
Thus for fixed parameters λ = 1 and a = 1 we get

lim
n→∞

b(1, 1, n) = lim
n→∞

∫ ρmax

0
e

ρ2
1+ρn dρ =

∫ 1

0
eρ

2 dρ, (6.8)
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Figure 6.2: The derivative of the proper radius with respect to λ for n = 4 and λ = 1 for
negative values of the amplitude a.

which can be solved numerically1

lim
n→∞

b(1, 1, n) .= 1.46,

in agreement with Figure 6.3.

Figure 6.3: Proper radius b for the seed function given by (6.1) with λ = 1 and a = 1 as a
function of n and its inverse.

1This result is given in some arbitrary units of length determined by λ.
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6.3 Proper distance
Let us now focus on the proper distance from the "ring" to an arbitrary point in the same
meridional plane. It is convenient to show first that the measure of amplitude a and wave-
length λ are not independent. Let us perform a change of coordinates according to

ρ = λρ̃,

z = λz̃.
(6.9)

the seed function becomes

q(ρ̃, z̃) = aλ2 ρ̃2

1 + (z̃2 + ρ̃2)n
2

def.= Λ ρ̃2

1 + (z̃2 + ρ̃2)n
2
, n ≥ 4, (6.10)

where Λ def.= aλ2 is a new dimensionless measure of the amplitude. The transformation
(6.9) thus treats a pair of solutions with the same dimensionless amplitude as a part of the
same "family" of solutions. In these new coordinates it is impossible to perform the limit
ρmax → 0+ for reasons mentioned above2.

We are now going to calculate the proper distance from the "ring" to an arbitrary point
(ρ, z) in the meridional plane. The line segment is given by (3.6) in the new (ρ̃, z̃, φ) coordi-
nates, and so the distance is given by

d =
⏐⏐⏐⏐∫

L
dι
⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐⏐⏐
∫ z

sin α

0

√
gρρ(k cosα + ρmax, k sinα)

√(∂ρ
∂k

)2

+
(
∂z

∂k

)2

dk

⏐⏐⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐
∫ z

sin α

0
exp

[
Λ(k cosα + ρmax)2

1 + (k2 + 2kρmax cosα + ρ2
max)n

2

]
dk
⏐⏐⏐⏐⏐. (6.11)

Figure 6.5 shows several contour plots of the distance d to the "ring" in a given meridional
plane for different values of the parameters [Λ, n]. We can see that the distance changes
drastically for different values of the two parameters and the "ring" get strongly "directional",
meaning that the proper distance strongly depends on the direction from where the ring is
being approached.

Solutions with high Λ correspond to a family of solutions with high amplitude a (for
a fixed wavelength λ). In this limit the seed function (6.1) approaches infinity pointwise
everywhere besides the z-axis (where it always vanishes) and thus all spatial points (with
the exclusion of the z-axis, of course) are infinitely remote. In a similar manner, for high
negative amplitudes Λ the distance between any two points off the symmetry axis vanish.

The limit of high values of n (which affects asymptotic behavior of the seed function) will
prove not physically interesting for our applications. In this limit the dimensionless form of
the seed function (6.10) becomes

q(ρ, z) = Λ ρ2

1 + (z2 + ρ2)n
2

n→∞→
{

0,
√
ρ2 + z2 > 1

Λρ2,
√
ρ2 + z2 < 1

2See the next Section for more details.
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which is not a continuous function along the semicircle
√
ρ2 + z2 = 1. Figure 6.4 shows the

contour plot of the distance from the "ring" in the above n → ∞ limit using Eq. (6.11). The
discontinuity of the seed function as well as the flatness of the

√
ρ2 + z2 > 1 region is not

analogous to any of the ring sources. We will not explore this limit any closer. Let us just
note that the proper radius

b =
∫ ρmax

0

√
gρρ(ρ, 0)dρ =

∫ ρmax

0
exp

[
Λ ρ2

1 + ρn

]
dρ, (6.12)

stays finite and takes the form
b =

∫ 1

0
eΛρ2dρ,

in the above limit.

Figure 6.4: Contour plot of the distance d from the "ring" in the limit n → ∞. The red line
shows the condition k + 2 cosα = 0.

