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Introduction
Let us have a road and an arbitrary number of cars. We would like to model

the movement of cars on our road. We call this model a traffic flow model. There
are two main ways how to describe traffic flow. The first way is the microscopic
model. Microscopic models describe every car and we can specify the behaviour
of every driver and type of car. The basic microscopic models are described by
ordinary differential equations (ODEs). The second approach is the macroscopic
model. In that case, we transform our traffic situation into a continuum and study
the density of cars in every point of the road. This model is described by partial
differential equations (PDEs). The basic idea was described by James Lighthill
and Gerald Whitham in the 1950s. They used conservation laws, because the
number of cars is conserved. Specifically, they used Navier-Stokes equations.

Our aim is to study macroscopic models of traffic flow. Our unknown is
density at point x and at time t. As we shall see later, the solution can be
discontinuous. Due to the need for discontinuous approximation of density, we
use the discontinuous Galerkin method. We write the program which calculates
the solution. The first version of our program calculates traffic flow on one road.
We can test different types of mathematical descriptions of traffic and compare
them. Later we extended our program and now we can calculate traffic flow on
networks. The aim of modelling is understanding traffic dynamics and deriving
possible control mechanisms for traffic.

This work is divided into five chapters. The first four chapters are theoretical.
The first three are about traffic flow. We define microscopic and macroscopic
models, describe our mathematical models for the macroscopic model and solve
the problem on junctions. In the fourth chapter we define the discontinuous
Galerkin method and transform our mathematical model from the third chapter
into a finite dimensional numerical model. We will speak about our program,
describe its important parts and interpret our test function space. In the last
chapter, we present our numerical solutions.
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1. Introduction into traffic flow
We begin with the description of vehicular traffic. We summarize the history,

define new fundamental quantities and introduce the main modelling approaches.
We follow the lecture “Traffic Flow Models” by Ingenuin Gasser from University of
Hamburg and the paper by Femke van Wagenigen-Kessels et al. [1] for introducing
the traffic flow theory.

In the two following chapters, we describe microscopic and macroscopic models
and study some specific cases in the macroscopic models like junctions. We will
show the differences between the modelling approaches. Since our aim is the
macroscopic models, we don’t study other models in such detail.

1.1 History
The study of vehicular traffic has a long tradition. The first important paper

on traffic flow, A study of Traffic Capacity by Bruce D. Greenshields [2], was
written in 1935. In this paper he described a relation between traffic density and
traffic flow. Many traffic flow modelling approaches were proposed in the fifties
of the 20th century. A lot of them are still used. Due to the better understanding
of non-linear problems, there were developed some new traffic flow modelling
approaches in the nineties of the last century.

The motivation for research was two important aspects: ecological and eco-
nomical. The ecological aspect is based on prevention of traffic jams. This can
reduce fuel consumption, air pollution and noise production. The economical one
relates to time lost in dense traffic. Everybody knows that “time is money”. The
second problem in dense traffic is stop and go movement, which increases fuel
consumption and means more money spent on fuel.

1.2 Fundamental quantities
The first important question is which quantities are interesting for us. From

this reason we come up with three fundamental quantities. The first one is the
traffic flow.

Definition 1 (Traffic flow). Let ∆N(x,∆T ) be the number of cars which pass a
certain position x in the time interval ∆T . Then we define the traffic flow as

Q(x,t) = lim
∆T →t

∆N(x,∆T )
∆T

, (1.1)

where x is a given position and t is a given time. The unit of traffic flow is the
number of cars per second.

This quantity can be easily measured from real traffic situations. Equation
(1.1) in the previous definition isn’t written mathematically precisely. The right-
-hand side should be rewritten as a derivative of N with respect to time where
∆T is the neighbourhood of the point t and the size of this neighbourhood tends
to zero. The problem is that this definition is hard to use for measurement. If
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the time interval is too short, we obtain only two options N = 1 or N = 0. This
depends on the presence of a car at the position x in the time t. In practical
measurement we take higher ∆T which can represent the actual traffic situation.

Our next quantity is the traffic density.

