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Department: Department of Numerical Mathematics
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Introduction

The Gibbs phenomenon is a phenomenon in which the Fourier series of a piecewise
continuously differentiable periodic function exhibits oscillations in the regions,
where the function has the jump discontinuity. The partial sum in the area close
to these jump discontinuities may exhibit overshoots and undershoots, i.e. the
n-th partial sum of the Fourier series might grow over the function maximum.
The phenomenon is well illustrated in Figure 1 from Wolfram Web Resource [see
Weisstein].

In the Finite element method (FEM) the Gibbs phenomenon stands for un-
desired phenomena, which exhibits spurious oscillations in the discrete solution
whenever we solve a problem with steep gradients or discontinuities, see Figure 2
as an example. This is the major drawback of the “traditional” approach of
solving the partial differential equation using FEM. Moreover, for the solution
possessing discontinuities it is not reasonable to use a continuous approximation.

To avoid the Gibbs phenomenon, we use a different numerical scheme, the
discontinuous Galerkin (DG) method. The method is similar to the FEM method
that we also use piecewise polynomial functions in the discrete formulation. The
major difference between FEM and DG methods is that in DG we do not have any
assumptions on the continuity between neighboring elements. The idea behind
the DG method is to use some kind of weaker continuity constraints realized by
penalization terms. Hence DG is more suited for approximating discontinuous
function. Another advantage of the DG scheme is that if the solution provides
overshoots and undershoots on some intervals, there is only limited propagation
of the “bad” behavior to the neighboring elements.

Essentially, by using the DG method instead of FEM we can improve the
solution and avoid the Gibbs phenomenon to a large extent. The methods itself,
however, does not prevent overshoots and undershoots in the areas close to dis-
continuities. There are different approaches how to improve the DG method, e.g.
by adding the artificial viscosity [see Persson and Peraire, 2006] or by projection
limiting [see Krivodonova, 2007]. In this work we present a rather nonstandard
approach. To limit the magnitude of the overshoots and undershoots we use
a method called flux corrected transport or flux corrected technique (FCT).

The FCT method was developed for stabilizing the FEM and becomes rather
popular because of its simplicity. The idea is to manipulate with the system
matrix of the FEM scheme using only algebraic operations to provide a system
with better numerical properties. If the method is well implemented, it is efficient
and the solution is considerably improved. For more details about FEM-FCT
refer to Kuzmin and Möller [2005] or John and Schmeyer [2008].

Combining the DG method with FCT stabilization is a promising combination
for eliminating Gibbs phenomenon and minimizing overshoots and undershoots.
In this work we will study several strategies based on the combination of DG and
FCT, especially the behavior of these methods used for solving Burgers’ equation.

The work has the following structure. In Section 1 we provide the basic
definitions and notation necessary for derivation of the numerical methods. In
Section 2 we derive the DG formulation of Burgers’ equation step by step, at
the end of this chapter we present the high order scheme with system matrix
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1. Definitions and notations

Before we introduce the DG method, we need to introduce some definitions and
useful notation.

Let Dn = ¶0 = x0 < x1 < x2 < · · · < xn−1 < xn = 1♦ be the set of distinct
points. On these points we define the partition of the interval [0, 1] to be a finite
number of closed intervals I with disjoint interiors such that

[0, 1] =
⋃

I∈Th

I.

We will denote the partition by the symbol Th.
For each interval we set hI = xi+1 −xi then the norm of the partition is given

by
h = max

I∈Th

hI .

Parameter h gives us the information about roughness of the division.
Let I, J ∈ Th, we say that the interval J is a neighboring element of I if their

intersection is nonempty.
By L2(Ω) we denote the standard space of Lebesgue square-integrable func-

tions on Ω.

Definition 1 (Sobolev space). Denote the interval (0, 1) by Ω. Let us define the
Sobolev space H1(Ω) as

H1(Ω) =
{
v ∈ L2(Ω); v′ ∈ L2(Ω)

}
.

equipped with the norm

♣v♣H1 = ∥v∥H1(Ω) =
(
∥v∥2

L2(Ω) + ∥v′∥2
L2(Ω)

) 1

2 .

The seminorm is defined as

♣v♣H1 = ∥v∥H1(Ω) =
(
∥v′∥2

L2(Ω)

) 1

2 .

Definition 2 (Broken Sobolev spaces). We define the broken Sobolev spaces over
Th as follows

H1(Ω, Th) =
{
v; v♣I ∈ H1(I),∀I ∈ Th

}
.

equipped with the seminorm

♣v♣H1(Ω,Th) =

∏
∐ ∑

I∈Th

♣v♣H1(I)

⎞
ˆ

1

2

.

Actually the functions from H1(Ω, Th) are generally globally discontinuous
but on the interior of I ∈ Th they are H1 functions.

Notation. For discontinuous functions from H1(Ω, Th) it is convenient to denote

u−
h (xi) = lim

x→x−

i

uh(x),

u+
h (xi) = lim

x→x+

i

uh(x).
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Let v ∈ H1(Ω, Th) be a function which is generally discontinuous. Hence it is
suitable to introduce the notation for jump

[v]i = v(xi)
+ − v(xi)

−,

where xi is a boundary point of I ∈ Th. Special care must be taken for the points
0 and 1, because the value v(0)− and v(1)+ are not defined. We formally define
the values by extrapolating from the interior of Ω

v(0)− := v(0)+, v(1)+ := v(1)−.

Let P 1(I) denote the space of linear polynomials on the interval I. Then we
define the space of discontinuous piecewise polynomial functions

Sh =
{
v; v♣I ∈ P 1(I), ∀I ∈ Th

}
.

In the space Sh we would like to seek the solution of the discrete problem. That
means that we use piecewise linear functions to approximate a piecewise Sobolev
function from H1(Ω, Th).

Definition 3. Let f be a real valued function from Ω to R then the support of f
is defined as

supp(f) = ¶x ∈ Ω♣f(x) ̸= 0♦.
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2. Nonlinear convection equation

Let us consider the following one dimensional partial differential equation.

∂u

∂t
+
∂f(u)

∂x
= 0 in (0, 1) × (0, T ). (2.1)

We seek a function u : (0, 1) × (0, T ) → R satisfying (2.1) under the boundary
conditions

u(x, t) = uD(x, t), x ∈ ΓD, t ∈ (0, T )

and the initial condition

u(x, 0) = u0(x), 0 ≤ x ≤ 1,

where the function u0 : (0, 1) → R and the Dirichlet data uD : ΓD × (0, T ) → R

are prescribed. The Dirichlet boundary ΓD is a subset of ¶0, 1♦, which we will
describe later. The function f(u) ∈ C1(R) is called convective flux. It is often
assumed that the flux is globally Lipschitz continuous. However, this assumption
is sometimes not satisfied, the Burgers’ equation investigated in this work is
Lipshitz continuous only locally.

By the choice of f we obtain equations describing different phenomena such
as city traffic, behavior of electrons in semiconductors or fluid flows.

As a linear version of (2.1) we take

∂u

∂t
+
∂a(x, t)u

∂x
= 0 in (0, 1) × (0, T ). (2.2)

The linear equation can be very useful in understanding the behavior of the
nonlinear case.

By the choice f(u) = u2 we obtain

∂u

∂t
+
∂u2

∂x
= 0 in (0, 1) × (0, T ), (2.3)

which is a special case of equation (2.1) and it is known as inviscid Burgers’
equation. This equation has been studied by researchers because it is one of the
simplest form of nonlinear partial differential equation which in addition simu-
lates the physical phenomenon of shock wave.

Note that in the literature the Burgers’ equation is usually stated with
f(u) = 1

2
u2. In order to keep the presented methods as simple as possible, we

omit the factor one half.

2.1 DG formulation

We inherit the notation from Section 1. Using the usual approach, the equation
(2.1) is multiplied by a test function φ ∈ H1((0, 1), Th), integrated over interval
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(xi, xi+1) ∈ Th and integration by parts is applied to the convective terms. The
result is the equation

∫ xi+1

xi

∂u

∂t
φ dx+ [f(u)φ]xi+1

xi
−

∫ xi+1

xi

f(u)φ′ dx = 0.