6.4 Limit ρmax → 0+

At the beginning of this Chapter, we have shown that the radius of the "ring" is given by
(6.2) and does not depend on the measure of the amplitude a. The limit ρmax → 0+ in this
original form is then equivalent to λ → 0+ for ∀n ∈ [4,∞). Then, the seed function (6.1) is
identically zero everywhere and we get flat Minkowski space

ds2 = −dt2 + dρ2 + dz2 + ρ2dφ2. (6.13)

In order to compute the proper distance from the "ring", we have converted the seed function
to a dimensionless coordinates (6.10) using the transformation (6.9). In these coordinates,
the ring position is only given by the parameter n

ρ̃max =
( 2
n− 2

) 1
n

, (6.14)
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Figure 6.5: Contour plot of the distance d from the "ring" for different values of the constants
[Λ, n]: Top left [1, 4], top right [3, 4], bottom left [1, 100] and bottom right [3, 1000].

which is a positive quantity that reaches its minimum at (see Figure 6.1)

nmin
.= 9.18 =⇒ ρ̃max(nmin) .= 0.87,

and so the limit ρmax → 0+ is "inaccessible" for any fixed value of n. However, considering the
definition of the dimensionless amplitude Λ def.= aλ2, for a fixed value of a the dimensionless
amplitude Λ goes to zero and we get the flat Minkowski space point wise.

The "inaccessibility" of the ρmax → 0+ can be explained by the fact that the transforma-
tion (6.9) for λ = 0 is not a diffeomorphism as it maps the meridional plane to the origin and
thus the inverse transformation does not exist. For ∀λ > 0 the "coordinate radius" ρ̃max > 0
is positive and so a simple continuous limit does not exist.
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7. Geodesic motion
In this Chapter we will study simple cases of free motion of test particles in the static Brill
space-time described by (5.4). As mentioned above, considering the solution static can only
be justified for a short amount of time near the moment of time symmetry or in the presence
of the source given by (5.14). We will assume that one of these conditions is met in the
following.

7.1 Time of flight
In any meridional plane, there are only two absolute points between which the time of flight
can be calculated. Those are the coordinate center, i.e. the intersection of the equatorial
plane with the symmetry axis, and the "ring" itself. To calculate the time of flight we consider
time-like motion in the ρ-direction. Normalization of the 4-velocity yields

−1 = gµνu
µuν = gtt(ut)2 + gρρ(uρ)2, (7.1)

where uρ = dρ
dτ and ϵ

def.= −gttut is the conserved energy per unit rest mass, invariantly given
by

−ϵ = gµνη
µuν = gttu

t = ut = dxt
dτ = − dt

dτ , (7.2)

where we have used the fact that the metric is diagonal with gtt = −1. This quantity is
invariant and evaluating it in the asymptotic region where the space time becomes Minkowski
yields

dt
dτ = dt√

−ηµνdxµdxν
= 1√

−ηµν dxµ

dt
dxν

dt

= 1√
1 − δijvivj

= 1√
1 − v2

≡ γ. (7.3)

Eq. (7.1) then becomes (
dρ
dτ

)2

= 1
gρρ

(
ϵ2

−gtt
− 1

)
= ϵ2 − 1
e2q(ρ,0) , (7.4)

therefore
dτ
dρ = eq(ρ,0)

√
ϵ2 − 1

. (7.5)

The time of flight from ρ = 0 to ρ = ρmax is given by

T =
∫ T

0
dτ =

∫ ρmax

0

dτ
dρ dρ = 1√

ϵ2 − 1

∫ ρmax

0
eq(ρ,0) dρ = b√

ϵ2 − 1
, (7.6)

where b is the proper radius of the ring given by (3.3) and (6.12), respectively. We can see
that T is finite except in the case ϵ = 1, i.e., |p⃗| = 0, corresponding to a particle which stays
at the origin forever.

