
BACHELOR THESIS

Igor Eržiak

Counting the points on elliptic curves
over finite fields

Department of Algebra

Supervisor of the bachelor thesis: doc. RNDr. Jan Šťov́ıček, Ph.D.

Study programme: Mathematics

Study branch: Mathematical Methods of Information
Security

Prague 2018

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

I would like to thank my supervisor doc. RNDr. Jan Šťov́ıček, Ph.D for his
patience and help throughout the process of creating this thesis. In addition, I
want to thank my friend Martin Žurav who has provided me with a great support
and excellent advice while I was struggling with this thesis.

ii

Title: Counting the points on elliptic curves over finite fields

Author: Igor Eržiak

Department: Department of Algebra

Supervisor: doc. RNDr. Jan Šťov́ıček, Ph.D., Department of Algebra

Abstract: The goal of this thesis is to explain and implement Schoof’s algorithm
for counting points on elliptic curves over finite fields. We start by defining elliptic
curve as a set of points satisfying certain equation and then proceeding to define
an operation on this set. Theoretical background needed for the algorithm is
presented in the second chapter. Finally, the Schoof’s algorithm is introduced in
the third chapter, supplemented by an implementation in SageMath open-source
software.

Keywords: Schoof’s algorithm, Elliptic curve, Division polynomial, Frobenius
endomorphism

iii

Contents

Introduction 2

1 Elliptic curves 3

1.1 Definition . 3
1.2 Group operation . 4

2 Basic Theory 6

2.1 Torsion points . 6
2.2 Division polynomials . 7
2.3 Endomorphisms . 8

3 Schoof’s algorithm 12

3.1 Overview . 12
3.2 Trace of Frobenius map . 13
3.3 Adding endomorphisms . 15

Conclusion 17

Bibliography 18

1

Introduction

Elliptic curves play an important role in modern algebra. Not only have they
been used in proof of Fermat’s Last Theorem by Andrew Wiles but they provide
an important tool for public-key cryptography, too. Moreover, they are used in
primality testing and factorization algorithms.

In cryptography, it is always important to know as much as possible about
the structure of the group we are working with. One of the key properties is the
order of the group. Up until 1985, there was no deterministic polynomial-time
algorithm known to compute the order of the elliptic curve group. However, this
had changed when René Schoof introduced his algorithm, that used Frobenius
map properties and division polynomials, combining the information gained using
the well-known Chinese Remainder Theorem.

This thesis will aim to explain Schoof’s approach and provide the theory
required to understand it. An important part will be an implementation in high-
level open-source mathematical software SageMath.

2

1. Elliptic curves

The goal of this chapter is to introduce the notion of an elliptic curve. We will
start with a set of solutions of a certain equation and define an operation on it.

1.1 Definition

For purposes of this thesis, we define the elliptic curve as follows:

Definition 1.1. Let F be a field with char(F) ̸= 2, 3 and let A,B ∈ F satisfying
4A3 + 27B2 ̸= 0. Elliptic curve E(F) defined by the equation

y2 = x3 + Ax+B (1.1)

is the set
E(F) = ¶O♢ ∪

{

(x, y) ∈ F × F ♣ y2 = x3 + Ax+B
}

,

where O is called the point at infinity.

Note. Equation of the form (1.1) is called the short Weierstrass equation of
an elliptic curve.

There is a couple of points in the definition that will be addressed briefly. For
more detailed explanation see Washington [2008], Section 2.1.

In general, elliptic curves can be defined over any field F using the generalized
Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a5

with a1, . . . , a5 ∈ F. However, if char(F) ̸= 2, 3, all elliptic curves can be defined
by a short Weierstrass equation (see Silverman [2009], Chapter III §1.). This
simplifies all computations without loss of generality. Moreover, there are more
efficient algorithms than Schoof’s algorithm in case when char(F) is small (see
Washington [2008], Section 4.3.1).

Furthermore, elliptic curves can be equivalently defined as non-singular plane
algebraic curves given by equation (1.1). Non-singularity means that the polyno-
mial x3+Ax+B has no multiple roots. This happens if and only if 4A3+27B2 ̸= 0.
Consequently, it allows the operation on the elliptic curve to be well-defined.