Now we sum over all intervals (xi, xi+1) ∈ Th

∫ 1

0

∂u

∂t
φ dx+

n−1∑

i=0

[f(u)φ]xi+1

xi
−

n−1∑

i=0

∫ xi+1

xi

f(u)φ′ dx = 0.

We would like to replace the continuous function u by its discrete approxima-
tion uh ∈ Sh. The problem is that the function uh is not continuous on (0, 1).
Loosely speaking, in point xi the value of uh(xi) may differ approaching the point
xi from the left and from the right. Hence the formal symbol [f(uh)φ]xi+1

xi
does

not make sense for uh.
To provide a suitable interpretation, first rearrange the sum

n−1∑

i=0

[f(u)φ]xi+1

xi
=

∑

xi∈Di

f(u)[φ]i.

We will approximate a physical flux
√

xi∈Di
f(u)[φ]i by a numerical flux√

xi∈Di
H(u−, u+)[φ]i. In the multidimensional problem, the numerical flux H

depends also on a vector of an outer unit normal denoted by n. In the 1D case,
n attains the values 1 or −1 and it is natural to choose n = 1 meaning that u−

is the value given in the left interval and u+ in the right. The symbols will be
properly defined later.

The above considerations allow us to define the convective form

bh(u, φ) = −
n−1∑

i=0

∫ xi+1

xi

f(u)φ′ dx+
n∑

i=0

H(u−, u+)[φ]i. (2.4)

Finally we are able to formulate the discrete problem derived from (2.1).

Definition 4. We say that uh is a DG finite element solution of the nonlinear
partial differential equation (2.1) if

1. uh ∈ C1([0, T ];Sh),

2.
d

dt
(uh(t), φh) + bh(uh(t), φh) = 0, ∀φh ∈ Sh,∀t ∈ (0, T ), (2.5)

3. uh(0) = (u0)h,

where (u0)h denotes an approximation of the initial condition u0 in the space Sh.

Remark. By the notation (·, ·) we understand the standard L2 inner product. i.e.

(u, v) =
∫ 1

0
u(x)v(x)dx, ∀u, v ∈ L2(0, 1).
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2.2 Numerical flux

How to define the numerical flux H(u−, u+)?
Consider an arbitrary point xi. Since uh is not continuous, instead of a

uniquely defined value in xi, there are two values u−
h (xi) and u+

h (xi). It may
seem natural to choose

f(u(xi)) ≈
(
f(u−

h (xi)) + f(u+
h (xi))

)
/2

or
f(u(xi)) ≈ f

(
(u−

h (xi) + u+
h (xi))/2

)
.

However, such a choice of numerical flux leads to unstable schemes, for further
details on this topic see Feistauer et al. [2003]. Vaguely speaking, this is caused
by the fact, that averaging is natural for diffusive problems. In diffusive problems
the information spreads in all directions more or less evenly. On the contrary, in
the case of convective problems, the information is transported in some direction,
hence it is more suitable to use upwinding. The proper proof is beyond the scope
of this work, refer to Feistauer et al. [2003].

In the next paragraph we explain what it is mean by upwinding. It is a nu-
merical method for solving partial differential equations, which uses an adaptive
approach to numerically simulate the direction of propagation of information in
a flow field. We will demonstrate the idea on the one-dimensional linear advection
equation

∂u

∂t
+ a

∂u

∂x
= 0. (2.6)

The simplest upwind scheme using the finite difference method for discretization
is given by

un+1
i − un

i

δt
+ a

un
i − un

i−1

∆x
= 0 for a > 0,

un+1
i − un

i

δt
+ a

un
i+1 − un

i

∆x
= 0 for a < 0,

where un
i approximates u(xi, tn). The second term depends on the direction of

propagation. If a > 0, information goes from left to right and for the computation
of the new solution un+1

i we use the values un
i−1. On the other hand, if a < 0, the

information is transported from right to left and in the second term we use un
i+1

to compute un+1
i .

The above considerations leads us to the following definition of the numerical
flux.

Definition 5 (Upwind flux).

H(u−
h , u

+
h ) =

∮
f(u−

h ), if A > 0,
f(u+

h ), if A ≤ 0,

where
A = f ′

(
(u−

h (xi) + u+
h (xi))/2

)
.
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In the simpler equation (2.2), where f(u) depends linearly on u, we have

H(u−
h , u

+
h ) =

∮
a(x, t)u−

h , if a(x, t) > 0,
a(x, t)u+

h , if a(x, t) ≤ 0.

The convective term is given by a(x, t)uh. The derivative of the convective
term with respect to u is a(x, t) and its sign determines the direction of propaga-
tion of information. If the direction of convection aims from the interval (xi−1, xi)
to interval (xi, xi+1), we evaluate the flux using u−

h . If the information propagates
in the opposite direction, we evaluate using u+

h . Basically we use the value lying
in the upwind direction because this is the “important” information we want to
use in further computations.

To give the reader a complete overview, we will introduce the flux properties
in the general space R

d. Let H(u, v,n) be a general flux, where n denotes the
outer unit normal. Then we assume that H has the following properties:

1. H(u, v,n) is consistent:

H(u, u,n) =
d∑

s=1

fs(u)ns, ∀u ∈ R, ∀n = (n1, . . . , nd) ∈ R
d : ♣n♣ = 1.

2. H(u, v,n) is conservative:

H(u, v,n) = −H(u, v,−n), ∀u, v ∈ R,n ∈ R
d : ♣n♣ = 1.

The consistency property ensures that if we insert the exact solution u into
H(u, v,n), then the obtained discrete scheme is consistent with the continuous
problem (2.1).

In the 1D case studied in this work, the outer unit normal n can achieve only
two values 1 and −1. As explained above, the natural choice is n = 1, so it’s
sufficient to denote the numerical flux by H(u, v) omitting the normal n.

Remark. The numerical flux presented in Definition 5 is by its definition consistent
and conservative.

Numerical flux and boundary conditions

We must define the numerical flux also in the boundary points. The problem
is closely related to the formulation of boundary conditions. Let ΓD be pre-
scribed on the inflow boundaries. By the term “inflow” we understand the parts
of boundaries, where f ′(u)n < 0. In other words, in the “inflow” points, the
information propagates from the outside of the interval (0, 1) into the interval.
Hence, the value defined in point 0 from the left and in point 1 from the right
must reflect the nature of the prescribed boundary condition.

A straightforward choice is

u−(0) =

∮
uD, if 0 ∈ ΓD,
u+(0), otherwise,

u+(1) =

∮
uD, if 1 ∈ ΓD,
u−(1), otherwise.

9



Remark. There are several possibilities how to set uD. Typically uD is defined by
some function derived from the physical nature of the problem. Another option
is to prescribe periodic boundary conditions. If the transport of the information
goes from left to right, we prescribe u−(0) := u−(1). In other words, if the
information gets to the point 1, it appears in 0 afterwards. Another often used
approach is to prescribe boundary condition from the initial condition u0.

As it was already suggested in the beginning of this section, we often do not
need to prescribe both u+(1) and u−(0). Whether we need to prescribe a bound-
ary condition in the given end point or not depends on the propagation of the
information. If the information flows from left to right, we need to set a boundary
condition in 0 only. Similarly if the flow goes from right to left, we define the
boundary conditions only in the point 1.

2.3 Time discretization

Further on we will be concerned with the Burgers’ equation (2.3).
Let N be the dimension of the finite dimensional space Sh and

B = ¶φ1, . . . , φN♦ be its basis. The sought approximate solution uh ∈ Sh can
be decomposed as a linear combination of basis functions φj and coefficients
uj(t), j = 1, . . . , N

uh(x, t) =
N∑

j=1

uj(t)φj(x).

Instead of testing (2.5) by an arbitrary function φ ∈ Sh, we use only ele-
ments of the basis B and obtain a system of N ordinary differential equations for
unknown uj, j = 1, . . . , N .

