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to point me in the right direction but also helped me to walk in it.

v



vi



Contents

List of Symbols and Abbreviations 3

Introduction 5

1 Problem formulation 7
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Geometry and boundary conditions . . . . . . . . . . . . . 8
1.2.2 Balance laws and governing equations . . . . . . . . . . . . 9

1.3 Enthalpy method . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 Temperature equation . . . . . . . . . . . . . . . . . . . . 14
1.3.2 Enthalpy interface condition . . . . . . . . . . . . . . . . . 17
1.3.3 Mollified parameters . . . . . . . . . . . . . . . . . . . . . 18
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List of Symbols and
Abbreviations
Symbols – in order of appereance

ω(t) domain
σ(t) singular surface
γf(t) free surface
as, al value of quantity a pertaining to solid, liquid phase
γf(t) free surface
nσ unit normal of singular surface
v Eulerian particle velocity field
w Eulerian interface velocity field
ρ (mass) density
t surface traction
b body force density
T Cauchy stress tensor
I identity tensor
e internal energy density
q heat flux
be heat supply density
D symmetric part of velocity gradient, D := 1

2

(
∇v + (∇v)T

)
E total energy density
η entropy density
bη entropy source density
q η entropy flux
pth thermodynamic pressure
θ thermodynamic temperature
h enthalpy density
cp molar heat capacity at constant pressure
βV thermal expansion coefficient
m mean normal stress
Aδ deviatoric part of tensor A, Aδ := A− 1

3 TrA
S shear part of Cauchy stress tensor
L latent heat of fusion
Lm latent heat of melting
θm melting temperature
χ(a,b)(x) characteristic function of interval (a, b)
ϵ mollifying parameter
fϵ mollification of quantity f
µ dynamic viscosity
k thermal conductivity
H(x), H0

ϵ (x) Heavyside step function, jump at x = 0, C0 approximation
δ(x), δ0

ϵ (x) Dirac delta distribution, center at x = 0, C0 approximation
Ck, k ∈ N0 integration constants
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Abbreviations – in alphabetical order

ALE Arbitrary Eulerian-Lagrangean
ASI Italian Space Agency
CFD Computational fluid dynamics
CFL Courant-Friedrichs-Lewy (condition)
ESA European Space Agency
FEM Finite Element Method
NASA National Aeronautics and Space Administration
ODE Ordinary differential equation
PDE Partial differential equation
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Introduction
A very successful Cassini-Huygens space mission was able to explore a possibly
life harbouring planetary object within our Solar system. This relatively small
icy moon, called Enceladus, has the necessary conditions for life—heat and liquid
water. Contrary to expectations, the moon is still very active and its silicate core,
whose particles were detected by the Cassini spacecraft, contains heat sources.
A model of thermomechanical interaction between outer ice shells and deep oceans
on long time scales might contribute to an overall understanding of the moon’s
evolution. Such a question is remarkably important in the context of a possi-
ble presence of any form of life. This thesis only gives a simple formulation of
the thermomechanical problem connected with the important question above, it
studies mathematical difficulties of the formulation and proposes suitable tools
for their solution.

The first complication is connected with the phase transition within the do-
main. The melting front represents an abrupt change of material properties.
Such a change may be very inconvenient from the computational point of view.
An approximation of the melting front is a possible solution. Thus we come at
the so called diffused-interface formulation. Thermomechanical description of the
domain is given by the enthalpy potential. Enthalpy method is an application
of the diffused-interface formulation on our problem. Chapter 1 provides math-
ematical formulation of the problem and derives the enthalpy method for the
problem.

Stefan problem and its anaytical solution provides a solid background for
benchmarking of the enthalpy method. Formulation and analytical solution of the
Stefan problem in one, two and three spatial dimensions are presented in Chapter
2. The chapter is completed with result comparison for one-dimensional and
two-dimensional cylindrically symmetric Stefan problem. A small remark on
the stability of the one-dimensional numerical algorithm is attached. To our
knowledge, benchmarking of the Stefan problem in two spatial dimensions is
new.

The surface of the moon is not a subject to any traction, therefore it formes
the so called free surface. Our domain, that describes the cross section of the
planetary body, is thus time-dependent. The tool described in Chapter 3 provides
a kinematical description that is well-suited for problems with the free surface.
The arbitrary Lagrangian-Eulerian description is applied on the Earth’s mantle
convection benchmark problem and results for the fixed domain and the free
surface formulation are compared.
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source: https://saturn.jpl.nasa.gov/
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1. Problem formulation

1.1 Motivation
In 1997 began a journey to what was originally intended to be a four year mission,
but it lasted almost a decade longer. The Cassini-Huygensi mission was the
collaborative effort of three space agencies (NASA, ESA and ASI—Italian Space
Agency). It ended in 2017 and brought a vast amount of data about several
planetary bodies of our Solar system. For more information about the mission,
the reader can visit https://saturn.jpl.nasa.gov/.

Enceladus, an icy moon of the planet Saturn, quickly became a point of inter-
est of astrobiologists, since both liquid water and heat sources are present beneath
the icy shell. The relatively small body with the radius of 252 kilometers provides
conditions hospitable to life.

crystallization

melting meltingice

water (ocean)

dynamic topography

viscous relaxation

Figure 1.1: Main mechanisms of thermomechanical interaction between
the icy shell and the heated water.

Ongoing research has shown that Enceladus is still geologically very active
icy moon, which is indicated by a presence of water vapor plumes on the south
pole of the mentioned satellite. The material escaping through these plumes is
a source of the Saturn’s E ring. The high heat fluxes connected with the vapor
plumes can be explained by the localised solid-state convection of ice. The total
picture of the main themomechanical processes taking place in the ice crust and
on its interface with the ocean depicted in Figure 1.1 is completed by the fact that
Enceladus is one of the brightest object in the Solar system. It has the albedo
of approximately 80%, thus it reflects the majority of incoming radiation. Other
general information about Enceladus can be found in [Spencer and Nimmo, 2013].

According to [Beuthe, 2018], the average thickness of the ice crust can be
approximated by spherical harmonics of low degrees which reads:

d = d00+d20P20(cos(π/2−ϕ))+d22P22(cos(π/2−ϕ)) cos 2φ+d30P30(cos(π/2−ϕ)),

iGiovanni Domenico Cassini (1625–1712) – Italian mathematician and astronomer, he was
the first to observe that Saturn’s rings (which were discovered by Galileo) are divided.

Christiaan Huygens (1629–1695) – Dutch physicist and astronomer, also a very creative
inventor (patented pendulum clock), who among others studied Saturn’s rings.

7
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where (d00, d20, d22, d30) = (22.8, −12.1, 1.3, 3.7) ± (4, 2.4, 0.3, 0.7) km and Pnm

are the unnormalised Legendre polynomials associated to the spherical harmon-
ics, ϕ is the latitude and φ is the longitude. The only basis function that lacks
radial symmetry is P22 and it is weighted with the smallest coefficient d22. Conse-
quently (and in accordance with Beuthe) we will ignore the longitudinal thickness
variations. This enables us to exploit the two-dimensional nature of the problem
and preferably present only the planar formulation.

1.2 Mathematical model
Main objective of this section is to provide a general mathematical and physical
framework for a formulation of the problem.

1.2.1 Geometry and boundary conditions
Our domain of interest constists of a part of the cross section of the whole plan-
etary body (see Figure 1.2). In our abstraction this domain contains the two
discernible phases denoted by ωl(t) for liquid water and ωs(t) for solid (ice) phase,
respectively.

The subregions are divided by a smooth singular surface denoted by σ(t),
whose well-defined normal nσ is oriented into the solid phase subregion. For the
future purposes we will take ω := ωl ∪ ωs ∪ σ to be the domain containing the
both phases along with the singular surface.

Our model describes the top boundary γf as the free surface, thus the domain
ω is time-dependent. Having in mind that the geometry represents only part of
the bigger system, we equip its side walls γp with periodic boundary conditions.
The bottom boundary γ0 represents a border of a porous core. We expect that
the fluid phase is able to slip freely on this boundary.

σ

ωs

ωl

nσ

γf

γ0

γp γp

Figure 1.2: Geometrical description of the domain of interest.

In comparison with the usual continuum mechanics problems, our formulation
needs to consider the two folloiwng difficulties:

· the phase change interface—represented by the singular surface σ(t)

· the free surface γf(t).
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Forbothofthesehindrances,wewillproposeapossible methodtogetherwith
itsvalidationintheformofabenchmarkcomparison.

Thermomechanicalinteractionsofthephasesaredescribedbyasystemof
PDEs,calledbalancelaws. Thesebalancelaws(orsimplybalances)canbeex-
pressedinanintegralformusinggeneralisationsoftwoimportantresultsfrom
vectorcalculus:

TheDivergenceTheorem foravectorieldhappliedtothetime-dependent
domainω(t),thatexperiencesadiscontinuityacrossthesingularsurfaceσ(t)but
hiscontinuouslydiferentiableinsideω(t)\σ(t),foreverytii:

∫

ω(t)
h·nσda=

∫

ω(t)\σ(t)
divhdv+

∫

σ(t)
h ·nσda, (1.1)

where h :=h+−h− denotesthejumpofthevectorieldhacrossthesingular
surfaceσ(t),i.e.:

∀t,∀x∈σ(t):h+(t,x):=lim
s→0+

h(t,x+snσ(t,x)),

h−(t,x):=lim
s→0−

h(t,x+snσ(t,x)).

Usingthepreviousresult,thegeneralisedReynolds’TransportTheoremfora
scalarieldf,thatiscontinuouslydiferentiableinsideω(t)\σ(t),canbeexpressed
asfollows:

D

Dt

∫

Ω(t)
fdv=

∫

ω(t)\σ(t)

[
∂f

∂t
+div(fv)

]

dv+
∫

σ(t)
f(v−w)·nσda, (1.2)

where D/Dt:= ∂/∂t+(v·∇) =∂/∂t+vi∂/∂xidenotesthe material(or
substantial)derivative. Wealsoneedtodistinguishbetweentheparticlevelocity
vandwiii,thevelocityoftheinterface(representedbythesingularsurfaceσ(t)),
whicharenotgenerallyequal.Thesameresult,withminorchangesinnotation,
holdstrueforvectorandtensorvariables.Forproofsofboththeorems,see[Hutter
andJ̈ohnk,2010],subsection3.2.1.

1.2.2 Balancelawsandgoverningequations

Presentsubsectioncontainsformulationofthefundamentalprinciplesofthecon-
tinuum mechanics,viz. balancelaws. Theselawsaregiveninaglobal(orin-
tegral)formforabodyofthecontinuumcontainingthesingularsurfaceσ(t).
Notationandformulationsofthelawsaresimilartothosepresentedinlecture
notes[Martinec,2003].

Physicalpropertiesofthebodyaregivenbythepostulateddensitiesofphys-
icalvariables. Undertheadditiveassumptionwecanintegratethosedensities

iiNotationconventionthatisbeingusedinthethesiscanbefoundinAppendixA:Notation
iiiWedonotconsidercrackstooccur,thisimplies:

w ·nσ=0, (1.3)

whichdoesnotnecessarilymeanthatwiscontinousonω(t),itstangentialpartis,nevertheless,
physicallyirrelevant.
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overininitesimalvolumeelementstoobtainthephysicalpropertyofthewhole
body.Ifwemoreoversupposethatthebalancelawsholdforanypartofthebody
(assumptionsofthelocalcontinuummechanics),wecanderiveieldequations(or
diferentialformofbalancelaws)characterisingphysicalvariableslocally.

