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Abstract: In this thesis we present an investigation of multi-task and transfer
learning using the recently introduced task of semantic tagging. First we employ
a number of natural language processing tasks as auxiliaries for semantic tag-
ging. Secondly, going in the other direction, we employ semantic tagging as an
auxiliary task for three different NLP tasks: Part-of-Speech Tagging, Universal
Dependency parsing, and Natural Language Inference. We compare full neural
network sharing, partial neural network sharing, and what we term the learning
what to share setting where negative transfer between tasks is less likely. Fi-
nally, we investigate multi-lingual learning framed as a special case of multi-task
learning. Our findings show considerable improvements for most experiments,
demonstrating a variety of cases where multi-task and transfer learning methods
are beneficial.

Abstrakt: V diplomové práci prezentujeme výzkum paralelńıho a přenosového
učeńı s využit́ım nedávno představené úlohy sémantického značkováńı. Zaprvé
vybrané úlohy poč́ıtačového zpracováńı přirozeného jazyka použ́ıváme jako podp̊urné
úlohy pro sémantické značkováńı. Zadruhé se vydáváme opačným směrem, a
sice sémantické značkováńı použ́ıváme jako podp̊urnou úlohu pro tři r̊uzné úlohy
poč́ıtačového zpracováńı přirozeného jazyka: tvaroslovné značkováńı, parsing na
platformě Universal Dependencies a odvozováńı v přirozeném jazyce. Porovnáváme
úplné a částečné sd́ıleńı neuronových śıt́ı spolu s učeńım s méně pravděpodobným
nastaveńım negativńıho přenosu mezi úlohami. Na závěr zkoumáme v́ıcejazyčné
učeńı v paralelńım učeńı. V experimentech demonstrujeme r̊uzné kombinace par-
alelńıho učeńı a přenosového učeńı. Výsledky jsou pozitivńı.
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iii



Contents

Introduction 3

1 Background and Previous Work 8
1.1 Distributional Semantic models and Word Embeddings . . . . . . 8
1.2 Neural Methods in Natural Language Processing . . . . . . . . . . 11

1.2.1 History and Resurgence . . . . . . . . . . . . . . . . . . . 11
1.2.2 Neural Methods in NLP . . . . . . . . . . . . . . . . . . . 11
1.2.3 Common Neural Architectures . . . . . . . . . . . . . . . . 12
1.2.4 Convolutional Networks . . . . . . . . . . . . . . . . . . . 14
1.2.5 Recurrent Networks . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Sequence Labelling and Sentence Classification Tasks . . . . . . . 19
1.4 Multi-task learning . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5 Transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Multi-task Learning for Sequence Labelling Tasks 28
2.1 Multi-task learning for Semantic Tagging . . . . . . . . . . . . . . 29

2.1.1 Semantic Tagging . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.3 Data and Preprocessing . . . . . . . . . . . . . . . . . . . 30
2.1.4 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.1.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Multi-task learning with semantic-tagging as an auxiliary task . . 36
2.2.1 Learning What to Share . . . . . . . . . . . . . . . . . . . 36
2.2.2 Multi-task Learning Settings . . . . . . . . . . . . . . . . . 38
2.2.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.5 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.7 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Multi-task Learning for Sentence-level and Structured Predic-
tion Tasks 42
3.1 Sentence-level and Structured Prediction Tasks . . . . . . . . . . 43

3.1.1 Universal Dependency Parsing . . . . . . . . . . . . . . . . 43
3.1.2 Natural Language Inference . . . . . . . . . . . . . . . . . 44

3.2 Data and Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1



3.4.1 Universal Dependency Parsing . . . . . . . . . . . . . . . . 45
3.4.2 Natural Language Inference . . . . . . . . . . . . . . . . . 47

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Multi-lingual Learning as an instance of Multi-task learning 51
4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Conclusion 58

Bibliography 62

List of Figures 70

List of Tables 72

2



Introduction

When learning a new skill, humans have a remarkable ability to make use of
previously learnt tasks. This can be observed both for closely related tasks where
there is considerable similarity between the tasks and for more distantly related
tasks where the relationship between the tasks is not very strong. For instance,
when learning a new language which is of the same language family as an already
acquired language (e.g. Spanish and Portuguese or Czech and Polish), the lexical
and grammatical similarities between the two languages will make the acquisition
of the second language easier. This, however, isn’t restricted to cases where the
relationship between the tasks is clear as in the case described above. More
loosely related tasks also have the potential to benefit each other. For instance,
when learning to drive, the locomotive principles acquired while learning to ride
a bike or skateboard could prove beneficial.

Inspired by this idea, the machine learning community began to look for meth-
ods of transferring knowledge from one task to another - an area of research now
known as transfer learning. Being able to successfully transfer knowledge between
tasks poses the clear benefit of eliminating the need for separately gathering and
labelling training data for each task in a set of related tasks. Indeed, in vari-
ous fields, effective transfer learning has reduced the need for the expensive and
labour-intensive process of data-collection for every new task which relates to one
or more tasks which training data already exists for.

Recently, Computer Vision has become one of the fields where transfer learn-
ing is most commonly and successfully employed. For example, generic feature ex-
tractors (or encoders) from deep convolutional network models which are trained
on a very large amount of labeled data (such as ImageNET [Deng et al., 2009])
have led to state-of-the-art performance on a wide variety of tasks such as object
image classification, scene recognition, fine grained recognition, attribute detec-
tion and image retrieval — with no or little further training [Razavian et al.,
2014]. An important point to note is that models using these off-the-shelf generic
feature extractors actually outperformed the best specifically-trained models in
many cases, demonstrating the power of transfer learning. Similarly (but ar-
guably to a lesser extent so far) in the field of Natural Language Processing
(NLP) transfer learning has become an essential component of the models used
for a wide range of tasks. One method in particular which has become ubiquitous,
known as Word Embedding [Collobert and Weston, 2008, Mikolov et al., 2013c,
Pennington et al., 2014], makes use of unlabeled textual data to construct word
representations that can be used off-the-shelf as a starting point in the training
of task-specific models. Promising attempts have also been made to extend this
approach to sentence-level tasks [Conneau et al., 2017b].

Examples of task relatedness in NLP are easy to come by. Different syntac-
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tic or semantic tagsets will, for instance, highly correlate with each other. As
a demonstration, consider the following two example sentences annotated with
the Penn Treenbank (PTB) part-of-speech tagset [Marcus et al., 1993] and the
Universal Semantic Tagset (semtags) [Bjerva et al., 2016].

• You[PRO] have[NEC] to[NIL] take [EXS] the[DEF] first step[CON] .[NIL]

• You[PRP] have[VBP] to[TO] take[VB] the[DT] first step[NN] .[.]

• We[PRO] lost[EPS] the[DEF] game[CON] 3-0[SCO] .[NIL]

• We[PRP] lost[VBD] the[DT] game[NN] 3-0[CD] .[.]

Each of the examples is first shown with semtags (red) and then with PTB tags
(blue). The semtags used in these two examples are: PRO for pronouns, NEC
for necessity, NIL for words with vacous semantics, EXS for untensed simple,
DEF for definite, CON for concept, EPS for past simple, and SCO for score.
In these examples, the differences between the tagsets is most evident in the
semantic distinction which semtags make between concept nouns (CON) and role
nouns (ROL) and in the labeling of ’have’ as ’necessity’ rather than simply as
’Verb, non-3rd person singular present’ and with determiners which the PTB
tagset groups together as DT while semtags differentiate between definite (DEF),
proximal (PRX), and distal determiners (DST). However, in these examples and
in general, there is a one-to-one or a one-to-many correspondence between the
tags of the two tagsets, meaning that data labeled using one of the tagsets can be
exploited for training models of the other. Given that there is a varying amount
of labeled data for different tasks in different languages, it is certainly worthwhile
to investigate how best the similarities between them can be exploited.

Another more recent domain of research which is very closely connected to
transfer learning and which also aims to exploit the similarities between different
tasks is multi-task learning [Caruna, 1993]. Among the main distinctions between
the two is that in transfer learning we mainly care about doing well on a target
task using information from other tasks while in multi-task learning, the goal is
to do well on all available tasks. Another distinction is that a similar amount
of labeled data is often available for all tasks in multi-task learning, but not in
transfer learning. Recently, multi-task learning using neural network methods
has surged in popularity due to the relative ease of implementation and a series
of successful results.

This research will aim to explore approaches to multi-task learning and trans-
fer learning using (deep) neural network methods within the context of various
sequence labelling and semantic tasks. In particular, it will focus on investigat-
ing whether and how the newly proposed task of Universal Semantic Tagging
can benefit or benefit from other NLP tasks. We choose to focus on this task
because: i) assigning semantic labels to words is a simple task when compared
to building complex relational semantic structures for e.g. semantic parsing; ii) a
large supervised dataset is publicly available [Abzianidze et al., 2017], in contrast
to other semantic tasks such as word sense disambiguation and lexical similarity;
iii) the semantic tagging task abstracts over syntactic POS tagsets and can be
seen as their semantic analogue aimed at being language-neutral and useful for
multi-lingual downstream semantic tasks.
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Chapter Guide
This thesis will be divided into five chapters aiming to answer the following
research questions:

• Research Question 1: Which sequence labelling tasks, if any, can help
with semantic tagging in a multi-task learning setting?

• Research Question 2: Can semantic tagging be informative for other
sequence labelling tasks? If so, how and under which multi-task settings?

• Research Question 3: Can semantic tagging be informative for higher-
level semantic tasks such as natural language inference or structured predic-
tion tasks such as dependency parsing in a multi-task learning or transfer
learning setting?

• Research Question 4: Can multi-lingual approaches which treat multi-
lingual learning as a sepcial case of multi-task learning be used to improve
semantic tagging accuracy for languages with less or no training data?

Chapter 1 - Background and Previous Work

The aim of Chapter 1 will be to introduce and motivate the methods and theories
which are utilized in this thesis and to highlight the most relevant previous work
which serves as a foundation for it.

Chapter 2 - Multi-task Learning for Sequence Labelling Tasks

In Chapter 2 we will investigate multi-task learning for sequence labelling tasks
through the task of semantic tagging. Our investigation will aim to explore
which sequence labelling tasks could contribute to and benefit from semantic
tagging. Experiments involving different settings of multi-task learning using
neural network methods such as hard-parameter sharing or learning to share will
be presented.

Chapter 3 - Multi-task Learning for Sentence-level and Structured Pre-
diction Tasks

In Chapter 3 we will look to expand the scope from multi-task learning for se-
quence labelling tasks to sentence-level (semantic) tasks and structured prediction
tasks.

Chapter 4 - Multi-lingual Learning as an instance of Multi-task learn-
ing

In Chapter 4 we will then switch our focus to multi-lingual learning as a specific
case of multi-task learning where each language is treated as a task. Particularly,
we will focus on whether we can improve the performance of our semantic tagging
models for low-resourced languages through the use of multi-lingual representa-
tions.
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Chapter 5 - Conclusions

Finally, in Chapter 5 we will present our conclusions with respect to each of the
research questions and offer future directions of work.

Published work
This thesis draws from the following work by its author:

• Abdou, M., Ravishankar, V., Kulmizev, A., Abzianidze, A., Bos, J. (Under
Review). ”What can we learn from Semantic Tagging?” Proceedings of the
12th International Workshop on Semantic Evaluation (EMNLP 2018)

• AffecThor at SemEval-2018 Task 1: A cross-linguistic approach to senti-
ment intensity quantification in tweets M Abdou, A Kulmizev, JG i Ametllé
Proceedings of The 12th International Workshop on Semantic Evaluation,
210-217

All experiments in this thesis have been performed by the author.
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Overview of Experiments

RQ Target Task MTL TL MTL Settings Multi-lingual learning

RQ1 Semantic Tagging Yes No Fully-shared networks No

RQ2 POS tagging Yes No
Fully-shared networks

Partially-shared networks
Learning what to share

No

RQ3 Dependency Parsing
Natural Language Inference Yes Yes

Fully-shared networks
Partially-shared networks
Learning what to share

No

RQ4 Semantic Tagging Yes Yes Fully-shared networks Yes

Table 1: Overview of experiments run in this thesis.
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Chapter 1

Background and Previous Work

1.1 Distributional Semantic models and Word
Embeddings

Popularized by Firth [1957] as you shall know a word by the company it keeps, the
distributional hypothesis states that words with similar distributional properties
(i.e. which occur in similar contexts) should have similar semantic properties.
This approach to language modeling was first empirically utilized in Information
Retrieval systems which employed measures such as document word frequency
and word co-occurrence counts. Modern NLP has become heavily reliant upon
this approach in which a word is typically represented by a high-dimensional
vector which captures its co-occurrence statistics in a corpus, thus mapping the
original linguistic problem into a geometrical space. Figure 1.1 shows a toy ex-
ample of a three-dimensional vector-space built with a three word vocabulary. As
can be seen, related words are closer together (in terms of angular distance) in
the vector space.