Finally, let us look into the projective space consisting of all triples (x, y, z)
with x, y, z ∈ F and at least one of them nonzero. We have an equivalence relation
(x1, y1, z1) ∼ (x2, y2, z2) if there is an element λ ∈ F such that

(x1, y1, z1) ∼ (λx2, λy2, λz2).

If we make the equation (1.1) homogeneous by introducing the third variable z,
we have

y2z = x3 + Axz2 +Bz3.

The points with z = 1 correspond to the set
{

(x, y) ∈ F × F ♣ y2 = x3 + Ax+B
}

3

while setting z = 0 leads to
x3 = 0

with the only nonzero solution, up to the equivalence ∼, being (0, 1, 0). The
points with z = 0 are usually interpreted as points at infinity. Since elliptic
curves have only one such point, we will refer to it as the point at infinity and
denote it by O. For more details see Washington [2008], Section 2.3.

1.2 Group operation

Let us consider the elliptic curve E(R) defined by the equation

y2 = x3 − 2x+ 4. (1.2)

Plugging in a couple of values for x and y we can easily find some points on the
curve E(R), for example:

(−2, 0), (0,±2), (1,±
√

3).

Note that for every solution (x, y) the point (x,−y) is also a solution.
We can use two known points on the curve to produce a new point. Start

with the points (−2, 0) and (0, 2). Consider a straight line through these points,
defined by the equation

y = x+ 2. (1.3)

Substituting this for y in the equation (1.2) and rearranging the terms we have

x3 − x2 − 6x = 0.

Knowing two roots, x1 = −2 and x2 = 0, we could factor the polynomial to find
the third. However, there is a simpler way. If x1, x2, x3 ∈ R are the roots of a
third degree monic polynomial then

(x− x1)(x− x2)(x− x3) = x3 − (x1 + x2 + x3)x
2 + lower degree terms.

Comparing the coefficients at x2 we have

1 = x1 + x2 + x3 = −2 + 0 + x3

=⇒ x3 = 3.

Plugging the value of x3 into (1.3) we have

y3 = 3 + 2 = 5.

We have produced a new point on the curve, the point (3, 5). In fact, from the
symmetry in y, we have produced one more point, namely (3,−5).

The idea of starting with two points on the curve and using the line passing
through them to find a new point gives rise to the idea of an operation on E(F).
However, if we defined the sum of two points P,Q ∈ E(F) on the line intersecting

4

the curve to be the third point of intersection, say R, we would not get very far.
We would have

P +Q = R and P +R = Q

=⇒ P + P +Q = Q.

This would mean that for any P ∈ E(F) the order of P would be at most 2.
To avoid this, we always reflect the resulting point over the x-axis. In the

example above we would have

(−2, 0) + (0, 2) = (3,−5).

In the situation when we want to add the point to itself, the idea is very
similar. However, since we only have one point to define a line we take the
tangent line to find the new point.

The following definition describes this operation formally.

Definition 1.2 (Group operation). Let E(F) be an elliptic curve defined by y2 =
x3 + Ax + B. Let P,Q ∈ E(F), P,Q ̸= O, where P = (x1, y1) and Q = (x2, y2).
We define the sum P +Q as follows:

• If x1 ̸= x2, then P +Q = R = (x3, y3) where

x3 = m2 − x1 − x2, y3 = m(x1 − x3) − y1, m =
y2 − y1

x2 − x1

.

• If x1 = x2 and y1 ̸= y2, then P +Q = O.

• If P = Q and y1 ̸= 0, then P +Q = R = (x3, y3) where

x3 = m2 − 2x1, y3 = m(x1 − x3) − y1, m =
3x2

1 + A

2y1

.

• If P = Q and y1 = 0, then P +Q = O.

Moreover, we define P + O = P for all P ∈ E(F) (including P = O).

Lemma 1.3. The set of points E(F) equipped with the addition defined in 1.2
forms an abelian group with O as the identity element and (x,−y) being an inverse
of (x, y).