Conservationof massandcontinuityequation

Employingthepreviousformulae,wecanexpresstheintegralformoftheLawof
MassConservation:

D

Dt

∫

ω(t)
ρdv

(1.2)
=
∫

ω(t)\σ(t)

[
∂ρ

∂t
+div(ρv)

]

dv+
∫

σ(t)
ρ(v−w)·nσda=0,(1.4)

whereρisthe(mass)densityofthematerial.Underthepostulatethatthe
massbalancelawisvalidforanarbitrarypartofthevolumeω(t)andthesingular
surfaceσ(t),wecandeducethatbothoftheintegrandsintheintegralmass
balancelaw(1.4)areidenticallyzero. Wethuscometotheso-calledcontinuity
equation,complementedbyajumpofthedensityacrossthesingularsurfaceσ(t):

Dρ

Dt
=−ρdivv inω(t)\σ(t), (1.5)

ρ(v−w)·nσ=0 onσ(t). (1.6)

Balanceoflinear momentumandequationsof motion

Anotherfundamentalbalancelawisthatof(linear)momentum.Letusassume
thatthebodyisasubjecttosurfacetractiont(n),thatdependsonthesurface
normaln,andaresultantofthebodyforcesρb. ApplicationoftheCauchy
Lemmaivyields:

D

Dt

∫

ω(t)
ρvdv=

∮

∂ω(t)
t(n)da+

∫

ω(t)
ρbdv=

=
∮

∂ω(t)
❚nda+

∫

ω(t)
ρbdv=

(1.1)
=
∫

ω(t)\σ(t)
div❚+ρbdv+

∫

σ(t)
❚nσda, (1.7)

D

Dt

∫

ω(t)
ρvdv

(1.2)
=
∫

ω(t)\σ(t)

[
∂(ρv)

∂t
+div(ρv⊗v)

]

dv+

+
∫

σ(t)
ρv⊗(v−w)nσda,

(1.8)

where❚denotestheCauchystresstensor,i.e.div❚representstheaction
ofsurfaceforcesonthevolumeelementdvandbisthedensityoftheresultant

ivThislemmagives,inourcase,thelineardependenceofthetractionforceonthesurface
normal,namely:

t(t,x,n(x))=❚(t,x)n(x),

where❚istheluxofthetractionforce,calledtheCauchystresstensor.Indeed,thisstatement
holdsunderadditionalassumptionthatthetractionforcedoesnotdependonotherdiferential
geometricpropertiesofthesurface,e.g.Gaussiancurvature.Formoredetailssee[Hutterand
J̈ohnk,2010],subsec.2.1.2.
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ofthebody(orvolume)forces. Combining(1.7)with(1.8)andusingagainthe
additivityprinciple,weobtaintheequationsofmotionwithappropriateinterface
conditions:

∂(ρv)

∂t
+div(ρv⊗v)

(1.5)
= ρ

Dv

Dt
=div❚+ρb inω(t)\σ(t), (1.9)

ρv⊗(v−w)−❚ nσ=0 onσ(t). (1.10)

Balanceofangular momentumandsymmetryofthe Cauchy
stresstensor

Mathematicalexpressionofthe BalanceLawofAngular Momentumstates:

D

Dt

∫

ω(t)
x×ρvdv=

∮

∂ω(t)
x×t(n)da+

∫

ω(t)
x×ρbdv. (1.11)

Usingthefollowingidentityv:

u×(❆v)=(u×❆)v, (1.12)

wecanmodifythebalancelawofangularmomentum(1.11):

D

Dt

∫

ω(t)
x×ρvdv=

∮

∂ω(t)
x×(❚n)da+

∫

ω(t)
x×ρbdv=

(1.12)
=

∮

∂ω(t)
(x×❚)nda+

∫

ω(t)
x×ρbdv=

(1.1)
=

∫

ω(t)\σ(t)
div(x×❚)+x×ρbdv+

∫

σ(t)
x×❚ nσda. (1.13)

Letusrecasttheirstterminthevolumeintegralintoamoreconvenientform:

div(x×❚)=
∂

∂xj

[x×❚]ijei=
∂

∂xj

(εiklxkτlj)ei=

=εikl
∂xk

∂xj

τljei+εiklxk
∂τlj

∂xj

ei=

=■
.
×❚+x×(div❚), (1.14)

wherethedot-crossproduct
.
×isdeined:

❆
.
×❇:=εijkAjlBklei,

and■denotestheidentitytensor.

vCartesiancoordinatesofthecrossproductu×❆ aregivenbythefollowingprocedure:

u×❆=ukek×Aljel⊗ej=ukAlj(ek×el)⊗ej=ukAlj(εiklei)⊗ej=

=εiklukAljei⊗ej=[u×❆]ijei⊗ej.
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UsingthegeneralisedReynolds’theorem(1.2),wecantransformtheright-
handsideinto:

D

Dt

∫

ω(t)
x×ρvdv=

∫

ω(t)\σ(t)

D

Dt
(ρx×v)+(ρx×v)divvdv+

+
∫

σ(t)
ρ(x×v)⊗(v−w)nσda=

=
∫

ω(t)\σ(t)
(x×v)

(
Dρ

Dt
+ρdivv

)

+ρ
Dx

Dt
×v+ρx×

Dv

Dt
dv+

+
∫

σ(t)
ρ(x×v)⊗(v−w)nσda=

(1.5)
=

∫

ω(t)\σ(t)
x×ρ

Dv

Dt
dv+

∫

σ(t)
ρ(x×v)⊗(v−w)nσda,(1.15)

where weusedthefactthat Dx/Dt×v= v×v= 0. Finally,putting
together(1.13)with(1.15)andusingboth(1.14)andthebalanceoflinear mo-
mentum(1.9)weassert:

∫

ω(t)
■
.
×❚dv+

∫

σ(t)
x×(ρ(v−w)⊗v−❚)nσda=0,

whichimplies:

■
.
×❚=εijkτkjei=0→ ❚=❚T inω(t)\σ(t), (1.16)

x×(ρ(v−w)⊗v−❚)nσ=0 onσ(t). (1.17)

Obviously,interfacejumppertainingtothe motionequations(1.10)already
yield(1.17).Thus,angularmomentumjumpconditionsareredundant.

Conservationofenergyandenergyequation

TheConservationofEnergystatesthatthetimerateofchangeoftotalenergy—
consistingofkineticandinternalparts—equalstherateofworkofthesurfaceand
bodyforcesalongwiththeothersourcesofenergy. Weassumethattheenergy
trasferisofpurelythermo-mechanicalorigin. TheConservationofEnergycan
beexpressedmathematicallyasfollows:

D

Dt

∫

ω(t)
ρe+

1

2
ρ|v|2dv=

∮

∂ω(t)
(❚n)·v−q·nda+

∫

ω(t)
ρb·v+ρbedv,(1.18)

whereeistheinternalenergydensity,qistheheatluxthroughboundary
andbeistheheatsupplydensity.

Theirsttermontheright-handsidecanberewrittenasfollows:
∮

∂ω(t)
(❚n)·v−q·nda=

∮

∂ω(t)
(❚Tv)·n−q·nda=

(1.1)
=

∫

ω(t)\σ(t)
div(❚Tv−q)dv+

∫

σ(t)
❚Tv−q ·nσda=

=
∫

ω(t)\σ(t)
div❚·v+❚..∇v−divqdv+

+
∫

σ(t)
❚Tv−q ·nσda,

(1.19)
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where..meansthedotproductoftensors(fordeinition,see Appendix A:
Notation). SincewealreadyknowthatCauchystresstensorissymmetric,we
canwrite❚..∇v=❚..❉,where❉isthesymmetricpartofthevelocitygradient,
i.e.❉:=1/2(∇v+(∇v)T).

Theleft-handsideof(1.18)canbeagain—withaidoftheReynolds’theo-
rem(1.2)forf=ρE=ρ(e+1/2|v|2)—transformedinto:

D

Dt

∫

ω(t)
ρe+

1

2
ρ|v|2dv=

∫

ω(t)\σ(t)

D

Dt

(

ρe+
1

2
ρ|v|2

)

+
(

ρe+
1

2
ρ|v|2

)

divvdv+

+
∫

σ(t)

(

ρe+
1

2
ρ|v|2

)

(v−w)·nσda=

=
∫

ω(t)\σ(t)

(

e+
1

2
|v|2

)(
Dρ

Dt
+ρdivv

)

+ρ
De

Dt
+ρ

Dv

Dt
·vdv+

+
∫

σ(t)

(

ρe+
1

2
ρ|v|2

)

(v−w)·nσda=

(1.5)
=

∫

ω(t)\σ(t)

[

ρ
De

Dt
+ρ

Dv

Dt
·v

]

dv+

+
∫

σ(t)

(

ρe+
1

2
ρ|v|2

)

(v−w)·nσda.

(1.20)

Forthereducedlocalformoftheenergyconservationlaw(balanceofinternal
energy),weneedtousethebalanceoflinear momentum(1.9),symmetryofthe
stresstensor(1.16)(plustheconsequencethat❚..∇v= ❚..❉),the modiied
righthandside(1.19)andagaintheadditivityprinciple:

ρ
De

Dt
=❚..❉−divq+ρbe inω(t)\σ(t), (1.21)

0=
(

ρe+
1

2
ρ|v|2

)

(v−w)−❚v+q ·nσ onσ(t). (1.22)

Entropyproductionandentropyinequality

TheSecondLawofThermodynamicsstatesthatthetotalentropyproduction,
i.e.thetotalchangeofentropy minusthecontributionduetotheentropylux
andentropysources,isalwaysnon-negative,whichisexpressedmathematically:

D

Dt

∫

ω(t)
ρηdv−

∫

ω(t)
ρbηdv+

∮

∂ω(t)
qη·nda≥0, (1.23)

whereηistheentropydensity,bηistheentropysourceandqηistheentropy
luxthroughtheboundary.

ApplyingtheReynoldsTransportTheorem(1.2)totheirsttermofthebal-
ance(1.23)andusingthecontinuityequation(1.5),wewillgetthelocalformof
theentropyinequalitywiththeappropriateinterfacejumpcondition:

ρ
Dη

Dt
−ρbη+divqη≥0 inω(t)\σ(t), (1.24)

ρη(v−w)+qη ·nσ≥0 onσ(t). (1.25)
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1.3 Enthalpy method
In this section we present the thermodynamical potential suitable to our problem.
Using the definition of the enthalpy, we derive the temperature equation that
expresses mathematically the local form of the energy conservation law.

1.3.1 Temperature equation
We start out from the fundamental equation of the internal energy density in the
form:

e = e

(
η,

1
ρ

)
, (1.26)

where we assume that e is a function of the class C2, which is strictly convex
in both variables. The reasons for such requirements will be unveiled in the
following.

Because of the smoothness of the function e, the following definitions have
sense:

pth := −
(

∂e

∂(1/ρ)

)
η

, θ :=
(

∂e

∂η

)
1/ρ

, (1.27)

where pth is the thermodynamic pressure and θ is the thermodynamic temper-
ature. Since we assumed that e is twice continuously differentiable and strictly
convex, we see that ∂2e/∂(1/ρ)2 > 0. Due to the Inverse Function Theorem (see
e.g. [Evans, 1998], Appendix C.5), there exists a C1 function, which we will for
simplicity denote 1/ρ, such that:

1
ρ

= 1
ρ

(η, pth).

Now we can rewrite the internal energy density in terms of η and pth:

e = ẽ(η, pth) := e

(
η,

1
ρ

(η, pth)
)

. (1.28)

We are now ready to define our preferred thermodynamic potential as the Leg-
endre transform of the internal energy e with respect to 1/ρ, i.e. enthalpy:

h(η, pth) := ẽ(η, pth) + pth 1
ρ

(η, pth). (1.29)

Natural variables of the enthalpy are the entropy η and the pressure pth, which
is not convenient, since we are unable to measure entropy directly. It is therefore
preferable to exchange the entropy for the thermodynamic temperature θvi. As a

viThe pressure and temperature are natural variables of a different thermodynamic potential,
namely the Gibbs potential G, which we could have used directly, but thus we would loose the
physical interpretation of the jump across the singular surface—see section Enthalpy interface
condition.
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consequence of our definition of enthalpy (1.29) we get:(
∂h

∂η

)
pth

=
(

∂e

∂η

)
1/ρ

+
(

∂e

∂(1/ρ)

)
η

(
∂(1/ρ)

∂η

)
pth

+pth
(

∂(1/ρ)
∂η

)
pth

(1.27)= θ, (1.30)
(

∂h

∂pth

)
η

=
(

∂e

∂(1/ρ)

)
η

(
∂(1/ρ)
∂pth

)
η

+ 1
ρ

(η, pth) + pth
(

∂(1/ρ)
∂pth

)
η

(1.27)= 1
ρ

. (1.31)

If we knew that ∂2h/∂η2 > 0, we could express this time entropy η in terms
of thermodynamic temperature and pressure to get the suitable potential. It
is required to show that enthalpy is a strictly convex function with respect to
entropy. Nevertheless we know that the internal energy e is a strictly convex
function in both its variables, which gives (using Sylvester’s criterion on a Hessian
matrix of the smooth function e):

∂2e

∂η2 > 0,
∂2e

∂(1/ρ)2 > 0,
∂2e

∂η2
∂2e

∂(1/ρ)2 >

(
∂2e

∂η∂(1/ρ)

)2

. (1.32)

The differentiation of the thermodynamic pressure (1.27) with respect to entropy
η yields:

0 = − ∂2e

∂η∂(1/ρ) − ∂2e

∂(1/ρ)2
∂(1/ρ)

∂η
. (1.33)

Finally, we can express the second derivative of enthalpy in the following way:

∂2h

∂η2
(1.30)= ∂θ

∂η

(1.27)= ∂2e

∂η2 + ∂2e

∂η∂(1/ρ)
∂(1/ρ)

∂η
=

(1.33)= ∂2e

∂η2 −
(

∂2e

∂η∂(1/ρ)

)2 (
∂2e

∂(1/ρ)2

)−1 (1.32)
> 0.

Just as a remark, it is possible to show that enthalpy h is strictly concave in
pressure pth (proof is similar, see lecture notes [Evans, 2018]).