Figure 1.1: A three-dimensional vector-space model.

These geometric vector space models have been shown to capture various lin-
guistic notions such as semantic relatedness (e.g. teacher being related to student)
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and semantic similarity (e.g. teacher ≈ professor) among other linguistic rela-
tions. An example of this can be seen in Figure ??, shows a toy example of how
these vector space models can capture semantic and syntactic analogy relation-
ships through simple linear relationships, as first demonstrated by Mikolov et al.
[2013c].

An important distinction is often made between the traditional sparse context-
counting models [Turney and Pantel, 2010, Erk, 2012] and the dense context-
predicting models [Mikolov et al., 2013a, Collobert et al., 2011, Huang et al.,
2012] in which the vector weights are directly set to predict the contexts in which
the corresponding words tend to appear . The latter, better known as word
embeddings, have recently garnered much attention in the NLP community, and
have shown state-of-the-art performance in many tasks [Baroni et al., 2014].

Figure 1.2: Semantic and syntactic analogies are captured by vector space models
as linear relationships.

Current state-of-the-art word embedding methods obtain rich word represen-
tations either by learning to predict the contexts in which words tend to appear
[Mikolov et al., 2013a] or by leveraging global co-occurrence statistics and matrix
factorization techniques [Pennington et al., 2014]. Among the most commonly
used algorithms to accomplish this are:

• Skip-gram: Given a word w, predict the surrounding words in context
window c. (Context-prediction model)

• Continuous bag-of-words: Predict the current target word w based on
the words in a context window c. (Context-prediction model)

• GloVe : Computes ratios of word co-occurrence probabilities (rather than
their co-occurrence probabilities themselves). In order to accomplish this,
GloVe uses a weighted least squares objective which aims to reduce the
difference between the dot product of the vectors of two words and the
logarithm of their co-occurrence count. (Co-occurrence counts and matrix
factorization model)

• FastText : Introduces an extension of the Skip-gram model by learning
representations for sub-word units (character n-grams), and representing
words as the sum of the sub-word units vectors. [Bojanowski et al., 2016]
(Context-prediction model)

Notable work by Levy and Goldberg [2014] demonstrated the equivalence of
the now ubiquitous Word2Vec Skip-gram with negative sampling embeddings to
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implicitly factorizing a word-context matrix whose cells are the pointwise mu-
tual information of the respective word and context pairs, shifted by a global
constant. This provided an important link to previous work which is based on
matrix factorization and dimensionality reduction techniques.

In this thesis, pre-trained word embeddings are used to initialize our models
- namely, to provide an initial word-level or token-level representation - as has
become standard in a multitude of modern NLP tasks. This can be seen as a form
of transfer learning whereby information which is learnt through unsupervised
training on a large amounts of text is transferred to other ’downstream’ tasks.

Multi-lingual Word Embeddings
Soon after the emergence of the efficient word embedding methods, described in
the previous section, various ideas aiming at extending these methods into the
realm of multi-lingual representations were proposed. This was motivated by the
need for a way to transfer knowledge in cross-lingual applications. In particular,
the availability of high quality multi-lingual word representations would enable
transfer of knowledge between resource-rich and low-resource languages, possibly
leading to significant improvements for various NLP tasks on the latter.

In Chapter 4, we will investigate the use of multi-lingual representations for
transfer of knowledge from well-resourced languages with a large amount of train-
ing data to languages with a much smaller amount of training data for the task
of semantic tagging.

There is a rich history of work on constructing multi-lingual vector-space
models, however, we will restrict ourselves to a brief overview which focuses
mainly on the methods which we will be making use of in this work - namely,
word-level alignment methods. These methods are the most prevalent and the
most successful in the literature. They include:

• Mapping of monolingual embedding spaces: In these methods, sep-
arate monolingual corpora are trained and then a transformation matrix
which maps between the representations of the two spaces is learnt. Mikolov
et al. [2013b]’s observation that geometric relationships between words are
similar across languages gave rise to the idea of learning a linear projec-
tion from one space to the other that minimizes the sum of squared Eu-
clidean distances between pairs of words in bi-lingual dictionary of seed
words. Dinu et al. [2014] improve this method by altering the objective
function to prevent words from clustering too closely to each other in hubs.
Later work by Xing et al. [2015], Zhang et al. [2016], Artetxe et al. [2016]
employs length normalization (to unit length) and maximizes cosine sim-
ilarity, adding an orthogonality constraint for the transformation matrix
to preserve the length normalization after projection. The trend has been
towards needing less and less bi-lingual dictionary seed item until, finally,
Conneau et al. [2017c] propose a completely unsupervised method based on
a discriminative adversarial objective. This is the class of methods which
we will be using in this thesis.

• Synthetic bilingual corpora based methods: Instead of learning a
mapping between two monolingual spaces, this class of methods uses a seed
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dictionary to build a bilingual corpus by randomly replacing words in a
monolingual corpus with their translations.

• Joint learning methods: Instead of learning separate monolingual em-
bedding spaces and mapping them, this class of methods aims to directly
learn multi-lingual embedding spaces by taking in parallel text as input and
minimizing the monolingual losses jointly with a multi-lingual regulariza-
tion term. This has also been, so far, a less common approach and we will
not make use of it in this thesis.

1.2 Neural Methods in Natural Language Pro-
cessing

Since Bengio et al. [2003]’s seminal work of neural language modeling and subse-
quently the emergence of the word embeddings methods described in Section 1.1,
it has become more and more common to for Natural Language Processing (NLP)
practitioners to utilize a family of machine algorithms known as neural networks
(NNs), particularly those of the ’deep’ variety. As this family of methods is at
the core of this thesis, we will present an overview of it in this section. We start
with brief history and proceed to describe some of the most common variants,
especially those which are widely used for NLP tasks and which we will make use
of.

1.2.1 History and Resurgence
In the 1930s and 1940s several researchers, such as Warren McCulloch, Walter
Pitts, and Donald O. Hebb, first began working on algorithms and computational
models which can vaguely be seen as drawing inspiration from humans’ neural
machinery. In 1958, Rosenblatt [1958] proposed and implemented the Perceptron,
one of the first built NNs. Research into NNs, however, soon enough stagnated
considerably due to two factors: i) Research revealing various deficiencies such
as the inability of a Perceptron to model the exclusive-or function [Minsky et al.,
2017] and ii) The lack of sufficient computational processing power to support
networks which were large enough to accomplish significant tasks.

Rapid advances in hardware and the introduction of the efficient training
regime known as Backpropagation [Werbos, 1974] which enabled the training of
networks with multiple layers lead to a revival in interest in NNs, which then
burst back onto the scene with work like Hinton et al. [2006], Bengio et al. [2003]
in the early 2000s preceding a startling domination of machine learning fields,
including computer vision, bioinformatics, and NLP.

1.2.2 Neural Methods in NLP
One of the main problems with trying to model language problems (or other
problems with discrete random variables) using neural methods is that the se-
quences of words (variables) seen during training is likely to be different from the
sequences seen at testing time. This problem which is due to inherent produc-
tive nature of language, is referred to as the curse of dimensionality by Bengio
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et al. [2003]. For example, when trying to model the joint probability of a sentence
made up of 20 consecutive words drawn from a vocabulary of 50, 000 words, there
are 50, 00020 − 1 possible free parameters. Instead, the authors demonstrate that
modeling words as continuous variables by learning a distributed representation
for each word allows for a far better degree of generalization.

This idea only really took hold a few years later with Collobert and Weston
[2008] devising an general neural model which can jointly learn to perform many
NLP tasks (part-of-speech tagging, chunking, named-entity recognition, semantic
role-labelling, and language modelling) at once. From there on, the flood gates
opened, with neural methods achieving state-of-the-art performance on many
NLP tasks in the following few years. This included: pos-tagging [Huang et al.,
2015], parsing [Chen and Manning, 2014], language modelling [Mikolov et al.,
2010, Kim et al., 2016], and machine translation [Sutskever et al., 2014, Bahdanau
et al., 2014, Vaswani et al., 2017b].

1.2.3 Common Neural Architectures
In this subsection we will go over a few of the most commonly utilized neural
network methods, providing insight into the theoretical underpinnings of each of
the methods which we will later use.

Feed-forward Networks

A Feed-forward network (FFN), also known as a multilayer perceptron (MLP),
is one of the earliest and simplest neural architectures. FFNs are typically used
in supervised learning problems. It is made up of a network of neurons1 called
Perceptrons [Rosenblatt, 1958]. Perceptrons compute an output from multiple
inputs as a linear combination according to a set of weights that is learned, then
pass the output through an activation function (often a non-linearity). A single
Perceptron is of modest utility because the class of functions it can compute is
limited. No matter what activation function is used, the Perceptron is unable
to learn a problem with a non-linear decision boundary, such as for instance,
the exclusive-or function [Minsky et al., 2017]. However, if a single so called
hidden-layer of neurons is added between the input layer and the output layer,
modeling such functions becomes possible. In fact, it has been shown that with
enough hidden units, a single-layer2 FFN with an arbitrary squashing function 3

is a universal function approximator, i.e. it can approximate any function from
one finite dimensional space to another4, no matter how complex [Hornik et al.,
1989]. This is a fascinating idea, because it means that using what is essentially
a series of matrix-vector multiplications with non-linearities applied to them, we
can approximate a function which maps from any given space to another. This is
remarkable because essentially any problem you can think of can be formulated as
function computation. Take for instance the problem of translating from French

1’Neuron’ is the common nomenclature, however, we would like to emphasize that it has
become well recognized that the link to biological neurons is tenuous if at all existent.

2single hidden-layer
3e.g.: A sigmoidal function
4caveat: this only applies to continuous functions
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text into English. This can be thought of as the computation of one of many5

functions which map correctly from a sequence of French words to a sequence
of English words. If we can adequately approximate one of those functions then
we would be able to correctly translate the sequence. Of course, universality
theorems like this do not in any way guarantee that we will be to build the
network which is able to approximate a given function, only that it exists.

Figure 1.3 shows a single hidden-layer NN. Let us now formalize our definition:
An FFN is a neural network which consist of an input layer (the first layer from
the left), one or more hidden layers (the middle layer), and an output layer (the
rightmost layer) where a layer consist of N neurons (the white circles) each layer
is fully-connected6 (these connections are represented by arrows) to the next with
weighted connections. Mathematically, each layer can be represented as a vector
of activations and each set of weights between layers can be represented as a
matrix. As such, the network in Figure 1.3 can be written as:

y⃗ = σ(W1(σ(W0x⃗ + b⃗0)) + b⃗1) (1.1)

Figure 1.3: A simple Feed-forward Network (bias vectors and activations not
shown).

It’s worth taking a moment out to comment on the notation used in Equation
1.1 as we will be using the same notation for the rest of this thesis. Each layer
is denoted as a vector (y⃗, h⃗, and x⃗) and each set of weights between two layers
as a matrix (W0, W1). Activation functions are represented as σ. b⃗ denotes a
bias vector with the subscript indicating the layer it belongs to. Bias allows the
network to shift the activation function, which has proven critical for successful
learning.