Photons moving radially in the "ring" plane follow null geodesics given by

0 = ds2 = gµνdxµdxν = gttdt2 + gρρdρ2, (7.7)
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or
ρ,t ≡ dρ

dt = ±e−q(ρ,0), (7.8)

which is the local slope of the light cone for photons moving in the ρ-direction viewed by
a stationary observer at the origin. Similarly, for photons moving parallel to the z-axis one
gets

z,t ≡ dz
dt = ±e−q(0,z). (7.9)

These two derivatives define the cone fully as we can see by performing the coordinate
transformation

ρ = αρ̃+ βz̃,

z = βρ̃− αz̃,
(7.10)

with the condition α2 + β2 = 1. Then the metric (1.1) becomes

dl2 = e2q(ρ,z)[(αdρ̃+ βdz̃)2 + (βdρ̃− αdz̃)2] + (αρ̃+ βz̃)2dφ2 α2+β2=1=
e2q(ρ,z)(dρ̃2 + dz̃2) + (αρ̃+ βz̃)2dφ2, (7.11)

and thus

ρ,t =ρ̃,t,
z,t =z̃,t.

(7.12)

Figure 7.1 shows contour plot of the light-cone slope for photons moving in the meridional
plane for A = ±1 and ρ0 = 0. We can see that the cone gets "wider" at the peak of the wave
for positive values of the amplitude parameter A and "narrower" for negative ones.

Figure 7.1: Contour plot of the light-cone slope in the meridional plane for A = 1 (left),
A = −1 (right) and ρ0 = 0 viewed by a stationary observer at the origin.
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7.2 Gravitational acceleration
An important invariant affecting the motion of test particles in a given space-time is the grav-
itational acceleration. In the Newtonian limit one can show using the equation of geodesic
motion that

gtt ∝ −1 − 2Φ, (7.13)

which can be thought of as first two terms in the expansion of −e2Φ def.= −N2. Here Φ denotes
the Newtonian gravitational potential. To get the analogue of the gravitational acceleration,
we consider the definition

κµ
def.= −N,µ = −NΦ,µ, (7.14)

Using (7.13) we can evaluate the invariant square of the gravitational acceleration

κ2 = gµνN,µN,ν = gµνN2Φ,µΦ,ν . (7.15)

In our case, the gravitational acceleration vanishes as gtt = −N2 = −1. This is consistent
with the fact that the mass-energy (5.22) is zero.

7.3 Circular geodesics
The potential existence and position of the photon orbit is the next invariant feature of the
space-time which we will focus on. For a general Weyl space-time whose metric is given by
(5.2) the photon circular orbit in the "ring" plane z = 0 is ( [1], see Appendix C for a full
proof)

2ρA,ρ = 1. (7.16)
In our case A = 0 and thus there are no circular photon orbits.

We can also try to look for circular geodesics in the equatorial plane. One can see from
reflection symmetry about the equatorial plane that the test particle with the initial velocity
pointing in the equatorial plane will stay in that plane. From the 4-velocity normalization
we get the condition

−1 = gµνuµuν = gtt(ut)2 + gρρ(uρ)2 + gφφ(uφ)2. (7.17)

Using (1.1) and (7.37) we get

uρ = ±eq(ρ,0)

√ϵ2 −
(

1 + l2

ρ2

)
. (7.18)

In order for the motion to be circular, we require uρ = 0 and uρ,ρ = 0 at the radius of the
circular orbit ρ = ρc. These conditions yield the pair of equations

0 = ϵ2 − 1 − l2

ρ2
c
,

0 = l2

ρ2
c

√
(ϵ2 − 1)ρ2

c − l2
,

(7.19)
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which only have one trivial solution l = 0 and ϵ = 1, i.e. a static particle. This corresponds
to the fact that the potential energy term 1 + l2

ρ2 has no local maxima for nontrivial values
of l.

If we consider motion of the test particles in the meridional plane, we can use the same
symmetry argument (since the axial symmetry implies reflection symmetry about every
meridional plane) as above to conclude that the motion will be confined to that plane. The
normalization condition for 4-velocity now reads

−1 = gµνuµuν = gtt(ut)2 + gρρ(uρ)2 + gzz(uz)2, (7.20)
or (using the fact gzz = gρρ and (5.4))

(uρ)2 + (uz)2 = gρρ(ϵ2 − 1) = (ϵ2 − 1)e2q(ρ,z). (7.21)
Let us refer to Eq. (7.36) in advance. Using the first form of the seed function (1.4) we get

duz
dτ = −2Aρ2z exp

(
2Aρ2e−(ρ−ρ0)2−z2 − (ρ− ρ0)2 − z2

)
[(uρ)2 + (uz)2],

duρ
dτ = −2Aρ

(
ρ2 − ρρ0 − 1

)
exp

[
2Aρ2e−(ρ−ρ0)2−z2 − (ρ− ρ0)2 − z2

]
[(uρ)2 + (uz)2].