Definition 2 (Traffic density). Let ∆N(∆X,t) be the number of cars which pass
the space interval ∆X in a certain time. Then we define the traffic density as

ρ(x,t) = lim
∆X→x

∆N(∆X,t)
∆X

, (1.2)

where x is a given position and t is a given time. The unit of traffic density is
the number of cars per meter.

Again, as in Definition 1, we do not use precisely the right-hand side in equa-
tion (1.2). The reason is the same as above.

The last quantity is the mean traffic flow velocity and this quantity is defined
by the quantities above.

Definition 3 (Mean traffic flow velocity). Let Q be the traffic flow and let ρ be
traffic density. Then we define the mean traffic flow velocity as

V (x,t) = Q(x,t)
ρ(x,t) ,

where x is a given position and t is a given time. The unit of mean traffic flow
velocity is meters per second.

We note that this quantity is not the velocity of a single car in general. We
can imagine this quantity as a velocity of a “group” of cars in the neighbourhood
of the point x. The cars in this “group” could have different velocities. Even the
position x without a car could have non-zero mean traffic flow velocity.

1.3 Fundamental diagram
As we mentioned above (Section 1.1), Greenshields described a relation be-

tween traffic density and traffic flow in the paper [2]. He realised that traffic
flow is a function which depends only on one variable in homogeneous traffic
(traffic with no changes in time and space). This one variable is traffic density.
This implies that even mean traffic flow velocity depends only on traffic density.
Let us denote the equilibrium quantity Qe derived from Q and the equilibrium
quantity Ve derived from V . Then these equilibrium quantities corresponding to
homogeneous traffic satisfy:

Qe(ρ) = ρVe(ρ) (1.3)

and
dVe(ρ)

dρ
≤ 0. (1.4)

Equation (1.3) is obtained from Definition 3. Inequality (1.4) states that the equi-
librium mean traffic flow velocity decreases with increasing traffic density. Thus,
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we can reach the maximal equilibrium traffic flow at a certain density value. In
most of the models we have a strictly decreasing Ve(ρ). The relationship between
the traffic density and the mean traffic flow velocity or traffic flow is described by
the fundamental diagram. Typical fundamental diagrams are shown in Figure 1.1
and Figure 1.2. The blue line in both figures represent the Greenshields model.

0.0 0.2 0.4 0.6 0.8 1.0
Traffic density

0.2

0.4

0.6

0.8

1.0

Mean traffic flow velocity

Figure 1.1: Examples of velocity-density diagrams.

0.0 0.2 0.4 0.6 0.8 1.0
Traffic density

0.1

0.2

0.3

0.4

0.5

Traffic flow

Figure 1.2: Examples of flow-density diagrams.

1.4 Modelling approaches
There are three different modelling approaches: microscopic, kinetic and

macroscopic. These approaches are derived from mechanics or fluid dynamics
approaches.

In the microscopic approach, we study every car separately. We index cars
by i = 1, . . . ,N and represent the car by coordinate xi(t) ∈ R and velocity
vi(t) ∈ [0, vmax], where vmax is the maximal velocity. Let M be a subset of
R × [0, vmax], then the number of cars NM in the subset M is given by:

NM =
N∑

i=1
χM(xi,vi),

where χM is the characteristic function of the set M . The aim of the microscopic
approach is to determine xi and vi under certain initial and boundary conditions.
Microscopic models are similar to particle models in mechanics.
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In the kinetic approach, we use the distribution function f(x,v,t) which de-
scribes the density of cars at a point x with a velocity v at a time t. Then the
number of cars NM in the subset M at time t is given by

NM(t) =
∫

M
f(x,v,t) dxdv.

The aim of the kinetic approach is to find the distribution function f . The idea
of the kinetic approach is the same as in the kinetic description in gas dynamics,
where f satisfies the Boltzmann equation.

In the macroscopic approach, we use the distribution function f obtained
from the kinetic approach to derive macroscopic quantities like density ρ, mean
velocity V and variance of velocity Θ:

ρ(x,t) =
∫ vmax

0
f(x,v,t) dv,

V (x,t) = 1
ρ(x,t)

∫ vmax

0
vf(x,v,t) dv,

Θ(x,t) = 1
ρ(x,t)

∫ vmax

0
(v − V (x,t))2f(x,v,t) dv.