5since there are often many possible correct translations of a natural language sequence.
6i.e. each neuron in a layer is connected to every neuron in the next layer
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1.2.4 Convolutional Networks
Convolutionals Neural Networks (CNN) are a neural architecture loosely inspired
by the visual mechanism of humans. Specifically, CNNs take inspiration from the
visual cortex which has regions of cells which are sensitive to particular regions
of the visual field. The current version of CNNs was proposed by LeCun et al.
[1995] and has led to immense improvements in the field of computer vision, and
more recently, in NLP. There are many possible variations of this architecture,
but a typical CNN consists of three types of layers, namely convolutional, pooling,
and fully-connected layers. The first is composed of several convolution kernels
which are used to compute different feature maps. The complete feature maps
are obtained by using several different kernels. The pooling layer then aims to
achieve generalization (shift-invariance) by reducing the resolution of the feature
maps. After a few convolutional and pooling layers, there is normally one or more
feedforward layers which are supposed to perform high-level operations. This is
then followed by an output layer which is chosen dependent on the task.

A simple CNN can be seen in Figure 1.4. The input is an image7, i.e. a
matrix of size m × n × r where m is height, n is width, and r is the number of
channels8. This is followed by a convolutional layer where k filters of dimension
h × w × c, where h × w < m × n (height x width), and c ≤ r (channels), are
slid over the image. This produces a representation of the image that is based on
w×h sized slices of the input image, i.e. a blurred or scaled-down representation.
Each filter shares the same weights with the units to which it is connected. This
weight-sharing has been crucial to the success of CNNs, greatly reducing the
number of parameters compared to a Feed-forward layer, and endowing CNNs
with their shift-invariance. Each filter produces a feature map which extracts
the same type of features (e.g. edges, curves, etc.) from the input in various
locations. Each feature map is then sub-sampled through mean or max pooling 9

in the pooling layer, resulting in condensed feature maps. Finally, this is followed
by a Feed-forward layer from which the output is obtained.

Unlike the example shown in Figure 1.4, the process of convolution and pooling
is normally repeated more than once. Each convolution and pooling layer shrinks
the spatial dimension of the image (i.e. reduces its resolution) and increases its
depth (i.e. the number of feature maps). In recent literature, CNNs that are as
deep as 152 layers [He et al., 2016] have been used.

CNNs hold clear advantages over Feed-Forward networks, particularly for
computer vision applications such as image recognition where information re-
garding spatial structure is of prime importance. In NLP, where the input is
some sort of textual representation (a string of words or characters) rather than
images, things differ somewhat. Use of one dimensional CNNs and shallower net-
works is more common. CNNs in this case can be as something similar to an
n-gram feature detector given a window or words or characters.

The use of CNNs has become more and more common in NLP, due to their
7Although our focus in this thesis will be on textual data, we chose a demonstrative example

based on images because CNNs were first envisioned with visual data in mind and are therefore
more readily understood from that viewpoint.

8A greyscale image will have just one channel. A RGB image, by contrast, will have three
channels, one for each of the colors.

9other arithmetic operations can also be used
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Figure 1.4: A simple Convolutional Neural Network where the input is an image.

requirement of a relatively small number of parameters and the possibility of
parallelization (unlike recurrent networks). Examples of this include sentence
classification tasks [Kalchbrenner et al., 2014]; convolutional sentence encoders
for machine translation [Gehring et al., 2016]; language modelling [Kim et al.,
2016]; and sequence labelling tasks such as in Bjerva et al. [2016]’s deep residual
tagger, which we employ in this thesis.

1.2.5 Recurrent Networks
Recurrent neural networks (RNN) are a class of neural networks which was pro-
posed by Elman [1990] as a means of ”finding structure in time”. Over the past
few years, they have become the tool of choice for many NLP tasks ranging from
part-of-speech tagging to language modeling and machine translation. This pop-
ularity has been primarily due to their capacity to incorporate the sequential
structure of input into account, introducing a notion of time. A RNN is essen-
tially a sequence of FNNs with each FNN connected to the one which follows it in
a sequence of adjacent time steps. A RNN takes as input a sequence of arbitrary
length (x1, x2, ..., xt) and returns another (ô1, ô2, ..., ôt). At a time t a RNN node
receives two inputs: xt, the input corresponding to the current time step, and
ht−1 the hidden node value from the previous time step, producing an output ôt,
based on ht. Therefore, at time step t, the output ôt has access to information
from all previous xt−1 inputs by way of the recurrent connections between the
nodes, but not to information from future time steps. Figure 1.5 shows an exam-
ple of this. On the left side of the figure the RNN is represented as FNN with a
loop and the right side the unfolded view of an RNN with t time steps is shown.

Formally put, the calculation needed to compute the hidden state ht of an
RNN at time step t can be specified using the following equation:

ht = σ(Wxx + Uht−1 + bh) (1.2)

where Wx is the weight matrix for the input xt at time t, U is the weight matrix
for the connection from the previous time step and bh is the bias parameter. The
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output ôt can then be defined as:

ôt = σ(Woht + bo) (1.3)

where Wo is the output weights matrix, and bo is the bias parameter.

Figure 1.5: A simple recurrent network. On the left side is the representation of
the network as a FNN with recursion and on the right side is the unfolded with
a connection from each time step to the following time step till time step t.

From another viewpoint, RNNs can be seen as recursive neural networks where
the recursion takes the structure of a linear chain. The main advantage offered
by this recursion is that at a certain time step t, the network has access to
information from previous time steps. For instance, for the task of word sense
disambiguation, given the word play as input at time t, an RNN would be able to
consult the hidden state representation which would indicate that the previous
words were either performed, a, and Greek, for instance, disambiguating play as
a dramatic work, or children, started, and to, disambiguating it as ”engage in
activity for enjoyment and recreation”.

Vanilla RNNs as described so far are, however, rarely used in modern day
applications. Although in theory they should be able to capture long-term de-
pendencies between inputs (e.g. between the input at time step t1, x1 and the
input at time step t15, x15), the representations produced by them have been
found in practice to be biased towards the most recent inputs. This is due to the
way the method in which neural networks are normally trained - backpropaga-
tion10 - works. Specifically, Vanilla RNNs have been known to suffer from two
main problems: vanishing gradients and its counterpart exploding gradients. Both
problems result from sharing the weights matrices across many time steps. Van-
ishing gradients can occur due to a large number of multiplicative operations on
numbers that are squashed by an activation function into the range −1 < r < 1,
as in the case of a tanh activation function. In this case, the contribution of
an input xt−f to the output at time step t will exponentially approach zero as
the time step f moves further away (earlier) from t, which will mean that the
gradient with respect input xt−f will vanish. Intuitively, the opposite, exploding

10backpropagation through time in the case of RNNs
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gradients, can also occur when matrices of large weights are multiplied. For a
detailed description and a mathematical treatment of the problems faced when
training vanilla RNNs, see Pascanu et al. [2013].

Since RNNs only take into account contexts in one direction, it is has become
common practice to use Bidirectional RNNs (BI-RNNS) which processes a se-
quence in both directions (from x1 to xt and from xt to xt) and concatenate11 the
outputs produced by both passes [Schuster and Paliwal, 1997].

Long Short-Term Memory and Gated Rectified Units

To deal with the problem of unstable gradients which makes training RNNs diffi-
cult, Hochreiter and Schmidhuber [1997] proposed an enhanced version, the Long
Short-Term Memory (LSTM). LSTMs have the same overall structure as RNNs,
but are augmented with memory cells. These memory cells replace the nodes
in the hidden layer. Each memory cell is equipped with three gates which are
designed to modulate the flow of information through the LSTM: an input gate,
a forget gate, and an output gate. The gates control the state of memory cell, de-
termining which information should be retained, and which should be discarded.
Formally, an LSTM unit can be specified as follows:

gt = tanh(Wgxt + Ugŷt−1 + bg),
it = σ(Wixt + Uiŷt−1 + bi),
ft = σ(Wf xt + Uf ŷt−1 + bf ),
ot = σ(Woxt + Uoŷt−1 + bo),
st = it ⊙ gt + ft ⊙ st−1,

ŷt = ot ⊙ σ(st)

(1.4)

where gt is the input node. The input node takes in the input xt of the current
time step from the input layer and the output from the hidden layer at the
previous time step ˆyt−1. Similarly, the input gate takes in the input xt of the
current time step from the input layer and the output from the hidden layer
at the previous time step ˆyt−1. A gate is used to control information flow by
multiplying its value to that of a node. If, for instance, the value is zero, then no
information passes through. Whereas, if it’s value is one, then all the information
flows through. it is the output of the input gate. The value of the input gate is
multiplied by the value of the input node. ft is the output of the forget gate. The
forget gate is used to enable the network to exclude irrelevant information from
the internal cell state, st, which is at the core of an LSTM unit. ot is the output
of the output gate which is multiplied by the internal cell state st

12 to obtain ŷt,
the output vector. An example LSTM unit can be seen in sub-Figure 1.6b.

Gated Recurrent Units (GRU) are an another variant of RNNs which was
recently proposed by Cho et al. [2014]. GRUs do not make use of an internal
memory cell, instead relying only on update and reset gates to modulate the flow
of information. This means that GRUs have less parameters and are thus faster

11Although concatenation is the most commonly applied operation, it is also possible to
perform other operations such as maximum or average pooling of the two vectors.

12often with an activation function applied to the internal cell state first.

17



(a) Vanilla RNN

(b) LSTM

Figure 1.6: Three time steps of a vanilla RNN and an LSTM. The internal break-
down is shown for both at time step t. Pointwise operations are indicated in red
and neural network layers in yellow. The LSTM’s gates and nodes are labelled
in white in sub-Figure b.
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to train and require less training. In practice, however, GRUs an LSTMs have
been found to perform comparably [Chung et al., 2014].

The idea of bidirectionality described in section 1.2.5 is also commonly em-
ployed for LSTMS and GRUs. In recent work, models making use of bidirec-
tional LSTMs (BI-LSTM) and bidirectional GRUs (BI-GRU) have been shown
to achieve state-of-the-art results on a variety on NLP tasks. Indeed, they have
become standard for tasks such as: part-of-speech tagging [Plank et al., 2016], de-
pendency parsing [Dozat and Manning, 2016], and machine translation [Sutskever
et al., 2014], among many others. In this thesis, we make extensive use of BI-
LSTMs.

1.3 Sequence Labelling and Sentence Classifica-
tion Tasks

A large number of NLP tasks can be put under one of two general classes of
tasks: sequence labeling tasks and sentence classification tasks. In the former the
objective is to assign a label to each element in a sequence of elements. In the
most common scenario, the sequence is a sentence and each element is a word.
The labels we assign are often things like part-of-speech tags, named entity labels,
etc. Common sequence labelling tasks include:

• Part-of-speech tagging

• Syntactic chucking

• Named Entity Recognition

• Relation Extraction (Between entities)

• Semantic Role Labelling

In sentence classification tasks, on the other hand, we consider one or more
sentences at a time with the goal of producing a label for either one sentence,
a group of sentence, or the relationship between them. Examples of common
sentence classification tasks include:

• Sentiment analysis (binary or fine-grained)

• Customer/Movie/product review classification

• Sentence level semantic similarity classification

• Natural language inference

• Question-type classification

• Paraphrase detection

• Image caption retrieval
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Our focus in this thesis will be on the task of Universal Semantic Tagging, a
sequence labelling task. The task is described in detail in the next subsection.
We will also run experiments with various other sequence labelling tasks such as
part-of-speech tagging and sentence classification tasks such as Natural Language
Inference.

Universal Semantic Tagging
Universal semantic tagging [Bjerva et al., 2016, Abzianidze and Bos, 2017a] is the
task of assigning language-neutral semantic categories to words. It is designed to
overcome a lack of semantic information syntax-oriented part-of-speech tagsets,
such as the Penn Treebank tagset [Marcus et al., 1993], usually have. Such tagsets
exclude important semantic distinctions, such as negation and modals, types of
quantification, named entity types, and the contribution of verbs to tense, aspect,
or event.