(7.22)

We can see there is one equilibrium point at the origin which is in agreement with the
calculation above. Figure 7.2 shows a contour plot of the prefactor gzz,ρ in the second
equation for A = 1 and ρ0 = 0. We note that the acceleration is zero in the ρ-direction
at the "ring", i.e. where ρ = ρmax. This is interesting since the square of total 3-velocity
does not change the sign of the acceleration. For positive amplitudes the test particles are
accelerated towards the ρ-axis in the z-direction. A closed orbit around the origin is not
possible as for A > 0 the particles are accelerated towards the "ring" in the ρ-direction and
for A < 0 the acceleration in the z-direction points away from the ρ-axis.

Figure 7.2: The derivative of the covariant metric gzz,ρ for A = 1 and ρ0 = 0 determining
the sign of the acceleration in the ρ-direction.

There may exist closed orbits around the "ring" itself, however, we will not focus on them
here. Let us just note that this is possible only for A > 0 since for A < 0 the test particles
are accelerated "away" from the "ring" in both directions.
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Conclusion
We have presented a way to treat the Brill space-time around the moment of time symmetry
as a static approximation of a "ring"-like source. We have seen in Chapters 3 and 6 that
both choices of the seed functions (1.1) and (6.1) yield satisfactory geometrical properties of
the "ring". Both exhibit finite small and large circumferences and their proper radius is also
finite. This static solution is intended as an approximation of the material thin-ring sources
and thus these simple properties are satisfactory.

We have also seen that the proper radius (3.3) and (6.6) is not a monotonically increasing
function of their "coordinate radius" defining variables ρ0 and λ, respectively, for negative
values of the amplitude parameters A and a. We have also seen in Subsection 5.1.1 that the
equatorial plane is not asymptotically flat for negative values of A. However, the extreme of
the 3D Ricci tensor for negative A follows the "coordinate radius" ρmax closer for high values
of ρ0 (see Figure 5.3) where the proper radius is monotonically incresing with λ (see Figure
3.2).

In Chapter 5, we have shown that the full 4-metric of the static Brill space-time is given
by (5.4) and we calculated its energy-momentum tensor using the Einstein equations. As
expected, the source turned out not to be "physically meaningful" as its invariant Killing
components Ttt = Tφφ indicate the existence of areas with positive and negative energy
density which violates the weak energy condition

Tµνu
µuν ≥ 0,

for any time-like uµ. Using the Tolman integral (5.22), we have found that the total mass of
the space-time vanishes.

In Chapter 7 we showed that there are no circular photon or particle orbits in the equa-
torial plane. This is in contrast with the thin rings [1]. This shows that the static Brill
space-time is not a suitable approximation if one wishes to study the motion of particles.
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Appendix A
The nonzero Christoffel symbols given by (4.4) are

Γρρρ = ∂ρq(ρ, z),
Γρρz = ∂zq(ρ, z),
Γρzρ = ∂zq(ρ, z),
Γρzz = −∂ρq(ρ, z),
Γρφφ = ρe−2q(ρ,z),

Γzρρ = −∂zq(ρ, z),
Γzρz = ∂ρq(ρ, z),
Γzzρ = ∂ρq(ρ, z),
Γzzz = ∂zq(ρ, z),

Γφρφ = 1
ρ
,

Γφφρ = 1
ρ
,

(7.23)

where for the first choice of the seed function q given by (1.2) we have
∂ρq(ρ, z) = −2Aρ(ρ2 − ρρ0 − 1)e−(ρ0−ρ)2−z2

,

∂zq(ρ, z) = −2Aρ2ze−(ρ0−ρ)2−z2
.