N∑

j=1

(φj, φi)
duj(t)

dt
+ bh(

N∑

j=1

uj(t)φj, φi) = 0, i = 1, . . . , N. (2.7)

It is convenient to write the above system in the matrix form

MC

du

dt
+B(u(t)) = 0,

where MC = ¶mij♦
N
i,j=1 is the consistent mass matrix. The vector B(u(t)) corre-

sponds to the discretization of the convective term and the unknown vector u(t)
is the vector of coefficients of the linear combination of element in B.

Elements of the mass matrix are defined as follows

mij =
∫

Ω
φiφj dx,

and elements of vector B(u(t)) are

bi = bh

∏
∐

N∑

j=1

ujφj, φi

⎞
ˆ .

In general B(u(t)) cannot be written as a product of matrix B̃ and vector u(t),
because neither H(u−

h , u
+
h ) nor f(u) depends linearly on u.
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We follow by the time discretization. The simplest method is the forward
Euler scheme (explicit). There are two main disadvantages, the method is only
first order accurate and second, in order to preserve stability, restrictions on the
choice of the time step must be applied, the topic is covered by Feistauer et al.
[2003]. Usually the second problem is limiting for us, therefore we discretize the
scheme using the backward Euler scheme (implicit).

Let 0 = t0 < t1 < · · · < tK = T be a partition of the interval (0, T ) and
∆tk+1 := tk+1 − tk. Let uk ≈ u(tk), then

MCu
k+1 + ∆tk+1B(uk+1) = MCu

k (2.8)

is a scheme, which represents the backward Euler discretization of problem (2.1).

2.4 Linearization of the operator B(u)

The FCT method requires the discrete system in the form

(MC + ∆tk+1A)uk+1 = MCu
k.

Before we proceed to the derivation of the method, we need to linearize the
operator B(u) corresponding to the discretization of the nonlinear convective
term.

For Burgers’ equation we approximate bh(uk+1, φ) by bh(uk+1, uk, φ) defined
as

bh(uk+1, uk, φ) = −
n−1∑

i=0

∫ xi+1

xi

uk+1ukφ′ dx+
n∑

i=0

Ĥ
(
(uk+1)−, (uk+1)+

)
[φ]i.

and approximate the numerical flux

Ĥ
(
(uk+1)−, (uk+1)+

)
=

∮
(uk)−(uk+1)−, if A(xi) > 0,
(uk)+(uk+1)+, if A(xi) ≤ 0,

where
A(xi) =

(
uk(x−

i ) + uk(x+
i )

)
/2.

The above linearization is sufficient for the backward Euler time discretisation,
for more details refer to Feistauer and Kučera [2007], where a similar linearization
was used for the compressible Euler equation. Formally Ĥ depends also on (uk)−

and (uk)+, however, we omit these arguments for simplicity.
We express uk+1 in terms of basis functions. Then

bh(uk+1, uk, φ) = −
N∑

j=1

uk+1
j

n−1∑

i=0

∫ xi+1

xi

ukφjφ
′ dx

+
N∑

j=1

uk+1
j

n∑

i=0

(
A+(xi)φj(x

−
i ) + A−(xi)φj(x

+
i )

)
(φ(x−

i ) − φ(x+
i )).

where we denote

A+(xi) := uk(x−
i )H(A(xi)), (2.9)

A−(xi) := uk(x+
i )H(−A(xi)). (2.10)
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Further

• ϕm(x−
i ) = 0 ∀i = 0, . . . , n,

• ϕm(x+
i ) = 1 if and only if i = m,

• ϕj(x
−
m) = 0 ∀j = 1, . . . , n,

• ϕj(x
+
m) = 1 if and only if j = m,

• ψj(x
−
m) = 1 if and only if j = m− 1,

• ψj(x
+
m) = 0 ∀j = 1, . . . , n.

Denote the integrals I1
m :=

√ xm+1

xm
ukϕmϕ

′
m dx and I2

m :=
√ xm+1

xm
ukψmϕ

′
m dx and

using the above considerations, we obtain

bh(uk+1, uk, ϕm) = −βk+1
m I1

m − γk+1
m I2

m − βk+1
m A−(xm) − γk+1

m−1A
+(xm).

Similarly, if we use the test function ψm we derive the form of bh to be

bh(uk+1, uk, ψm) = −βk+1
m J1

m − γk+1
m J2

m + βk+1
m+1A

−(xm+1) + γk+1
m A+(xm+1),

where J1
m and J2

m denotes

J1
m =

∫ xm+1

xm

ukϕmψ
′
m dx, J2

m =
∫ xm+1

xm

ukψmψ
′
m dx.

2.5 Discrete scheme

Let the partition of the interval (0, 1) be equidistant and denote the length of any
subinterval by h.

For the basis functions (2.11) and (2.12) presented in the previous subsection,
we can write the explicit form of the linearized scheme (2.8).

In order to express the mass matrix MC , we evaluate the inner products of
the basis functions

•
√ xm+1

xm
ϕmϕm dx = h/3,

•
√ xm+1

xm
ϕmψm dx = h/6,

•
√ xm+1

xm
ψmψm dx = h/3.

Then

MC =

h
3

h
6

h
6

h
3

h
3

h
6

h
6

h
3

. . .

h
3

h
6

h
6

h
3

⋃
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⨄

⋂
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0

0
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The linearized convective operator bh rewritten in the block matrix form is

A =

⋃
⎢⎢⎢⎢⨄

A1,1 A1,2 0
A2,1 A2,2 A2,3

. . .

0 An,n−1 An,n

⋂
⎥⎥⎥⎥⎦

with the 2x2 blocks defined as

Am,m−1 =

[
0 A+(xm)
0 0

]
,

Am,m =

[
I1

m + A−(xm) I2
m

J1
m J2

m − A+(xm+1)

]
,

Am,m+1 =

[
0 0

−A−(xm+1) 0

]
.

Now we are able to write the discrete scheme (2.8) in the exact form with the
system matrix to be block tridiagonal matrix

∏
ˆ̂
ˆ̂
∐
MC − ∆tk+1

⋃
⎢⎢⎢⎢⨄

A1,1 A1,2 0
A2,1 A2,2 A2,3

. . .

0 An,n−1 An,n

⋂
⎥⎥⎥⎥⎦

⎞
ˆ̂
ˆ̂
ˆ

⋃
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⨄

βk+1
1

γk+1
1

βk+1
2

γk+1
2
...

βk+1
n

γk+1
n

⋂
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= MC

⋃
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⨄

βk
1

γk
1

βk
2

γk
2
...
βk

n

γk
n

⋂
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.13)
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3. Flux corrected schemes

The FEM-FCT method was developed in the early 70s by Boris and Book [1973].
The method was inspired by solving the continuity equation of gas dynamics
to obtain realistic and accurate results. The goal was to preserve the mass-
conserving property. For more details refer to Boris and Book [1973].

The FCT method is based on an algebraic modification of the system matrix
and right hand side such that the new system possesses “better” numerical prop-
erties. More precisely, if the maximum principle holds for continuous equation
(2.1), the discrete maximum principle should be inherited also for the discrete
problem (2.8). Forcing the discrete maximum principle to be satisfied is the main
idea behind FCT algorithm. It can be shown that for preservation of DMP it
is enough that a matrix is an M-matrix [cf. Kuzmin and Möller, 2005]. In this
section we use some theoretical results that are presented in Kuzmin and Möller
[2005] or Kuzmin [2010] .

Definition 6 (maximum principle (MP)). Let Σ denotes the sets of points, where
initial or boundary conditions are prescribed, i.e. Σ = ¶(x, t) : x ∈ ΓD ∨ t = 0♦.
The continuous maximum principle holds for problem (2.1) if

min
Σ
u ≤ u(x, t) ≤ max

Σ
u, ∀(x, t) ∈ (0, 1) × (0, T ). (3.1)

The condition (3.1) in fact says, that no new maxima nor minima of the
solution arise inside the domain as the solution evolves in time. This property
is natural for the transport equation and it is often used for verification whether
the numerical scheme provides a reasonable solution.

Theorem 1. The continuous maximum principle is satisfied for Burgers’ equa-
tion (2.3), i.e. it holds minΣ u ≤ u ≤ maxΣ u.