The semantic tagset is language-neutral, abstracts over part-of-speech and
named-entity classes, and includes fine-grained semantic information. The tagset
consists of 80 semantic tags grouped in 13 coarse-grained classes. The tagset
originated in the Parallel Meaning Bank (PMB) project [Abzianidze et al., 2017],
where it contributes to compositional semantics and cross-lingual projection of
semantic representations. Recent work has highlighted the utility of the tagset
as a conduit for evaluating the semantics captured by vector representations [Be-
linkov et al., 2018], or employed it in an auxiliary tagging task [Bjerva et al.,
2016], as we do in this thesis.

To highlight the differences between PTB tags and semtags we include the
examples below:

• You[PRO] have[NEC] to[NIL] take[EXS] the[DEF] first step[CON] .[NIL]

• You[PRP] have[VBP] to[TO] take[VB] the[DT] first step[NN] .[.]

• We[PRO] lost[EPS] the[DEF] game[CON] 3-0[SCO] .[NIL]

• We[PRP] lost[VBD] the[DT] game[NN] 3-0[CD] .[.]

• Tom[PER] left[EPS] his[HAS] wife[ROL] a[DIS] fortune[CON] .[NIL]

• Tom[NNP] left[VBD] his[PRP$] wife[NN] a[DT] fortune[NN] .[.]

• My[HAS] son[ROL] is[NOW] playing[EXG] in[REL] the[DEF] rain[CON]
.[NIL]

• My[PRP$] son[NN] is[ VBZ] playing[VBG] in[IN] the[DT] rain[NN] .[.]

Each of the examples is first shown with semtags (red) and then with PTB
tags (blue). The semtags used in these examples are: PRO for pronouns, NEC
for necessity, NIL for no meaning, EXS for untensed simple, DEF for definite,
CON for concept, EPS for past simple, SCO for score, PER for person, HAS for
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Table 1.1: The Universal Semantic Tagset v0.1.0: 73 semtags (highlighted in
blue) grouped into 13 meta-tags (highlighted in red). Examples are included for
each semtag and further context is included for more ambiguous semtags. (Adapted
from Abzianidze and Bos [2017b].)

ANA
anaphoric

PRO anaphoric & deictic pronouns: he, she, I, him
DEF definite: the, loIT, derDE

HAS possessive pronoun: my, her
REF reflexive & reciprocal pron.: herself, each other
EMP emphasizing pronouns: himself

ACT
speech

act

GRE greeting & parting: hi, bye
ITJ interjections, exclamations: alas, ah
HES hesitation: err
QUE interrogative: who, which, ?

ATT
attribute

QUC concrete quantity: two, six million, twice
QUV vague quantity: millions, many, enough
COL colour: red, crimson, light blue, chestnut brown
IST intersective: open, vegetarian, quickly
SST subsective: skillful surgeon, tall kid

PRI privative: former, fake
DEG degree: 2 meters tall, 20 years old
INT intensifier: very, much, too, rather
REL relation: in, on, ’s, of, after
SCO score: 3-0, grade A

COM
com-

parative

EQU equative: as tall as John, whales are mammals

MOR comparative positive: better, more
LES comparative negative: less, worse
TOP superlative positive: most, mostly
BOT superlative negative: worst, least
ORD ordinal: 1st, 3rd, third

UNE
unnamed

entity

CON concept: dog, person
ROL role: student, brother, prof., victim
GRP group: John {,} Mary and Sam gathered, a group of people

DXS
deixis

DXP place deixis: here, this, above
DXT temporal deixis: just, later, tomorrow
DXD discourse deixis: latter, former, above

LOG
logical

ALT alternative & repetitions: another, different, again
XCL exclusive: only, just
NIL empty semantics: {.}, to, of
DIS disjunction & exist. quantif.: a, some, any, or
IMP implication: if, when, unless
AND conjunction & univ. quantif.: every, and, who, any

NOT negation: not, no, neither, without MOD
modalityNEC necessity: must, should, have to

POS possibility: might, could, perhaps, alleged, can

SUB subordinate relations: that, while, because DSC
discourseCOO coordinate relations: so, {,}, {;}, and

APP appositional relations: {,}, which, {(}, {—}
BUT contrast: but, yet

PER person: Axl Rose, Sherlock Holmes NAM
named
entityGPE geo-political entity: Paris, Japan

GPO geo-political origin: Parisian, French
GEO geographical location: Alps, Nile
ORG organization: IKEA, EU
ART artifact: iOS 7
HAP happening: Eurovision 2017
UOM unit of measurement: meter, $, %, degree Celsius
CTC contact information: 112, info@mail.com
URL URL: http: // pmb. let. rug. nl

LIT literal use of names: his name is John
NTH other names: table 1a, equation (1)

EXS untensed simple: to walk, is eaten, destruction EVE
eventsENS present simple: we walk, he walks

EPS past simple: ate, went
EXG untensed progressive: is running
EXT untensed perfect: has eaten

NOW present tense: is skiing, do ski, has skied, now TNS
tense &
aspectPST past tense: was baked, had gone, did go

FUT future tense: will, shall
PRG progressive: has been being treated, aan hetNL

PFT perfect: has been going/done

DAT ag full date: 27.04.2017, 27/04/17 TIM
temporal
entityDOM day of month: 27th December

YOC year of century: 2017
DOW day of week: Thursday
MOY month of year: April
DEC decade: 80s, 1990s
CLO clocktime: 8:45 pm, 10 o’clock, noon
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possessive pronoun, ROL for role, DIS for disjunction or existential quantifier,
NOW for present tense, EXG for untensed progressives, REL for relation, and
DEF for definite. In these examples, the differences between the tagsets is most
evident in the semantic distinction which semtags make between concept nouns
(CON) and role nouns (ROL) and in the labeling of ’have’ as ’necessity’ rather
than simply as ’Verb, non-3rd person singular present’. Moreover, ’3-0’ is labeled
as ’Score’ rather than as ’cardinal number’. Another important distinction is that
between the semtags for articles (DEF, DIS) which distinguish different types of
articles, as opposed to grouping them under one label as is done in the PTB
(DT). The full semantic tagset is shown in Table 1.1.

1.4 Multi-task learning
Multi-task learning (MTL) is a recently resurgent approach to machine learning
in which multiple tasks are simultaneously learned. It is often motivated through
a comparison to humans’ ability to utilize the knowledge acquired through one
task for another (e.g. a person being able to play the guitar makes it easier for
them to learn to play the ukulele). By optimizing the multiple loss functions of
related tasks at once, multi-task learning models can achieve superior results to
models which are trained on a single task. The goal of Multi-task learning is
summarized by Caruana [1998] “MTL improves generalization by leveraging the
domain-specific information contained in the training signals of related tasks”.

The key benefits of MTL revolve around the intuitive idea that simultaneously
learning representations for multiple tasks (e.g. semantic tagging and natural
language inference) pushes a model to prefer representations which are generally
rich (i.e. suitable for multiple tasks) over those which are task-specific. This can
be broken down into the following inter-related points:

a) MTL introduces an useful inductive bias helping a model ignore task-specific
noise and thereby generalize better, particularly when a task’s data is lim-
ited or very noisy.

b) MTL can help a model identify relevant features through additional evi-
dence, enabling it to and assign less importance to irrelevant features.

c) In the cases when there is no overlap between two (or more) tasks’ training
examples, MTL results in the (implicit) augmentation of the training data -
allowing the model to generalize better by averaging the task specific noise
patterns.

d) MTL can be viewed as performing regularization, reducing a model’s ability
to fit random noise (i.e. Rademacher complexity).

In the context of neural networks, multi-task learning can be accomplished
through hard parameter sharing (shared layers) or soft parameter sharing (each
task has own sub-model/parameters, distance between parameters of the sub-
models is regularized in order to encourage similarity). In practice, the former
approach has been more common due the relative ease of implementing it and
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Figure 1.7: A FNN with multi-task learning using full parameter sharing imple-
mented between two tasks: a main task and an auxiliary task.

due to it not requiring an increase in model complexity. An example of this
approach can be seen in Figure 1.7. In this example, two tasks, a main task and
an auxiliary task share a network’s hidden layer h⃗s. Each task has its own final
output layer. Therefore, the model’s parameters are all shared except for the
weights from the hidden layer to the two final output layers.

Neural MTL has become an increasingly successful approach for exploiting
similarities between Natural Language Processing (NLP) tasks [Collobert and
Weston, 2008, Søgaard and Goldberg, 2016, Plank et al., 2016]. While some
have aimed to jointly learn multiple standard NLP tasks at once with the aim of
improving performance on all tasks [Hashimoto et al., 2016, Bingel and Søgaard,
2017, Collobert and Weston, 2008], others have tried to identify useful auxiliary
tasks.

Auxiliary tasks are typically closely related to the main task but not of im-
portance by themselves. Examples of auxiliary tasks used include what Plank
[2016b] terms fortuitous data. Recent work has been successful at exploiting this
kind of data such as Plank [2016a] which uses the signal from keystroke data to
enhance a shallow syntactic parsing model and Klerke et al. [2016] which improves
sentence compression models by jointly learning to predict gaze.
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Selective sharing
Recently, there has been a particularly interesting direction of research on devel-
oping models which are trained to learn what to (and what not to) share between
a set of tasks, with the general aim of preventing negative transfer when the
tasks are not closely related. With closely related tasks it’s possible that fully
sharing a network’s parameters can help improve the performance of the model
for all tasks. However, as the tasks become less and less similar, negative transfer
becomes more and more likely due. Taking this into consideration, it becomes
clear that full sharing of a network’s parameters is not a viable approach to joint
learning of distantly related task or for large scale MTL.

For large scale MTL or MTL between distantly related tasks, a mechanism is
needed to enable models to learn what to share and what not to share. Several
methods of incorporating such selective sharing mechanisms into neural models
have been proposed. Liu et al. [2016] present various neural architectures which
allow for gated sharing between private (i.e. task-specific) and shared layers.
Misra et al. [2016] employ a generalisable approach to MTL using cross-stitch
units which use learned parameters to optimally combine the private and shared
representations from any number of tasks’ parallel layers. Extending this ap-
proach, Ruder et al. [2017] and Meyerson and Miikkulainen [2017] equip their
models with additional learned parameters which mediate the sharing between
different sub-spaces (private and shared), different layers, and different skip-
connections, allowing for maximal flexibility in sharing.

Promising ideas in the same direction of research have recently also been
proposed for reinforcement learning. Teh et al. [2017], for example, propose a
“distilled” policy that captures common behavior between tasks. Each individual
task’s worker is then constrained to stay close to the “distilled” policy while
solving its own task.

1.5 Transfer learning
As in MTL with an auxiliary task, transfer learning (TL) is a class of methods
where the aim is to leverage information from some task(s) for a target task, with
the objective of improving performance on the target task. The differences be-
tween the two classes of methods is subtle: (i) TL does not assume the availability
of training data for the target task enabling zero-shot learning; (ii) tasks are often
learnt jointly for MTL whereas in TL pre-training is the common practice.

Figure 1.8 shows a comparison between traditional supervised learning and
transfer learning. In transfer learning the amount of task-specific data is normally
smaller than the amount of data from related tasks.

TL methods have in the last few years become immensely successful in the
field of computer vision [Razavian et al., 2014] where the use of deep convolutional
neural networks trained on Imagenet [Deng et al., 2009] as feature extractors has
become an industry standard. TL methods have also found success in NLP, albeit
to a lesser extent. Since Mikolov et al. [2013a], a seminal work which introduced
an efficient method of computing prediction-based word embedding models, it
has become more and more common to initialize the first layer of neural NLP
models using word embeddings which are learnt on large corpora. While this has
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proven useful, particularly in lower-resource scenarios, it has been less clear how
perform TL beyond word embedding layer initialization.

Figure 1.8: A comparison between traditional supervised learning and transfer
learning.