This transformation from the kinetic to the macroscopic approach is similar to
such a transformation in gas dynamics from which, for example, the Euler and the
Navier-Stokes equations can be derived. The aim of the macroscopic approach is
to find an equation for ρ, V and Θ.

As we mentioned above (Section 1.3), Greenshields realised in the paper [2]
that we have some special properties for homogeneous traffic flow. Homogeneous
traffic flow is a time and a space independent traffic situation. We already know
that the mean traffic flow velocity depends only on the density. Therefore, we
have an equilibrium distribution function fe(ρ,v) in the kinetic approach. In the
macroscopic approach we have

Ve(ρ) = 1
ρ

∫ vmax

0
vfe(ρ,v) dv,

Θe(ρ) = 1
ρ

∫ vmax

0
(v − Ve(ρ))2fe(ρ,v) dv.

There are a lot of different models for Ve. For example, the Greenshields model
in Figure 1.1 and Figure 1.2 (blue line) uses

Ve(ρ) = vmax

(
1 − ρ

ρmax

)
,

where ρmax is the maximal traffic density. To define equilibrium quantities cor-
rectly, we introduce some conditions which should be satisfied:

• Ve(0) = vmax, i.e. the equilibrium mean velocity tends to the maximal
velocity in the case with very low density,

• Ve(ρmax) = 0, i.e. the equilibrium mean velocity tends to zero in the case
with very high density,

• Ve(ρ) is (strictly) monotone, i.e. the equilibrium mean velocity is decreasing
with higher density.
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2. Microscopic models
As we mention at the beginning of Chapter 1, we don’t study the microscopic

models in detail. The reason, why we introduce the theory of microscopic models,
is to present other important models which are used. It is good to understand
differences between microscopic and macroscopic models, see the pros and cons
of both approaches and decide which approach is better for a particular traffic
situation and particular traffic network.

There are many different microscopic models. The most important approaches
are “car following models” and cellular automata. We study only typical car
following models consisting of a second order ODE for every car. We introduce
these two approaches in the following subsections.

We use the notation from Section 1.4, so xi(t) denotes the position of the ith

car at time t. The car in front of the ith car is the car with index i + 1. It is
easy to calculate the velocity and acceleration or deceleration of the ith car by
derivatives of xi:

vi(t) = x′
i(t),

ai(t) = x′′
i (t).

2.1 Car following model
We follow the lecture by Gasser and paper by Wilson and Ward [3] for de-

scribing the car following model and studying the stability of a solution.

2.1.1 Bando model
Now we consider a circular road. We have two reasons for this: there exists a

real experiment (see [4]) and we can analyse the problem with known methods.
Let L be the length of the circular road and N be the number of cars. Then we
use model introduce by Masamitsu Bando et al. [5]

x′′
i (t) = 1

τ
(Vopt (xi+1(t) − xi(t)) − x′

i(t)) , i = 1, . . . ,N, xN+1 = x1 + L, (2.1)

where Vopt(y) denotes the desired optimal velocity for a given headway y (distance
to the car in front) and τ denotes the reaction time of a “driver-car” system. The
equation (2.1) says that the ith car accelerates or decelerates when its velocity
is lower or higher than the optimal velocity. The constant τ determines, how
fast we want to reach the optimal velocity. The function Vopt(y) is different from
the mean traffic flow velocity denoted by V (x,t) or Ve(ρ), which we introduced
in the previous section. We assume that the optimal velocity function Vopt is
an increasing function from minimal velocity Vopt(0) = 0 to maximal velocity
limy→∞ Vopt(y) = vmax.

In the beginning, we scale the model using

x̃i = xi

L
, t̃ = t

τ
, Ṽopt(y) = τ

L
Vopt(yL),
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and obtain the scaled problem

x̃′′
i (t) = Ṽopt (x̃i+1(t) − x̃i(t)) − x̃′

i(t), i = 1, . . . ,N, x̃N+1 = x̃1 + 1. (2.2)

Due to the use of scaled problem (2.2), we omit the tildes in the next calculations.
It is easy to show, that problem (2.2) has a special solution, which is called a
quasi-stationary solution, of the form

xi(t) = 1
N

i + Vopt

( 1
N

)
t, i = 1, . . . ,N,

where all cars drive with constant velocity Vopt
(

1
N

)
and constant headway 1

N
.