In view of the Inverse Function Theorem we are now allowed to define the
enthalpy h as a function of the temperature θ and the pressure pth:

h̃(θ, pth) := h
(
η(θ, pth), pth

)
. (1.34)

To simplify the notation, we will denote this new function by the same symbol h.
Next we need to give sense to the material derivative of the enthalpy potential:

Dh

Dt
=
(

∂h

∂θ

)
pth

Dθ

Dt
+
(

∂h

∂pth

)
θ

Dpth

Dt
, (1.35)(

∂h

∂θ

)
pth

(1.34)=
(

∂h

∂η

)
pth

(
∂η

∂θ

)
pth

(1.27)= θ

(
∂η

∂θ

)
pth

=: cp, (1.36)(
∂h

∂pth

)
θ

(1.34)=
(

∂h

∂η

)
θ

(
∂η

∂pth

)
θ

+
(

∂h

∂pth

)
θ

(1.27)= θ

(
∂η

∂pth

)
θ

+ 1
ρ

. (1.37)

In (1.36) we defined the molar heat capacity at constant pressure cp. It only
remains to express ∂η/∂pth by means of measurable quantities. To this end we
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will use both the second and the first law of thermodynamics:

θdη = θ

(
∂η

∂θ

)
pth

dθ + θ

(
∂η

∂pth

)
θ

dpth (1.36)= cpdθ + θ

(
∂η

∂pth

)
θ

dpth (1.38)

θdη = de + pthd1
ρ

=
(

∂e

∂θ

)
pth

dθ +
(

∂e

∂pth

)
θ

dpth+

+ pth
(

∂(1/ρ)
∂θ

)
pth

dθ + pth
(

∂(1/ρ)
∂pth

)
θ

dpth =

=
⎡⎣(∂e

∂θ

)
pth

+pth
(

∂(1/ρ)
∂θ

)
pth

⎤⎦dθ +
[(

∂e

∂pth

)
θ

+pth
(

∂(1/ρ)
∂pth

)
θ

]
dpth. (1.39)

If we use the symmetry of the second mixed derivatives of η (often called as
Maxwell relations), then (1.38) yields:

∂cp

∂pth = θ
∂2η

∂pth∂θ
= θ

∂2η

∂θ∂pth = ∂

∂θ

(
θ

(
∂η

∂pth

)
θ

)
−
(

∂η

∂pth

)
θ

. (1.40)

Following the same steps, we can get from (1.39)

∂cp

∂pth = ∂2e

∂pth∂θ
+
(

∂(1/ρ)
∂θ

)
pth

+ pth ∂2(1/ρ)
∂pth∂θ

=

= ∂2e

∂θ∂pth + pth ∂2(1/ρ)
∂θ∂pth +

(
∂(1/ρ)

∂θ

)
pth

=

= ∂

∂θ

[(
∂e

∂pth

)
θ

+pth
(

∂(1/ρ)
∂pth

)
θ

]
+
(

∂(1/ρ)
∂θ

)
pth

=

(1.39)= ∂

∂θ

(
θ

(
∂η

∂pth

)
θ

)
+
(

∂(1/ρ)
∂θ

)
pth

. (1.41)

If we compare (1.40) with (1.41), we obtain the desired expression:(
∂η

∂pth

)
θ

= −
(

∂(1/ρ)
∂θ

)
pth

= −
(

∂V

∂θ

)
pth

= −βV

ρ
. (1.42)

In the last expression we used the thermal expansion coefficient βV, which reads:

βV := 1
V

(
∂V

∂θ

)
pth

.

Finally, if we plug (1.42) into (1.37), combine this with (1.36) and substitute both
into equation (1.35), we obtain the final form of the material time derivative of
enthalpy expressed in thermodynamical temperature and pressure:

Dh

Dt
= cp

Dθ

Dt
+ 1

ρ
(1 − βVθ)Dpth

Dt
. (1.43)

On the other hand we can use the definition of enthalpy and express its balance:

ρ
Dh

Dt

(1.29)= ρ
De

Dt
+ Dpth

Dt
− pth

ρ

Dρ

Dt
=

(1.21),(1.5)= T
..D− div q + ρbe + Dpth

Dt
+ pth div v. (1.44)
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Toobtainthetemperatureequation,itremainstocombinethelasttwore-
sults(1.43)and(1.44):

ρcp
Dθ

Dt
=❚δ..❉δ−divq+ρbe+(m+pth)divv+βVθ

Dpth

Dt
, (1.45)

wherem:=1/3Tr❚isthemeannormalstressand❆δ:=❆−1/3(Tr❆)■isthe
deviatoricpartofthetensor❆.Theequation(1.45)representsthetimeevolution
ofthethermodynamictemperature.

1.3.2 Enthalpyinterfacecondition

Sincewetransformedthelocalinternalenergybalance,weneedtoexpressthe
jumpquantityaccordingly.Letusstartfromtheenergyinterfacecondition(1.22),
since weknowthat ρ(v−w)·nσ =0, wecandeine M := ρ+(v+ −w)·
nσ=ρ−(v− −w)·nσ. NowifwedecomposetheCauchystresstensorisolating
itsviscouspart,i.e.:❚ = −pth■+❙(suchdecompositionisonlynaturalfor
compressibleNavier-Stokesequations),wecanmodify(1.22):

ρE(v−w)−❚v+q·nσ=M E −
(
−pth■+❙

)
v ·nσ+ q·nσ=0.(1.46)

Ifweassumethatnojumpinpressureoccursacrossthesingularsurface(which
holdsifweexcludephenomenalikeshockwavesandneglectthepossiblecurvature
efectofsurfacetension), mathematically: pth =0,thenwecan modifythe
secondtermin(1.46):

(
−pth■+❙

)
v ·nσ

(1.3)
=− pth(v−w)·nσ+ ❙v ·nσ=

(1.16)
=− M

pth

ρ
+ ❙nσ·v. (1.47)

Thesecondtermontheright-handsidehasnow meaningofapowerofthe
frictionforces. Additionallyifweconsiderthedeinitionofenthalpy(1.29)we
canfurtherexpresstheenergyinterfacecondition(1.46)intheformofenthalpy:

M e+
pth

ρ
=M h = ❙nσ·v − q ·nσ− M

1

2
|v|2 . (1.48)

ItiscustomarytodenoteL:= h,whereLhasthe meaningoflatentheatof
fusion,inparticularLm meansthelatentheatofmelting,whichwillbeconsidered
intherestofthethesis.

ToobtaintheclassicalStefanconditionweneedtoneglectallthetermson
theright-handsideexceptfortheheatluxjumpcondition:

M Lm =− q ·nσ. (1.49)

Thejumpcondition(1.49)saysthattheamountofheat,thatisgivenbythe
diferenceofheatthatentersthe meltingfrontfromtheliquidphaseandheat
thatissuckedawaybythesolidphaseperonesecond,isconsumedsolelybythe
solid-to-liquidphasechangeofonecubicmeterofmaterialofdensityM .
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1.3.3 Molliiedparameters

Sofarwehavebeendescribingourdomainofinterestastwoindependentcontinua
ωlandωsseparatedbythesmoothsingularsurfaceσ(t).Itistimetoswitchour
viewpointandapplytheso-calleddifusedinterface method,whereweconsider
thedomaintobeilledwithasingleluidwithcontinuouslyvariable material
properties. Thatwaytherewillbeonlyonesetofgoverningequationswithin-
terfacialtermsaccountedforbytheadditionoftheappropriateinterfacesources.
Wewilldemonstratetheprocedureonontheexampleoftheenthalpypotential.
Wewillconsiderheatcapacities cs

p andcl
ptobeindependentofthethermody-

namictemperatureθ.Inviewofthetemperaturederivativeofenthalpy(1.36)
andthefactthat h =Lm onσ(t),weseethat:

h(θ,pth)=cs
p(pth)θχ(0,θm)(θ)+

(
Lm(pth)+cl

p(p
th)θ

)
χ[θm,∞)(θ)+h0(p

th),(1.50)

whereχ(θa,θb)(θ)isthecharacteristicfunctionoftheinterval(θa,θb)andh0 is
anenthalpyofformation,whichisatabulatedquantity.Inthefollowing,the
pressuredependenceof materialcoeicientsin(1.50)willbeunimportant. We
restrictourselvestoasimpliiedformula:

h(θ)=cs
pθχ(0,θm)(θ)+

(
Lm +cl

pθ
)

χ[θm,∞)(θ)+h0, (1.51)

whichcanbeviewedastheoriginalequation(1.50)atareferencepressurep0—
e.g.,atmosphericorambientpressure.

Fromthecomputationalpointofview,itisimpossibletoworkwithdistribu-
tions.Toovercomesuchobstacleitisnecessarytoprovideregularapproximations
ofsuchdistributions. Wewilltherefore mollifythe materialparametersanduse
continuousapproximationsofHeavysidestepfunctionandDiracdeltadistribu-
tion. GraphicinterpretationofregularisationisdepictedonFigure1.3. The
sharpinterfacewillbethusspreadoverabandofwidth2ϵaroundthe melting
temperatureθm.

Wewillprovidetherelation(1.51)fortheproduct ρhaswell.Thisisreason-
able,becausetheproductoftwodistributions,thatwillemergeafterdiferentia-
tionofρandh,cannotbegenerallytreatedasadistribution.Therefore:

ρh(θ)=ρscs
pθχ(0,θm)(θ)+

(
ρlLm +ρlcl

pθ
)

χ[θm,∞)(θ)+hρ
0. (1.52)

Nowwecanexpressthetemperatureequation(1.45)intheconservativeform:

∂ρh

∂t
+div(ρhv)=ρ

Dh

Dt

(1.44)
= ❚..❉−divq+ρbe+

Dpth

Dt
+pthdivv.

Usingtheexpression(1.52), wecan modifythelefthandsideoftheprevious
formulatogetanalternativeformofthetemperatureequation:

∂ρh

∂θ

∂θ

∂t
+div(ρhv)=❚..❉−divq+ρbe+

Dpth

Dt
+pthdivv. (1.53)

Presenceofsucha”mushy”regionisalsophysically meaningful,sincephase
transitionstakeplaceatregionsofinitethicknessvii. Asaresultofthemolliica-

viiThethicknessvaryfromordersof Angstromstocentimetersanddependson manyfac-
tors. Typically,thickerphase-transitionregionsresultfromphenomenaofthermodynamical
metastability,whichwillbenotconsideredinthethesis. Thoseregionstendtohavedendritic
orcolumnarmicrostructure.Fordetails,thereadercanreferto[AlexiadesandSolomon,1993].

18



θ

f(θ)

Lm

θm

(a) Jump discontinuity.

θ

fϵ(θ)

θm

ϵ

(b) Mollified step function.

θ

g(θ)
Lmδ(θ−θm)

θm

(c) Function with singularity at θm.

θ

gϵ(θ)

θm

ϵ

(d) Continuous approximation of g(θ).

Figure 1.3: Illustration of piecewise linear continuous approximation of
two archetypal distributions, (a) might describe enthalpy given by (1.51),
graph of g(θ) = df(θ)/dθ (in the sense of distributions) in figure (c)
describes the temperature dependence of the heat capacity cp.

tion, the evolution of the continuum will be described by a single system of PDEs,
containing strongly non-homogeneous (but continuous) material coefficients.

1.4 Résumé

For the sake of clarity we will make a summary of the previous content in the
form of two juxtaposed formulations of the problem.

1.4.1 Sharp-interface formulation

Only as a reminder: we consider the domain to be divided by the singular surface
σ into two subdomains ωs and ωl (as depicted in Figure 1.4) filled with two
independent continua governed by their particular systems of governing equations
supplemented by the jump conditions as a mean of communication between the
two phases. For fully Eulerian mathematical description, see Table 1.1.
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ωs

ωl

σ

ρs,cs
p,µs,...

ρl,cl
p,µl,...

nσ

γf

γ0

γp γp

Figure1.4:Sharp-interfaceformulation–descriptionofthedomain.

Solid Luquid
domain domain

ωs ωl

Governing
equations

Mass Dρs

Dt
+ρsdivvs=0 Dρl

Dt
+ρldivvl=0

Momentum ρsDvs

Dt
=div❚s+ρsbs ρlDvl

Dt
=div❚l+ρlbl

Ang. mom. ❚s=(❚s)T ❚l=
(
❚l

)T

Temperature

ρscs
p

Dθs

Dt
=❚s..❉s−divqs+

+ρsbs
e+pth,sdivvs+

+βs
VθsDpth,s

Dt

ρlcl
p

Dθl

Dt
=❚l..❉l−divql+

+ρlbl
e+pth,ldivvl+

+βl
VθlDpth,l

Dt

Jump
conditionsa,b

Mass ρ(v−w)·nσ=0
Momentum ρv⊗(v−w)−❚ nσ=0
Enthalpy ❙nσ·v − q ·nσ− M 1

2
|v|2 =M Lm

Note: aHere,jumphasthefollowing meaning: ρ =ρs−ρl.
bJumpcondtionofangular momentumisomittedduetoitsredundancy,see

sub-subsectionof1.2.2.

Table1.1:Summaryofthesharp-interfaceformulation.

1.4.2 Difused-interfaceformulation

Asadifused-interfaceproblemwedenotetheformulationwithasingledomain
containingbothofthephases,onechangingintotheotherthroughabandof
width2ϵ(wherethemetricisgivenbythetemperature),seeFigure1.5.
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ω

ρϵ, (cp)ϵ , µϵ, . . .

γF

γ0

γP γP

θ = θm

Figure 1.5: Formulation of the diffused-interface problem. The gray
dashed line in the middle gives the position of the melting front,
where θ = θm.

Evolution of such a problem is governed by the following PDEs:

Dρϵ

Dt
= −ρϵ div v, (1.54)

ρϵ
Dv
Dt

= divTϵ + ρϵbϵ, (1.55)

ρϵ (cp)ϵ

Dθ

Dt
= Tϵ

..D− div qϵ + ρϵ (be)ϵ+pth div v + (βV)ϵ θ
Dpth

Dt
, (1.56)

where we solve for the unknown velocity v, thermodynamic pressure pth and
temperature θ. The coefficient approximations are concisely tabulated in Ta-
ble 1.2.