Proof. Inverse and neutral elements are given by definition. Commutativity can
be verified from the definition as well. The only non-trivial part is the associa-
tivity. It can be proved directly using the formulae and distinguishing between
numerous cases. This approach is illustrated in Sutherland [2017], Section 2.1.2.
A different, more theoretical approach uses algebraic geometry, see Washington
[2008], Section 4.1.

Note. We will follow the usual group-theoretic convention and use E(F) to denote
both the set and the group.

5

2. Basic Theory

2.1 Torsion points

When studying properties of an elliptic curve E(F) it is often useful to look at
the points with coordinates in the algebraic closure F.

Definition 2.1. Let E(F) be an elliptic curve defined by y2 = x3 +Ax+B, with
A,B ∈ F. We define

E(F) = ¶O♢ ∪
{

(x, y) ∈ F × F ♣ y2 = x3 + Ax+B
}

.

Note. The set E(F) forms a group. This follows immediately from Lemma 1.3 by
noting that A,B ∈ F.

As in every additive group, for a point P on an elliptic curve E(F) we define
the expression kP to be the sum

P + P + P + ...+ P
  

k times

.

We can now look at an important concept of n-torsion points. These are the
points in E(F) of order m such that m ♣ n.

Definition 2.2. Let E(F) be an elliptic curve and let n ∈ N. We define the set
of n-torsion points of E(F) as

E[n] =
{

P ∈ E(F) ♣ nP = O
}

.

Note. One can easily see that the set of n-torsion points E[n] forms a subgroup
of E(F).

Example. Let us take a look at E[2]. The polynomial x3 + Ax + B has exactly
three roots in F. Since we are considering only non-singular elliptic curves, all
the roots are distinct. Denote the roots r1, r2, r3 ∈ F. We can write

y2 = (x− r1)(x− r2)(x− r3).

For each root ri we have a point (ri, 0) ∈ E(F). Since −(ri, 0) = (ri, 0) we have

2(ri, 0) = (ri, 0) + (ri, 0) = (ri, 0) − (ri, 0) = O, i ∈ ¶1, 2, 3♢.

These and the point at infinity are the only points with this property. Therefore

E[2] = ¶O, (r1, 0), (r2, 0), (r3, 0)♢ .

Since there is no point of order 4, E[2] is isomorphic to Z2 ⊕ Z2.

The following theorem provides an insight into the structure of the group of
n-torsion points. We will regard it as fact for now. It can be proved using division
polynomials defined in the next section, see Washington [2008] (chapters 3.1 and
3.2).

6

Theorem 2.3. Let E(F) be an elliptic curve and let n ∈ N. If char(F) does not
divide n, including char(F) = 0, then

E[n] ≃ Zn ⊕ Zn .

If char(F) is equal to p > 0 and p ♣ n write n = prn′ with p ∤ n′. Then

E[n] ≃ Zn′ ⊕ Zn′ or E[n] ≃ Zn ⊕ Zn′ .

2.2 Division polynomials

In order to compute nP for P ∈ E(F), n ∈ N, we need to apply the addition
formula n-times. Computationally, this can be sped up using the double-and-add
method. However, there seems to be no way to determine the coordinates of nP
directly. In order to achieve this (at least for theoretical purposes) we make use
of division polynomials.

Definition 2.4. Let x, y, A,B be variables. We define the m-th division poly-

nomial ψm ∈ Z[x, y, A,B], m ∈ N0, recursively as follows:

ψ0 = 0,

ψ1 = 1,

ψ2 = 2y,

ψ3 = 3x4 + 6Ax2 + 12Bx− A2,

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 − A3),

ψ2m+1 = ψm+2ψ
3

m − ψm−1ψ
3

m+1, for m ≥ 2,

ψ2m = (2y)−1(ψm)(ψm+2ψ
2

m−1 − ψm−2ψ
2

m+1), for m ≥ 3.

Note. From the definition it may not be obvious that ψ2m is a polynomial. Fol-
lowing lemma will, among other things, show that this is indeed the case.

Lemma 2.5. Let n ∈ N and let ψn be defined as above. Then we have:

1. If n is odd, ψn is a polynomial in Z[x, y2, A,B].

2. If n is even, ψn is a polynomial in 2yZ[x, y2, A,B].

Proof. Proceed by induction on n. Both assumptions hold for n ≤ 4. Assume
n > 4. In both cases we will assume that the induction assumptions hold for all
k < n, k ∈ N.