Now we introduce new variables

yi(t) = xi+1(t) − xi(t), i = 1, . . . ,N, yN+1 = y1.

This variable is a conserved quantity because ∑N
i=1 yi = 1 holds. Then our prob-

lem (2.2) is changed into

y′′
i (t) = Vopt (yi+1(t)) − Vopt (yi(t)) − y′

i(t), i = 1, . . . ,N, yN+1 = y1. (2.3)

In the new variables the quasi-stationary solution of the problem (2.3) is given
by

yi = 1
N

, i = 1, . . . ,N.

There is the question of stability of the quasi-stationary solution. We only
prepare problem (2.3) into the form which is used in the paper [6] by Gasser and
answer the question of stability. All calculations are written in the paper [6]. We
linearize function Vopt around the quasi-stationary solution (the first order Taylor
polynomial for function Vopt centred at the point 1

N
). We obtain a new second

order ODE

y′′
i (t) = V ′

opt

( 1
N

)
(yi+1(t) − yi(t)) − y′

i(t), i = 1, . . . ,N, yN+1 = y1. (2.4)

Then we rewrite (2.4) as a system of two first order ODEs. Taking zi = y′
i and

(Yi,Zi) = (yi − 1/N,zi) we obtain

Y ′
i = Zi

Z ′
i = −Zi + β(Yi+1 − Yi),

(2.5)

where we denote β = V ′
opt

( 1
N

)
≥ 0 and i = 1, . . . ,N . The quasi-stationary

solution is (Yi,Zi) = (0,0). We can rewrite (2.5) in matrix form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y ′
1
...
...

Y ′
N

Z ′
1
...
...

Z ′
N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
. . . . . .

. . . . . .
0 1

−β β −1
. . . . . . . . .

. . . β
. . .

−β −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1
...
...

YN

Z1
...
...

ZN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.6)
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The quasi-stationary solution is stable if and only if the real parts of eigenvalues
of the matrix in equation (2.6) are negative. Since one of the eigenvalue is equal
to 0, we must use the conserved quantity and reduce the dimension of the system.
As we mention above, following technical steps are in paper [6] in detail. Finally,
the quasi-stationary solution is stable if (notation with tilde is used again)

β = Ṽ ′
opt

( 1
N

)
= τV ′

opt

(
L

N

)
<

1
1 + cos 2π

N

(2.7)

is satisfied. As we can see, stability is dependent on the reaction time and traffic
density (ratio between length of circuit and number of cars). Figure 2.1 show the
curve which divides the L-N plane between stable and unstable regions. A very
interesting situation is on the curve (i.e. inequality (2.7) is changed into equality).
From the Hopf bifurcation analysis (see [6]) we obtain a periodic solution under
certain conditions.

Unstable region

Stable region

Stable region

10 20 30 40
N

10

20

30

40

50

60

L

Figure 2.1: The curve dividing stable and unstable regions in the L-N plane.

2.1.2 Other models
Up until now, we study only the Bando model (2.1). Here we introduce other

models, which are interesting from the application point of view. Some of them
are inspired by the Bando modelling approach. Except the last model, all models
are defined for circular roads.

Aggressive drivers model This model is the most interesting approach. Let
α ∈ [0,1] be the degree of non-aggressiveness of the driver. Then we come up
with the model

x′′
i (t) = α

τ
(Vopt (xi+1(t) − xi(t)) − x′

i(t))

+ 1 − α

τ

(
x′

i+1(t) − x′
i(t)

)
F (xi+1(t) − xi(t)) ,

i = 1, . . . ,N, xN+1 = x1 + L,

(2.8)
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where F (y) is a function of aggression, which depends on the headway y. The
new term in equation (2.8) models the behaviour that the driver accelerates or
decelerates more or less aggressively to match the velocity of the car in front of
him. We assume that F : [0,∞) → [0,∞) is a decreasing function.