In the last year, however, advances have been made in that direction, starting
with Conneau et al. [2017a] which found that bi-LSTM with max-pooling sentence
encoders trained on SNLI [Bowman et al., 2015b] can perform (i.e. transfer)
well on a number of different text classification tasks. Since then, a number
of promising works in that direction have emerged: Peters et al. [2018] extract
representations from multiple layers of a bidirectional language model which can
be fine-tuned on different downstream tasks; Subramanian et al. [2018] use a MTL
framework, training on various supervised and unsupervised objectives using the
same encoder in order to encode multiple aspects of a sentence; Cer et al. [2018]
employ a similar MTL approach, but use a Transformer-based [Vaswani et al.,
2017a] encoder rather than a bi-LSTM encoder; and finally, Howard and Ruder
[2018] present a very promising approach that closely resembles the TL methods
used in computer vision, offering a robust, sample-efficient method for TL using
a fixed three layer bi-LSTM language model, and introducing various techniques
to enable the fine-tuning on target tasks.
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Cross-lingual Transfer Learning
Finally, we would like to comment on the idea of multi-lingual learning as a
special case of MTL or TL, where each language can be seen as a task. Recent
work such as Bjerva and Augenstein [2017], Bjerva [2017], Plank et al. [2016],
Ammar et al. [2016] has made use of multi-lingual embedding spaces for the
purpose of multilingual transfer learning. This is particularly useful for low-
resource scenarios where effective model transfer from a well-resourced language
(e.g. English) could significantly boost performance. Figure 1.9 shows an example
of this scenario, where data from a well-resourced language B is used for training
a model for the target language A, for which there is less training data.

Figure 1.9: A comparison between monolingual learning and cross-lingual trans-
fer learning.

The development of effective unsupervised embedding mapping methods such
as Lample et al. [2017] and Artetxe et al. [2018] facilitates the construction of
multilingual embedding spaces without the need for bilingual seed dictionaries.
However, further work is needed to ascertain when these methods are useful
(closely related languages? languages of the same family? all languages?) and
when they break.

Recent work has highlighted the various shortcomings of these methods. Nakas-
hole and Flauger [2018] for instance, find that the mappings between the spaces
of different languages are not linear. Furthermore, Søgaard et al. [2018] find that
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the assumption of (approximate) isomorphism between the word embeddings of
different languages (trained on comparable corpora) does not hold up. Addition-
ally, they find that mapping quality significantly deteriorates for linguistically
dissimilar languages, proposing a graph eigenvector similarity metric which highly
correlates with ability of both supervised and unsupervised methods of mapping.

In this thesis, we will examine the degree to which embedding mapping meth-
ods can enable effective multi-lingual learning for semantic tagging.
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Chapter 2

Multi-task Learning for Sequence
Labelling Tasks

In this chapter we will explore the possibilities of mutli-task learning for sequence
labelling tasks. In the first section first we will present experiments performed
with the goal of improving the performance of a semantic tagging model using
a number of other sequence labelling tasks. While doing so, we will also explore
the various information theoretic criteria that can be indicative of whether multi-
task learning with a certain set of tasks will be successful or not. We will then
present an analysis of how well these information theoretic criteria correlate to
performance. The goal of this section will be to answer the following research
question:

Research Question 1: Which sequence labelling tasks, if any, can help
with semantic tagging in a multi-task learning setting?

In the second section, we will examine the converse of that question, exploring
the space of sequence labelling tasks that can benefit from semantic tagging as
an auxiliary task. This section will therefore aim to answer the following research
question:

Research Question 2: Can semantic tagging be informative for other
sequence labelling tasks? If so, how and under which multi-task settings?
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2.1 Multi-task learning for Semantic Tagging

2.1.1 Semantic Tagging
Semantic tagging or semtagging is the task of assigning lexical semantic categories
to the semantic units of a sentence. The Universal Semantic Tagset we employ
for this task is designed to facilitate downstream semantic tasks such as semantic
parsing, and is suitable for multi-lingual applications, since the tags are language-
neutral. It abstracts over part-of-speech tags and is split into coarse and fine-
grained semantic categories. For a detailed look into the tagset, refer to Section
1.3.

Semantic Tagging Dataset

The dataset we utilize for our semtagging experiments is derived from the Parallel
Meaning Bank (PMB) dataset. We use the latest release of semantic tag data,
UST version 0.1.01. This is divided into three parts: gold data which is fully
manually corrected, silver data which is partially manually corrected, and bronze
data which is automatically labelled using the Trigrams’n’Tags tagger [Brants,
2000]. Table 2.2 shows the number of tokens and sentences in each of the three
parts.

Part Gold Silver Bronze

Sentences 5568 77048 176832
Tokens 35737 2443243 1829644

Table 2.1: The Universal Semantic Tag dataset version 0.1.0’s gold, silver, and
bronze parts in number of tokens and sentences.

Since the amount of gold and silver data is relatively large, bronze data is
excluded from experiments. The entirety of the gold data is used for testing, and
the silver data is split into training and development data. The composition of
the train, development, and test sets is shown in table 2.2.

Split Test Train Development

Sentences 5568 75927 1121
Tokens 35737 2403038 40185

Table 2.2: The test, train, and development splits in number of tokens and sen-
tences.

The dataset is tokenised using the Elephant tokeniser Evang et al. [2013], a
statistical tokeniser which performs word, multi-word expression, and sentence
segmentation. The distributions of the twenty most frequent semtags in the
train, development, and testing sets are shown in Figures 2.1a, 2.1b, and 2.1c. We
observe that the distribution of labels in the test set differs to that of the train and
development sets. This phenomenon, known in machine learning terminology as

1http://pmb.let.rug.nl/data.php
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Dataset shift, occurs in this case because our silver standard training data is only
partially manually corrected while out gold standard test data is fully manually
corrected.

2.1.2 Method
In order to answer the first research question, we run a set of experiments where
semantic tagging is the main task with a variety of sequence labeling tasks as aux-
iliary tasks. We take two single-task (i.e. without multi-task learning) baselines
for semantic tagging: (i) the Stanford log-linear tagger [Toutanova and Manning,
2000], a widely used maximum entropy tagger; (ii) Bjerva et al. [2016]’s deep
residual tagger which will be described in detail in sub-section 2.1.4. Both are
trained on the full training set. For the latter model, we also experiment with
various settings, architecture modifications, and combinations of features.

The auxiliary tasks we consider are:

a) Universal Dependencies Part-Of-Speech Tagging (UPOS)

b) Combinatory Categorial Grammar supertagging (CCG)

c) Universal Dependencies dependency relation tagging (DEPREL)

UPOS is a standard part-of-speech tagging task based on the UD part-of-
speech tagset. CCG supertagging is the task of assigning CCG lexical categories
to the words in a sentence. It is known as supertagging because the labels being
assigned are detailed syntactic structures. For this reason, it is sometimes also
known as ’almost parsing’. It is, thus, a task which is more difficult than simple
part-of-speech tagging. Finally, DEPREL is the task of labelling tokens with their
dependency relation labels (i.e. the relations on the edges of the arc pointing to
a word in the directed dependency tree).

For each of the three tasks we add an additional classifier to predict the
auxiliary task’s labels and jointly optimize for both the original semantic tagging
task and the auxiliary task. Following Bjerva et al. [2016], we employ hard
parameter sharing for MTL in this set of experiments.

2.1.3 Data and Preprocessing
For CCG supertagging the CCG Linguistic Data Consortium distribution [Hock-
enmaier and Steedman, 2007] is utilized. Following previous work on CCG su-
pertagging [Clark and Curran, 2004], a frequency cutoff of ten occurrences is
applied for the categories seen in the training set. Sections 2-21 are used for
training, section 00 for development, and section 23 for testing. This is done due
to the original number of labels being too large with a considerable number of
labels occuring only a few times.

For UPOS and DEPREL, the English data from UD 2.0 [Nivre et al., 2017]
is used. The standard splits are maintained for both. For all three datasets the
gold tokenisation is used. Table 2.3 shows the training, test, and development
splits of the datasets.
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(a) Test set distribution

(b) Train set distribution
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(c) Development set distribution

Figure 2.1: The frequency distributions of the twenty most frequent semtags in
the test, train, and development sets.

Dataset Split Test Train Development

CCG Sentences 4814 79208 3826
Tokens 53077 876885 43248

UD Sentences 6547 38169 6324
Tokens 25097 204605 25148

Table 2.3: The test, train, and development splits in number of tokens and sen-
tences.

2.1.4 System
The tagging model we employ is Bjerva et al. [2016]’s deep residual tagger. It
is a tagger which utilizes both character and word features through a combi-
nation of recurrent and convolutional neural networks with residual connections
(ResNets). The tagger is built around a stacked bidirectional LSTM which takes
in a combination or word and character features which are composed using ei-
ther a ResNet or a highway network. At time step t, the LSTM’s corresponding
hidden state ht is passed on to a dense layer with a softmax activation in order
to predict a tag for the word wt. The word features are word embeddings which
are initialized with pre-trained GloVe embeddings trained on six billion tokens
of common crawl [Pennington et al., 2014] and fine-tuned during training. The
character representations are obtained using ResNets or Highway networks with a
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base unit consisting of a convolutional neural network followed by a max pooling
operation to capture local features around each character of a word. Figure 2.2
shows an overview of the tagger. w⃗ is the word representation from pre-trained
embeddings, c⃗ is the word representation composed by our model using either a
ResNet or a highway network over character embeddings. As can be observed in
Figure 2.2, the LSTM is fully shared between the main task (semantic tagging in
this case) and the auxiliary task. We set the depth of both ResNets and Highway
networks to three.

Figure 2.2: A deep residual or highway network tagger.

Residual Networks

Residual Networks (ResNets) are a recent class of neural models which were
developed for computer vision applications. A ResNet unit consists of one or
more layers of convolutions with a skip connection short-cutting them. Following
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Bjerva et al. [2016], we employ the asymmetric variant of residual units. This
can be expressed as follows:

xl+1 = xl + F (σ(xl)) (2.1)

where xl is layer x before activation, and F is a convolutional function. This
effectively serves as connection between a layer xl+1 and the pre-activation xl of
layer xl by adding that to the output of the activated convolutional block. Figure
2.3 shows an example of residual unit. The CNN or FNN can be replaced with
other neural architectures.

The intuition behind ResNets is often explained in terms of them allowing
information to flow more easily through the network. This becomes particularly
important when the networks are deeper, as it is well-documented that [He et al.,
2016] that deeper networks face convergence difficulties. Adding a identity skip
connection creates a direct path for error propagation which allows for the efficient
training of deep networks. In NLP, ResNets have been successfully used for
a variety of tasks, including morphological re-inflection Östling [2016] and text
classification [Conneau et al., 2017d].

Figure 2.3: A residual unit.

Highway Networks

Highway networks are an intuitive extension to ResNets which was proposed by
Srivastava et al. [2015]. Highway networks augment the skip connections utilized
in ResNets with a learnable parameter to determine the extent to which the skip

34



connections will be utilized. This can be seen in below:

xl+1 = xl ∗ (1 − T (xl)) + T (xl) ∗ F (xl) (2.2)

In this equation we can see that T the transform gate and 1−T , the carry gate
are used to determine whether the input is transformed or carried (i.e. passed
through as is).

Hyperparameters, Optimization, and Initialization

The system’s hyperparameters were all tuned with respect to the semantic tagging
development set. They are listed below:

• Batch Size: 128

• Epochs: 20

• Optimizer: Adam [Kingma and Ba, 2014]

• Learning rate: 0.0001

• Embedding initialization: Pre-trained GloVe embeddings of dimension 100
trained on 6 billion tokens of Wikipedia 2014 and Gigaword 5

• Dropout: with a probability of 0.3 to all bi-LSTM and embedding layers.

• Auxiliary task weighing: 0.1

2.1.5 Results
Table 2.4 shows the results of all experiments using both ResNets and Highway
Networks. Semtagging is the baseline model which does not use an auxiliary task.
+ indicates that a task was used as an auxiliary task.

Model Semtagging +UPOS +CCG +DEPREL

Stanford Tagger 88.81 NA NA NA
ResNet 89.42 89.13 88.89 89.21

Highway Network 89.29 89.55 86.08 89.23

Table 2.4: Results for the Stanford Log-linear Tagger and for our models which
employ a ResNet and those which employ a Highway Network. + indicates an
auxiliary task. All scores are reported as accuracy.