Material Continuous
quantitya approximation

ρ, µ, k, βV, be, q, b,T fϵ = f s + (f l − f s)H0
ϵ (θ − θm)

cp (cp)ϵ = c s
p + (c l

p − c s
p)H0

ϵ (θ − θm) + Lmδ0
ϵ (θ − θm)

Special functions

H0
ϵ (θ − θm) =

⎧⎪⎪⎨⎪⎪⎩
0 if θ < θm − ϵ
θ−θm

2ϵ
− 1

2 if |θ − θm| ≤ ϵ

1 otherwise

δ0
ϵ (θ − θm) =

⎧⎨⎩
1
ϵ2

(
ϵ − (θ−θm)2

|θ−θm|

)
if |θ − θm| ≤ ϵ

0 otherwise
Note: a Names of the quantities are given in List of Symbols and Abbreviations.

Table 1.2: Mollified material coefficients.
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2. Stefan problem
This chapter deals with the first possible complication that was described in
the formulation of the problem presented in the sub-subsection Geometry and
boundary conditions. Sole purpose of the folowing chapter is to give an answer
(satisfactory, if possible) to a question wheter the tool devised in the section En-
thalpy method is powerful enough to track the position of the phase change front.
To this end we will benchmark enthalpy method with an analytic solution to the
Stefani problem. The analytic solution will be given for all the physically mean-
ingful (and analytically solvable) formulations of the problem.

2.1 Stefan 1D
First, we consider two phase Stefan problem on a semi-infinite one dimensional
domain.

2.1.1 Continuous problem
Formulation

Let us consider semi-infinite bar made of homogeneous material with following
properties:

· Cross section of the bar is constant along the center line.

· The material is thermally insulated so that no heat escapes through the
boudnary of the bar.

· There are no heat sources within the material.

Initially, the material is solid and held at a temperature θ∞, which is below
solidus. At the beginning of the observation heating is applied to the left end
of the domain. Position along the center line of the domain is described by an
x coordinate, so the end x = 0 is heated to a temperature θ0 which is above
the melting temperature of the solid phase denoted as θm. Consequently after
applying the heat, the material starts to melt and a liquid phase of the material
starts to spread from the left end of the bar. We add several assumptions on the
two phase problem:

· Both phases are of the same density ρ.

· Thermal properties of the phases—specific heat cp and conductivity coeffi-
cient k—are different but constant within the respective subdomain.

· The only mechanism of heat transfer is conduction—we assume the problem
to be static with v = 0.

· Latent heat Lm and melting temperature θm are constant.
iJosef Stefan (1835–1893) – Austrian physicist, also known for an empiric derivation of the

Stefan-Boltzmann law of a blackbody radiation.
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· As mentioned earlier, we do not assume metastability or nucleation phe-
nomena to take place.

The interface between the two phases (denoted as σ in the first chapter)
reduces in our abstraction to a point whose position at time t is denoted by s(t).
Figure 2.1 graphically summarizes the formulation.

θ = θ0

s(t)

θ = θm

x = 0 x

Figure 2.1: Sharp-interface formulation of the one-dimensional Stefan
problem on a semi-infinite line. The right end of the bar is heated to a
constant temperature θ0, position of the melting front is denoted s(t).

The temperature distribution within both of the phases of our semi-infinite
insulated material is described by the heat equation (1.45), which is significantly
reduced since we assume the phase change to be held at a constant pressure.
Moreover the material is considered incompressible and stationary (v = 0 in
both phases). Finally, if we assume that there are no heat sources and that
the heat transfer is governed by the Fourier’s law, we obtain the standard heat
equation:

ρcp
∂θ

∂t
= div (k∇θ). (2.1)

Now, under previous assumptions, we look for both the temeprature distri-
butions θ l(t, x), θ s(t, x) and the position of the melting front s(t), such that
following holds:

Heat equation in liquid region:
∂θ l

∂t
= αl ∂

2θ l

∂x2 , 0 < x < s(t), (2.2)

Heat equation in solid region:
∂θ s

∂t
= αs ∂2θ s

∂x2 , x ≥ s(t). (2.3)

Boundary conditions:
θ l(x, t)

⏐⏐⏐
x=0

= θ0,

lim
x→∞

θ s(x, t) = θ∞,
(2.4)

Interface condition:
θ l(x, t)

⏐⏐⏐
x=s(t)

= θm = θ s(x, t)
⏐⏐⏐
x=s(t)

, (2.5)

Initial condition:
θ s(x, t)

⏐⏐⏐
t=0

= θ∞, (2.6)

where αl = kl/(ρcl
p) denotes the heat diffusivity coefficient of the liquid phase.

Evolution of the melting front position is governed by the classical Stefan condi-
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tion (1.49), which in one-dimensional stationary problem takes the form:

ρLmwx = ρLm
ds

dt
= −kl ∂θ l

∂x

⏐⏐⏐⏐⏐
x=s(t)

+ ks ∂θ s

∂x

⏐⏐⏐⏐⏐
x=s(t)

. (2.7)

Nondimensional variables

We will solve the problem (2.2)-(2.7) analytically using similarity variable. In
order to do that it is convenient to formulate the problem nondimensionally—
we also demonstrate the procedure of nondimensional formulation on this simple
problem, since we will use nondimensional form of the problem quite often. We
start with setting the dimensionless temperatures as follows:

θ̃ l = θ l − θm

θ0 − θm
,

θ̃ s = θ s − θm

θm − θ∞
.

Substituting furthermore the normalized spatial and temporal coordinates with
scales [x] and [t] respectively: x̃ = x/[x], t̃ = t/[t], s̃ = s/[x] into the equa-
tion (2.2), we arrive at:

∂θ̃ l

∂t̃
= αl [t]

[x]2
∂2θ̃ l

∂x̃2 ,

choosing so-called diffusion time for the temporal scale [t] = [x]2/αl and trans-
forming the boundary and initial conditions (2.4), resp. (2.6), we thus give rise
to a nondimensional formulation of the Stefan problem—tildes were dropped for
simplicity of notation:

Nondimensional heat equation in liquid region:
∂θ l

∂t
= ∂2θ l

∂x2 , 0 < x < s(t), (2.8)

Nondimensional heat equation in solid region:
∂θ s

∂t
= α

∂2θ s

∂x2 , x ≥ s(t). (2.9)

Nondimensional boundary conditions:
θ l(x, t)

⏐⏐⏐
x=0

= 1,

lim
x→∞

θ s(x, t) = −1,
(2.10)

Nondimensional interface condition:
θ l(x, t)

⏐⏐⏐
x=s(t)

= 0 = θ s(x, t)
⏐⏐⏐
x=s(t)

, (2.11)

Nondimensional initial condition:
θ s(x, t)

⏐⏐⏐
t=0

= −1, (2.12)
Nondimensional Stefan condition:

ds

dt
= −Stel ∂θ l

∂x

⏐⏐⏐⏐⏐
x=s(t)

+ Stes ∂θ s

∂x

⏐⏐⏐⏐⏐
x=s(t)

, (2.13)
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where α = αs/αl in (2.9) denotes the ratio of thermal diffusivities of the phases.
Stefan numbers Stel = cl

p(θ0 − θm)/Lm, Stes = cs
p(θm − θ∞)/Lm in (2.13) are the

only characteristic numbers of the formulated nondimensional problem.

Analytic solution

Analytic solution using the similarity variable ξ = x/
√

t is often attributed to
J. von Neumannii. Substitution of ξ to equation (2.8) and assuming that θ l =
θ l(ξ) reduces it to a second order linear ODE:

d2θ l

dξ2 = −ξ

2
dθ l

dξ
,

using substitution ηl = ∂θ l/∂ξ, we get a first order linear ODE:

∂ηl

∂ξ
= −ξ

2ηl,

which after separation of variables yields a solution in the form:

ηl = dθ l

dξ
= C0e−(ξ/2)2

.

This leads us to the conclusion thatiii:

θ l(x, t) = C1 erf
(

x

2
√

t

)
+ C2. (2.14)

By the same procedure we can solve the equation (2.9) to obtain the temperature
distribution in the solid phase region:

θ s(x, t) = C3 erf
(

x

2
√

αt

)
+ C4. (2.15)

Now if we take into account the boundary and interface conditions (2.10)–(2.11):

θ l(x, t)
⏐⏐⏐
x=0

= C2 = 1, (2.16)

θ l(x, t)
⏐⏐⏐
x=s(t)

= C1 erf
(

s(t)
2
√

t

)
+ 1 = 0, (2.17)

iiJohn von Neumann (1903–1957) – outstanding American mathematician, one of the leaders
in the creation of the first computers.

iiiJust as a reminder erf () is the error funtion defined as:

erf (x) := 2√
π

∫ x

0
e−t2

dt,

erfc () denotes the complementary error function:

erfc (x) := 1 − erf (x) = 2√
π

∫ ∞

x

e−t2
dt.
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for C1 to be a constant, we need to assume that s ∝
√

t, therefore we set:

s(t) = 2λ
√

t, (2.18)

which gives with (2.16) and (2.17) the nondimensional temperature distribution
in the liquid subdomain:

θ l(x, t) = − 1
erf λ

erf
(

x

2
√

t

)
+ 1. (2.19)

In a complete analogy, we can derive the nondimensional temperature distribution
in the solid region:

θ s(x, t) = 1
erfc (λ/

√
α) erfc

(
x

2
√

αt

)
− 1. (2.20)

The only remaining piece of information is that about λ. So far, we have not
used the Stefan condition (2.13), which gives—after substitution of obtained so-
lutions (2.19), (2.20)—the following transcendental equation:

λ = Stel e−λ2

√
π erf (λ) − Stes

√
α e−λ2/α

√
π erfc (λ/

√
α) . (2.21)

Such an equation can be solved using standard root finding procedures, e.g. New-
ton method. Next, we will show, that the root exists and it is unique. First, we
set:

f(λ) := Stel e−λ2

√
π erf (λ) − Stes

√
α e−λ2/α

√
π erfc (λ/

√
α) − λ.

Obviously f(λ) is a C1 function for λ ∈ (0, ∞). Moreover because limλ→0+ erf λ =
0, limλ→∞ erf λ = 1, we can look for its limits at the end points:

lim
λ→0+

f(λ) = lim
λ→0+

(
Stel e−λ2

√
π erf (λ)

)
− Stes

√
α√
π

= ∞,

lim
λ→∞

f(λ) = lim
λ→∞

(
−Stes

√
α e−λ2/α

√
π erfc (λ/

√
α) − λ

)
,

lim
λ→∞

e−λ2/α

erfc (λ/
√

α) =
[0
0

]
(H)= lim

λ→∞

−2λ/αe−λ2/α

−2/
√

παe−λ2/α
= lim

λ→∞

√
π

α
λ = ∞,

where (H) means that we used the l’Hôspital’s rule—both the numerator and
the denominator contain a function that is differentiable on (0, ∞). So f(λ) is a
continuous function with limλ→0+ f(λ) = ∞ and limλ→∞ f(λ) = −∞. Applying
Bolzano’s theorem (or corollary of the Intermediate value theorem) we ensure
existence of at least one root of funtion f(λ). Let us further denote:

f1(λ) = eλ2 erf (λ),

f2(λ) = eλ2/α erfc
(

λ√
α

)
,

f3(λ) = −λ,
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than we immediately see, that f3(λ) is strictly decreasing on (0, ∞). Further,
we want to explore the monotonicity of the other two funtions, since both are
smooth, we can differentiate, thus:

df1

dλ
= 2λeλ2 erf (λ) + eλ2 2√

π
e−λ2

> 0, λ ∈ (0, ∞)

df2

dλ
= 2λ

α
eλ2/α erfc

(
λ√
α

)
− 2√

πα
=: g(λ).

Set ϕ(λ) := e−λ2/αg(λ) = 2/αλ erfc (λ/
√

α)−2/
√

παe−λ2/α, than obviously ϕ(0) <
0, but also limλ→∞ ϕ(λ) = 0, since:

lim
λ→∞

λ erfc λ = lim
λ→∞

erfc λ

1/λ
=
[0
0

]
(H)= lim

λ→∞

2/
√

πe−λ2

−1/λ2 = 0.

The last missing piece is that d/dλ ϕ(λ) > 0, that is:

d
dλ

ϕ(λ) = 2
α

erfc
(

λ√
α

)
− 2

α
λ

2√
πα

e−λ2/α + 4√
παα

λe−λ2/α =

= 2
α

erfc
(

λ√
α

)
> 0, λ ∈ (0, ∞).

We can conclude that ϕ(λ) < 0, ∀λ ∈ (0, ∞), therefore 0 > eλ2/αϕ(λ) = g(λ).
This means that f2(λ) is strictly decreasing function on (0, ∞). Finally:

f(λ) = Stel
√

π

1
f1(λ) − Stes√α√

π

1
f2(λ) + f3(λ),

thus f(λ) is a sum of strictly decreasing functions, hence it is strictly decreasing,
meaning there is a unique root of the transcendental equation. This concludes
our proof.

To summarize, analytical solution of our nondimensional two-phase Stefan
problem on a semi-infinite homogeneous slab is given by:

Nondimensional solution in liquid region:

θ l(x, t) = − 1
erf λ

erf
(

x

2
√

t

)
+ 1, 0 < x < s(t),

Nondimensional solution in solid region:

θ s(x, t) = 1
erfc (λ/

√
α) erfc

(
x

2
√

αt

)
− 1, x ≥ s(t),

Position of the melting front:
s(t) = 2λ

√
t,

Transcendental equation:

λ = Stel e−λ2

√
π erf (λ) − Stes

√
α e−λ2/α

√
π erfc (λ/

√
α) .
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For the sake of completeness let us add the solution expressed in dimensional
variables:

Solution in liquid region:

θ l(x, t) = θ0 − (θ0 − θm) 1
erf λ

erf
(

x

2
√

αl t

)
, 0 < x < s(t),

Solution in solid region:

θ s(x, t) = θ∞ + (θm − θ∞) 1
erfc (λ/

√
α) erfc

(
x

2
√

αs t

)
, x ≥ s(t),

Position of the melting front:
s(t) = 2λ

√
αl t.