Individual drivers model In this model, every driver has its own reaction
time τi and own optimal velocity function Vi(y). In case of the Bando model
(2.1), we obtain

x′′
i (t) = 1

τi

(Vi (xi+1(t) − xi(t)) − x′
i(t)) , i = 1, . . . ,N, xN+1 = x1 + L.

Model with non-constant reaction times In this model, τ is not constant
any more, but it is a function. One of the options is a function depending on the
headways. We can use this function in all the models.

Model with time delay This is another approach focused on time. We take
into account the situation from the past. One of the models modifies the Bando
model (2.1) and considers the headway at an earlier time. Thus, our model is
given by

x′′
i (t) = 1

τ
(Vopt (xi+1(t − T ) − xi(t − T )) − x′

i(t)) ,

i = 1, . . . ,N, xN+1 = x1 + L.

Model on an infinite lane The last approach is situated on an infinite lane
with infinitely many cars. In case of the Bando model (2.1), we obtain

x′′
i (t) = Vopt (xi+1(t) − xi(t)) − x′

i(t), i ∈ Z

and a special quasi-stationary solution is given by

xi(t) = id + Vopt(d)t, i ∈ Z,

where d is an average headway.

2.2 Cellular automaton
Disadvantages of the car following model are both solving the ODE for all cars

and the fact that each car follows the car in front of it. Cellular automata have
no ODE and overtaking can be managed very easily. For describing the theory
of cellular automata, we follow the papers [7] and [8].

We can imagine the cellular automaton as a board game (e.g. Formula 1). We
have discrete space and time and even physical quantities (like velocity) take on
a finite set of discrete values. A cellular automaton consists of a regular uniform
lattice (usually finite in extent) with discrete variables occupying the various site.
The state is specified by the values of the variables at each site. The variables
at each site are updated simultaneously. The update is based on the state at the
preceding iteration, and according to given specific “rules”.
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We begin with single line model. It is defined as a one-dimensional array with
L cells of length l with boundary condition. The length l is equal to the average
headway in a traffic jam. Next, we have N cars. Each cell can be occupied by at
most one car. Traffic density is given by ρ = N

L
. Each car may have a velocity

from the set {v ∈ N0; v ∈ [0,vmax]}. The velocity corresponds to the number of
cells that a car advances in one iteration and vmax ∈ N is the maximal number of
cells per iteration. The state of the system at a certain iteration is determined
by the distribution of cars among the cells and by the velocity of each car. We
use the following notation to describe each state:

• x(i) is the position of the ith car,

• v(i) is the velocity of the ith car,

• g(i) is the gap between the ith and (i+1)th car, i.e. g(i) = x(i+1)−x(i)−1.

The motion of a car is determined by the set of updating rules. We use the
following set of rules as an example:

1. Acceleration: If v(i) < vmax and g(i) ≥ v(i) + 1, then v(i) = v(i) + 1.

2. Deceleration: If v(i) > g(i) − 1, then v(i) = g(i).

3. Motion: The car is moved by v(i) cells.

In Figure 2.2 we used these rules, vmax = 5 cells
iteration and periodical boundary condi-

tion, i.e. we have a circular road. The iteration 0 is the initial condition, L = 25,
N = 7 and we perform 5 iterations. Each car is represented by a specific colour
and the numbers represent the velocity of each car. We can see two phenomena
there. First of all, we notice that the traffic jam moves backward. This is a
phenomenon from the real traffic situation. The second phenomenon is period-
icity. From the 3rd iteration we obtain the periodic solution with a period of L
iterations (i.e. 25 iterations).

Figure 2.2: Example of the cellular automaton model.

On a multi-line road, we extend the updating rules. At the beginning of each
iteration, cars check whether a lane change is suitable or not. Thus, we add a
set of lane changing rules. These rules are applied in parallel to each vehicle. We
can summarize the rules as follows:

12



1. The car looks ahead if the existing gap cannot accommodate its current
velocity.

2. The car looks sideways if the forward gap on another lane will allow the car
to maintain or increase its current velocity.