(7.24)

For the second form given by (6.1) we have

∂ρq(ρ, z) =
aρ
(
2λ−n (ρ2 + z2)n/2 − nρ2λ−n (ρ2 + z2)

n
2 −1 + 2

)
(
λ−n (ρ2 + z2)n/2 + 1

)2 ,

∂zq(ρ, z) = −anρ2zλn (ρ2 + z2)
n
2 −1(

λn + (ρ2 + z2)n/2
)2 .

(7.25)

The Ricci tensor in the (ρ, z, φ) base is

Rji =

⎛⎜⎝
1
ρ
q,ρ(ρ, z) − q,zz(ρ, z) − q,ρρ(ρ, z) 1

ρ
q,z(ρ, z) 0

1
ρ
q,z(zρ, z) −1

ρ
q,ρ(ρ, z) − q,zz(ρ, z) − q,ρρ(ρ, z) 0

0 0 0

⎞⎟⎠ . (7.26)

For the seed function given by (1.2) we have
R11 = 2A

(
−ρ2 + ρρ0 + 1

)
e−(ρ0−ρ)2−z2

− 2Ae−(ρ0−ρ)2−z2 (2ρ4 + 2ρ2ρ2
0 − 4

(
ρ2 − 1

)
ρρ0 + 2ρ2

(
z2 − 3

)
+ 1

)
,

R12 = R21 = −2Aρze−(ρ0−ρ)2−z2
,

R22 = 2A
(
ρ2 − ρρ0 − 1

)
e−(ρ0−ρ)2−z2

− 2Ae−(ρ0−ρ)2−z2 (2ρ4 + 2ρ2ρ2
0 − 4

(
ρ2 − 1

)
ρρ0 + 2ρ2

(
z2 − 3

)
+ 1

)
.

(7.27)
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Appendix B
To show that the total Tolman mass m vanishes in the special case of the seed function given
by (6.1), we consider the asymptotic solution of the Hamiltonian constraint (4.2). Using the
simplified version of the transformed seed function (6.10) and the general expression for the
Ricci scalar (4.7), we have (we omit tilde in the following)

3R = −2e−2q(ρ,z) Λ(ρ2(n2((ρ2 + z2)n − (ρ2 + z2)n/2) + n(−4(ρ2 + z2)n/2 − 4(ρ2 + z2)n)
(ρ2 + z2)((ρ2 + z2)n/2 + 1)3

+ 2e−2q(ρ,z) +2((ρ2 + z2)n/2 + 1)2) + 2z2((ρ2 + z2)n/2 + 1)2)
(ρ2 + z2)((ρ2 + z2)n/2 + 1)3 . (7.28)

Along the x-axis, the Hamiltonian constrain (4.2) takes the form

∂2ψ

∂x2 + Λ
4
n2(x2n − xn) − 3n(xn + x2n) + 2(xn + 1)2

(xn + 1)3 e

2ax2

xn + 1ψ = 0. (7.29)

In the limit x → ∞, Eq. (7.29) becomes

∂2ψ

∂x2 = 0,

with solution
ψ(x) = c0 + c1x. (7.30)

We then consider the asymptotic solution of (7.29) in the form

ψ(x) = (c0 + c1x)(1 + ψ1(x) + ψ2(x) + . . . ), (7.31)

where ψi(x) are unknown functions of x. We also assume ψi(x) ≫ ψi+1(x), ∀i ∈ N as x → ∞
along with all its derivatives since we expect ψi(x) ∼ x−i.

In (1.6), we assume that the conformal factor decays as in the Schwarzschild metric.
Therefore, to obtain an expression for the total mass-energy of the wave, one needs to
evaluate the constant at the ∼ r−1 term of the asymptotic expansion of ψ.

We want the solution to be asymptotically flat, so we choose

c0 = 1,
c1 = 0,

(7.32)

and look for the solution in the form

ψ(x) = 1 + ψ1(x) + ψ2(x) + . . . . (7.33)

Asymptotic expansion at infinity yields

n2(x2n − xn) − 3n(xn + x2n) + 2(xn + 1)2

(xn + 1)3 ∼ 1
xn

+ o
( 1
xn+1

)
,
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and thus to the first order in ψi we get from (7.29), for n = 4,

∂2ψ1

∂x2 + Λ
4

( 8
x4 + o

( 1
x5

))
e

2ax2

x4 + 1 (1 + ψ1) = 0. (7.34)

Let us multiply the equation by x4 and perform the limit x → ∞:

lim
x→∞

x4∂
2ψ1

∂x2 = −2Λ = const. ⇐⇒ lim
x→∞

ψ1 = 0.