2.1.6 Analysis
The results from this set of experiments indicates that none of the three tasks
yield a considerable improvement when employed as an auxiliary for semantic
tagging when fully-shared networks are used. Indeed CCG supertagging results
in a sizable deterioration in accuracy. The combination of Highway Networks
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and UPOS as an auxiliary does however yield the highest accuracy out of all
systems. Our findings confirm some of the findings of Alonso and Plank [2016]
about when MTL works for semantic sequence prediction tasks. Specifically, i)
lower level tasks are less likely to help when employed as an auxiliary for higher
level tasks2; ii) the main task model will not benefit from an auxiliary loss if it
has a large number of labels (as is the case in CCG) and entropy is too high.
Indeed, our best performing model uses UPOS, which has a low kurtosis and a
compact label distribution, as an auxiliary as is the case in Alonso and Plank
[2016]’s only experiment which yields positive results.

2.2 Multi-task learning with semantic-tagging
as an auxiliary task

In this section we explore the converse of the direction which was explored in the
previous section: sequence labelling with semantic tagging as an auxiliary task.
We take the task of Universal Dependency POS tagging as the main task and
employ semantic tagging as an auxiliary. Instead of expanding our exploration
of the space of tasks which could benefit from semantic tagging, we focus on
investigating different multi-task settings. We add two selective sharing (see
Section 1.4) settings to the multi-task learning setting of fully-shared networks
which was employed in the previous section.

2.2.1 Learning What to Share
There has recently been an increase in interest in the development of models
which are trained to learn what to (and what not to) share between a set of
tasks. This is done with the general aim of preventing negative transfer when
the tasks are not closely related [Meyerson and Miikkulainen, 2017, Ruder et al.,
2017, Lu et al., 2017, Misra et al., 2016]. Our Learning What to Share setting
belongs to this class of models. It is closely related to Liu et al. [2016]’s shared
layer architecture.

Specifically, a layer h⃗X which is shared between the main task and the auxiliary
task is split into two subspaces: a shared subspace h⃗XS

and a private subspace
h⃗XP

. The interaction between the shared subspaces is modulated via a sigmoidal
gating unit applied to a set of learned weights, as seen in Equations (2.3) and
(2.4) where h⃗XS(main) and h⃗XS(aux) are the main and auxiliary tasks’ shared layers,
Wa→m and Wm→a are learned weights, and σ is a sigmoidal function.

h⃗XS(main) = h⃗XS(main)σ(⃗hXS(aux)Wa→m) (2.3)
h⃗XS(aux) = h⃗XS(aux)σ(⃗hXS(main)Wm→a) (2.4)

Unlike Liu et al. [2016], in our setup, each task has its own shared subspace
rather than one common shared layer. This enables the sharing of different pa-
rameters in each direction (i.e., from main to auxiliary task and from auxiliary
to main task).

2We take syntactic tasks as being lower-level and semantic tasks as being higher-level in this
argument.
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Figure 2.4: The three settings of Multi-task Learning: (A) Fully shared networks,
(B) Partially shared networks, and (C) Learning What to Share. Layers are math-
ematically denoted by vectors and the connections between them, represented by
arrows, are mathematically denoted by matrices of weights. S indicates a shared
layer, P a private layer, and X a layer with shared and private subspaces.
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2.2.2 Multi-task Learning Settings
We implement three neural MTL settings, shown in Figure 2.4. They differ in
the way the network’s parameters are shared between the tasks:

• Fully shared network (FSN): All hidden layers are entirely shared among
the tasks, each task has a separate output layer;

• Partially shared network (PSN): A subset of hidden layers is shared
among the tasks; each task has at least one private hidden layer and a
separate output layer;

• Learning What to Share (LWS): Each task has a dedicated set of hidden
layers. For sharing, a hidden layer is split into a shared subspace and
a private subspace. A gating unit modulates the transfer of information
between the shared subspaces as shown in Equations (2.3) and (2.4).

2.2.3 Data
We use the datasets described in Sections 2.1.3 and 2.1.1 for Universal Depen-
dencies part-of-Speech tagging (UPOS) and Semantic tagging respectively. Note
that there is no overlap between the two datasets, i.e. they do not share the same
training examples.

2.2.4 Method
In order to answer the second research question, we run a set of experiments where
UPOS is the main task and semantic tagging is an auxiliary. We take a single-
task (i.e. without multi-task learning) baseline model for UPOS tagging using a
bi-LSTM. We then run experiments using the three MTL settings described in
Section 2.2.2 to measure the effect of MTL with semantic tagging as an auxiliary
task on the UPOS task.

2.2.5 System
Our tagging model in this set of experiments uses a basic contextual one-layer bi-
LSTM (see Section 1.2.5) that takes in word embeddings and produces a sequence
of recurrent states which can be viewed as contextualized representations. The
recurrent rn state from the bi-LSTM corresponding to each time-step tn is passed
through a dense layer with a softmax activation to predict the token’s tag. This
simple neural architecture has become standard for a number of sequence labelling
tasks in the past few years. We choose to not include character features, as our
focus is on quantifying the effect of MTL and our word feature model already
performs at a level which is close to the state-of-the-art.

In each of the MTL settings a softmax classifier is added to predict a token’s
semantic tag and the model is then jointly trained on the concatenation of the
sem-PMB and UPOS tagging data to minimize the sum of softmax cross-entropy
losses of both the main (UPOS tagging) and auxiliary (semantic tagging) tasks.
The different MTL setting of the model can be seen in Figure 2.5. In the FSN
setting, the hidden layers (i.e. the embedding layer and bi-LSTM) are fully
shared. In the PSN setting, the hidden layers are partially shared: the embedding
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layer and bi-LSTM are shared then they are followed by a private dense layer for
each of the tasks. In the LWS setting, each task has a dedicated set of hidden
layers (bi-LSTM). For sharing, the bi-LSTM is split into a shared subspace and
a private subspace. A gating unit modulates the transfer of information between
the shared subspaces as shown in Equations (2.3) and (2.4).

Figure 2.5: The three MTL settings for the tagger. Layers dimensions are
displayed in brackets.
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Hyperparameters, Optimization, and Initialization

All models’ hyperparameters were tuned with respect to loss on the English UD
2.0 UD validation set. They are listed below:

• Batch Size: 50

• Epochs: 15

• Optimizer: Adam

• Learning rate: 2e − 3

• Embedding initialization: Pre-trained GloVe embeddings of dimension 100
trained on 6 billion tokens of Wikipedia 2014 and Gigaword 5

• Dropout: with a probability of 0.33 to all bi-LSTM, embedding layers, and
non-output dense layers

• Auxiliary task weighing: 0.1

2.2.6 Results
Table 2.5 shows results for all MTL setting and the baseline single-task model
which does not use an auxiliary task.

Model UPOS

Single-task 92.12
Fully-shared Network (FSN) 92.95

Partially-shared Network (PSN) 92.34
Learning What to Share (LWS) 95.54

Table 2.5: Results for single-task models (ST), fully-shared networks (FSN),
partially-shared networks (PSN), and Learning What to Share (LWS). All scores
are reported as accuracy.

2.2.7 Analysis
In line with Bjerva et al. [2016]’s findings, the FSN setting leads to an improve-
ment for UPOS tagging when semantic tagging is employed as an auxiliary. Our
model is simpler than Bjerva et al. [2016]’s in that it does not utilize character
features, however the improvement in accuracy still holds. Our findings indicate
that while partially-shared networks do not lead to an improvement over the
fully-shared network setting, the Learning What to Share setting does lead to a
considerable improvement. This suggests that adding task-specific layers after
fully-shared ones does not always enable sufficient task specialization, whereas
employing a selective sharing mechanism does allow for positive transfer between
tasks.

It’s important to note that all MTL settings outperform the single-task sys-
tem. We hypothesize that this is down to two main factors: i) the closeness of
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the tasks to each other which means that there are useful correlations between
the labels of both tasks which the model can learn (e.g. a word tagged as noun
in UPOS will often have a unnamed entity semantic tag); ii) the implicit data
augmentation which occurs because there is no overlap between the two datasets
in terms of training examples. By learning correlations between the tagsets and
then training on examples from both tasks, the model is effectively training on
more data for both tasks.
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Chapter 3

Multi-task Learning for
Sentence-level and Structured
Prediction Tasks

In this chapter we continue with the exploration of multi-task learning with se-
mantic tagging as an auxiliary task. Instead of sequence labelling tasks, we move
on to more complex sentence-level and structured prediction tasks. We take the
tasks of Universal Dependency parsing and natural language inference as main
tasks and employ semantic tagging as an auxiliary. We apply our investigation
to all multi-task learning settings which we’ve introduced so far. Our aim in this
chapter is, therefore, to answer the following research question:

Research Question 3: Can semantic tagging be informative for higher-
level semantic tasks such as natural language inference or structured predic-
tion tasks such as dependency parsing in a multi-task learning or transfer
learning setting?
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3.1 Sentence-level and Structured Prediction Tasks
Sentence-level tasks are a class of NLP tasks which involves assigning labels to
sentences as a whole, unlike the sub-sentence labels which are assigned in se-
quence labelling tasks. This includes tasks like sentiment analysis where a label
is normally assigned to a single sentence and it also includes tasks which involve
the classification of the relation between two or more sentences such as paraphrase
detection or sentence similarity classification. One such task is natural language
inference, which involves the classification of the relation between a pair of sen-
tences as either entailment, contradiction, or neutral. This is a task which has
recently gained a lot of attention and it is the sentence-level task which we employ
in this chapter.

Structured prediction tasks on the other hand involve learning to predict
structured outputs rather than discrete labels. The task of dependency parsing
is the structured prediction task we consider in this chapter.

As both these tasks are functionally different from semantic tagging which is
a sequence labelling task, we expect the flexible selective sharing MTL settings
to hold a clear advantage over the full-shared setting in this set of experiments.

3.1.1 Universal Dependency Parsing
Universal Dependency parsing (UD DEP) is the task of assigning a syntactic
labelled directed graph to a natural language sentence under the following set of
constraints:

• There is only one root node that has no incoming arcs.

• Each vertex, except for the root node, has exactly one incoming arc (i.e. no
cycles).

• There is one unique path from the root node to each vertex.

These constraints ensure that parses are well-formed trees. An example parse
can be seen in Figure 3.1. Dependency parsing can be seen as a task of structured
prediciton.

Figure 3.1: An example dependency parsed sentence which is non-projective.
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3.1.2 Natural Language Inference
Natural language inference (NLI) 1 is the task of recognizing the relation between
two sentences (a premise and a hypothesis) as one of either entailment, where the
first (the premise) sentence entails the second (the hypothesis), contradiction,
where the second sentence contradicts the first, or neutral, where neither applies.
Examples of this can be seen in Table 3.1.

Premise Hypothesis Classification

A black race car starts
up in front of

a crowd of people.

A man is driving
down a lonely road. Contradiction

An older and
younger man smiling.

Two men are smiling and laughing
at the cats playing on the floor. Neutral

A soccer game with
multiple males playing. Some men are playing a sport. Entailment

Table 3.1: Examples of the NLI task taken from the SNLI dataset [Bowman et al.,
2015b].

3.2 Data and Preprocessing
We use the dataset described in Section 2.1.1 for Semantic tagging. For the
UD DEP and NLI experiments there is a complete overlap between the datasets
of main and auxiliary tasks, i.e., each instance is labeled with both the main
task’s labels and semantic tags. We use the Stanford POS Tagger trained on the
semantic tagging dataset’s training data to tag the UD corpus and NLI datasets
with semantic tags, and then use those assigned tags for the MTL settings of our
dependency parsing and NLI models.

Dataset Split Test Train Development

SNLI Sentences 4814 79208 3826
SICK-E Sentences 4927 4500 500

UD DEP Sentences 6547 38169 6324
Tokens 25097 204605 25148

Table 3.2: The test, train, and development splits in number of tokens and sen-
tences.

