
MASTER THESIS

Bc. Peter Š́ıpoš

Application for Automatic Recognition
of Textures in Map Data

Department of Software Engineering

Supervisor of the master thesis: doc. RNDr. Tomáš Skopal, Ph.D.
Study programme: Informatics

Study branch: Software Systems

Prague 2018

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In Prague, July 20th 2018 signature of the author

i

I would like to gratefully thank you for my family who provided support during
my study.

ii

Title: Application for Automatic Recognition of Textures in Map Data

Author: Bc. Peter Š́ıpoš

Department: Department of Software Engineering

Supervisor: doc. RNDr. Tomáš Skopal, Ph.D., Department of Software Engi-
neering

Abstract: This work has aimed to implement an easy-to-use application which
can be used to navigate through aerial imagery, assign sections of this image
for different classes. Based on these category assignments the application can
autonomously assign categories to so-far unknown fields, hence it helps the user
in further classification. The output of the application is an index file, which can
serve as underlying dataset for further analysis of a given area from geographic or
economic point-of-view. To fulfil this task the program uses standard MPEG-7
descriptors to perform the feature extraction upon which the classification relies.

Keywords: feature extraction aerial imager image retrieval

iii

Contents

Table of Contents 2

1 Introduction 2

2 Descriptors 3
2.1 Image representation . 3
2.2 Image comparison . 3
2.3 Descriptors in the Application . 3

3 Metrics 5
3.1 Manhattan distance - L1-distance 5
3.2 Euclidean distance - L2 − distance 5
3.3 k-Means Clustering . 5
3.4 Comparison of metric similarilities 5

4 User Guide 6

5 Programming Guide 8
5.1 Main Application Window . 8
5.2 Tile Loading . 8
5.3 Description Creation . 10
5.4 Classification . 11

Conclusion 12

6 Appendix A 13
6.1 Custom Map Tile Generation . 13
6.2 Converting . 13
6.3 Application with Custom Aerial Imagery 13

7 Appendix B 15
7.1 Compiling OpenCV libraries . 15

Bibliography 17

List of Figures 18

List of Tables 19

List of Abbreviations 20

A Attachments 21
A.1 Source code for the application 21
A.2 Example dataset . 21

1

1. Introduction
With the proliferation of online map services such as Google Maps or mapy.cz,
the browsing of maps became much more easier for the masses. We can easily
search for an address on our computer or mobile phone.

This work has been aimed to use such map services to provide an easy way
to annotate and classificate these map tiles.

2

2. Descriptors
Desriptors simplify image processing by capturing some specific property of the
input image. When we extract a descriptor, we transform the image from image
space to descriptor space, where certain tasks can performed more efficiently.

2.1 Image representation
Computers store discrete values for each pair of horizontal and vertical coordinate,
where each value can be a number for grey-scale images or most commonly a
vector of three numbers for each chroma channel. The following equations show
the image functions for greyscale and colour pictures:

Imagegreyscale (x, y) = l

where l is the luminance level, and

Imagecolour (x, y) = (a, b, c)

where (a, b, c) most commonly can be (luminance, u, v) or (red, green, blue)

2.2 Image comparison
When we compare two images, theoretically we can do it by comparing each pixel
from one image to each one in the second image. However, this process doesn’t
work if the images have different dimensions, some transformation changed the
location of pixels e.g. mirroring or the pixel values have changed e.g. different
brightness, changed white balance.

Descriptors help to overcome these problems by computing a representation,
which is not affected by certain changes in the image. We can create a simple
descriptor which computes the average luminance in a greyscale image:

averageluminance (img) = 1
width × height

×
height∑
x=1

width∑
y=1

(I (x, y))

The abocve descriptor can be called invariant to mirroring, since the average will
not change regardless in which order we walk through the pixels.

2.3 Descriptors in the Application
Currently there are four descriptors in the application, which can be used to
classificate each subtile:

1. Mean Luminance - averages the brightness component of images’ pixels

2. Mean Hue - averages the Hue component of images’ pixels

3. Homogenous Texture - calculates a 62 component MPEG7 Homogenous
Texture descriptor

3

4. Scalable Colour Descriptor - calculates a 32 component MPEG7 Scalable
Colour Descriptor

In the next chapter we describe some metrics which can be used to compare
these descriptors.

4

3. Metrics
We have the representation of our images in a restricted domain space and they
are representated by a vector of number. Metrics can tell us how close these data
are to each other by calculating a number for each pair of vectors.