First, consider the case n = 2m + 1 for some m ≥ 2. Then m − 1 > 0
and m + 2 < 2m + 1 so all of the polynomials in the definition of ψ2m+1 satisfy
the induction assumptions. If m is even, then ψm, ψm+2 ∈ 2yZ[x, y2, A,B] and
consequently ψm+2ψ

3
m ∈ Z[x, y2, A,B]. Since m + 1 and m − 1 are odd, we

have ψm−1ψ
3
m+1 ∈ Z[x, y2, A,B]. Together, it follows that ψ2m+1 = ψm+2ψ

3
m −

ψm−1ψ
3
m+1 ∈ Z[x, y2, A,B]. For m odd the proof is similar.

Next, consider n = 2m for some m ≥ 3. Then m − 2 > 0 and m + 2 < 2m,
so all of the polynomials in the definition of ψ2m satisfy the induction assump-
tions. If m is even, then ψm−2, ψm, ψm+2 ∈ 2yZ[x, y2, A,B] so (ψm)(ψm+2ψ

2
m−1 −

ψm−2ψ
2
m+1) ∈ (2y)2Z[x, y2, A,B]. Multiplying by (2y)−1 leaves us with ψ2m =

(2y)−1(ψm)(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1) ∈ 2yZ[x, y2, A,B]. For m odd the proof is

similar.

7

In order to simplify the final formula for nP we define two additional polyno-
mials.

Definition 2.6. Let n ≥ 2, n ∈ N. We define

ϕn = xψ2

n − ψn+1ψn−1,

ωn = (4y)−1(ψn+2ψ
2

n−1 − ψn−2ψ
2

n+1).

Lemma 2.7. Let n ≥ 2, n ∈ N. Then we have

1. ϕn ∈ Z[x, y2, A,B].

2. If n is odd, then ωn ∈ yZ[x, y2, A,B], otherwise ωn ∈ 1

2
Z[x, y2, A,B].

Proof. We will prove each point separately.

1. If n is odd, from Lemma 2.5 we have ψn ∈ Z[x, y2, A,B] and ψn+1ψn−1 ∈
(2y)2Z[x, y2, A,B] ⊂ Z[x, y2, A,B]. Together it follows that

ϕn = xψ2

n − ψn+1ψn−1 ∈ Z[x, y2, A,B].

If n is even, the proof is similar.

2. If n is odd, Lemma 2.5 gives ψ2
n−1, ψ

2
n+1 ∈ 4y2Z[x, y2, A,B]. It follows that

ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1 ∈ 4y2Z[x, y2, A,B] and multiplying by (4y)−1 yields

ωn = (4y)−1(ψn+2ψ
2

n−1 − ψn−2ψ
2

n+1) ∈ yZ[x, y2, A,B].

If n is even, the proof is again very similar.

Note. It can be shown that ωn ∈ Z[x, y2, A,B] for n even. However, it is a bit
more technical and we omit the proof. For details see Washington [2008], Section
3.2.

The following result provides us with an explicit formula for nP . In order to
prove it, a more advanced theory is required, see Washington [2008], Section 9.5.

Theorem 2.8. Let E(F) be an elliptic curve defined by y2 = x3 + Ax + B. For
P = (x, y) ∈ E(F) and n ∈ N we have

nP =

⎠

ϕn(x)

ψ2
n(x)

,
ωn(x, y)

ψ3
n(x, y)

⎜

.

2.3 Endomorphisms

This section aims to lay the definitions necessary to state the Theorem 2.13 which
is one of the most important building blocks of the Schoof’s algorithm.

Definition 2.9. Endomorphism of an elliptic curve E(F) is a homomorphism
α : E(F) → E(F), that is given by rational functions, i.e.

α(x, y) =
⎞

R1(x, y), R2(x, y)
⎡

, where R1, R2 ∈ F(x, y).

8

Note. It can happen that the rational functions R1, R2 are not defined at a point.
We will treat this case after the following lemma.

Lemma 2.10. Every endomorphism α of an elliptic curve E(F) can be written

as α(x, y) =
⎞

r1(x), y r2(x)
⎡

where r1, r2 ∈ F(x).