Proof. The proof is done by the method of characteristic [see Feistauer et al.,
2003].

Definition 7 (discrete maximum principle (DMP)). The discrete solution uk+1

of (2.8) satisfies the local discrete maximum principle if

umin
i ≤ uk+1

i ≤ umax
i ,

where

umax
i = max

∮
max

j∈Si∪¶i♦
uk

j , max
l∈Si

uk+1
l

⨀
,

umin
i = min

∮
min

j∈Si∪¶i♦
uk

j , min
l∈Si

ulk+1

⨀

and Si is the set of the nearest neighboring nodes of node xi.

We would like to formulate the necessary conditions for DMP to be satisfied.
First we need introduce some matrix properties.

By the symbol v ≥ 0 we mean that any component of v is greater than or
equal to zero.
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Definition 8. A regular matrix A ∈ R
n×n is called monotone if

Av ≥ 0 ⇒ v ≥ 0, ∀v ∈ R
n.

Definition 9. A monotone matrix A with aij ≤ 0 for all j ̸= i, is called
an M -matrix.

Claim 2. Let A ∈ R
n×n be a matrix with elements aij. Suppose that A satisfies

the following properties

1. aii > 0 ∀i = 1, . . . , n,

2. aij ≤ 0 ∀i ̸= j; i, j = 1, . . . , n,

3.
√n

j=1 aij > 0 ∀i = 1, . . . , n.

Then A is an M-matrix.

Proof. It is enough to show that A is monotone.
Let Au ≥ 0 and exists i such that ui < 0. Without loss of generality suppose

that
u1 = min¶u1, u2, . . . , un♦.

Hence u1 < 0.
Choose an arbitrary j ∈ ¶2, . . . , n♦. Inequalities u1 ≤ uj and a1j ≤ 0 im-

ply a1ju1 ≥ a1juj. A direct consequence of previous relation is (a12 + . . . +
a1n)u1 ≥ a12u2 + . . .+ a1nun.

Reformulate assumption 3 as follows: a11 > −a12 − . . .− a1n. Combining the
last two inequalities above we get

a11u1 < (−a12 − . . .− a1n)u1 ≤ −a12u2 − . . .− a1nun,

which immediately implies a11u1+a12u2+. . .+a1nun < 0. This is in contradiction
with Au ≥ 0.

In words, Claim 2 says that a sufficient condition for a matrix to be
an M -matrix is that all diagonal elements are positive, all off-diagonal elements
are non-positive and row sums are positive.

Theorem 3. Let A,B ∈ R
n×n, u, g ∈ R

n. Consider a fully discrete scheme
Au = Bg. Suppose that all assumptions in Claim 2 are valid. Assume, moreover,
that bij ≥ 0 for all i, j = 1, . . . , N .
Then if ∑

j

aij =
∑

j

bij, ∀i = 1, . . . , N (3.2)

the local DMP holds.

Proof. By Si we denote the set of indexes j ∈ 1, . . . , N such that aij or bij are
not zero. The set Si corresponds to the set of neighboring elements of node xi.
Then we define umax

i and umin
i the same way as in Definition 7.

For the discrete scheme Au = Bg the general form of the i-th equation reads

aiiui = biigi +
∑

j∈Si

(bijgj − aijuj) . (3.3)
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Define wj := uj − umax
i and vj := gj − umax

i such that

wj ≤ 0,∀j ∈ Si, vj ≤ 0,∀j ∈ Si ∪ ¶i♦.

Using the row sum condition (3.2), we can express the equation (3.3) as

aiiwi = biivi +
∑

j∈Si

(bijvj − aijwj) .

By the inequalities assumptions the right-hand side of above equation is non-
positive and aii > 0. Hence wi ≤ 0 or equivalently ui ≤ umax

i .
Similarly one can prove ui ≥ umin

i .
Presented proof can be found in Kuzmin [2010].

The conditions stated above motivate us to define the following matrices.
The matrix A stands for the linearized operator B(u) from the previous chapter.
Denote

L = A + D,

D = (dij),

where

dij = − max¶0, aij, aji♦, i ̸= j,

dii = −
N∑

j=1,j ̸=i

dij,

and

ML = diag(m1, . . . ,mN), mi =
N∑

j=1

mij,

where N is the same as in the previous chapter and denotes the number of degrees
of freedom of space Vh, aij are entries of the stiffness matrix A and mij are entries
of the mass matrix MC .

In the next several Lemmas we summarize the properties of the introduced
matrices. The results will be used to prove that the designed scheme,which will
be presented later, satisfies the local DMP.

Lemma 4. Matrix L posses the following properties

1. if aii ≥ 0 ∀i = 1, . . . , N then lii ≥ 0 ∀i = 1, . . . , N,

2. lij ≤ 0 ∀i ̸= j, i, j = 1, . . . , N.

Proof. 1. Let i ∈ ¶1, . . . , N♦. Then

lii = aii −
N∑

j=1,i̸=j

− max¶0, aij, aji♦ ≥ aii ≥ 0.

2. Let i, j ∈ ¶1, . . . , N♦, i ̸= j. Then lij = aij − max¶0, aij, aji♦.

17



• If aij > 0, lij = aij − max¶aij, aji♦ ≤ aij − aij = 0.

• If aij ≤ 0, lij = aij − max¶0, aji♦ ≤ aij ≤ 0.

Lemma 5. The row and column sums of D are zero.

Proof. The zero sum property is an immediate consequence of the definition of
matrix D.

Lemma 6. Matrix ML is an M-matrix.

Proof. Use the characterization stated in Claim 2.
Entries mij are defined as (ϕi, ϕj) where ϕi are positive functions

∀i = 1, . . . , N hence conditions 1 and 3 are satisfied. The remaining condition
is satisfied trivially because ML is a diagonal matrix.

Corollary 7. The matrix ML + ∆tk+1L is an M-matrix provided that ∆tk+1 is
sufficiently small.

Proof. We use Claim 2 together with Lemma 4 and Lemma 6.

1. The diagonal entries of ML are positive. If aii ≥ 0, ∀i, . . . , N then
lii ≥ 0 for all i, . . . , N hence the sum ML + ∆tk+1L has positive diagonal
entries. If exists i ∈ 1, . . . , N such that aii < 0 then under the condi-
tion that ∆tk+1 is sufficiently small then (ML)ii > ♣∆tk+1lii♣ and hence the
positivity of diagonal entries of ML + ∆tk+1L is ensured.

2. Off-diagonal elements of both matrices are non-positive, also the sum is
non-positive.

3. We want to prove that the row sums
√N

j=1 (ML + ∆tk+1L)ij > 0 for all
i = 1, . . . , N . We know, that the diagonal entries of ML are positive with the
value approximately equal to the norm of the partition h and off-diagonal
entries of ML are zero. If ∆tk+1 is sufficiently small in comparison to the
norm of the partition h, the sum of non-positive off-diagonal entries of L is
smaller that the diagonal element of ML. Thus the inequality is fulfilled.

3.1 Low order scheme

We will now proceed with derivation of FCT scheme. Instead of equation (2.13)
consider

(ML + ∆tk+1L)uk+1 = MLu
k. (3.4)

This is an algebraic representation of a stable low order scheme (LOS).

Lemma 8. Suppose that for Burgers’ equation (2.3) uk is constant on the whole
interval (0, 1), then the discrete maximum principle holds for the low order scheme
(3.4).
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Proof. We use Theorem 3. Proving all inequalities is straightforward as a conse-
quence of stated properties of L,ML and D. The interesting part is to prove the
condition ∑

j

aij =
∑

j

bij, ∀i = 1, . . . , N

For the low order scheme it means to prove the row sums of ML + ∆tk+1L equals
the row sum of ML. This is equivalent to prove

√
j lij = 0,∀i = 1, . . . , N. The

matrix is defined as L = A+D and we know from Lemma 5 that the row sums of
D are zeros. Thus, it is sufficient to show that

√
j aij = 0,∀i = 1, . . . , N . Equiv-

alently written as A(1, . . . , 1)T = 0. In our scheme it corresponds to multiplying
the matrix A by the vector uk+1 ≡ 1. The sum

√
j aij corresponds to bh(1, uk, φ),

where φ is the i-th basis function and uk+1 ≡ 1. Now we use the assumption that
uk is constant, i.e. uk ≡ c then

bh(1, c, φ) = −
n−1∑

i=0

∫ xi+1

xi

cφ′ dx+
n∑

i=0

(A+(xi) + A−(xi))(φ(x−
i ) − φ(x+

i )).