3. The car looks back if the backward gap on another lane is large enough not
to affect the velocity of other cars.

If all the rules are satisfied, then perform a lane change. Once all lane changes are
made, the updating rules from the single lane model are applied independently
to each line.
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3. Macroscopic models
The aim of this chapter is to introduce the modelling of traffic flow using

conservation laws. We follow the lecture by Gasser, the lecture notes by Jüngel
[9] and the book in progress by Kachroo and Sastry [10].

In the microscopic models we model the cars individually. Now we use density
ρ(x,t) of cars in the position x ∈ R at the time t ≥ 0. The number of cars which
are in the road section [x1,x2] at the time t is∫ x2

x1
ρ(x,t) dx.

We would like to conserve the number of cars. The difference in the number of
cars at the time t1 and the time t2 is determined by∫ x2

x1
ρ(x,t2) dx −

∫ x2

x1
ρ(x,t1) dx =

∫ x2

x1
ρ(x,t2) − ρ(x,t1) dx. (3.1)

Assume that ρ(x,t) is differentiable with respect to time. Then we get

(3.1) =
∫ x2

x1

∫ t2

t1

∂ρ(x,t)
∂t

dtdx. (3.2)

Let Q(x,t) and V (x,t) be the fundamental quantities defined in Section 1.2.
The number of cars passing the position x in the time interval [t1,t2] is∫ t2

t1
Q(x,t) dt.

Due to the conservation of the number of cars, we would like to calculate the
difference in the number of cars which inflow at the position x1 and outflow at
the position x2. This difference is given by∫ t2

t1
Q(x1,t) dt −

∫ t2

t1
Q(x2,t) dt =

∫ t2

t1
Q(x1,t) − Q(x2,t) dt. (3.3)

From Definition 3 we obtain Q(x,t) = ρ(x,t)V (x,t). Assume that ρ(x,t) and
V (x,t) are differentiable with respect to position. Then we get

(3.3) = −
∫ t2

t1

∫ x2

x1

∂ (ρ(x,t)V (x,t))
∂x

dxdt. (3.4)

It will be very helpful if we use the following lemma.

Lemma 1. Let Ω ⊂ Rn be an open set, n ∈ N and f ∈ C(Ω). Then f ≡ 0 in Ω
if and only if

∫
V f dx = 0 holds for all open V ⊂ V ⊂ Ω.

Proof. We prove both implications:
“⇒”: If f ≡ 0 then

∫
V f dx = 0, ∀V ⊂ V ⊂ Ω.

“⇐”: We prove it by contradiction. Let there exists a point x0 ∈ Ω such that
f(x0) > 0 without loss of generality. Since f is continuous, there exists neigh-
bourhood of the point x0, denoted by U(x0), such that f(x) > 0 for all x ∈ U(x0).
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Then
∫

U(x0) fdx > 0 and this is a contradiction with the assumption. f

According to the fact that equation (3.2) and equation (3.4) determine the
same difference in the number of cars in the section [x1,x2] between the times t1
and t2 we can obtain the equality∫ x2

x1

∫ t2

t1

∂ρ(x,t)
∂t

dtdx = −
∫ t2

t1

∫ x2

x1

∂ (ρ(x,t)V (x,t))
∂x

dxdt,

i.e. ∫ x2

x1

∫ t2

t1

∂

∂t
ρ(x,t) + ∂

∂x
(ρ(x,t)V (x,t)) dtdx = 0.

Since x1, x2 ∈ R and t1, t2 > 0 are arbitrary, we can apply Lemma 1 and obtain
the PDE

∂

∂t
ρ(x,t) + ∂

∂x
(ρ(x,t)V (x,t)) = 0, (3.5)

where ρ(x,t) and V (x,t) are our unknowns. Equation (3.5) must be supplemented
by the initial condition

ρ(x,0) = ρ0(x), x ∈ R,

V (x,0) = V0(x), x ∈ R.

We have only one equation for two unknowns. Thus, we need an equation for the
mean traffic flow velocity V (x,t). There are a lot of approaches. Some of them
we introduce later, but now we use the equilibrium velocity Ve(ρ) from Section
1.3. Thus, we have only one unknown ρ(x,t) and equation (3.5) belongs to the
class of non-linear first order hyperbolic equations.