The UD DEP experiments use the English UD 2.0 corpus, and the NLI exper-
iments use the SNLI [Bowman et al., 2015a] and SICK-E datasets [Marelli et al.,
2014]. The provided train, development, and test splits, shown in Table 3.2, are
used for all datasets.

1also known as recognizing textual entailment (RTE)
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3.3 Method
In order to answer the third research question, we run four experiments for each
of the three tasks (UD DEP, SNLI, SICK-E), one using the single-task (ST)
model and one for each of the three MTL settings described in Section 2.2.2 with
semantic tagging as an auxiliary task.

3.4 Systems

3.4.1 Universal Dependency Parsing
We employ a parsing model that is based on Dozat and Manning’s [2016] deep
biaffine attention dependency parser. The model’s embeddings layer is a con-
catenation of randomly initialized word embeddings2 and character-based word
representations added to pre-trained word embeddings, which are passed through
a 4-layer stacked bi-LSTM. Unlike Dozat and Manning [2016], our model jointly
learns to perform UPOS tagging and parsing, instead of treating them as sepa-
rate tasks. Therefore, instead of tag embeddings, we add a softmax classifier to
predict UPOS tags after the first bi-LSTM layer. The outputs from that layer
and the UPOS softmax prediction vectors are both concatenated to the original
embedding layer and passed to the second bi-LSTM layer.

The output of the last bi-LSTM is then used as input for four dense layers
with a ReLU activation, producing four vector representations: a word as a de-
pendent seeking its head; a word as a head seeking all its dependents; a word as
a dependent deciding on its label; a word as head deciding on the labels of its
dependents. These representations are then passed to biaffine and affine softmax
classifiers to produce a fully-connected labeled probabilistic dependency graph
[Dozat and Manning, 2016]. Finally, a non-projective maximum spanning tree
parsing algorithm [Chu, 1965, Edmonds, 1967] is used to obtain a well-formed
dependency tree.3

Similarly to UPOS tagging, an additional softmax classifier is used to predict
a token’s semantic tag in each of the MTL settings, as both tasks are jointly
learned. In the FSN setting, the 4-layer stacked bi-LSTM is entirely shared. In
the PSN setting the semantic tags are predicted from the second layer’s hidden
states, and the final two layers are devoted to the parsing task. In the LWS
setting, the first two layers of the bi-LSTM are split into a private bi-LSTMprivate

and a shared bi-LSTMshared for each of the tasks with the interaction between
the shared subspaces being modulated via a gating unit. Then, two bi-LSTM
layers that are devoted to parsing only are stacked on top. The models used for
each of the three MTL settings are shown in Figure 3.2.

Hyperparameters, Optimization, and Initialization

All models’ hyperparameters were tuned with respect to loss on the English UD
2.0 UD validation set. They are listed below:

• Batch Size: 50
2This replaces the holistic word embeddings for frequent words in Dozat and Manning [2016].
3This is recommended but not implemented by Dozat et al. [2017].
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Figure 3.2: The three MTL settings for the UD DEP system. Layers dimensions
are displayed in brackets.

• Epochs: 15

• Optimizer: Adam

• Learning rate: 2e − 3

• Embedding initialization: Pre-trained GloVe embeddings of dimension 100
trained on 6 billion tokens of Wikipedia 2014 and Gigaword 5

• Dropout: with a probability of 0.33 to all bi-LSTM, embedding layers, and
non-output dense layers
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• Auxiliary task weighing: 0.5

3.4.2 Natural Language Inference
We base our NLI model on Chen et al. [2017]’s Enhanced Sequential Inference
Model which uses a bi-LSTM to encode the the premise and hypothesis, com-
putes a soft-alignment between premise and hypothesis’ representations using an
attention mechanism, and employs an inference composition bi-LSTM to compose
local inference information sequentially.4 The MTL settings are implemented by
adding a softmax classifier to predict semantic tags at the level of the encoding
bi-LSTM, with rest of the model unaltered.

In the FSN setting, the hidden states of the encoding bi-LSTM are directly
passed as input to the softmax classifier. In the PSN setting an earlier bi-LSTM
layer is used to predict the semantic tags and the output from that is passed on
to the encoding bi-LSTM which is stacked on top. This follows Hashimoto et al.
[2016]’s hierarchical approach. In the LWS setting, a bi-LSTM layer with private
and shared subspaces is used for semantic tagging and for the ESIM model’s
encoding layer. In all MTL settings, the bi-LSTM used for semantic tagging is
pre-trained on the semantic tagging training data. he models used for each of the
three MTL settings are shown in Figure 3.3.

Hyperparameters, Optimization, and Initialization

All models’ hyperparameters were tuned with respect to loss on the SNLI valida-
tion set for SNLI models and SICK-E validation set fot the SICK-E models. The
hyperparameters, optimizer, and initialization settings for both tasks are listed
below:

• Batch Size (SNLI): 128

• Batch Size (SICK-E): 8

• Epochs (SNLI): 37

• Epochs (SICK-E): 20

• Optimizer: Adam

• Learning rate: 0.00005

• Embedding initialization: Pre-trained GloVe embeddings of dimension 100
trained on 840 billion tokens common crawl.

• Dropout: with a probability of 0.3 to all bi-LSTM, embedding layers, and
non-output dense layers

• Auxiliary task weighing: 0.1
4We do not implement the additional tree-LSTM model used in Chen et al. [2017] as we

focus on the effect of MTL with semantic tagging rather than on absolute performance.
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Figure 3.3: The three MTL settings for the NLI system. Layers dimensions are
displayed in brackets.

3.5 Results
Results for all tasks are shown in Table 3.3. ST indicates the single-task baseline
model. FSN, PSN, and LWS are the three MTL settings. Scores are reported as
accuracy for the two NLI tasks, and as LAS/UAS F1 score for UD DEP, as is
standard.
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Model SNLI SICK-E UD DEP

ST 87.01 81.30 80.24 / 84.87
FSN 84.96 56.69 81.03 / 85.54
PSN 87.08 77.92 80.92 / 85.81
LWS 87.51 84.57 81.39 / 86.00

Table 3.3: Results for single-task models (ST), fully-shared networks (FSN),
partially-shared networks (PSN), and Learning What to Share (LWS). All scores
are reported as accuracy, except UD DEP for which we report LAS/UAS F1 score.

3.6 Analysis
Similar to our findings for UPOS in Chapter 2, the FSN setting leads to an im-
provement for UD DEP. Indeed, for UD DEP, all of the MTL models outperform
the ST model by increasing margins. For the NLI tasks, however, there is a clear
degradation in performance.The PSN setting shows mixed results and does not
show a clear advantage over FSN for UPOS and UD DEP. This suggests that
adding task-specific layers after fully-shared ones does not always enable suffi-
cient task specialization. For the NLI tasks however, PSN is clearly preferable to
FSN, especially for the small-sized SICK-E dataset where the FSN model fails to
adequately learn.

As a sentence-level task, NLI is functionally dissimilar to semantic tagging.
However, it is a task which requires deep understanding of natural language
semantics and can therefore conceivably benefit from the signal provided by se-
mantic tagging. Our results demonstrate that it is possible to leverage this signal
given a selective sharing setup where negative transfer can be minimized. In-
deed, for the NLI tasks, only the LWS setting leads to improvements over the ST
models.The improvement is larger for the SICK-E task which has a much smaller
training set and therefore stands to learn more from the semantic tagging signal.
For all tasks, it can be observed that the LWS models outperform the rest of
the models. This is in line with our expectations with the findings from previous
work Ruder et al. [2017], Liu et al. [2016] that selective sharing outperforms full
network and partial network sharing.

SNLI model output

Table 3.4 shows demonstrative examples from the SNLI test set on which the
Learning What to Share (LWS) model outperforms the single-task (ST) model.
The examples cover all possible combinations of entailment classes. Table 1.1
explains the semantic tagset, for reference. It can be observed that the LWS
setting correctly predicts the labels in a variety of cases where the ST model does
not.
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Premise-hypothesis pairs ST LWS/GOLD
P: TheDEF gentlemanCON isNOW speakingEXS whileSUB theDEF othersALT areNOW listeningEXS

N EH: TheDEF manCON isNOW beingEXS givenEXS respectCON

P: MenCON wearingEXG hatsCON walkEXS onREL theDEF streetCON
C EH: TheDEF menCON havingEXS hatsCON onREL theirHAS headCON

P: ThreeQUC menCON inREL orangeIST suitsCON areNOW doingEXG streetCON repairsCON atREL nightCON
N CH: ThreeQUC menCON inREL orangeIST suitsCON escapedEPS fromREL prisonCON

P: ADIS toddlerCON sitsENS onREL aDIS stoneCON wallCON surroundedEXS byREL fallenEXS leavesCON
E CH: AnDIS childCON isNOW throwingEXG stonesCON atREL aDIS leafCON wallCON

P: AnDIS oldIST shoemakerCON inREL hisHAS factoryCON
C NH: TheDEF shoemakerCON isNOW wealthyIST

P: ADIS kidCON slidesCON downIST aDIS yellowCOL slideCON intoREL aDIS swimmingCON poolCON
E NH: TheDEF kidCON isNOW playingEXS atREL theDEF waterparkCON

Table 3.4: Examples of the entailment problems from SNLI which are incorrectly
classified by the ST model but correctly classified by the LWS model. Automat-
ically assigned semantic tags are in superscript.
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Chapter 4

Multi-lingual Learning as an
instance of Multi-task learning

In this chapter we consider the framing of multi-lingual learning as a special case
of multi-task learning where every language can be taken a task. Our investigation
focuses on the utilization of data from a well-resourced language (English) to
lower-resourced languages (German and Dutch). Our aim in this chapter is to
answer the following research question:

Research Question 4: Can multi-lingual approaches which treat multi-
lingual learning as a special case of multi-task learning be used to improve
semantic tagging accuracy for languages with less or no training data?
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4.1 Method
In order to answer the fourth research question, we design a set of experiments
to test whether the large semantic tagging dataset we have for English can be
used to improve on the semantic tagging models for Dutch and German which
are trained on monolingual data only. This is motivated by the fact that only
a small amount of data is available for both Dutch and German. We use word
embedding mapping methods to facilitate transfer from English.

Our experiment design aims to test the effect of cross-lingual transfer with
increasing amounts of in-language monolingual data (i.e. Dutch and German),
starting with the zero-shot setting where there is no monolingual data and pro-
gressing till the setting where the full monolingual data is used. This is then
also compared to the in-language only models, which are trained on the Dutch
or German training data only. Below is a list of the settings:

a) Single language: In-language monolingual data only (all available data).

b) Zero-Shot: No in-language monolingual data.

c) Quarter: A quarter of the available monolingual data is used.

d) Half: Half of the available monolingual data is used.

e) Full: All the available monolingual data is used.

In each of these settings except for the Single Language one, the full training
split of the English semantic tagging dataset (75927 sentences) is used.

4.2 Data
The dataset we utilize for our semtagging experiments is again derived from the
Parallel Meaning Bank (PMB) dataset. For English we use the dataset described
in Section 2.1.1. The PMB aslo includes a smaller amount of Dutch and German
data. This is also divided into three parts: gold data which is fully manually
corrected and silver data which is partially manually corrected. Table 4.1 shows
the number of tokens and sentences in each of the three parts for both German
and Dutch.

Language Part Gold Silver

German Sentences 1509 515
Tokens 8520 6137

Dutch Sentences 692 131
Tokens 4077 1695

Table 4.1: The Universal Semantic Tag dataset version 0.1.0’s gold and silver
parts in number of tokens and sentences for Dutch and German.

Since the amount of gold is rather large when compared to the silver data
which is of lower quality, we exclude the silver data from experiments. The
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entirety of the gold data is used for is split into training, testing, and development
sets. The composition of the train, development, and test sets is shown in table
4.2.

Language Split Test Train Development

German Sentences 493 809 204
Tokens 2849 4538 1134

Dutch Sentences 230 372 89
Tokens 1358 2173 546

Table 4.2: Test, train, and development splits for both the Dutch and German
data.