Using integration by parts we have

bh(1, c, φ) =
n−1∑

i=0

∫ xi+1

xi

c′φ dx−
n−1∑

i=0

c(φ(x−
i+1) − φ(x+

i )) +
n∑

i=0

c(φ(x−
i ) − φ(x+

i )).

The derivative of the constant c is zero, hence the first term is zero. If we
reorganize the sum in second term, the second and third term will be subtracted,
using the fact that we had formally defined uk(0−) := 0 and uk(1+) := 0.

To sum it up, we have proven that
√

j aij = 0,∀i = 1, . . . , N .

Originally, the scheme was developed for the transport equation and nowadays
it is also used for the convection-diffusion-reaction equation

∂u

∂t
+ ∇ · (vu−D∇u) = 0

but restricted only to the problems with an incompressible velocity fields
(∇ · v = 0), which can be viewed as one of the drawback of the method. For
further details refer to Kuzmin [2010].

The problem is that the row sum property (3.2) does not hold for the Burger’s
equation in general. It is a direct consequence of the fact that uk does not need to
be identically constant on the whole interval (0, 1). The violation of this condition
provides the solution which possesses overshoots and undershoots.

We need to enforce the condition (3.2). The first possibility is to modify uk

such that bh(uk+1, uk, φ) equals zero. The second approach is to add a penalty
term to the diagonal of matrix A, in a way that the row sum condition is satisfied.

The advantage of low order scheme is that no new extremes arise and conse-
quently the solution does not show spurious oscillations. However, this scheme
is rather too diffusive and the obtained solution is smeared in the non-smooth
regions. For this reason we will introduce the flux corrected scheme in Section 3.3.
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3.1.1 Modification of the solution on previous time step

The convective form bh(uk+1, uk, φ) consists of two terms: sum of integrals over el-
ements and sum of numerical fluxes. We need to modify uk so that the convective
form bh(1, uk, φ) equals zero as required by Lemma 8.

First, in the integral, instead of uk♣(xi,xi+1) we use the average value over the
interval (xi, xi+1), thus we take

uk♣(xi,xi+1) =
(
uk(x+

i ) + uk(x−
i+1)

)
/2. (3.5)

We will denote the piecewise constant function by uk.
Second, in the numerical flux, the criterion whether the information propa-

gates from left to right or otherwise was determined by the sign of A(xi) defined
as

A(xi) =
(
uk(x−

i ) + uk(x+
i )

)
/2.

Now, we do not use the values form neighboring intervals and approximate A(xi)
by

A(xi)♣(xi,xi+1) =
(
uk(x+

i ) + uk(x−
i+1)

)
/2,

A(xi+1)♣(xi,xi+1) =
(
uk(x+

i ) + uk(x−
i+1)

)
/2.

This way we can achieve the fulfillment of the row sum condition.
We define modified convective term b̃h as follows

b̃h(uk+1, uk, φ) = −
n−1∑

i=0

∫ xi+1

xi

uk+1ukφ′ dx

+
n∑

i=0

(
uk+1(x−

i )A+(xi) + uk+1(x+
i )A−(xi)

) (
φ(x−

i ) − φ(x+
i )

)
,

where

A+(xi) := uk♣(xi,xi+1)H
(
A(xi)♣(xi,xi+1)

)
, (3.6)

A−(xi) := uk♣(xi,xi+1)H
(
−A(xi)♣(xi,xi+1)

)
. (3.7)

We can verify that the condition (3.2) is satisfied for the convective term b̃h,
we proceed the same way as in the proof of Lemma 8. Set uk+1 ≡ 1:

b̃h(1, uk, φ) = −
n−1∑

i=0

∫ xi+1

xi

ukφ′ dx+
n∑

i=0

(
A+(xi) + A−(xi)

) (
φ(x−

i ) − φ(x+
i )

)
.

We can further simplify the equation above by realizing that we test
the equation by the base function which support is only one element. Let
supp(φ) = [xj, xj+1] then

b̃h(1, uk, φ) = −
∫ xj+1

xj

ukφ′ dx+
(
A+(xj) + A−(xj)

) (
φ(x−

j )
  

=0

−φ(x+
j )

)

+
(
A+(xj+1) + A−(xj+1)

) (
φ(x−

j+1) − φ(x+
j+1)  

=0

)
.
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The idea is to replace the piecewise linear function uk by the piecewise constant
function in order to get zero in the integral term after integration by parts:

b̃h(1, uk, φ) =
∫ xj+1

xj

(uk)′

  
=0

φ dx− uk♣(xj ,xj+1)φ(x−
j+1) + uk♣(xj ,xj+1)φ(x+

j )

−
(
A+(xj) + A−(xj)

)
φ(x+

j ) +
(
A+(xj+1) + A−(xj+1)

)
φ(x−

j+1).

The next equality explains why we have modified the numerical flux as in
3.6 and 3.7. We take A+(xj) and A−(xj) with respect to the interval [xj, xj+1]
because we use the test function φ with support [xj, xj+1]. Then

A+(xj) + A−(xj) = uk♣(xj ,xj+1)

(
H

(
A(xj)♣(xj ,xj+1)

)
+ H

(
−A(xj)♣(xj ,xj+1)

))

= uk♣(xj ,xj+1).

To conclude, the numerical fluxes are subtracted and hence b̃h(1, uk, φ) = 0
for any base test function φ.

The major disadvantage of this approach is that the communication between
neighboring elements is not correct. More precisely the direction of propagation
is given by the average value over a given element and it ignores the information
given by the neighboring elements, thus the information propagation can com-
pletely stop in extreme cases. For example if uk is the discontinuous function
defined as 1 on (0, 0.5) and 0 elsewhere, the solution on the new time level uk+1

should propagate the value 1 to the right with the velocity equal to 1 due to the
Rankine-Hugoniot [cf. Feistauer et al., 2003] condition. However, computing the
new solution uk+1 using the average values as presented in this subsection pro-
vides the solution uk+1 = uk since the elements where uk = 0 will only propagate
information from neighboring elements with velocity 0, even when the value on
the neighboring element is equal to 1.

3.1.2 Penalty term contribution

The simplest way how to enforce the row sum condition (3.2) is to sum each
row of matrix A and modify the diagonal element. We combine the average
value modification and this straightforward approach. Again, we would like to
have bh(uk+1, uk, φ) = 0. In the integral term, we use the average value over
the interval (xi, xi+1) exactly the same way as in previous subsection. However
we would like to preserve the numerical fluxes to be as in standard DG scheme.
Hence we must subtract the excessive value from the diagonal.

The convective form b̂h is

b̂h(uk+1, uk, φ) = −
n−1∑

i=0

∫ xi+1

xi

uk+1ukφ′ dx

+
n∑

i=0

(
uk+1(x−

i )A+(xi) + uk+1(x+
i )A−(xi)

) (
φ(x−

i ) − φ(x+
i )

)
,

where uk is defined as (3.5) but A+(xi) and A−(xi) is defined as in standard DG
method (2.9) and (2.10).
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Using the modified convective form b̂h we compute aij, then

ãii := aii − pi,

where the penalty term is

pi :=
n∑

j=0

aij, i = 1, . . . , n.

If
√n

j=0 aij = 0 then also
√n

j=0 lij = 0 using that each row sum of D is zero, see
Lemma 5, hence the row sum of ML + ∆tk+1L equals the row sum of ML.

This approach is rather engineering because we don’t have any mathematical
model or theory which explains what the new scheme represents. However, the
solution using this scheme possesses the desired properties, no undershoots and
overshoots are visible and the solution is rather smeared. Also we avoid the major
drawback of using the average values in the edge terms. The penalty term scheme
transports the information as expected.