Integrating twice and setting the integration constants to zero (to satisfy the above x → ∞
behaviour) yields

∂2ψ1

∂x2 = −2 Λ
x4 =⇒ ψ1(x) = − Λ

6x2 ,

and so the first term decays as x−2 which implies m = 0.
Alternatively, one can use Eq. (1.5) along x-axis with asymptotic behavior of ψ given by

(1.6), to obtain

m = lim
x→∞

x3ψ′′(x) = lim
x→∞

x3

4

(
q,x
x

− q,xx

)
ψ(x) = 0.
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Appendix C
We consider the geodesic equation with the 4-velocity dxµ

dτ = uµ,

duα
dτ − Γσαβuσuβ = 0. (7.35)

Using Eq. (4.4) we get

duα
dτ = 1

2(gσα,β + gβσ,α − gαβ,σ)uσuβ = 1
2gβσ,αu

σuβ, (7.36)

where we have used the symmetry of the metric gµν = gνµ and antisymmetry of the term
gσα,β − gαβ,σ in σ-β.

We consider static and axially symmetric solution, so (7.36) yields two integrals of motion,

ut = const. (7.2)= −ϵ,
uφ = const.

(7.37)

As mentioned above, ϵ is the conserved energy per rest mass. Similarly, uφ = gφφ
dφ
dt

dt
dτ ≡ l is

the angular momentum with respect to an observer at spatial infinity per rest mass.
To derive the equation for photon orbit in Weyl space-time whose metric is given by

(5.2), we use normalization of 4-momentum for photons moving in the "ring" plane,

0 = gµνpµpν = gtt(pt)2 + gφφ(pφ)2 + gρρ(pρ)2, (7.38)

from where, using (7.37), we get

(pρ)2 = gρρ(−gttE2−gφφL2) (5.2)= e2(B−A)(−e−2AE2− 1
ρ2 e

2AL2) = −e2B−4AE2−e2B

ρ2 L
2. (7.39)

In order for the trajectory to be circular, the radial momentum must vanish together with
its derivative pρ = 0 and pρ,ρ = 0 (this latter condition corresponds to the photon being at
the local extreme of the potential term e2B

ρ2 L
2). Thanks to the first condition we can work

with (pρ)2
,ρ = 0. We obtain the pair of equations

0 = − e2B−4AE2 − e2B

ρ2 L
2,

0 = − 2(B − 2A),ρe2B−4AE2 − 2(ρB,ρ − 1)e
2B

ρ3 L
2.

(7.40)

Solving for A yields
1 = 2ρA,ρ. (7.41)

42



Bibliography
[1] Oldřich Semerák, Static axisymmetric rings in general relativity: How diverse they are,

Physical Review D 94, (2016), 104021

[2] Brill D. R., On the Positive Definite Mass of the Bondi-Weber-Wheeler Time-Symmetric
Gravitational Waves, Annals of Physics, 7, 466-483, (1959)

[3] hirnov A., Ledvinka T., Gauge Choice in Numerical Evolution of the Brill Data, (2015)

[4] de Oliveira H. P., Rodrigues E. L., Brill wave initial data: Using the Galerkin-collocation
method, Physical Review D 86, (2012), 064007

[5] Weyl H., Zur Gravitationstheorie, Annalen der Physik 54, 117–145, (1917) English Trans-
lation: Weyl H., Republication of: 3. On the theory of gravitation, General Relativity and
Gravitation 44: 779-810, (2012)

[6] Garfinkle D., Duncan G. C., Numerical evolution of Brill waves, arXiv:gr-qc/0006073,
(2000)

[7] Florides P. S., On the Tolman and Møller mass-energy formulae in general relativity,
Journal of Physics: Conference Series 189, (2009), 012014