2.1.2 Discrete problem
With respect to adopted assumptions, we will now formulate the discrete problem
using Enthalpy method, which we will use then to state the problem weakly.

Weak formulation

This time, our domain of interest is finite—and of unitary length (see Figure 2.2),
which gives rise to a question of the second boundary condition. Since our main
goal is to benchmark the solution of the discrete problem with the analytical
solution (2.18)–(2.20), the heat flux given by the analytical solution will be pre-
scribed, i.e.:

q(t) := −ks ∂θ s(x, t)
∂x

⏐⏐⏐⏐⏐
x=1

(2.20)= −ks e−1/(4αt)
√

παt erfc (λ/
√

α)
. (2.22)

θ = θ0

s(t)

θ = θm

x = 0 x

∂θ
∂x

= q(t)

x = 1

Figure 2.2: Formulation of the one-dimensional Stefan problem for a
discretized solution. Heat flux through the left end of the bar q(t) is
given by the analytical solution.

The problem is again governed by the heat equation (2.1), but in the case of
diffused-interface formulation it takes the form:

ρ (cp)ϵ(θ)∂θ

∂t
= div

(
kϵ(θ)∂θ

∂x

)
. (2.23)

As a general strategy, we will employ the Rothe method, first suggested by Erich
Rothe in 1930. We therefore approximate the time derivative using finite time
difference:

∂θ

∂t
≈ θk − θk−1

∆t
,

29



and assume that the solution is constant on the time interval of length ∆t—with
the given initial condition θk−1. Generally, we consider a convex combination of
θk and θk−1 to be substituted into the heat equation (2.23):

ρ (cp)ϵ(θ)θk − θk−1

∆t
= div

⎛⎝kϵ(θ)
∂
(
Θθk + (1 − Θ)θk−1

)
∂x

⎞⎠, (2.24)

which we solve with respect to θk, a function of the space only. For specific values
of Θ we obtain either fully explicit (Θ = 0) or fully implicit (Θ = 1) scheme. For
Θ = 1/2, we get the so-called Crank-Nicolson scheme. Fully implicit Euler scheme
is the preferred one in this thesis. The complete discretised solution will be then
given by:

θ(x, t) = θk(x); x ∈ (0, 1), t ∈ (tk−1, tk], (2.25)

where tk = k∆t, k ∈ {1, . . . , N}. Next, for a fixed time instant tk, we define the
elliptic problem (2.24), whose weak formulation we will now carefully derive.

First, let us consider the following vector space:

T := {ϑ ∈ H1 ((0, 1)) | ϑ(0) = 0}iv. (2.26)

We see, that if we assume θ0 to be a constant function on the unit interval, we
can define T ∋ θ̃ k := θk − θ0. Multiplying the elliptic equation (2.24) with a
test function ϑ ∈ T and integrating over the unit interval we obtain the following
integral identity:

ρ
∫ 1

0
cε

p

θk − θk−1

∆t
ϑ dx =

∫ 1

0
div

(
kε ∂θ

∂x

)
ϑ dx.

It only remains to apply the Green’s first identityv—not forgetting the Neumann
boundary condition (2.22)—and we obtain the weak formulation of the problem:

At t = tk we look for θ̃ k ∈ T , such that:

ρ
∫ 1

0
cε

p

θ̃ k

∆t
ϑdx +

∫ 1

0
kε ∂θ̃ k

∂x

∂ϑ

∂x
dx = ρ

∫ 1

0
cε

p

θ̃ k−1

∆t
ϑdx+

+ q(tk)ϑ(1), ∀ϑ ∈ T .

(2.27)

Existence and uniqueness of a solution of this problem is given by the well known
Lax-Milgram lemma.

ivHere we use the continuous representative ϑ, since H1 ((0, 1)) = AC ((0, 1)) in the sense,
that: ∀ϑ ∈ H1 ((0, 1)) ∃ϑ̃ ∈ AC ((0, 1)) : ϑ = ϑ̃ a.e., so ϑ(0) has a meaning.

vLet u, v ∈ H1(ω) be two Sobolev functions on a domain with Lipschitz boundary, then:∫
ω

u
∂v

∂xi
dx =

∮
∂ω

uvnidS −
∫

ω

∂u

∂xi
vdx,

where ni denotes the i-th component of an outer normal on ∂ω and the derivatives are meant
in the weak sense.
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FEM solution

The variational problem (2.27) was implemented numerically in the open-source
platform FEniCS. The temperature was discretised using linear finite elements
and solution of the transcendental equation (2.21) was sought using root finding
procedure fsolve from the scipy.optimize package. Table 2.1 gives numerical
values of the material parameters for the simulation and boundary condition
values.

Parameter Value

Material quantity

ρ 1000 kg/m3

cl
p 4180 J kg−1 K−1

cs
p 2050 J kg−1 K−1

kl 0.571 W m−1 K−1

ks 2.18 W m−1 K−1

Lm 334 · 103 J/K

Formulation/discretisation

θ0 373 K
θm 273 K
θ∞ 263 K
xdiv 1000
∆t 10−5[θ] ≈ 730 s
ϵ 0.4 K

Table 2.1: Numerical values of parameters of one-dimensional Stefan
problem.

2.1.3 Results

Figure 2.3 shows the accuracy of the proposed enthalpy method on a bench-
marking code comparing it with the analytic solution of the Stefan problem. A
remarkable agreement in both the melting front position and the temperature
distribution is present.
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(f) t = 6 · 10−1[t]

Figure 2.3: Benchmarking of the enhalpy method with the analytical
solution of the one-dimensional Stefan problem.

Stability

With particular combination of mesh cell size ∆x, time step size ∆t and mollifying
parameter ϵ, the computation becomes unstable. What follows is an attempt to
characterize the stability using a condition similar to established CFL condition,
that is used as a stability criterion in many CFD computations.

First, it is necessary to discern the approximation of Dirac delta distribution
within a discretisation of the temperature field. But what is possible is only to
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control the domain discretization. Using integration by substitution we can write:

f(θm) =
∫
R

f(θ)δ(θ − θm)dθ =
∫
R

f(θ(x))δ(θ(x) − θm)dθ

dx
dx,

and consequently we can write for ∆x:

∆x ≤ ϵx ≈ ϵ

(
dθ

dx

)−1

≈ ϵ
[x]

θ0 − θ∞
,

where ϵx denotes the mollification width with respect to spatial metric. In a
complete analogy to the CFL condition we would like to bound the time step
size using a characteristic information distribution velocity. In the case of Stefan
problem, the characteristic property is the melting front position. Its order of
magnitude is given by the Stefan condition (2.7):

ρLm
ds

dt
≈ −kl θ0 − θ∞

[x] + ks θ0 − θ∞

[x] ≤ (kl + ks)θ0 − θ∞

[x] .

It is now only a matter of a standard requirement, that the time step size should be
small enough to be able to contain the propagating information within consecutive
mesh cells after one time step, i.e.:

∆t̃ = ∆t

[t] ≤ ∆x

[t]ds/dt
≤ ϵ

[x]
θ0 − θ∞

kl

[x]2ρc l
p

ρLm[x]
(θ0 − θ∞)(kl + ks) ≈ ϵLm

(θ0 − θ∞)2c l
p

.

Let us see what this criterion gives for our problem settings. We fix ϵ = 0.1 and
from Table 2.1 we see that:

∆x ≤ ϵ
[x]

θ0 − θ∞
≈ 10−1 1

102 = 10−3,

∆t̃ ≤ ϵLm

(θ0 − θ∞)2c l
p

≈ 10−1 · 105

104 · 103 = 10−3,

∆t̃ ≤ ∆x

[t]ds/dt
≤ ∆x

Lm

[x]c l
p(θ0 − θ∞) ≈ ∆x

10−5

1 · 103 · 102 = ∆x. (2.28)

Numbers ϵ = 10−1, ∆x = 10−3 and ∆t̃ = 10−3 give an upper bound for stability
of the computation. Figure 2.4 depicts result of a numerical experiment, that
shows the relation between an error—expressed by the difference of a position of
the melting front given by analytic vs. discrete solution.

It is obvious, that if we respect bounds given by the previous calculations,
the computation gives meaningful results. Outside the safe region the resulting
temperature fields may give non-physical description of the problem—depicted
by red patches in Figure 2.4.

2.2 Stefan 2D
It is noteworthy that the heat equation formulated as a radially symmetric pla-
nar problem retains the structure suitable for definition of the same similarity
variable ξ = r/

√
t.
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Figure 2.4: Stability of Stefan 1D problem. z-axis shows an error that is
given by the difference of the position of the melting front. Red curve in
the ∆x − ∆t plane shows restriction on the time step size (2.28), ∆s = 1
means that no melting front position was given by the calculation using
the particular choice of parameters—computation became unstable.

2.2.1 Continuous problem
Formulation

An infinite plane of a constant thickness with excluded circular region of radius
r = R1 is centered at the origin is the domain of interest. Graphic interpretation
of the formulation is contained in Figure 2.5.

In a complete analogy to the one-dimensional case we assume the following:

· The material is thermally insulated so that no heat escapes through the
upper and lower boundary of the disc.

· There are no heat sources within the material.

The rest of the formulation can be adopted from the section Stefan 1D, the only
difference is that now we don’t prescribe temperature on the boundary (inner
circle), but the heat flux. The reason for this as well as for the shape of the domain
will be clear from the analytical solution of the problem. Radial symmetry of the
problem gives the dependence of the temperature only on r spatial coordinate,
therefore θ = θ(r, t).

Our starting point is the heat equation in an invariant form (2.1), Table 2
of Appendix B contains differential operators in cylindrical coordinates. Using
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rR1s(t)

θ=θmq1

Figure2.5: Sharp-interfaceformulationofthetwo-dimensionalSte-
fan problem. Here we prescribe Neumann boundarycondition
−kl∂θl/∂r|r=R1=q1.

thedeinitionofalaplacianwecanwrite:

ρcp
∂θ

∂t
=div(k∇θ)=k∆θ=k

1

r

∂

∂r

(

r
∂θ

∂r

)

=k

(
∂2θ

∂r2
+
1

r

∂θ

∂r

)

. (2.29)

ItremainstoobservethattheStefancondition(2.7)retainsitsstructurein
thepolarcoordinates. Wedenotes=(sr,sφ)thepositionofthemeltingfront
expressedinpolarcoordinates,thenitholds:

ρLm
ds

dt
·nσ=−q·nσ=k

s∇θs·nσ−k
l∇θl·nσ=

=ks
∂θs

∂r
êr·nσ−k

l∂θ
l

∂r
êr·nσ,

whereêristheunitbasisvectorintheradialdirection.Becauseweassume,that
theproblempossessescylindricalsymmetry,itholdsthatnσ=êrandwecan
writetheinalformoftheStefancondition:

ρLm
dsr
dt
=−kl

∂θl

∂r

⏐
⏐
⏐
⏐
⏐
r=sr(t)

+ks
∂θs

∂r

⏐
⏐
⏐
⏐
⏐
r=sr(t)

.
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Formulation of the two-dimensional Stefan problem:

Heat equation in liquid region:
∂θ l

∂t
= αl

(
∂2θ l

∂r2 + 1
r

∂θ l

∂r

)
, R1 < r < sr(t),

(2.30)
Heat equation in solid region:

∂θ s

∂t
= αs

(
∂2θ s

∂r2 + 1
r

∂θ s

∂r

)
, r ≥ sr(t). (2.31)

Boundary conditions:

−kl ∂θ l

∂r

⏐⏐⏐
r=R1

= q1,

lim
r→∞

θ s(r, t) = θ∞,
(2.32)

Interface condition:
θ l(r, t)

⏐⏐⏐
r=sr(t)

= θm = θ s(r, t)
⏐⏐⏐
r=sr(t)

, (2.33)

Initial condition:
θ s(x, t)

⏐⏐⏐
t=0

= θ∞, (2.34)
Stefan condition:

ρLm
dsr

dt
= −kl ∂θ l

∂r

⏐⏐⏐⏐⏐
r=sr(t)

+ ks ∂θ s

∂r

⏐⏐⏐⏐⏐
r=sr(t)

.

Analytic solution

As was mentioned earlier in this section, the form of the polar heat equation (2.29)
enables us to use practically the same procedure that led to the analytic solution
of the one-dimensional case. Here we will consider general setting of the problem
and with θ l being function only of the r spatial coordinate—for both 2D and 3D
formulation (as will be clarified in the next section)—we can formulate the heat
equation using similarity variable ξ, that is:

d2θ l

dξ2 +
(

d − 1
ξ

+ ξ

2αl

)
dθ l

dξ
= 0,

where d denotes the dimension of the space we solve the problem in. Using
substitution ηl = dθ l/dξ, we get a first order linear ODE:

dηl

dξ
+
(

d − 1
ξ

+ ξ

2αl

)
ηl = 0,

or equivalently:

dηl

ηl +
(

d − 1
ξ

+ ξ

2αl

)
dξ, (2.35)

which yields after integration:

ηl = dθ l

dξ
= C0

1
ξd−1 e−ξ2/(4αl) .
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Now if we integrate once more and apply substitution for the integral we obtain
the general solution of the original ODE:

θ l(r, t) = C1

∫ ∞

r2/(4αlt)

1
td/2 e−t dt + C2 = C1Γ

(
1 − d

2 ,
r2

4αlt

)
+ C2, (2.36)

where Γ(s, x) denotes the incomplete gamma functionvi. The same equation can
be derived for the solid subdomain. For d = 2vii takes the incomplete gamma
function the form of so-called exponential integral Ei(x)viii and thus:

θ l(r, t) = C1 + C2 Ei
(

− r2

4αlt

)
,

θ s(r, t) = C3 + C4 Ei
(

− r2

4αst

)
.