3.2 DG scheme with average values

The DG method possesses undesired undershoots and overshoots. The reason
can be similar to the one in the low order scheme: the row sums of MC + ∆tk+1A

do not equal to the row sums of MC . So in the linearized convective term bh we
modify the solution on the previous time step uk such that we consider instead
of uk the average values uk precisely as in subsection 3.1.1. The only difference
is that we do not assemble the matrix ML and L and solve the problem

(MC + ∆tk+1A)uk+1 = MCu
k.

Note that if we consider the DG scheme defined in the previous chapter 2.13
then if we use uk on the right hand side of the scheme or if we use uk, the schemes
will be equivalent. The proof is simple and will not be presented.

The inequalities from Claim 2 are generally not satisfied, hence the solution
on the next time level uk+1 does not satisfy local discrete maximum principle
however the undershoots and overshoots are considerably diminished and the
computational costs do not increase.

This method was developed as a by product of the above methods but for
some test data it provides surprisingly good results. However, the method has
the same drawback as the modified low order scheme 3.1.1. In some cases it stops
the information propagation.

3.3 Algebraic flux correction

Define the antidiffusive flux as the difference between the DG scheme and the low
order scheme

F (uk+1) = (ML − MC)
(
uk+1 − uk

)
+ ∆tk+1(L − A)uk+1.
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The idea is to decompose the antidiffusive fluxes F (u) into numerical fluxes and
limit the magnitude of these fluxes in the non-smooth regions. In this way the
method can prevent possible violation of the DMP.

Using L − A = D and the zero row sum property of D (Lemma 5), we can
define the raw antidiffusive fluxes Fij, i, j = 1, . . . , N in the following way

Fij = mij(u
k+1
i − uk+1

j ) −mij(u
k
i − uk

j ) − ∆tk+1dij(u
k+1
i − uk+1

j ).

These fluxes describes the conservative mass exchange between a pair of nodes.
Hence the defined fluxes satisfy Fij = −Fji. The proof of this property is imme-
diately seen from the definition of matrices MC ,ML and D.

Then for the i-th component of the vector F (uk+1) it holds that

Fi =
N∑

j=1

Fij.

We are now able to define a flux-corrected counterpart of (3.4)

(ML + ∆tk+1L)uk+1 = MLu
k + F ∗(uk+1, uk), (3.8)

where the nonlinear term F ∗(uk+1, uk) stands for the vector with i-th component
equal to

F ∗
i (uk+1, uk) =

N∑

j=1

αijFij, 0 ≤ αij ≤ 1.

If αij = 1 we obtain the original high order scheme and for αij = 0 we
compute using the stable low order scheme. A well-designed flux limiter will
produce F ∗

i (uk+1, uk) = Fi in the smooth regions, i.e. we use the original high
order scheme in the smooth regions, and F ∗

i (uk+1, uk) = 0 elsewhere, i.e. the
stable low order scheme is used in the areas where the high order scheme provides
overshoots and undershoots.

3.4 Solving the flux-corrected problem

Suppose the weights αij, i, j = 1, . . . , N are given.
We would like to reformulate the equation (3.8) as a system

P(α)uk+1 = G(α),

where α is a matrix with elements αij, i, j = 1, . . . , N.
Note that α depends on the solution uk+1 or uk but for keeping the notation

as simple as possible, we will omit this dependence.
First we adjust the formula of row antidifussive fluxes using elements of matrix

L and A instead of D

F ∗
i (uk+1, uk) =

N∑

j=1

αij

(
mij(u

k+1
i − uk+1

j ) −mij(u
k
i − uk

j )

−∆tk+1(lij − aij)(u
k+1
i − uk+1

j )
)
.
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Rearranging the terms

F ∗
i (uk+1, uk) = −

N∑

j=1

αij

(
miju

k+1
j + ∆tk+1aiju

k+1
j

)

+
N∑

j=1

αijmiju
k
j +

N∑

j=1

∆tk+1aiju
k+1
i

+ uk+1
i

N∑

j=1

αijmij +
N∑

j=1

∆tk+1αijliju
k+1
j

− uk
i

N∑

j=1

αijmij − uk+1
i

N∑

j=1

∆tk+1αijlij.

The first part of the above expression corresponds to the high order scheme
with weights αij, in the remaining terms there are terms that corresponds to the
low order scheme scaled by αij. Hence in the matrix form

F ∗(uk+1, uk) = − ((MC + ∆tk+1A) ◦ α)uk+1

+ (MC ◦ α)uk + ∆tk+1(A ◦ α)(1, . . . , 1)Tuk+1

+ (MC ◦ α)(1, . . . , 1)Tuk+1 + ∆tk+1(α ◦ L)uk+1

− (MC ◦ α)(1, . . . , 1)Tuk − ∆tk+1(α ◦ L)(1, . . . , 1)Tuk+1.

(3.9)

The operator A◦B denotes the Hadamard product also known as Schur product
and it is defined as

(A ◦ B)i,j = Ai,jBi,j.

Remark. The term (MC ◦α)(1, . . . , 1)T is an equivalent prescription for the diag-
onal matrix with the elements on the diagonal equal to

N∑

j=1

αijmij, i = 1, . . . , N.

We will denote this matrix as M̃L.

Inserting the derived formula (3.9) into flux-corrected formula (3.8) we obtain
the scheme
[
ML − M̃L + ∆tk+1L ◦ (1 − α) + (MC + ∆tk+1A) ◦ α− ∆tk+1(A ◦ α)(1, . . . , 1)T

+∆tk+1(L ◦ α)(1, . . . , 1)T
]
uk+1 =

[
ML − M̃L + MC ◦ α

]
uk.

(3.10)

The symbol 1 denotes the matrix of ones, which is the matrix with all entries
equal to one.

Note that all the properties of the FCT scheme mentioned in the previous
section are still valid for the scheme (3.10). If all αij are zeros then M̃L is the
zero matrix and we use the original high order scheme. On the other hand if all
αij equal one, using the the zero row sum property of A and L together with the

fact, that ML = M̃L produce the low order scheme 3.4.
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3.5 Choice of αij

The crucial part of the algorithm is to provide reasonable values for the weights
αij. For F ∗

ij := αijFij we need to preserve the mass conservation property on the
numerical fluxes, i.e. we need

F ∗
ij = −F ∗

ji, i, j = 1, . . . , N (3.11)

to hold.
There are advanced methods of the choice of the weights α designed for FEM-

FCT, one of the algorithms is described f.e. in Zalesak [1979]. The major differ-
ence between FEM-FCT and FCT method derived from the DG scheme, further
only DG-FCT, is that for DG-FCT method the solution in less influenced by the
choice of the limiters thus we should provide as simple methods as possible for
the choice of weights. In this work we limit ourself only to the case when αij

attains the value either zero or one.
We reformulate the problem of the choice of αij to the problem of selecting

the intervals (xi, xi+1) on which we compute the solution using the low-order
scheme. By default we use the high order scheme, in terms of αij it means to set
all weights equal to one. Then we select the i-th element as the element on which
we would like to compute the low-order scheme. Then we set αij, j = 1, . . . , N
and αji, j = 1, . . . , N equal to zero. The resulting α matrix is symmetric and
the condition (3.11) is then satisfied.

We present several approaches how to choose the elements on which we use
the low order scheme.

3.5.1 Minmod limiting

The idea behind the Minmod criterion of the choice of elements is based on the
estimates of undershoots and overshoots. We only briefly introduce the method
here, for further details refer to Shu [2009].

Let us define interval average over the element (xi, xi+1)

ūi =
1

h

∫ xi+1

xi

uk dx.

Further compute the differences between the end values and the average

ũi = uk+1(x−
i+1) − ūi,

˜̃ui = ūi − uk+1(x+
i ).

There are two natural conditions required from this limiting strategy. First, it
should not change the cell averages. This is the conservation property of the DG
method. Second, it should not affect the accuracy of the scheme in the smooth
regions. In other words, in the smooth regions this limiter does not change the
solution.