3.1 Manhattan distance - L1-distance
This metric borrowed its name from perpendicular streets of Manhattan where
we can’t go along diagonal shortcuts 1. This metric calculates how close are two
points if we were only allowed to move between them up-and-down and left-and-
right and it can be calculated with the following function:

L1(x, y) = |x1 − y1| + |x2 − y2| + . . . + |xn − yn| (3.1)

.
Naturally we can write it down in a more compact form:

L1(x, y) =
n∑

i=0
|xi − yi| (3.2)

.

3.2 Euclidean distance - L2 − distance

The shortest path is the straight line - says the proverb and in this case might
refer to Euclidean distance. If we connect two points with a line then the length
of the section between the points is the value of the Euclidean distance.

L2(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + . . . + (xn − yn)2 (3.3)

3.3 k-Means Clustering
The algorithm for a given number k and metric similarility groups the input
points into k-groups. Each such group has a center point and by summarizing
the distance of points within each group we can calculate the compactness of each
group.

3.4 Comparison of metric similarilities
In this experiment we compare the metric similarilities by how compact are the
groups created with k-Means clustering and the given similarility.

1Although, technically not all streets are perfectly perpendicular e.g. the famous Times
Square is more like a bow-tie shape due to the Broadway

5

4. User Guide
The main application is called APR.Main, which can be used to annotate un-
known tiles and shows the result of tile classification when we have enough know
data.

Figure 4.1 shows the main window after startup. At this point it can’t classifi-
cate any tiles, first, we need to setup a distance function by clicking on Settings
button. When finished by clicking on the Update settings button we set it as the
current metric Figure 4.2.

By clicking on Auto classification button, we can don’t need to click on each
tile by one Figure 4.3 .

6

Figure 4.1: The APR’s main window after startup

Figure 4.2: Setting the current metric for classification

Figure 4.3: Result of the run of automatic classification

7

5. Programming Guide
In this chapter I would like to describe how each part of the application con-
tributes to the main functionality. The primary goal during implementation
was to improve the usability of a classic desktop application on touch enabled
Windows-based tablets. Although it was attempted to implement a secondary
application for UWP.

The source code for the application is attached in Attachement A.1 .

5.1 Main Application Window
Each section of the main application windows is backed with its own view model.
These particular view models help to separate the logic into multiple classes even
though there is only one window.

5.2 Tile Loading
There exist components which can show map from some specific vendor. However,
it was decided to implement a custom map control, so it is possible to freely
access downloaded image data and save to speed up navigation and reuse it for
classification.

There are two main components for tile loading: the tile services and the
map control with tile layers. Tile services are tailored for different web-based
map providers such as Google Maps, Bing Maps or mapping services of mapy.cz.
The main assumption for these services is that for each triplet of level, horizontal
coordinate and vertical coordinate they return an image representing that partic-
ular area. Sometimes these services change without any notice and that is why
generation of own image tiles turned out to be helpful.

The map control with tile layers transforms the user interaction on screen to
map movements and based on these movement it orchestrates tile loading and
can trigger automatic classification of newly added tiles. Furthermore, we have
other objects on the map - annotation circle, pins, coordinate status, which need
to follow the map movements too.

When working with tiles we need a way to uniquely identify each of these
tiles. We can distinguish three types of coordinates when positioning tiles in the
horizontal plane:

1. mozaic coordinate - each tile is one step in this coordinate system - starting
from zero

2. pixel coordinate - each pixel of the tiles is one step in this coordinate system
- we can convert these two as follows :

pixelcoor = mozaiccoor × tilewidth

, where the tile width is usually 256 pixels in both vertical and horizontal
directions.

8

3. geographical coordinate - the classical latitude, longitude pair to pinpoint a
place on Earth’s surface out of many coordinate systems. OpenStreetMaps’s
Nominatim address search system - similarly to most web services - uses
WGS84 coordinate system[OSM18]. We can refer to map’s size in pixels
on one particular level as virtual width or height and the conversion from
WGS84 to pixel coordinates is as follows:

x = 0.5 × λ/π × virtualwidth (5.1)

y = 0.5 × log
(

tan
(

π

4 + σ

2

))
× virtualheight (5.2)

. The above transformation is called Mercator-projection in honour of its
inventor Gerardus Mercator[Wik18]

The main problem with map tiles is that there is quite many of them. On
starting level we have one tile which is 256x256 pixel large and both dimensions
grows exponentially as we zoom in following Side(level) = 2level × 256; level =
0, 1, 2, . . . , 20.

To avoid performance problems only those tiles are loaded which are in view
and getting disposed when they are moved out of view. Each tile is given a key
similar to Z-index and when the map is moved two lists of these indexes are
created for tiles to be added or deleted.