Proof. The elliptic curve E(F) is defined by y2 = x3 +Ax+B. This relation can
be used to replace all even powers of y by a polynomial in x. So for a rational
function R(x, y) we get

R(x, y) =
p1(x) + yp2(x)

p3(x) + yp4(x)
,

where pi(x) are polynomials in x alone. Multiplying by p3(x) − yp4(x) we get

p1(x)p3(x) + yp2(x)p3(x) − yp1(x)p4(x) − y2p2(x)p4(x)

p2
3(x) − y2p2

4(x)
=
q1(x) + yq2(x)

q3(x)

for some polynomials qi(x).
Now, we will use the fact that α is an endomorphism given by α(x, y) =

(R1(x, y), R2(x, y)). We have

α(x,−y) = α (−(x, y)) = −α(x, y),

which means that

(R1(x,−y), R2(x,−y)) = (R1(x, y),−R2(x, y)) .

Thus for R1 we have

R1(x, y) =
q1(x) + yq2(x)

q3(x)
=
q1(x) − yq2(x)

q3(x)
=⇒ yq2(x) = 0.

It must be the case that q2(x) = 0. Consequently, we have

R1(x, y) =
q1(x)

q3(x)
= r1(x)

for a rational function r1(x), so R1 does not depend on y.
On the other hand, for R2 we have

R2(x,−y) =
s1(x) − ys2(x)

s3(x)
=

−s1(x) − ys2(x)

s3(x)
=⇒ s1(x) = 0.

It follows that
R2(x, y) = yr2(x)

for a rational function r2(x).

Let α(x, y) = (r1(x), yr2(x)) be an endomorphism. What happens when r1(x)
or r2(x) is not defined at a point? Write r1(x) = p1(x)/q1(x) and r2(x) =
p2(x)/q2(x) for some polynomials p1(x), q1(x), p2(x), q2(x) ∈ F[x]. We can as-
sume that pi and qi are relatively prime for i = 1, 2.

9

If q1(x0) = 0 for some x0 ∈ F, we define

α(x0, y0) = O.

Conversely, suppose q2(x0) = 0 for some x0 ∈ F. The relation y2 = x3+Ax+B
holds for all the points (x, y) ∈ E(F). Consequently, it must hold for all the points
of the form (r1(x), yr2(x)). Therefore, we have

⎠

p1(x)

q1(x)

⎜3

+ A
p1(x)

q1(x)
+B = (x3 + Ax+B)

⎠

p2(x)

q2(x)

⎜2

.

The polynomial x3 + Ax + B has no double roots (we are working with non-
singular curves) and q2

2(x) has only double roots. Since p2 and q2 are relatively
prime, there must be at least one factor of the form (x − x0) remaining in the
denominator. Therefore, the right-hand side is not defined at x0. It follows that
the left-hand side is not defined at x0 either. Thus, we have q1(x0) = 0.

Note. The endomorphism α(P) = O, ∀P ∈ E(F), will be denoted as 0.

Definition 2.11. Frobenius map ϕq on an elliptic curve E(Fq) is defined as

ϕq(x, y) = (xq, yq)

for (x, y) ∈ E(Fq). For O we define ϕq(O) = O.

Lemma 2.12. Let E(Fq) be an elliptic curve and let (x, y) ∈ E(Fq). Then

1. ϕq(x, y) ∈ E(Fq).

2. (x, y) ∈ E(Fq) if and only if ϕq(x, y) = (x, y).

Proof. For (1) we work with the equation

y2 = x3 + Ax+B, (2.1)

which by definition holds for all (x, y) ∈ E(Fq). For a, b ∈ Fq we have (a+ b)q =
aq + bq. Raising both sides of (2.1) to the power of q we have

⎞

y2
⎡q

=
⎞

x3 + Ax+B
⎡q
,

(yq)2 = (xq)3 + Aqxq +Bq.

Since A,B ∈ Fq we have Aq = A and Bq = B. We end up with

(yq)2 = (xq)3 + Axq +B,

which means that the point (xq, yq) satisfies the equation (2.1). In other words,
(xq, yq) ∈ E(Fq).