To this point define

ũi
(mod) = m (ũi,∆+ūi,∆−ūi) ,

˜̃u
(mod)
i = m

(
˜̃ui,∆+ūi,∆−ūi

)
,
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where

∆+ūi = ¯ui+1 − ūi,

∆−ūi = ūi − ¯ui−1.

Here the minmod function m is defined by

m(a1, . . . , al) =

∮
smin (♣a1♣, . . . , ♣al♣) , if s = sign(a1) = · · · = sign(al);

0, otherwise.

Finally we are able to define the modified values umod
h

umod
h (x−

i+1) = ūi + ũi
(mod),

umod
h (x+

i ) = ūi − ˜̃u
(mod)
i .

If the solution uh possesses overshoots and undershoots on some interval
(xi, xi+1) then the limited function the absolute values u

(mod)
h are smaller in magni-

tude that the original values. Moreover the old cell average values are maintained.
In our algorithm we use the criterion from the minmod limiter to identify

elements on which to use the low order scheme.

Algorithm 1 Minmod limiting

1: if
\\\(u(mod)

h (x+
i ))

\\\ >
\\\(uh(x+

i ))
\\\ or

\\\(u(mod)
h (x−

i+1))
\\\ >

\\\(uh(x−
i+1))

\\\ then

2: use low order scheme on the interval (xi, xi+1)
3: else

4: use high order scheme on the interval (xi, xi+1).
5: end if

It can proved for an explicit scheme that the presented limiting strategy
does not affect accuracy in smooth monotone regions. For the proof see Shu
[2009]. The limiter though does kill accuracy at smooth extremes. At a maxi-
mum of the solution uh, the second and third argument of the minmod function
m (ũi,∆+ūi,∆−ūi) have different sign, hence ũi

(mod) and ˜̃u
(mod)
i are zero and the

modified values are

umod
h (x−

i+1) = ūi, umod
h (x+

i ) = ūi.

Therefore in practice we often use a corrected minmod limiter

m̃(a1, . . . , al) =

∮
a1, if ♣(a1)♣ ≤ Mh2;

m(a1, . . . , al), otherwise.

The parameter M has to be chosen adequately, often dependently on the solving
equation or given data. If we lack any information about solving problem, suitable
values are between 10 and 40, [see Shu, 2009].
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3.5.2 Magnitude of jumps at nodal points

Minmod limiting can capture nicely overshoots and undershoots but another
possibility is to check the magnitude of the difference between uh(x−

i ) and uh(x+
i )

at each node xi.
The idea is simple, we can expect “bad” behavior at discontinuities, where

large jumps in the solution occur and hence we use the low order scheme around
these points. We do not test if there are overshoots and undershoots around the
discontinuity in the sense of the minmod limiter, where also the signs of the jumps
are taken into account. We use the low order scheme around every discontinuity
even though no overshoots and undershoots arise at these points.

The biggest advantage of this method is the simplicity of implementation as
well as its cheapness, as low memory cost as low computation time.

Algorithm 2 Magnitude of jumps

1: if
\\\(uh(x+

i ) − uh(x−
i ))

\\\ +
\\\(uh(x+

i+1) − uh(x−
i+1))

\\\ > Ch then

2: use low order scheme on the interval (xi, xi+1)
3: else

4: use high order scheme on the interval (xi, xi+1).
5: end if

The constant C is, similarly to constant M in minmod limiting, some number
often dependent on the given problem. By trying different constants and evalu-
ating the results the adequate constant for Burgers’ equation was approximately
2.

3.5.3 Magnitude of derivatives

Let us consider the initial condition to be a smooth function. As the solution
evolves in time, a discontinuity begins to emerge. For example if sin(2πx) is
prescribed for the initial condition and we solve Burgers’ equation, the solution
moves to the right in the left half of the interval (0, 1) and the the solution moves
left in the second part of the interval. Hence in the midpoint a discontinuity
appears.

The first two introduced strategies select the elements around the disconti-
nuity with delay. Meaning that the choice of intervals react on the overshoots
and undershoots or jumps of the solution. If the solution is smooth or the jumps
are not too big, no elements are selected by the previous strategies. The solution
must provide some “misbehavior” in order to identify the bad elements. The delay
depends on the given tolerance, chosen constants and also on precision of com-
putations. We have observed that the delay, however, may possibly cause severe
overshoots and undershoots of the FCT solution, especially on coarse grids.

For this reason another criterion is introduced
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Algorithm 3 Magnitude of derivatives

1: if
\\\uh(x−

i+1) − uh(x+
i )

\\\ > C2 then

2: use low order scheme on the interval (xi, xi+1)
3: else

4: use high order scheme on the interval (xi, xi+1).
5: end if

This strategy can be useful if we have information about the derivative of the
solution. We can obtain a useful estimate of constant C2 from the initial and
boundary conditions using the fact that DMP is satisfied, i.e. no new extremes
arise inside the interval. Suppose that the extremes are attained in the initial
conditions u0, therefore we choose

C2 = max(u0) − min(u0).

If new extremes arise from boundary conditions, the constant C2 should be up-
dated accordingly.

The advantage of this interval selecting method is again its simplicity. More-
over it works well in case the initial condition is continuous. The major drawback
is that we need the information about the derivative.
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4.4.2 Magnitude of jumps at nodal points

Let the parameter C from section 3.5.2 be equal to 2. The motivation for this
method was to limit not only the elements where undershoots and overshoots
arise but also the elements where the solution is discontinuous at any of the
endpoints. For the FCT method using the low order scheme with modification
of the solution on the previous time step and the initial condition sin(2πx) we
can observe the improvement of the solution comparing to the minmod limiting
strategy. At times 0.08, 0.1 and 0.14 the average value over the middle interval is
zero as expected. At time around 0.16 the average value over the middle interval
becomes negative but it does not oscillate with time between negative and positive
values, it remains negative. In the Figure 4.19, we can’t see the undershoots and
overshoots caused by the oscillating of the solution on the middle interval, hence
from the figure we do not see, what the average value over the middle interval is.
The reason why the average value over the middle interval is not zero is the same
as for the minmod limiting, i.e. the strategy of selecting intervals on which we
use low order scheme does not choose the intervals symmetrically. The results for
the second initial condition (4.4) are almost identical to the solution computed
by the FCT method using minmod limiting. No visible improvement is achieved
using the limiting strategy based on magnitudes of jumps at nodal points hence
the results will not be presented.

The solution for the FCT method using penalty terms and the limiting strat-
egy based on magnitudes of jumps at nodal points does not differ much from
the solution computed by the FCT method using penalty terms and the minmod
limiting. Hence we do not provide as detailed results as in Figure 4.17 and 4.18.
For the solution of Burgers’ equation computed by the FCT method using the low
order scheme with penalty terms and the limiting strategy based of magnitudes
of jumps at nodal points as described in 3.5.2 equipped with the initial condition
sin(2πx) see Figure 4.20, for the second initial condition (4.4) see Figure 4.21.
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4.4.3 Magnitude of derivatives

Let us set the parameter C2 to 7 ∗ h, where h is the norm of the partition. The
reasoning for this strategy was that the previous strategies choose the limiting
elements after some “bad” behavior appears in the solution. We have spoken
about the delay in elements selection. The limiting strategy based on magnitudes
of derivatives should prevent the delay and select the elements on which we use the
low order scheme just before the overshoots and undershoots or jumps appears.
The consequence of the delay are the overshoots and undershoots which will be
presented later. For small time steps, in comparison to the norm of the partition,
we do not observe the impact of the delay on the solution.

First we show the results for the FCT method using the low order scheme with
modification of the solution of the previous time step for the initial condition to
be sin(2πx). The top left figure in Figure 4.22 is interesting because in the area,
where the function decreases, the low order scheme is not used on all elements,
there are several groups of following intervals where the solution is computed by
the DG method. This causes the unexpected shape of the function. In addition
we can observe the same behavior as in Figure 4.15 and Figure 4.19. The average
value over the middle interval is zero up to time 0.22 then again the solution
on this interval changes the average to be negative and it is connected to the
solution in the right part of the domain (0, 1). Though this combination of low
order method and limiting strategy is not recommended because the derivative of
the solution on the middle element can be small, comparing e.g. to the derivative
of the solution computed by the FCT method using low order scheme with penalty
terms, and hence the limiting method may not capture the middle interval.