Since limx→0+ Ei (x) = −∞, the solution θ l would lack a physical meaning at
r = 0. This is the reason why we solve the problem on r ∈ [R1, ∞) and therefore
it is required to choose the constant C2 in accordance with the heat flux q1, i.e.
q1 = −kl∂θ l/∂r|r=R1 = −klC2 e−(R2

1/(4αlt)) 2/R1 → Cq1 := −q1R1 e(R2
1/(4αlt)) /(2kl).

After taking into consideration the data (2.44)–(2.46), we obtain the (dimen-
sional) solution:

Solution in the liquid region:

θ l(r, t) = θm − Cq1 Ei
(

−λ2

αl

)
+ Cq1 Ei

(
− r2

4αlt

)
, R1 < r < sr(t), (2.37)

Solution in the solid region:

θ s(r, t) = θ∞ + (θ∞ − θm) 1
Ei (−λ2/αs) Ei

(
− r2

4αst

)
, r ≥ sr(t), (2.38)

Radius of the circular melting front:
sr(t) = 2λ

√
t,

Transcendental equation:

ρLmλ2 = −kl e−λ2/αl −ks(θ∞ − θm) e−λ2/αs

Ei (−λ2/αs) . (2.39)

2.2.2 Discrete problem
For the discrete formulation our domain of interest changes into an annulus de-
fined by radii R1 and R2. Heat fluxes through the boundary of the domain are

vi Definition of the upper incomplete gamma function:

Γ(s, x) :=
∫ ∞

x

ts−1 e−t dt.

viiIf we had plugged d = 1 into (2.35), we would have gotten after integration the physical
solution of the one-dimensional Stefan problem.

viii Ei () denotes the exponential integral:

Ei(x) := −
∫ ∞

−x

1
t

e−t dt.
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given by the analytic solution (2.37)–(2.38):

q1(t) := −2klCq1

R1
e−R2

1/(4αlt),

q2(t) := −2ks(θ∞ − θm)
R2 Ei (λ2/αs) e−R2

2/(4αst) .

ω

γ1

γ2

rR1 R2s(t)
θ = θmq1 q2

Figure 2.6: Discrete formulation of the two-dimensional Stefan problem
using enthalpy method. Inner and outer boundary are denoted by γ1,
resp. γ2.

Weak formulation

Repeating the procedure in the paragraph Weak formulation of the previous sec-
tion, we obtain the variational formulation of the planar Stefan problem:

At t = tk we look for θk ∈ H1(ω), such that:

ρ
∫

ω
cε

p

θk

∆t
ϑ dx +

∫
ω

kε∇θk · ∇ϑ dx = ρ
∫

ω
cε

p

θk−1

∆t
ϑdx+

+
∫

γ1
q1(tk)ϑdS +

∫
γ2

q2(tk)ϑdS, ∀ϑ ∈ H1(ω).
(2.40)

FEM solution

As previously, the weak formulation (2.40) was implemented and solved numer-
ically. The mesh of the domain was generated by mshr FEniCS library. Values
of the material parameters are given by both the Table 2.1 and the following Ta-
ble 2.2.

2.2.3 Results
Figure 2.7 makes a summary of benchmarking of the 2D enthalpy method vs. the
analytical solution of the planar cylindrically symmetric Stefan problem. The
result is, again, very satisfactory.
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Parameter Value

Geometry
R1 0.1 m
R2 1 m

Formulation/discretisation
Cq1 100
∆t 475 s

Table 2.2: Numerical values of parameters for two-dimensional cylindri-
cally symmetric Stefan problem.
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Figure 2.7: Benchmarking of the enhalpy method with the analytical
solution of the planar Stefan problem. The left column shows an attempt
to represent temperature distribution on the annulus—left half being the
FEM solution, right one, translucent, the analytic solution. White lines
denotes temperature isolines, with the red one reserved for the melting
front. The right column shows the comparison along one radial ray.
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2.3 Stefan 3D

For the sake of completeness we present here the formulation and analytic solution
of the three-dimensional radially symmetric Stefan problem. As the main focus of
the thesis is aimed at the planar problems, discrete formulation and FEM solution
of the spatial problem would not only be time consuming but also unjustified.

2.3.1 Continuous problem

Formulation

Formulation of the three-dimensional radially symmetric Stefan problem can be
carried out in a complete analogy to the planar case. Figure 2.5 can be viewed
as a cross section of the spherical domain. The heat equation (2.1) for θ = θ(r, t)
takes the form:

ρcp
∂θ

∂t
= k

1
r2

∂

∂r

(
r2 ∂θ

∂r

)
= k

(
∂2θ

∂r2 + 2
r

∂θ

∂r

)
. (2.41)

Formulation of the spatial Stefan problem:

Heat equation in liquid region:
∂θ l

∂t
= αl

(
∂2θ l

∂r2 + 2
r

∂θ l

∂r

)
, R1 < r < sr(t),

(2.42)
Heat equation in solid region:

∂θ s

∂t
= αs

(
∂2θ s

∂r2 + 2
r

∂θ s

∂r

)
, r ≥ sr(t). (2.43)

Boundary conditions:

−kl ∂θ l

∂r

⏐⏐⏐
r=R1

= q1,

lim
r→∞

θ s(r, t) = θ∞,
(2.44)

Interface condition:
θ l(r, t)

⏐⏐⏐
r=sr(t)

= θm = θ s(r, t)
⏐⏐⏐
r=sr(t)

, (2.45)

Initial condition:
θ s(x, t)

⏐⏐⏐
t=0

= θ∞, (2.46)
Stefan condition:

ρLm
dsr

dt
= −kl ∂θ l

∂r

⏐⏐⏐⏐⏐
r=sr(t)

+ ks ∂θ s

∂r

⏐⏐⏐⏐⏐
r=sr(t)

.
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Analytic solution

If we set d = 3 in (2.36) we obtain the general solution for the three-dimensional
radially symmetric Stefan problem:

θ l(r, t) = C1 + C2 Γ
(

−1
2 ,

r2

4αlt

)
,

θ s(r, t) = C3 + C4 Γ
(

−1
2 ,

r2

4αst

)
.

Taking into account the boundary conditions, we can write the particular solution:

Solution in the liquid region:

θ l(r, t) = θm − Cq1Γ
(

−1
2 ,

λ2

αl

)
+ Cq1Γ

(
−1

2 ,
r2

4αlt

)
, R1 < r < sr(t),

Solution in the solid region:

θ s(r, t) = θ∞ + (θ∞ − θm) 1
Γ(−1/2, −λ2/αs)Γ

(
−1

2 ,
r2

4αst

)
, r ≥ sr(t),

Radius of the circular melting front:
sr(t) = 2λ

√
t,

Transcendental equation:

ρLmλ4 =−kl(αl)3/2Cq1 e−λ2/αl −ks(θ∞−θm)(αs)3/2 e−λ2/αs

Γ(−1/2, λ2/αs) .
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3. Blankenbach benchmark
The present chapter is devoted to the second possible hindrance mentioned in Ge-
ometry and boundary conditions, that is the free surface. There are more ways
how to deal with this boundary condition, nevertheless in view of fluid mechanics,
the optimal one—and also the one we chose—is the so called arbitrary Lagrangian-
Eulerian description of the problem. It enables us to stay within the advantageous
framework of Eulerian description but at the same time gives the possibility to
adapt the spatial discretisation to the time-dependent domain.

As in the case of the enthalpy method, we need to validate this approach. To
this end we make use of the so-called Blankenbach benchmark, which contains a
comparison study for thermal convection in the Earth’s mantle. In the following
we will present a formulation of a benchmark problem and a correlation of re-
sults for both fixed domain solution and the free surface problem—attacked by
ALE formulation approach—complete with reference values given in [Blanken-
bach et al., 1989].

3.1 Fixed domain

3.1.1 Problem formulation

The benchmark problem is defined as a two-dimensional thermal convection of a
non-rotating Boussinesq fluid of infinite Prandtl number in a rectangular cell of
length l and height h, therefore ω := ((0, l) × (0, h)). The convection is driven
by a horizontal temperature difference ∆θ = θbot − θtop. Side walls of the cell
are assumed to be thermally insulated and the fluid is allowed to slip freely
on the whole boundary. Graphic representation of the formulation is available
in Figure 3.1.

θ|γb = θbot

θ|γt = θtop

γl γrq·n |γl∪γr = 0
v·n |∂ω = 0

γt

γb

ω

l

h

z

x

Figure 3.1: Formulation of the Blankenbach benchmark model problem.
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3.1.2 Governing equations
The general approach in derivation of the governing equations consists in the
linear approximation of the conservation laws called the Oberbeck-Boussinesqi

approximation.

Oberbeck-Boussinesq approximation

Initially, we consider a hydrostatic reference state with v = 0. The state is char-
acterised by a reference pressure pth

0 , density ρ0, temperature θ0 and a reference
gravitational constant g0. In the context of geophysical applications we assume
a certain form of momentum equations (1.9), in particular those, that take into
acount the rotation of the frame of reference:

ρ
Dv
Dt

= divT+ ρg − 2ρ Ω × v − ρ Ω × (Ω × x) in ω, (3.1)

where x is the radius vector which constitutes—together with the angular
frequency of the planet’s rotation Ω—the centrifugal force ρ Ω×(Ω×x), 2ρ Ω×v
is the Coriolis force and the last body force is supplied by the gravitational
acceleration g.

If we assume for the constitutive relations that:

T = −pth
I+ S, lim

v→0
S = 0, (3.2)

than considering the momentum equation (3.1) in the reference state, we
obtain the relation between the reference variables:

∇pth
0 = ρ0g0 − ρ0 Ω × (Ω × x). (3.3)

Next, if we ignore variations of the density due to pressure deviations, we can
linearise the state equation with respect to the temperature difference θ − θ0 to
get:

ρ = ρ0 (1 − αV(θ − θ0)) . (3.4)

In numerical modelling of thermal convection it is convenient to define the
reference temperature distribution θ0 as the solution of the following stationary
conduction problem:

div (k∇θ0) + ρ0be = 0,

with boundary conditions given in the problem description (see Figure 3.1).
The reader can find more about mathematical modelling of thermal convection
in Earth’s mantle in lecture notes [Matyska, 2005].

Putting state equation (3.4) into the general form of the continuity equa-
tion (1.5) and neglecting the thermal expansion, it follows that for the time-
independent variable ρ0 we have:

div (ρ0v) = 0. (3.5)
iJoseph Valentin Boussinesq (1842–1929) - French mathematician and physicist, known

also for approximations of water waves and turbulence
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In order to get the approximation of the momentum balance, we plug (3.2)–(3.4)
into the specific form of momentum equations (3.1), thus we have:

ρ
Dv
Dt

= −∇π + divS+ ρ0βV(θ − θ0) Ω × (Ω × x) − 2ρ Ω × v+

+ ρ0(g − g0) − ρ0βV(θ − θ0)(g − g0) − ρ0βV(θ − θ0)g0,

where with π = pth − pth
0 we denoted the pressure deviation. Final step towards

the linear approximation is to neglect both Corriolis and centrifugal force, along
with the quadratic term ρ0βV(θ − θ0)(g − g0) and the thermal expansion on the
right hand side. Thus, we end up with:

ρ0
Dv
Dt

= −∇π + divS+ ρ0(g − g0) − ρ0βV(θ − θ0)g0. (3.6)

To linearise the temperature conservation of energy, we replace ρ by ρ0 in the
temperature equation (1.45), i.e.:

ρ0cp
Dθ

Dt
= S

..D− div q + ρ0be + αVθ
Dpth

Dt
,

moreover, we assume that the dominant part of the pressure pth is the hydrostatic
pressure, which gives Dpth/Dt = −vrρg, with vr being the radial component of
velocity and g := |g| the magnitude of the gravitational acceleration. Assuming
referential values (we set g0 := |g0|) for an isotropic thermally conducting material
we obtain the linear approximation of the temperature equation:

ρ0cp
Dθ

Dt
= S

..D− div (k∇θ) + ρ0be − ρ0αVvrg0θ. (3.7)

The term −ρ0αVvrg0θ is sometimes called the adiabatic heating, since it con-
tains the heat that is produced by compression/expansion due to the vertical
movement of the element.

Equations (3.5)–(3.7) constitute the so called compressible extended
(Oberbeck-)Boussinesq approximation, which we, for the sake of clarity, present
once more:

Extended Boussinesq approximation of continuity equation:
div (ρ0v) = 0, in ω,

Extended Boussinesq approximation of momentum equations:

ρ0
Dv
Dt

= −∇π + divS+ ρ0(g − g0) − ρ0βV(θ − θ0)g0, in ω,

Extended Boussinesq approximation of temperature equation:

ρ0cp
Dθ

Dt
= S

..D− div (k∇θ) + ρ0be − ρ0αVvrθg0, in ω.