For (2), recall that for a ∈ Fq we have a ∈ Fq if and only if aq = a. Therefore,
for (x, y) ∈ E(Fq) we have (x, y) ∈ E(Fq) if and only if (xq, yq) = (x, y).

Note. Frobenius map is an endomorphism of E(Fq). Clearly, it is given by rational
functions (in fact, polynomials). The fact that it is a homomorphism, i.e.

ϕq(P +Q) = ϕq(P) + ϕq(Q),

can be proved by case analysis of P and Q. For details, see Washington [2008],
Section 2.9.

10

Endomorphisms of the group E(Fq) actually form a ring with respect to the
operations of addition and composition. This leads to many interesting results
one of which is given below. The proof can be found in Washington [2008], Section
4.2 or alternatively in Sutherland [2017], Lecture 7.

Theorem 2.13. Let E(Fq) be an elliptic curve. Let a = q + 1 − #E(Fq) where
#E(Fq) denotes the order of the group E(Fq). Then

ϕ2

q − aϕq + q = 0

and a is the unique integer k such that

ϕ2

q − kϕq + q = 0.

Note. The expression ϕ2
q − aϕq + q = 0 is a shorthand for

ϕq (ϕq(x, y)) − aϕq(x, y) + q(x, y) = O,

where multiplication by integers a and q is interpreted as iterative addition.

Following theorem, originally conjectured by Emil Artin, was proved by Hasse
in 1933. It restricts the number #E(Fq) to differ from q+1 by at most 2

√
q. The

original proof can be found in Hasse [1936].

Theorem 2.14 (Hasse). Let E(Fq) be an elliptic curve where q = pk for a prime
p and k ∈ N. Let #E(Fq) denote the order of E(Fq). Then

♣q + 1 − #E(Fq)♣ ≤ 2
√
q.

11

3. Schoof’s algorithm

Schoof’s algorithm was the first deterministic polynomial-time algorithm to com-
pute the order of E(Fq). It has been introduced by René Schoof in 1985, see
Schoof [1985]. Since then, it has been improved by N. Elkies and A. O. L.
Atkin to Schoof-Elkies-Atkin algorithm which is currently the fastest algorithm
for computing #E(Fq). For q ∼ 2256, a size suitable for modern elliptic curve
cryptography, it takes only a few seconds to compute #E(Fq).

3.1 Overview

For the purpose of this algorithm we will consider q = pk for a prime p > 3. From
Hasse’s theorem 2.14, we have

#E(Fq) = q + 1 − a, with ♣a♣ ≤ 2
√
q.

The idea of Schoof’s algorithm is to compute a mod l for many small primes l.
Once the product

√

l∈S l is larger than 4
√
q, a can be uniquely determined using

Chinese remainder theorem.

Here is an overview of the algorithm:

1: Set S to be a set of primes not dividing q such that
√

l∈S

l ≥ 4
√
q

2: for all l in S do

3: Find al ∈ Z such that al = a mod l
4: end for

5: Find a ∈ Z, ♣a♣ ≤ 2
√
q such that a ≡ al mod l for each l ∈ S

6: return q + 1 − a

The running time of the algorithm is dominated by computations in step 3 -
computing a mod l. This step will be analyzed in detail in the next section. Now,
we present the corresponding implementation of the algorithm using SageMath.

def Schoof (E, q) :
””” compute the order o f the e l l i p t i c curve E(F q)
g iven by yˆ2 = xˆ3 + A∗x + B ”””
crea t e S = ¶ 2 , 3 , 5 . . . ♢ s e t o f primes such t ha t
t h e i r product i s g r ea t e r than 4∗ s q r t (q)
M = 1
S = []
for p in Primes () :

i f gcd (q , p)>1: # s k i p p = char (F q)
continue

S . append (p)
M = M∗p
i f M>4∗ s q r t (q) :

break

a mod = ¶♢ # d i c t i o n a r y to s t o r e the va l u e s a mod l
compute and s t o r e (a mod l) f o r a l l primes l in S