The FCT method using the low order scheme with penalty terms combined
with the limiting strategy based on magnitudes of derivatives provides also good
results. To a lesser extent we can observe that the limiting method selects for the
majority of intervals, where the solution decreases, to use the low order scheme
but some group of following intervals are skipped and the DG method is used on
them. Otherwise the solution does not show visible undershoots and overshoots
for the sin(2πx) initial condition and has similar properties as the solutions with
the two previous limiting strategies, Figure 4.23.

For the initial condition (4.4) the combination of the low order scheme with
penalty terms and limiting strategy based on magnitudes of derivatives does not
work well. At time 0.1 a small overshot and bigger undershot is visible, see
Figure 4.24. Especially the undershot is undesired because the analytic solution
is definitely non negative and we would like to preserve this property.
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4.5 Comparing of the DG, LOS and FCT method

Finally, we can compare the solutions computed by the three major methods:
the DG method, the low order method with penalty terms and the FCT method
using the low order method with penalty terms with minmod limiting strategy.
From the results presented earlier we can judge that these methods provides the
most reasonable results from all the methods discussed in this work.

First, for the initial condition sin(2πx) see Figure 4.33. The DG method shows
overshoots and undershoot. The low order scheme decreases its function values
too slowly. We can say that the low order scheme is delayed compared to the DG
method. And the FCT method chooses the best from both methods. It function
values goes to zero as fast as the DG method but it does not posses overshoots
and undershoot.

We make the similar comparison for the initial condition (4.4), Figure 4.34.
The DG method shows overshoots and undershoots. The low order method with
penalty terms transports the signal too slowly. We can see that the major draw-
back of the low order method, that is the velocity of signal propagation, is not
improved much by the FCT method.
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Conclusion

The main goal of this work was to solve Burgers’ equation while avoiding the un-
desired Gibbs phenomenon. The idea was to use discontinuous Galerkin method
instead of the standard finite element method. The solution computed by the
DG method does not remove completely the oscillations, which are the manifes-
tation of the Gibbs phenomenon. As a remnant of the oscillations, we can observe
overshoots and undershoots in the solution.

In order to reduce the overshoots and undershoots, we applied the low order
methods. The major obstacle in using the stable low order method was that the
method was developed for the convection-diffusion-reaction equation under the
condition of incompressibility of the velocity field. Burgers’ equation has slightly
different properties hence we needed to enforce equality of the row sums of system
matrices, condition (3.2).

We suggested two approaches. The first one, that modifies the solution on
the previous time step such that the modified solution imitates constant solution,
does not show overshoots and undershoots. However, the communication between
neighboring element is limited and for the initial condition (4.4) it gives wrong
results. The second approach was rather “engineering”. The row sum condition
was enforced by adding appropriate constants to each diagonal element. We call
this method the low order scheme with penalty terms. This method works well, no
overshoots and undershoots arise. The disadvantage of both low order methods
is that the evolution of the solution is slowed down. It shows up as small velocity
of propagation of the signal. Another problem with the low order scheme is that
the scheme is too diffusive. The solution becomes discontinuous as it evolves in
time and this phenomenon is often called terracing.

The FCT method is the method which combines the DG method and the low
order method. The idea is to use the DG method on the areas where the solution
is smooth and does not show overshoots and undershoots. On the rest of the
domain it uses the low order method and thus it prevents the manifestation of
the Gibbs phenomenon. The major advantage of the FCT method that it uses
only the algebraic operations, hence it can be relatively easily implemented. Also
the computational costs are low, if combined with an iterative solver.

The major question of the FCT method is how to choose the areas, where the
low order method should be applied. This works present three strategies. The first
one is the minmod limiting, inspired by the work of C.-W. Shu refer to Shu [2009].
The original method seeks overshoots and undershoots of an explicit scheme and
corrects the values. So the minmod limiting strategy uses the part that captures
the overshoots and undershoots and selects the intervals accordingly. The method
works good but it reacts to the “bad” behavior of the solution. We speak about
the delay of capturing the intervals.

The second strategy based on magnitudes of jumps at the nodal point was
suggested by Václav Kučera. The method should capture also the intervals such
that the significant discontinuity is located at any endpoint of this interval. The
solution obtained by this choice of limiting strategy is similar to the solution
obtained by the minmod limiting. The drawback remains the same, the method
selects the interval after the solution is corrupted.
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We needed a limiting strategy that can predict where the problem appears.
The overshoots and undershoots arise around discontinuities and in the areas
where the solution changes significantly. Hence we choose the elements based
on the magnitude of the derivatives. This strategy produces in some cases the
best results. However, the method requires the knowledge about the derivative
of computed solution, which we do not have.

To summarize, we found the methods that can successfully suppress the Gibbs
phenomenon. If we do not have any information about the computed solution, we
suggest to use the FCT method using the low order scheme with penalty terms
and minmod limiting. Concerning this method, there is an open question, if there
is a satisfying mathematical explanation of the penalty terms. Other extension
of this work is providing the quantitative comparison of presented methods.
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Attachments

1 (∗Define the initial condition equal to sin(2π x)∗)
2 Clear[m, m0];
3 m[x ?NumericQ] := m0 /. FindRoot[m0 == Sin[2∗Pi∗x], {m0, x}];
4

5 (∗Solve Burgers’ equation for the given initial condition∗)
6 {sol} = NDSolve[{D[u[t, x], t] + u[t, x] D[u[t, x ], x] == 0,
7 u[0, x] == m[x],
8 u[t , −1] == 0, u[t, 1] == 0}, u, {t, 0, 1}, {x, −1, 1}]
9

10 (∗Plot the results ∗)
11 Plot3D[u[x, t ] /. sol , {x, −1, 1}, {t , 0, 1}, AxesLabel −> Automatic]

Listing A1: Mathematica code for solving Burgers’ equation
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In D. Kuzmin, R. Löhner, and S. Turek, editors, Flux-Corrected Transport:
Principles, Algorithms and Applications, pages 155–206. Springer, 2005.

P. O. Persson and J. Peraire. Sub-cell shock capturing for discontinuous galerkin
methods. In 44th AIAA Aerospace Sciences Meeting and Exhibit, page 112,
2006.

C.-W. Shu. Discontinuous galerkin methods: general approach and stability.
Numerical solutions of partial differential equations, 201, 2009.

E. W. Weisstein. Gibbs phenomenon. From MathWorld–A Wolfram Web Re-
source. http://mathworld.wolfram.com/GibbsPhenomenon.html, Visited on
16/06/18.

Wolfram Research, Inc. Mathematica 11.0. Champaign, IL, 2018.

S. T. Zalesak. Fully multidimensional flux-corrected transport algorithms for
fluids. Journal of Computational Physics, 31:335–362, 1979.

64

http://www.mathematik.uni-dortmund.de/~kuzmin/Transport.pdf
http://www.mathematik.uni-dortmund.de/~kuzmin/Transport.pdf
http://mathworld.wolfram.com/GibbsPhenomenon.html

	Introduction
	Definitions and notations
	Nonlinear convection equation
	DG formulation
	Numerical flux
	Time discretization
	Linearization of the operator B(u)
	Discrete scheme

	Flux corrected schemes
	Low order scheme
	Modification of the solution on previous time step
	Penalty term contribution

	DG scheme with average values
	Algebraic flux correction
	Solving the flux-corrected problem
	Choice of αij
	Minmod limiting
	Magnitude of jumps at nodal points
	Magnitude of derivatives


	Numerical results
	DG
	LOS
	DG scheme with average values
	FCT
	Minmod limiting
	Magnitude of jumps at nodal points
	Magnitude of derivatives
	Computing on coarse grids
	The choice of time step

	Comparing of the DG, LOS and FCT method

	Conclusion
	Attachments
	Bibliography