3.1 Mathematical theory of non-linear first or-
der hyperbolic equations

In this section we study the problem

ut + f (u)x = 0, x ∈ R, t > 0,

u(x,0) = u0(x), x ∈ R,
(3.6)

where f : R → R is a function which is generally non-linear. This problem can
be solved by using the method of characteristics.

Definition 4 (Characteristics). Let u : R × [0,∞) → R be a (classical) solution
of the problem (3.6). Then the solutions x(t) of the initial-value problem

x′(t) = f ′ (u (x (t) ,t)) , t > 0,

x(0) = x0

are called the characteristics of the problem (3.6).

The main property of the characteristics is that u is constant along them:
d
dt

u(x(t),t) = ut(x(t),t) + ux(x(t),t)x′(t) = ut(x(t),t) + ux(x(t),t)f ′(u(x(t),t))

= ut(x(t),t) + fx(u(x(t),t)) = 0, t > 0.
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We denote û(t) = u(x(t),t). Thus û(t) = const. for t > 0. From the initial
condition we obtain

û(t) = û(0) = u(x(0),0) = u0(x0).

Hence, the curves
dx(t)

dt
= f ′(û(t)) = f ′(u0(x0))

are straight lines. Thus, the slope of the characteristics depends on the initial
condition at the position x0.
Example. We take f(u) = u(1 − u), i.e. Ve(ρ) = 1 − ρ in the macroscopic traffic
flow. Thus, f ′(u) = 1 − 2u. We demonstrate the method of characteristics on
different initial conditions.

Example 1 (Figure 3.1): The decreasing initial value u0 makes no problem. The
value u(x,t) is well defined for all x ∈ R and t > 0 by the characteristics.
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(a) Initial condition.
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t

(b) Characteristics.

Figure 3.1: Example 1.

Example 2 (Figure 3.2): Due to the discontinuity of the initial value u0 at the
origin, we obtain a domain without characteristics.
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(b) Characteristics.

Figure 3.2: Example 2.
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Example 3 (Figure 3.3): Due to the discontinuity of the initial value u0 at the
origin, we obtain more possible values u(x,t) for some x ∈ R and t > 0 by
the characteristic. Thus, we do not obtain a unique solution.
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(b) Characteristics.

Figure 3.3: Example 3.

Example 4 (Figure 3.4): The increasing initial value u0 makes the same problems
as Example 3. There exists a time t0 such that the characteristics intersect
each other for t ≥ t0. Thus, we do not obtain a unique solution at the time
t ≥ t0.
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(b) Characteristics.

Figure 3.4: Example 4.

Our examples show us that the method of characteristics can cause some
problems. Solutions can be discontinuous and non-unique. Due to the discon-
tinuity, we introduce the weak formulation of the problem (3.6) and define the
weak solution. Later, we obtain the uniqueness from the entropy conditions.

The problem (3.6) with initial condition from Figure 3.2a or from Figure 3.3a
is known as a Riemann problem.
Definition 5 (Riemann problem). The problem (3.6) with initial datum

u0(x) =

⎧⎨⎩ul, x ≤ 0,

ur, x > 0,

where ul, ur ∈ R, is called a Riemann problem.
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3.1.1 Weak solution
Let u be a classical solution of the problem (3.6). We multiply the PDE of

the problem (3.6) by an arbitrary test function ϕ ∈ C1
0(R × [0,∞)) and integrate

over R × [0,∞). Applying integration by parts, we obtain

0 =
∫
R

∫ ∞

0
(ut + f(u)x)ϕ dtdx

= −
∫
R

∫ ∞

0
(uϕt + f(u)ϕx) dtdx −

∫
R

u(x,0)ϕ(x,0) dx.

Since ϕ is compactly supported, other boundary terms disappear. Now we are
ready for defining the weak solution.

Definition 6 (Weak solution). The function u ∈ L1
loc (R × [0,∞)) is called a weak

solution of the problem (3.6) if∫
R

∫ ∞

0
(uϕt + f(u)ϕx) dtdx = −

∫
R

u0(x)ϕ(x,0) dx (3.7)

holds ∀ϕ ∈ C1
0 (R × [0,∞)).

This definition clearly allows discontinuous solutions. It is easy to show that
each classical solution is a weak solution. The inverse of this property does not
need to be true.