43



List of Figures

1.1 The radial part of the Brill metric (1.1) for ρ0 = 1 at z = 0 (top) and z = 1
(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Σ (see Eq. 3.4) as a function of the measure of radius ρ0 and its inverse. . . 12
3.2 The derivative of the proper radius as a funcion of ρ0 and A in the region of

negative amplitudes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Contour plot of the proper radius b as a function of parameters A and ρ0. . . 14
3.4 Proper distance from the "ring" in the same meridional plane for A = 1, ρ0 = 0

(left) and ρ0 = 1 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Proper area S (solid line) and Euclidean area S̃ (dashed line) as a function of

ρ0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 3D Ricci scalar (4.7) for A = 1 and ρ0 = 0 along the ρ-axis [left figure],
and maximum of the radial part of the 3-Ricci scalar 3R (solid line) and the
coordinate "ring" radius ρmax (dashed line)[right figure]. . . . . . . . . . . . . 18

5.1 The Gauss curvature of the equatorial plane for A = 1 and ρ0 = 0. See figure
6 in [1] for the Gauss curvature of the thin-rings. . . . . . . . . . . . . . . . 20

5.2 The Kretschmann scalar in the meridional plane for the values of parameters
[A, ρ0]: [1, 0] (top left), [1, 1] (top right), [−0.1, 1] (bottom left) and [−1, 0]
(bottom right). See figures 8 and 9 in [1] for the Kretschmann scalar within
the meridional plane for the thin-rings. . . . . . . . . . . . . . . . . . . . . . 21

5.3 Position of the extreme of the energy-momentum tensor trace - minimum for
positive A, (solid line), maximum for negative A (dashed line) and the "ring"
coordinate radius ρmax (dot-dashed line). . . . . . . . . . . . . . . . . . . . . 24

5.4 The trace of the energy-momentum tensor T with ρ0 = 0, A = 1 (left) and
A = −1 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.5 Energy EV enclosed in a cylinder V as a function of its radius and half-height
(left) and the total mass-energy in the whole space as a function of the measure
of amplitude A (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.1 Maximum of the radial metric ρmax for λ = 1 as a function of the parameter n. 28
6.2 The derivative of the proper radius with respect to λ for n = 4 and λ = 1 for

negative values of the amplitude a. . . . . . . . . . . . . . . . . . . . . . . . 30
6.3 Proper radius b for the seed function given by (6.1) with λ = 1 and a = 1 as

a function of n and its inverse. . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.4 Contour plot of the distance d from the "ring" in the limit n → ∞. The red

line shows the condition k + 2 cosα = 0. . . . . . . . . . . . . . . . . . . . . 32
6.5 Contour plot of the distance d from the "ring" for different values of the con-

stants [Λ, n]: Top left [1, 4], top right [3, 4], bottom left [1, 100] and bottom
right [3, 1000]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

44



7.1 Contour plot of the light-cone slope in the meridional plane for A = 1 (left),
A = −1 (right) and ρ0 = 0 viewed by a stationary observer at the origin. . . 35

7.2 The derivative of the covariant metric gzz,ρ for A = 1 and ρ0 = 0 determining
the sign of the acceleration in the ρ-direction. . . . . . . . . . . . . . . . . . 37

45



List of Tables

2.1 Basic features of the ring sources compared with the Brill-wave solution in
this thesis. R-N stands for Reissner-Nordström. Individual coordinates and
parameters have been defined in Chapter 1. . . . . . . . . . . . . . . . . . . 9

46


	Introduction
	Characteristics of the Brill solution
	Ring sources
	Geometrical invariants of the "ring"
	Small circumference
	Large circumference
	Proper radius and distance
	Proper area of the "ring"
	Limit ρmax→0+

	Conformal transformation
	Static solution
	General form of the Weyl metric
	Curvature of the equatorial plane
	Kretschmann scalar

	Energy-momentum tensor
	Invariants of the energy-momentum tensor
	Total mass-energy of the wave


	Second form of the seed function
	Small and large circumference
	Proper radius
	Proper distance
	Limit ρmax→0+

	Geodesic motion
	Time of flight
	Gravitational acceleration
	Circular geodesics

	Conclusion
	Appendix A
	Appendix B
	Appendix C
	Bibliography
	List of Figures
	List of Tables