Code for this functionality can be seen in Code 5.1, where the leftkey, rightkey,
topkey and bottomkey variables are the visibility borders in mozaic coordinates
and ordDisplayed, ordVisible are the are lists of key, tile pairs which are displayed
and should be displayed ordered by the keys.
i n t v i s Index = 0 ;
i n t d i s Index = 0 ;

whi l e ((d i s Index < ordDisplayed . Count)
&& (v i s Index < o r dV i s i b l e . Count))

{
ZKey v i s i b l eKey = o rdV i s i b l e [v i s Index] ;
ZKey displayedKey = ordDisplayed [d i s Index] . Item1 ;
UIElement t i l e = ordDisplayed [d i s Index] . Item2 ;

// Should be v i s i b l e , but i t ’ s not d i sp layed , yet
i f (v i s i b l eKey < displayedKey)
{

r eque s t . Add(v i s i b l eKey) ;
v i s Index++;

}
// Precedes the cur r ent v i s i b l e t i l e , but

// we haven ’ t found i t in the v i s i b l e l i s t
// We should remove i t
e l s e i f (v i s i b l eKey > displayedKey)
{

removal . Add(t i l e) ;

9

d i s Index++;
}
// Found a disp layed , which should be v i s i b l e

// Al l good , move along
e l s e
{

v i s Index++;
d i s Index++;

}

}

// Add which should be v i s i b l e
whi l e (v i s Index < o r dV i s i b l e . Count)
{

ZKey v i s i b l eKey=o rdV i s i b l e [v i s Index] ;
r eque s t . Add(v i s i b l eKey) ;
v i s Index++;

}

// Remove that shouldn ’ t be v i s i b l e
whi l e (d i s Index < ordDisplayed . Count)
{

UIElement t i l e=ordDisplayed [d i s Index ++]. Item2 ;
removal . Add(t i l e) ;
d i s Index++;

}
Code 5.1: Calculating which tile is within the map’s child elements

As you can see we are checking the indices of the already existing tiles against
the precalculated ”‘imaginary”’ tiles list. The ZKey serves as a simple represen-
tation of the tile location calculated as key = ((ux << 32)|uy) where ux and uy
are the horizontal and vertical mozaic coordinates.

5.3 Description Creation
Descriptors are implemented in Descriptors.CLR project which depends on the
API provided by the Measures.PCL. Every descriptor is represented by an array
of floating point numbers which is calculated from the image data passed in the
Extract function. We are using data in the extract function so we can pass the
needed information for every possible descriptor, while if we used e.g. pixel data
that possibly would be incompatible with some descriptor.

To extend the existing list of descriptors the following changes should be done:

1. Descriptors.CLR/NewDescriptor - add the implementation here, preferably
to the APR.Measures.Descriptors namespace

2. ExtractionInterop.CLR/ExtractionInterop (optional) - if the new descriptor
is a native one, add the code for its invoking here

10

3. DescriptorViewModel.CLR/DescriptorStringModel - add viewmodel for it
which will show the options for the given descriptor

4. DescriptorViewModel.CLR/ConfigurationConverter - add another if-else branch
for the newly created descriptor object

5. DescriptorViewModel.CLR/ConfigurationGraph - in ConfigurationGraph
also instantiate the DescriptorSelector and add it to the available descrip-
tors’ list

5.4 Classification
The map tiles’ dimensions are 256x256 and are retrieved as a single file. While
this size provides a good compromise between number of files in the viewport
and size of one individual image, from classification point of view they still can
contain multiple objects. Hence, each image tile is divided by an 8x8 grid to 64
sub images which are individually processed.

The classification algorithms are implemented in the APR.Main project, in the
APR.Main.Classification namespace. Currently two classificators are available:

1. Classificator - the category of the new comer is determined by the tag of
the closest neighbour

2. KNearestClassificator - a given number of kclosest neighbours vote

While the application is running it maintains a cache of classifications, which
is retained in memory until the application exists. This should be replaced with
a better logic for invalidating the classes in the cache.

11

Conclusion
While this application does not serve its main purpose - serving as a decent
Master Thesis Project - at least it is usable as a map browser. It is hard to
draw conclusion from such a short work. This will teach me hard lesson how
important is communication, time-managing and probably the most important
one over-estimating one’s abilities is a big mistake.

Cannot believe what I was thinking when continued postponing the meetings
with my supervisor. When I could not make a decision hoped that the problem
can solved for next week, but as expected I digged deeper in my misery and later
I was too ashamed to show up and as expected could not fix this mess all by
alone. Also this inability of decision making made start developing three version
of the same application, but all of them incomplete.

Please consider this work as a way of submitting the application. Sadly, I
cannot state it is a Master Thesis, since it is not.