12

for l in S :
a mod [l] = Frobenius mod (q , l , E)

using the Chinese Remainder Theorem , f i n d (a mod M)
a = CRT(a mod . va lue s () , a mod . keys ())
i f a i s too large , s u b t r a c t M, abs (a) has to be
at most 2∗ s q r t (q)
i f a>M/2:

a = a − M
return q + 1 − a

3.2 Trace of Frobenius map

There are two cases to consider when computing a mod l.
Case l = 2: Determine whether x3 + Ax + B has a root in Fq. If there is a

root, say r1, then (r1, 0) + (r1, 0) = O, so (r1, 0) has order 2. From Lagrange’s
theorem we have 2 ♣ q + 1 − a. Since q is odd, it follows that a ≡ 0 (mod 2).

On the other hand, if x3 +Ax+B has no root in Fq, then there is no point of
order 2 on E(Fq) and therefore 2 ∤ q+ 1 − a. Since q is odd, it follows that a ≡ 1
(mod 2).

Case l > 2: From the Theorem 2.13 we have

ϕ2

q(x, y) − aϕq(x, y) + q(x, y) = O

for all (x, y) ∈ E(Fq). However, if (x, y) ∈ E[l], then also

ϕ2

q(x, y) − alϕq(x, y) + ql(x, y) = O (3.1)

holds, where al = a mod l and ql = q mod l. Since l is a relatively small prime,
this reduces the size of a and q enormously. We will proceed by computing the
left-hand side of

(xq2

, yq2

) + ql(x, y) = al(x
q, yq) (3.2)

treating the terms as elements of End(E[l]) with coefficients given by rational
functions. We can restrict the computation to the ring Fq[x], regarding the vari-
able y as implicit and modifying the addition formulae accordingly. Moreover, to
speed computations up, we can use the l-th division polynomial ψl(x) of degree
(l2 − 1)/2 to reduce the degree of polynomials involved in these computations.
Therefore, we will be working in the ring Fq[x]/ψl(x). This is thanks to the fact
that (x0, y0) ∈ E[l] if and only if ψl(x0) = 0.

Once the left-hand side of (3.2) is computed we can search for al ∈ Zl on the
right-hand side, such that the relation holds.

However, there is still one caveat. When adding the elements of End(E[l])
using the formulae for point addition, a non-invertible denominator may emerge.
This causes the algorithm to restart, replacing the ψl(x) with a factor that has
been found. As a consequence, the algorithm runs faster, reducing the elements
by a polynomial with a lower degree. This property of certain primes l can be
systematically used to further reduce the complexity and forms the basic idea
behind the improvements found by Elkies and Atkin. For more information, see
Sutherland [2017], Lectures 9 and 20.

Following, the computation of a mod l is implemented.

13

def Frobenius mod (q , l ,E) :
””” compute t race o f Frobenius map ph i q on E modulo
prime l ”””
global g
Fq.<z> = PolynomialRing (E. ba s e r i ng ()) # Fq [z]
A = E. a4 () ; B = E. a6 ()
case l = 2
i f l ==2:

i f (z ˆ3 + A∗z + B) . i s i r r e d u c i b l e () :
z ˆ3 + A∗ z + B has no roo t s in Fq
return 1

else :
z ˆ3 + A∗ z + B has a roo t in Fq
return 0

case l>2
h = E. d i v i s i o n po l y nom ia l (l , z)
q l = q % l
j = 1
while True :

R.<x> = Fq . quot i ent (i d e a l (h)) # ring F[x]/ h (x)
compute the l e f t hand s i d e o f o f
ph i q ˆ2 + q l = a l ∗ ph i q
f = xˆ3 + A∗x + B
phi = (xˆq , f ˆ ((q−1)//2))
ph i squared = (phi [0] ˆ q , phi [1] ˆ (q+1))
i d e n t i t y = (x , R(1))
try : # non−i n v e r t i b l e e lements may emerge

q l as an element o f End(E[l])
Q = int t imes endm (q l , i d en t i t y , f , A)
Left−hand s i d e o f ph i q ˆ2 + q l = a l ∗ ph i q
L = add endm (phi squared , Q, f , A)

except ZeroDiv i s i onErro r :
r e s t a r t t h i s i t e r a t i o n o f ” wh i l e True” loop
with a new h
h = gcd (h , g . l i f t ())
continue