To further simplify the previous system of PDEs, we consider the Newto-
nian fluid, which means S = 2µD, with constant dynamic viscosity µ and ap-
ply the system to a problem, where both the referential values ρ0, g0 and the

45



material parameters βV, cp and k are constant. Finally, if we also omit dissi-
pation S .. D and the adiabatic heating −ρ0αVvrg0θ, we arrive at the classical
(Oberbeck-)Boussinesq approximation:

Classical Boussinesq approximation of continuity equation:
div v = 0, in ω, (3.8)

Classical Boussinesq approximation of momentum equations:

ρ0
Dv
Dt

= −∇π + µ∆v − ρ0βV(θ − θ0)g0, in ω, (3.9)

Classical Boussinesq approximation of temperature equation:

ρ0cp
Dθ

Dt
= k∆θ + ρ0be, in ω. (3.10)

Nondimensional variables

In the following we will identify ρ with ρ0 and g with g0, neglecting thus the self-
gravitation and admitting compressibility only in the buoyancy force ρβV(θ−θ0)g.
There are more possible ways of defining characteristic scales of the system (3.8)–
(3.10) depending on what pair of thermomechanical processes we deem most im-
portant.

Let us write the following scales of physical variables:

x = x̃ [x], t = t̃ [t], v = ṽ [v], θ = θtop + θ̃ [θ].

Primarly, we would like to have a consistent scaling of the velocity and time, i.e.:
[v] = [x]/[t]. This enables the substantial derivative to scale accordingly. Then
we can use either of the three following scale factors:

(a) We compare the inertial force and the dissipative viscous term, meaning:

ρ
∂v
∂t

∼ µ∆v,

ρ
[v]
[t]

∂ṽ
∂t̃

∼ µ
[v]
[x]2 ∆x̃ ṽ,

where ∆x̃ denotes the Laplace operator with respect to nondimensional spa-
tial coordinates. This is a typical scaling for Navier-Stokes equations, for
time scale we therefore have:

[t] = ρ

µ
[x]2 = [x]2

ν
,

with ν = µ/ρ the kinematic viscosity, for the velocity scale we get:

[v] = ν

[x] .

(b) In the second approach, the inertial and the buoyancy force are assumed to
be of equal importance, so:

ρ
[v]
[t]

∂ṽ
∂t̃

∼ ρβVg[θ](θ̃ − θ̃0)eẑ,
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where eẑ is the unit basis vector in the direction of z-axis. This gives:

[t] =

√ [x]
βVg[θ] = [x]2

ν

√
Pr
Ra ,

or equivalently for the velocity scale factor:

[v] =
√

βVg[θ][x] = ν

[x]

√
Ra
Pr .

For convenience, we defined two characteristic numbers:

Rayleigh number: Ra = βVg[x]3[θ]
να

,

Prandtl number: Pr = ν

α
.

(c) The last possibility is based on similarity of temperature convection and the
heat flux, that is:

ρcp
[θ]
[t]

∂θ̃

∂t̃
∼ k

[θ]
[x]2 ∆x̃ θ̃,

which gives diffusive time scale:

[t] = [x]2
α

= [x]2
ν

Pr (3.11)

and respective velocity scale:

[v] = α

[x] . (3.12)

For our non-dimensional formulation scaling (c) is the preffered one. Using (3.11)
and (3.12) we modify the momentum equation (3.9) to obtain:

1
Prρ

αν

[x]3
Dṽ
Dt̃

= −∇π + µ
α

[x]3 ∆x̃ ṽ − ρβVg[θ](θ̃ − θ̃0)eẑ,

1
Pr

Dṽ
Dt̃

= − ∇x̃ π̃ + ∆x̃ ṽ − Ra(θ̃ − θ̃0)eẑ,

with nondimensional pressure difference π̃ := π[x]2/(αµ). We repeat the idea for
the approximation of the temperature equation (3.10). For simplicity we assume
be ≡ 0.

ρcp
[θ]
[t]

Dθ̃

Dt̃
= k

[θ]
[x]2 ∆x̃ θ̃,

Dθ̃

Dt̃
= ∆x̃ θ̃.
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Now we are ready to present the classical formulation of the Blankenbach bench-
mark problem for two-dimensional thermal convection of the incompressible non-
rotating Boussinesq fluid of infinite Prandtl numberii (tildes were dropped):

Nondimensional continuity equation:
div v = 0, in ω, (3.13)

Nondimensional momentum equations:iii

0 = −∇π + ∆v + Ra(θ − θ0)eẑ, in ω, (3.14)
Nondimensional temperature equation:

Dθ

Dt
= ∆θ, in ω. (3.15)

3.1.3 Weak formulation
Again, Rothe method was utilised to solve the problem numerically, which means
that we need to define the variational problem at each time step. First, let us
define the following function spaces:

P := {ϖ ∈ L2(ω) |
∫

ω
ϖ dx = 0},

V := H1(ω),
T := {ϑ ∈ H1(ω) | ϑ|γt∪γb = 0}.

Also, let ΘD ∈ H1(ω) be the representative of the Dirichlet boundary conditions
for temperature, then the weak formulation follows.

At t = tk we look for (π, v, θ − ΘD) ∈ P × V × T , such that:

0 =
∫

ω
(div v)ϖ dx,

0 =
∫

ω
π div u − ∇v .. ∇u + Ra(θ − θ0)eẑ · u dx,∫

ω

θ

∆t
ϑ dx =

∫
ω

∇θ · ∇ϑ − (v · ∇θ)ϑ + θk−1

∆t
ϑ dx, ∀(ϖ, u, ϑ) ∈ P × V × T .

3.2 Free surface
We are now going to make one step further and introduce the free surface into
the formulation of our problem. As was mentioned in the beginning of the chap-
ter, this obstacle will be attacked using ALE formulation, whose essentials are
addressed in subsection 3.2.2.

iiValues from Table 1 of [Blankenbach et al., 1989] give 1/ Pr = 4 · 10−26.
iiiEquivalently, we can formulate momentum equations for nondimensional pressure pth, in-

stead of pressure deviation π. This would give following set of equations:

0 = −∇pth + ∆v + Ra(θ − θ0)eẑ + Ra
βV[θ]eẑ.
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3.2.1 Problem formulation
Free surface dynamical boundary condition Sn |γt = 0 and variable cell height
h(x) are the only differences in the free surface Blankenbach benchmark problem
formulation. The formulation is, again, graphically summarised in Figure 3.2. A
kinematical boundary condition for the free surface γt is discussed later.

θ|γb = θbot

θ|γt = θtop

γl γrq·n |γl∪γr = 0
v·n |∂ω\γt = 0
Sn |γt = 0

γt

γb

ω

l

h(x)

z

x

Figure 3.2: Formulation of the Blankenbach benchmark with free surface.

3.2.2 ALE formulation
Method description

There are two main possible kinematical descriptions of continuum, that funda-
mentally influence a formulation and numerical solution of a physical problem.

The first one is called Lagrangian and it is preferred in structural mechanics.
With this approach free surfaces and interfaces between subdomains are easily
trackable on one hand, but on the other hand large distorsions may lead to a com-
plete breakdown of a computational mesh. The cause of this effect lies in the fact
that using Lagrangian description one tracks the same material point X whose
position is given with respect to some referential (here material) configuration Ω
at time t0.

Existence of such a referential configuration is crucial in the first approach and
it is not always guaranteed (as is the case of fluids). Eulerian description is able
to remedy such situations, since the computational mesh is fixed and the spatial
points x from current configuration ω are those we work with. Grid configuration
can cope with possibly large distorsions of the continuum at the expense of loss of
information about precise interface position. A connection between the material
and the current configuration is provided by the mapping

χ : [t0, T ) × Ω → [t0, T ) × ω; (t, X) ↦→ χ(t, X) = (t, x).

Arbitrary Lagrangian-Eulerian description was developped with the intension to
combine the best features of the previous approaches and can be viewed as a
generalisation of both of them. It makes use of a third configuration ωξ whose
elements are identified with the computational grid points. Mappings

Ψ : [t0, T ) × ωξ → [t0, T ) × Ω; (t, ξ) ↦→ Ψ(t, ξ) = (t, X),
φ : [t0, T ) × ωξ → [t0, T ) × ω; (t, ξ) ↦→ φ(t, ξ) = (t, x)
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provide relationship to the material, respectively current configuration. Although
the choice of the reference configuration ωξ is arbitrary, the mappings are linked
through the following relation:

χ = φ ◦ Ψ−1. (3.16)

It is physically reasonable to assume the mapping χ to be one-to-one, meaning
det (∂χ/∂X) > 0 everywhere. This, by the previous relation, justifies the ex-
istence of Ψ−1. Special choice of mapping φ or Ψ might give us back either
Lagrangian (Ψ−1 ≡ id Ω) respectively Eulerian (φ−1 ≡ id ω) description. Fig-
ure 3.3 shows an attempt to capture these relations graphically. The possibility
of an arbitrary mesh deformation comes with a drawback in the form of a ne-
cessity of the correct definition of the grid velocities as well as a supply of an
automated mesh-update algorithm.

Applications of the ALE method in both the fluid and the solid mechanics
are presented in [Donea et al., 2004]. The same reference contains a survey of
mesh update and mesh adaptation procedures. [Scovazzi and J. R. Hughes, 2007]
covers the theory of ALE formulation and contains derivation of conservation
principles in the ALE description of motion.

Every kinematical description, specified by a particular mapping, induce a
respective velocity, given by a time derivative of the mapping. Thus we introduce

v(t, x) := ∂χ

∂t
(t, X), v̂(t, ξ) := ∂φ

∂t
(t, ξ), w(t, X) := ∂Ψ−1

∂t
(t, X),

to be the material velocity of a particle X, respectively mesh velocity of a mesh
node ξ and the particle velocity of X in the reference domain ωξ. From (3.16) we
see that:

v(t, x) = ∂

∂t
φ(t, Ψ−1(t, X))|x = v̂(t, x) + ∂x

∂ξ
w(t, X)|x,

where |x means that we keep x fixed. So we can define the convective velocity c,
which expresses the relative velocity between the mesh and the material, by the
following:

c := v − v̂ = ∂x
∂ξ

w. (3.17)

Now we would like to express the material derivative of a scalar function f with
respect to the computational grid represented by the coordinates ξ, which, again,
calls for an application of the chain rule:

∂

∂t
f
(
t, Ψ−1(t, X)

)⏐⏐⏐
X

= ∂f

∂t

⏐⏐⏐⏐⏐
ξ

+ ∂f

∂ξ
· w = ∂f

∂t

⏐⏐⏐⏐⏐
ξ

+
(

∂x
∂ξ

)T
∂f

∂x
· w =

(3.17)= ∂f

∂t

⏐⏐⏐⏐⏐
ξ

+ ∇f · c. (3.18)

Using the expression (3.18) for the material derivative corresponding to grid
node ξ we can rearrange the differential form of mass balance (1.4), momentum
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X

Ω

x

ω

ξ

ωξ

χ(t, X), v

Ψ(t, ξ), w

φ(t, ξ), v̂

(a) Arbitrary Lagrangian-Eulerian description.

X

Ω(≡ ωξ)

x

ω

χ(t, X)(= φ ◦ id Ω)

(b) Lagrangian kinematic description.

X

Ω

x

ω(≡ ωξ)

χ(t, X)(= id−1
ω ◦ Ψ−1)

(c) Eulerian kinematic description.

Figure 3.3: Illustration of various kinematic descriptions commonly used
in continuum mechanics.

equations (1.8) and the internal energy conservation (1.21) simply by substituting
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c for the convective velocity on the left hand side:

ALE form of continuity equation:
∂ρ

∂t

⏐⏐⏐⏐⏐
ξ

+ c · ∇ρ = −ρ div v in ω(t), (3.19)

ALE form of momentum equations:

ρ

⎛⎝∂v
∂t

⏐⏐⏐⏐⏐
ξ

+ (∇v)c
⎞⎠ = divT+ ρb in ω(t), (3.20)

ALE form of energy equation:

ρ

⎛⎝∂e

∂t

⏐⏐⏐⏐⏐
ξ

+ c · ∇e

⎞⎠ = T
..D− div q + ρbe in ω(t). (3.21)

Weak formulation and Nitsche’s method

There are two possible ways how to compute the unknown position of the free
surface γt. A more general approach is simply to impose w · n = 0 on γt meaning
that no particle can cross the free surface. The second approach give us the posi-
tion of the surface directly. We assume φ(t, ξ) to denote the vertical displacement
of the node ξ = (ξx, ξz) at the time t and for the spatial point xt(t) = (xt(t), zt(t))
on the top boundary γt(t) we can write:

xt(t) = ξx
t = ξx,

zt(t) = φ(t, ξx
t , ξz

t ) = φ(t, xt, ξz
t ).

Thus we can introduce a new (Eulerian) variable

h(t, x) := φ(t, x, ξz)|ξz=ξz
t
,

which immediately gives:

zt(t) = h(t, xt).

Taking a time derivative of this equation we obtain the kinematic equation for
γt:

∂h

∂t
+ ∂h

∂x
vx = vz. (3.22)

Continuous rezoning of the mesh is provided by the so called Laplacian smoothing,
which is able to form lines of equal potential for convex, logically regular domains.
We look for a mapping φ that is a harmonic extension of h on the whole domain.
Thus, we have that φ|γt = h and we can rewrite the kinematic equation for
γt (3.22) in terms of φ:

∂φ

∂t
+ ∂φ

∂x
vx = vz, on γt(t).