The dataset is tokenised using the Elephant tokeniser, with seperate models
trained on each of the languages. The distributions of the twenty most frequent
semtags in the train, development, and testing sets are shown in Figures 4.1a,
4.1b, and 4.1c for German and Figures 4.2a, 4.2b, and 4.2c for Dutch. Unlike
in the English data, we observe a consistency across splits. This is due to us
not using silver standard data which is only partially manually corrected in this
set of experiments, instead employing gold standard data which is fully manually
corrected for all three splits.

4.3 System
As in Section 2.2.5, our tagging model in this set of experiments uses a basic
contextual one-layer bi-LSTM (see Section 1.2.5) that takes in word embeddings
and produces a sequence of recurrent states which can be viewed as contextual-
ized representations. Our MTL setting is again the fully-shared network setting,
but this time we treat each language as a task. To accomplish this, the embed-
ding spaces are unified using a linear mapping and the model then takes in the
combined training sets of both languages as input.

Unlike the tagger in Section 2.2.5, the embeddings layer is a concatenation of
both frozen pre-trained word embeddings and randomly initialized task-specific
word embeddings. Freezing the pre-trained mutli-lingual word embeddings en-
sures the models do not forget the cross-lingual relations learned through em-
beddings mapping. The trainable randomly initialized embeddings ensure the
model can also learn task specific word representations, while maintaining the
cross-lingual signal. The recurrent rn state from the bi-LSTM corresponding to
each time-step tn is passed through a dense layer with a softmax activation to
predict a token’s tag.
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(a) Test set distribution

(b) Train set distribution

(c) Development set distribution

Figure 4.1: The frequency distributions of the twenty most frequent semtags in
the test, train, and development sets of the German semantic tagging data.
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(a) Test set distribution

(b) Train set distribution

(c) Development set distribution

Figure 4.2: The frequency distributions of the twenty most frequent semtags in
the test, train, and development sets of the Dutch semantic tagging data.
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Embedding Mapping
The word embeddings we utilize are FastText embeddings trained on Wikipedia
Grave et al. [2018], which are available for 157 languages. We employ the word
embedding mapping methods mentioned in 1.5 to map the Dutch and German
embedding spaces to the English embedding space. Specifically, we employ the
linear mapping method of Artetxe et al. [2016] which makes use of bilingual
dictionaries, aiming to learn an optimal linear transformation between to spaces
by minimizes the distances between the equivalent entries listed in a bilingual
dictionary.

Hyperparameters, Optimization, and Initialization

Hyperparameters were tuned with respect to loss on the German and Dutch
semantic tagging validation sets. The optimal settings found for both languages
were very similar. They are listed below:

• Batch Size: 128

• Epochs: 20

• Optimizer: Adam

• Learning rate: 0.00005

• Embedding initialization: Pre-trained FastText embeddings of dimension
300 (trained on Wikipedia).

• Dropout: with a probability of 0.3 to all bi-LSTM, embedding layers, and
non-output dense layer

4.4 Results
Results for all tasks are shown in Table 4.3. The Single language results are
obtained by training and testing on the in-language (i.e. Dutch or German). The
Zero-shot results are obtained by training on the full English data and testing
on either Dutch or German. The results for the Quarter, Half, and Full settings
are obtained by training on the full English data and either a quarter, a half, or
the full Dutch or German data.

Setting German Dutch

Single language 85.41 67.52
Zero-shot 35.01 32.13

Quarter 77.87 75.06
Half 83.64 75.82
Full 88.74 81.43

Table 4.3: Results for the Single language, Zero-shot, Quarter, Half, and Full
settings. All scores are reported as accuracy.
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4.5 Analysis
The results from our experiments can be seen as an indication of the validity of
the embedding alignment method which was utilized to align the vector spaces
of the embeddings as a method of enabling cross-lingual transfer. Indeed, The
Zero-shot models which only see English data at training time achieve an ac-
curacy which is far above random. The results from the Quarter setting are the
most interesting. With just a quarter (93 sentences) of the in-language training
set, the Dutch Quarter models outperform the Single language Dutch model
which is trained on the entire Dutch training set. This has important implica-
tions for languages where only a very small amount of training data is available,
demonstrating that with less than a hundred sentences and labelled data from a
related language, it is possible to achieve a reasonable performance on the task.

Furthermore, it can be seen that the Full models which train on both the
full English and full in-language training sets outperform the Single language.
This true even for German, for which the training set is relatively large. This
shows that even in cases where a sufficient amount of in-language data is available
to train a reasonably accurate model, adding data from a similar language still
can help.
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Conclusion

This thesis is an exponent of the recent trend in machine learning in general and
representation learning in particular, to design models which simultaneously learn
multiple tasks rather than a single task. This has been shown to result in richer
representations which are ’generally good’ when compared to the representations
obtained by learning a single task. In the context of Natural Language Processing
and Natural Language Understanding, this approach has recently been applied
to an increasingly diverse combination of tasks with reasonable success.

As neural network methods have become a mainstay in the field, a multi-task
learning approach in which a network’s entire set of parameters is shared between
multiple tasks became commonly employed due to ease of implementation. This
approach can succeed at times when the tasks being jointly learned are closely
related, however, with more distant tasks negative transfer is very likely. Instead,
recent work - this thesis included - has explored ways of allowing multi-tasking
models to learn what to share and what not to share between a set of tasks. These
selective sharing methods offer a general approach to multi-task learning that can
be extended to a large number of tasks which can all inform each other even if
they are only loosely related. In the larger context of artificial intelligence, this
approach presents a promising range of possibilities for moving away from narrow
artificial intelligence towards a more general and human-like artificial intelligence.

Our investigation of multi-task learning methods in this thesis was carried out
through the lens of a recently proposed task of semantic tagging. In this task
each word is assigned a tag representing its semantic class. Our choice of task
is motivated by the intuition that capturing lexical semantic distinctions can be
informative for a variety of Natural Language Processing tasks. Our investigation
is broken down into four related research questions, each addressed in one of the
chapters. Below are the conclusions which can be drawn from each of the four
chapters 1.

Multi-task Learning for Sequence Labelling Tasks
In chapter 2 we began by addressing the following research question:

Research Question 1: Which sequence labelling tasks, if any, can help
with semantic tagging in a multi-task learning setting?

We explore the utility of three different tasks as auxiliaries for semantic tag-
ging: Universal Dependencies Part-Of-Speech Tagging, Combinatory Categorial

1Chapter I is an introduction
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Grammar supertagging, and Universal Dependencies dependency relation tag-
ging. We choose these tasks based on previous usage as auxiliaries for semantic
tasks in the literature. Moreover, we introduce a novel highway network layer
to replace a residual network layer in a state-of-the-art deep residual semantic
tagger, giving the model more flexibility in controlling residual connections. We
find that out of the three tasks only Universal Dependencies Part-Of-Speech Tag-
ging in combination with highway networks results in an improvement over the
single-task model which does not use an auxiliary. This agrees with some of the
previous findings regarding the characteristics of the label distributions of tasks
which perform well as auxiliaries for semantic tasks: a low kurtosis and a com-
pact label distribution. Overall, our results point towards the limitations of the
fully-shared network approach to multi-task learning.

We then turn to the converse of the first question aiming to answer the fol-
lowing question:

Research Question 2: Can semantic tagging be informative for other
sequence labelling tasks? If so, how and under which multi-task settings?

Observing the limitations of fully-shared networks in the previous set of ex-
periments, we introduce two more flexible mutli-task learning settings: partially-
shared networks and a setting we term Learning what to share. To answer Re-
search Question 2 we employ semantic tagging as an auxiliary task for Univer-
sal Dependencies Part-Of-Speech Tagging, using a bidirectional LSTM tagging
model which is then adapted to each of the mutli-task learning settings.

Our two main findings are: a) all multi-task settings show an improvement
over the single-task model, meaning that the semantic tagging task is informa-
tive for Universal Dependencies Part-Of-Speech Tagging in all cases and b) the
Learning what to share setting outperforms all other settings by a considerable
margin, showing that even for tasks which are close enough for fully-shared net-
works to work, a more nuanced approach to parameter sharing still leads to better
performance.

In this chapter and the next, we offer a generalizable framework for the evalua-
tion of the utility of an auxiliary task under different multi-task learning settings.
This is important because the majority of previous work on the evaluation of
how useful certain auxiliary tasks are only uses the FSN setting [Plank, 2016b,
Søgaard and Goldberg, 2016] which we show is inferior to other settings. Other
more recent work which presents selective sharing architectures focuses primar-
ily on the those architectures themselves, without paying too much attention to
the auxiliary tasks themselves [Liu et al., 2016, Meyerson and Miikkulainen, 2017,
Ruder et al., 2017]. We offer a unification of the two strands of work by evaluating
the utility of semantic tagging in different settings.

Multi-task Learning for Sentence-level and Structured Pre-
diction Tasks
We then turn our attention to sentence-level and structured prediction tasks
aiming to answer the following the following question:
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Research Question 3: Can semantic tagging be informative for higher-
level semantic tasks such as natural language inference or structured predic-
tion tasks such as dependency parsing in a multi-task learning or transfer
learning setting?

We take the tasks of Universal Dependency parsing and Natural Language
Inference as main tasks and employ semantic tagging as an auxiliary. Our use of a
sequence labelling auxiliary task with sentence-level (Natural Language Inference)
and structured prediction (Universal Dependency parsing) tasks is novel. As far
as we are aware, this combination has only been attempted by Hashimoto et al.
[2016] which take a hierarchical approach and do not employ selective sharing
mechanisms.

Our findings show that for Universal Dependency parsing all multi-task learn-
ing settings were beneficial and that the more flexible settings lead to a larger
improvement. For Natural Language Inference the picture is more complex. As
Natural Language Inference only has labels on the sentence level rather than on
the word-level, it is structurally unlike semantic tagging. However, it is also a
task which requires deep understanding of natural language semantics and can
therefore conceivably benefit from the signal provided by semantic tagging. Our
results show that it is indeed possible to leverage this signal given a selective
sharing setup where negative transfer can be minimized. Indeed, only the most
flexible of out settings leads to improvements over the single-task models for this
task.

Multi-lingual Learning as an instance of Multi-task learn-
ing
Finally we turn our attention to multi-lingual learning, where multi-lingual learn-
ing is framed as a special case of multi-task learning with each language treated
as a task. Our goal is to answer the following question:

Research Question 4: Can multi-lingual approaches which treat multi-
lingual learning as a special case of multi-task learning be used to improve
semantic tagging accuracy for languages with less or no training data?

In order to answer Research Question 4, we design a set of experiments
to test whether the semantic tagging dataset which is available for English can
be used to improve the semantic tagging models for Dutch and German. Thus
is motivated by the fact that a much larger amount of data English than for
German and Dutch in the parallel meaning bank.

We use word embedding mapping methods to facilitate cross-lingual transfer
by aligning the embedding spaces across languages. Our overall findings indicate
that this is a viable approach to transferring information between between lan-
guages: a) our zero-shot models which only see English training data show an
above chance performance and b) with only a very small amount of in-language
training data, the multi-lingual models can outperform the models which are
trained on the full monolingual data.
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Future Work
There are many directions in which this work can be extended:

• Exploring the broad space of other tasks which can benefit from semantic
tagging as an auxiliary.

• Analyzing the results achieved and representations obtained by multi-task
models in order attain a more solid understanding of why multi-task learn-
ing helps.

• Further examining the conditions (mutli-task learning settings, task combi-
nations, etc.) under which multi-task and transfer learning can be success-
ful.

• Developing more flexible methods of multi-task learning. In this thesis we
showed that selective sharing methods hold an advantage over less flexible
methods. Further exploration of this direction of research promises to yield
multi-task learning methods which could allow for effective joint learning
of a large number of diverse tasks.

• As more effective multi-task learning methods are developed, the potential
for large-scale multi-lingual learning using the methods demonstrated in
this thesis will become more and more possible. This will allow for low-
resource languages to benefit from the advances made in Natural Language
Processing which are currently to a large extent only available for high-
resource languages.
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