i f L == 0 : # we have 0 = a l ∗ phi q , a l must be 0
return 0

for j in ¶ 0 , 1 , . . , (l −1)/2♢ compute Rj = j ∗ phi
u n t i l t h e r e i s a match L = Rj or L = −Rj
Rj = 0
while j <= (l −1)/2:

try : # non−i n v e r t i b l e e lements may emerge
Rj = add endm (Rj , phi , f , A)

except ZeroDiv i s i onErro r :
r e s t a r t t h i s i t e r a t i o n o f ” wh i l e True”
loop wi th a new h
h = gcd (h , g . l i f t ())

14

break

i f L == Rj :
return j

i f L [0] == Rj [0] and L [1] == −Rj [1] :
return −j

j = j + 1
a s s e r t Fa l se

3.3 Adding endomorphisms

For completeness, we present the modified algorithms for addition of elements of
End(E[l]) and multiplication by an integer.

def add endm (P, Q, f , A) :
””” compute the sum of endomorphisms g iven by P and Q,
us ing appropr ia t e formula ”””
global g
i f e i t h e r one i s 0 , re turn the o ther
i f P==0:

return Q
i f Q==0:

return P
i f P = −Q, the sum i s 0
i f P [0] == Q[0] and P [1] == −Q[1] :

return 0
i f P = Q, use the ” tangent ” formula
i f P==Q:

try : # denominator might not be i n v e r t i b l e
m = (3∗P[0] ˆ 2 + A) / (2∗P[1] ∗ f)

except ZeroDiv i s i onErro r :
g = 2∗P[1] ∗ f
raise

R = [0 , 0]
R[0] = mˆ2∗ f − 2∗P [0]
R[1] = m∗(P[0] −R[0]) − P [1]
return (R[0] , R[1])

i f none o f the above , use the ” l i n e through P and Q”
formula
try : # denominator might not be i n v e r t i b l e

m = (Q[1] − P [1]) / (Q[0] − P [0])
except ZeroDiv i s i onErro r :

g = Q[0] − P [0]
raise

R = [0 , 0]
R[0] = f ∗mˆ2 − P [0] − Q[0]
R[1] = m∗(P [0] − R[0]) − P [1]
return (R[0] , R [1])

15

To compute nP , for an endomorphism given by coordinates of P , we use the
double-and-add method.

def int t imes endm (n , P, f , A) :
””” compute n∗P fo r endomorphism given by P, us ing
doub le and add method ”””
global g
i f n==0:

return 0
i f n==1:

return P
nb i t s = n . d i g i t s (2)
R = P
for i in reversed (range (len (nb i t s) − 1)) :

R = add endm (R, R, f , A)
i f nb i t s [i]==1:

R = add endm (R, P, f , A)
return R

16

Conclusion

This thesis aimed to provide a basic understanding of the theory of elliptic curves
necessary to understand the Schoof’s algorithm for counting points on elliptic
curves over finite fields. Some of the results have been presented as facts for the
sake of conciseness and readability. We consider the main contribution to be the
implementation of the Schoof’s algorithm.

17

Bibliography

Helmut Hasse. Zur theorie der abstrakten elliptischen Funktionenkörper. I, II &
III. Crelle’s Journal, 1936.

René Schoof. Elliptic curves over finite fields and the computation of square roots
mod p. Mathemtics of Computation, 44, 1985.

Joseph H. Silverman. The Arithmetic of Elliptic Curves. Second edition. Springer,
2009. ISBN 978-0-387-09494-6.

Andrew Sutherland. 18.783 - Elliptic Curves - lecture notes from MIT.
math.mit.edu/classes/18.783/2017/lectures.html, 2017.

Lawrence C. Washington. Elliptic curves - number theory and cryptography. Sec-
ond edition. Taylor & Francis Group, LLC, 2008. ISBN 978-1-4200-7146-7.

18

	Introduction
	Elliptic curves
	Definition
	Group operation

	Basic Theory
	Torsion points
	Division polynomials
	Endomorphisms

	Schoof's algorithm
	Overview
	Trace of Frobenius map
	Adding endomorphisms

	Conclusion
	Bibliography