Then, we apply the temporal discretisation and recast the kinematic equation in
the following form:

φ − φk−1 + ∆t

(
∂φ

∂x
vx − vz

)
= 0, on γt(tk−1), (3.23)
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All in all, we solve the following problem for the time t = tk+1:

−∆φ = −∂2φ

∂x2 − ∂2φ

∂z2 = 0 in ω(tk),

φ − φk−1 + ∆t

(
∂φ

∂x
vx − vz

)
= 0 on γt(tk),

∂φ

∂x
= 0 on γl ∪ γr(tk−1),

φ = 0 on γb.

Solution of the problem gives us the mesh displacement mapping at the time
t = tk, that is φ(tk, ·) =: φk = (0, φ). This application of ALE method is
sometimes called incremental (or poorman’s) ALE method.

Using a generalisation of the Nitsche’s method described in [Juntunen and
Stenberg, 2009], we can incorporate the boundary condition into the weak for-
mulation. Let us apply this approach to our problem. A specific form of the
boundary condition is considered in the article, namely:

∂φ

∂n
= 1

ϵ
(φ0 − φ) + g on γt(tk−1), (3.24)

where ∂φ/∂n := ∇φ · n denotes the normal derivative and ϵ ∈ [0, ∞] is a param-
eter, whose limiting values give either the Dirichlet or the Neumann boudnary
condition. The weak formulation of the Laplace problem using Nitsche’s method
is represented by equations (2.4)–(2.6) in [Juntunen and Stenberg, 2009], where
the right hand side f ≡ 0, that is:

At the time t = tk we look for φ ∈ H1(ω(tk−1)), such that:∫
ω(tk−1)

∇φ · ∇ϕ dx+
∑

E∈Gh(tk−1)

(
− γhE

ϵ + γhE

∫
E

∂φ

∂n
ϕ + φ

∂ϕ

∂n
da+

+ 1
ϵ + γhE

∫
E

φϕ da − ϵγhE

ϵ + γhE

∫
E

∂φ

∂n

∂ϕ

∂n
da

)
=

=
∑

E∈Gh(tk−1)

(
1

ϵ + γhE

∫
E

φ0ϕ da + γhE

ϵ + γhE

∫
E

φ0
∂ϕ

∂n
da+

+ ϵ

ϵ + γhE

∫
E

gϕ da − ϵγhE

ϵ + γhE

∫
E

g
∂ϕ

∂n
da

)
, ∀ϕ ∈ H1(ω(tk−1)),

(3.25)

where by E we denote an edge in the partitioning Gh(tk−1) of the free surface
γt(tk−1), hE is the diameter of the edge E and γ is a parameter whose certain
values ensure stability of the modified formulation.

Taking the limit ϵ → 0 in (3.25), we can obtain the following variational
equality:∫

ω(tk−1)
∇φ · ∇ϕ dx =

∑
E∈Gh(tk−1)

∫
E

(φ0 − φ)
(

1
γhE

ϕ − ∂ϕ

∂n

)
+ ∂φ

∂n
ϕ da,

∀ϕ ∈ H1(ω(tk−1)).
(3.26)

The same limit in (3.24) gives the Dirichlet boundary condtion:

φ0 − φ = 0 on γt(tk−1). (3.27)
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It remains to realize that the discretised kinematic equation (3.23) does not ex-
actly match (3.27), nevertheless it can be viewed as an implicit form of the Dirch-
let boundary condition. The weak formulation (3.26) is transformed into:

∫
ω(tk−1)

∇φ · ∇ϕ dx =

=
∑

E∈Gh(tk−1)

∫
E

(
(φ − φk−1 + ∆t

(
∂φ

∂x
vx − vz

))(
1

γhE

ϕ− ∂ϕ

∂n

)
+ ∂φ

∂n
ϕ da,

∀ϕ ∈ H1(ω(tk−1)).

Before we present the final formulation of the free surface problem, we call the
reader’s attention to the computational inconvenience that is described in [Kaus
et al., 2010]. Earth mantle convection codes for free surface problems may ex-
perience an instability, that is sometimes called the drunken sailor effect. It is
depicted in Figure 3.4. A time step that is small enough to limit the vertical
displacement of the free surface can prevent the instabillity from ocurring. But
such a restriction on the time discretisation may cause an increase of computa-
tional time. We therefore introduce a counteracting boundary traction in the
momentum equations, it has the following form:

tg = −λ∆tρg(v · n)eẑ,

where λ ∈ [0, 1] denotes the weighting parameter of the counteracting force.

(a) t = 0 s. (b) t = 1 · 10−5 s. (c) t = 2 · 10−5 s.

Figure 3.4: Drunken sailor effect.

54



FEM formulation

We are ready to present the finite element formulation of the free surface problem
in its entirety. First, let us clarify, that we used P1/P2/P2 elements for the
thermomechanical problem, i.e. at the time t = tk we use the following definitions
of spaces:

Pk
h := {πh ∈ C

(
ω(tk)

)
| πh|T ∈ P1(T ), ∀T ∈ Th(tk)},

Vk
h := {vh ∈ C

(
ω(tk)

)
| vh|T ∈ P2(T )2, ∀T ∈ Th(tk), vh|γt(tk) = v̂},

Θk
h := {θh ∈ C

(
ω(tk)

)
| θh|T ∈ P2(T ), ∀T ∈ Th(tk), θh|γb = 1, θh|γt(tk) = 0},

where Th(tk) represents the triangulation of ω(tk). Search space of the mesh
displacement problem is approximated by:

Φk
h := {φh ∈ C

(
ω(tk−1)

)
| φh|T ∈ P1(T ), ∀T ∈ Th(tk−1)}.

FEM formulation of the free surface problem at the time t = tk:

Mesh update: φh ∈ Φk
h :∫

ω(tk−1)
∇φh · ∇ϕh dx =

=
∑

E∈Gh(tk−1)

∫
E

(
(φ−φk−1+∆t

(
∂φ

∂x
vx−vz

))(
1

γhE

ϕh− ∂ϕh

∂n

)
+ ∂φh

∂n
ϕh da,

∀ϕh ∈ Φk
h,

Thermomechanical problem: (πh, vh, θh) ∈ Pk
h × Vk

h × Θk
h :

0 =
∫

ω(tk)
(div vh)ϖh dx,

0 =
∫

ω(tk)
πh div uh − ∇vh

.. ∇uh + Ra(θh − θ0,h)eẑ · uh dx−

−
∫

γt(tk)
λ

Ra
βV[θ]∆t(vh · n)(ez · uh) da,

∫
ω(tk)

θh

∆t
ϑh dx =

∫
ω(tk)

∇θh · ∇ϑh − ((vh − v̂h) · ∇θh) ϑh + θk−1
h

∆t
ϑh dx,

∀(ϖh, uh, ϑh) ∈ Pk
h × Vk

h × Θk
h.

When the solution of the mesh update problem is constructed, we modify the
mesh using automated FEniCS algorithm ALE.move(). The convective veloc-
ity vh − v̂h in the temperature equation is the relative velocity c that arises due
to the ALE fomrulation of the problem. The velocity of the mesh v̂h is computed
from the mesh displacement field, i.e.:

v̂h = φh − φk−1
h

∆t
.

Parameters with values for both the fixed domain and the free surface problem
are tabulated in Table 3.1.
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Parameter Value

Geometry
l 106 m
h 106 m

Material quantity βV 2.5 · 10−5 K−1

Scales
[x] 106 m
[θ] ∆θ := θbot − θtop = 1000 K

Formulation/discretisation

θ0 0 K
θtop 0 K
θbot 1000 K
xdiv 30
zdiv 30
∆t a 10−4[θ] = 1014 s
Ra 104

γ 0.005
hE 1/xdiv

λ 1

Note: a This denotes the initial time step, CFL condition was applied after the first
cycle of the time loop was completed.

Table 3.1: Numerical values of parameters for Blankenbach benchmark
problem.

3.3 Results

3.3.1 Benchmark data

Two nondimensional quantities were collected during the computation:

· Nusselt number:

Nu = −h

∫
γt ∂θ/∂z ds∫ l

0 θ |z=0(x) dx
,

· rms velocity:

vrms = h

α

√
1
hl

∫ l

0

∫ h

0
|v|2 dz dx.

Figure 3.5 and Figure 3.6 show that the free surface formulation give consistent
benchmark results.
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Figure 3.5: Nusselt number data correlation for ALE and fixed domain
formulation. The black dashed line denotes the representative value given
by the benchmark reference.
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Figure 3.6: Nondimensional velocity vrms data correlation for ALE and
fixed domain formulation.

3.3.2 Dynamic topography vs. ALE mesh displacement
We employed the ALE technique to account for the moving upper surface, whose
displacement is given as a solution of the Laplacian smoothing mesh-update pro-
cedure. Precision of such transformation is difficult to measure. We decided to
compare mesh displacement at the upper left corner of the domain with so called
dynamic topography, which constitutes approximation of the water surface de-
flection based simply on a balance of gravitational and surface forces, expressed
mathematically:

ρg∆h = −nγt ·Tnγt = −Tzz,

where ∆h is the upper left corner horizontal deflection (increase with respect
to the height of the cell h) and nγt denotes the unit outer normal of the upper
surface which for the fixed domain equals eẑ = (0, 1). Since the Cauchy stress
tensor is scaled with [x]2/(αµ), we can write for nondimensional deflection:

∆h̃ = − βVµ

ρg[x]3 T̃zz = −βV[θ]
Ra T̃zz.

To get the variations of the dynamic topography, we need to subtract the av-
erage value given by

∫
γt ∆h ds. Figure 3.7 gives the resulting comparison in the

dimensional form.
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Conclusions and perspectives
The thesis proved that the proposed numerical tools are suitable for the problem
that is formulated in Chapter 1. Enthalpy method, that was derived from the pos-
tulated thermomechanical potential of internal energy, demonstrated to be a very
robust tool for phase-change problems. Suprisingly, it presented precise results
even for the two dimensional Stefan problem on a coarse mesh. Computational
stability of the one-dimensional Stefan problem FEM formulation showed valu-
able restriction on discretisation parameters of the problem. These restrictions
were validated by a computation and the results are depicted in Figure 2.4.

In Chapter 3 we attacked the second problematic aspect of our problem—the
free surface. ALE formulation was applied to the problem and the incremental
method was presented in the FEM formulation. Results of the Blankenbach
benchmark showed good agreement with the data presented in the reference
([Blankenbach et al., 1989]). The upper boundary elevation, given by the dy-
namic topography approximation, was compared with the solution of the mesh
update problem. The results exhibited a relatively small disagreement, which
was expected, since the dynamic topography approach provides only a first-order
approximation.

Unfortunately, due to lack of time I was unable to complete the simulation of a
Stokes problem with the phase transition. The formulation, inspired by [Danaila
et al., 2014], is given by the following system:

div v = 0,

Dv
Dt

= −∇π + 2 div (µϵD) + Ra
Pr Re2

1
βV(θh − θc)

ρ(θ) − ρ(θm)
ρ(θm) ,

(cp)ϵ

Dθ

Dt
= 1

Pr div (kϵ∇1θ),

where θh is the temperatured of the heated (left) wall and θc is the temperature
of the opposite cold wall. State equation for ρ is given by:

ρ(θ) = ρm (1 − w |θ − θm|q) ,

with ρm = 999.972 kg/m3, w = 9.2793 · 10−6 (◦C)−q and q = 1.894816.
Some preliminary results were obtained, but further investigation will be a

topic of the disertation.
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Attachments

A Appendix A: Notation
Throughout the thesis we employ the Einstain summation convention and use
mostly cartesian coordinates, therefore we do not make difference between covari-
ant and contravariant bases. Preferably, we use the operator notation meaning
contraction over the rightmost index, i.e.:

Au := Aijujei,

divA := ∂

∂xj

Aijei.

Other notation definitions:

A
..B := AijBij,

∇a := ∂ai

∂xj

ei ⊗ ej.

B Appendix B: Some differential operators in
curvilinear coordinates

Consider a vector function a = arer̂ + aφeφ̂ + azeẑ in cylindrical coordinates, or
a = arer̂ + aφeφ̂ + aϑeϑ̂ in spherical coordinates and assume that f is a scalar
function. Following Table 2 offers an overview of some differential operators in
cylindrical and spherical coordinates.

Differential Cylindrical Spherical
operator coordinates coordinates

(r, φ, z) (r, φ, ϑ)

∇f ∂f
∂r

er̂ + 1
r

∂f
∂φ

eφ̂ + ∂f
∂z

eẑ
∂f
∂r

er̂ + 1
r

∂f
∂φ

eφ̂ + 1
r sin φ

∂f
∂ϑ

eϑ̂

div a 1
r

∂(rar)
∂r

+ 1
r

∂aφ

∂φ
+ ∂az

∂z
1
r2

∂(r2ar)
∂r

+ 1
r sin φ

∂(aφ sin φ)
∂φ

+ 1
r sin φ

∂aϑ

∂ϑ

1
r2

∂
∂r

(
r2 ∂f

∂r

)
+ 1

r2 sin φ
∂

∂φ

(
sin φ ∂f

∂φ

)
+

∆f 1
r

∂
∂r

(
r ∂f

∂r

)
+ 1

r2
∂2f
∂φ2 + ∂2f

∂z2 + 1
r2 sin2 φ

∂2f
∂ϑ2

Table 2: Differential operators in curvilinear coordinates, taken from
appendix of [Kachanov et al., 2010].
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