12

6. Appendix A

6.1 Custom Map Tile Generation
The main disadvantage of using web based tile services like Google Maps is that
there are prone to change or they doesn’t reflect the area under our expected
conditions.

6.2 Converting
We can download some custom aerial pictures from Prague OpenData1. After
that it can be converted to map tiles by gdal2tiles, which can be seen in action
on Figure 6.1

6.3 Application with Custom Aerial Imagery
Editing Config/custom layers.txt file, we can point the APR to use these custom
tiles. One view for such a usecase is visible on Figure 6.2 for dataset which is
included as Attachement A.2

1Prague OpenData[Pra18]

13

Figure 6.1: Running Gdal2Tiles command to generate the slippy tiles

Figure 6.2: View on APR which uses a custom tile set

14

7. Appendix B

7.1 Compiling OpenCV libraries
Binaries for OpenCV can be downloaded from the official https://opencv.org/ 1

website, but in some cases the pre-built files might not suit our needs. In this
particular case I’d like to show the compilation process of the OpenCV World
package for 32-bit architecture for UWP.

During the following steps we create a Visual Studio Solution from source files
which can be used to build the desired libraries. This example was performed
using Visual Studio 2015 Update 3, but it should be possible to achieve the same
results with any recent version.

1. Download and install CMake (version 3.8.2 in my case) 64-bit Windows In-
staller from ”https://cmake.org/files/v3.8/cmake-3.8.2-win64-x64.msi”[Pro18a]

2. Download OpenCV sources as ZIP files from the following sources: OpenCV2

and OpenCV Contrib 3. Alternatively, it can be downloaded directly from
OpenCV under Releases: OpenCV Releases] 4

3. Extract files from both files to a common directory. While extracting skip
colliding files - of which aren’t many, just the common files for Github
repositiories.

4. Add source and build folder to CMake as seen on Figure 7.1

5. Click Configure and select Visual Studio 2015 (Figure 7.2)

6. Selecting the needed components and by finishing the wizard, CMake cre-
ates a Visual Studio solution for compilation.

1[Pro18b]
2https://github.com/opencv/opencv
3https://github.com/opencv/opencv contrib
4http://opencv.org/releases.html

15

Figure 7.1: OpenCV source and build location

Figure 7.2: CMake configuration dialog

16

Bibliography
[OSM18] Open Street Map OSM. Open street map wiki - wgs 84. https://

wiki.openstreetmap.org/wiki/Converting_to_WGS84/, 2018. [On-
line; accessed July 20th, 2018].

[Pra18] Prague. Opendata website. http://opendata.praha.eu/dataset/,
2018. [Online; accessed July 20th, 2018].

[Pro18a] CMake Project. Cmake project website. https://cmake.org/, 2000 -
2018. [Online; accessed July 18th 2018].

[Pro18b] OpenCV Project. Opencv project website. https://opencv.org/,
2000 - 2018. [Online; accessed July 18th 2018].

[Wik18] Wikipedia. Mercator projection. https://en.wikipedia.org/wiki/
Mercator_projection/, 2018. [Online; accessed July 20th, 2018].

17

https://wiki.openstreetmap.org/wiki/Converting_to_WGS84/
https://wiki.openstreetmap.org/wiki/Converting_to_WGS84/
http://opendata.praha.eu/dataset/
https://cmake.org/
https://opencv.org/
https://en.wikipedia.org/wiki/Mercator_projection/
https://en.wikipedia.org/wiki/Mercator_projection/

List of Figures

4.1 The APR’s main window after startup 7
4.2 Setting the current metric for classification 7
4.3 Result of the run of automatic classification 7

6.1 Running Gdal2Tiles command to generate the slippy tiles 14
6.2 View on APR which uses a custom tile set 14

7.1 OpenCV source and build location 16
7.2 CMake configuration dialog . 16

18

List of Tables

19

List of Abbreviations
UWP Universal Windows Platform. 6, 11

20

A. Attachments

A.1 Source code for the application

A.2 Example dataset

21

	Table of Contents
	Introduction
	Descriptors
	Image representation
	Image comparison
	Descriptors in the Application

	Metrics
	Manhattan distance - L1-distance
	Euclidean distance - L2-distance
	k-Means Clustering
	Comparison of metric similarilities

	User Guide
	Programming Guide
	Main Application Window
	Tile Loading
	Description Creation
	Classification

	Conclusion
	Appendix A
	Custom Map Tile Generation
	Converting
	Application with Custom Aerial Imagery

	Appendix B
	Compiling OpenCV libraries

	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments
	Source code for the application
	Example dataset