3.1.2 Shock waves and rarefaction waves
Our question is if every kind of discontinuities are allowed. Suppose we have a

discontinuity along a curve s(t) in the x-t plane. This curve is called a shock wave.
At the time t, we take the interval [x1,x2] such that s(t) ∈ [x1,x2]. In the case
of discontinuities, we use the notations u(s(t)−,t) = ul(t) and u(s(t)+,t) = ur(t).
Because problem (3.6) is a conservation law, we know that

d
dt

∫ x2

x1
u(x,t) dx = f(u(x1,t)) − f(u(x2,t)) (3.8)

where the left-hand side is the change of amount of u with respect to time and
the right-hand side is difference between inflow and outflow. Now we rewrite the
left-hand side of equation (3.8)

d
dt

∫ x2

x1
u(x,t) dx = d

dt

(∫ s(t)

x1
u(x,t) dx +

∫ x2

s(t)
u(x,t) dx

)

=
∫ s(t)

x1
ut(x,t) dx + ul(t)s′(t) +

∫ x2

s(t)
ut(x,t) dx − ur(t)s′(t).

On the other side of equation (3.8) we have

f(u(x1,t)) − f(u(x2,t)) = f(u(x1,t)) ∓ f(ul(t)) ± f(ur(t)) − f(u(x2,t))

= −
∫ s(t)

x1
f(u(x,t))x dx −

∫ x2

s(t)
f(u(x,t))x dx

+ f(ul(t)) − f(ur(t)).
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According to problem (3.6) and Lemma 1 we obtain∫ s(t)

x1
ut(x,t) dx = −

∫ s(t)

x1
f(u(x,t))x dx

and ∫ x2

s(t)
ut(x,t) dx = −

∫ x2

s(t)
f(u(x,t))x dx.

Finally, we obtain the so called Rankine-Hugoniot Jump condition

s′(t) = f(ul(t)) − f(ur(t))
ul(t) − ur(t)

.

We call s′(t) the shock speed.
We can use shock waves for the domains where we have intersection of char-

acteristics. As example we can use Riemann problem from Figure 3.3 (Example
3). If we use the Rankine-Hugoniot Jump condition, we obtain s′(t) = 0. Thus
s(t) = 0 for all t > 0. We can see the result in Figure 3.5, where the shock
wave is a red line. Now the values u(x,t) are well defined for all x ∈ R, t > 0
by characteristics. Similarly, we can find a well-defined solution for the initial
condition from Figure 3.4a (Example 4).

In the case of the Riemann problem from Figure 3.2 (Example 2), we still
do not receive unique solution. We can choose the number of jumps. In Figure
3.6, we can see the characteristics. One jump solution has jump from ul = 1 to
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Figure 3.5: Example 3 with the shock wave.
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Figure 3.6: Example 2 with the shock wave.
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ur = 0. The solution with two jumps has first jump from ul = 1 to um = 0.5 and
second jump from um = 0.5 to ur = 0. Shock waves are red lines in both cases.

In Figure 3.2 (Example 2) we have a domain without characteristics. Thus, at
the time t we obtain the interval (x1(t),x2(t)), where the solution is not defined
by characteristics. Assume that the number of jumps tends to +∞. Then we
obtain the line, called rarefaction wave, which connect the values u(x1(t),t) and
u(x2(t),t). The solution become continuous, but not differentiable. We can see
the result in Figure 3.7. The red lines are the characteristics created by the
rarefaction wave.
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Figure 3.7: Example 2 with the rarefaction wave.

3.1.3 Entropy solution
As we can observe, we do not have the uniqueness of the solution of the

problem (3.6). We need other conditions which ensure the uniqueness. The basic
condition is called the limit of small viscosity. We consider a modified problem

(uϵ)t + f (uϵ)x = ϵ(uϵ)xx, x ∈ R, t > 0,

uϵ(x,0) = u0(x), x ∈ R.
(3.9)

This problem has a unique solution uϵ for all ϵ > 0. We accept the solution u of
the problem (3.6) which can be obtained as a limit of solutions uϵ of the problem
(3.9) as ϵ tends to 0.

We mention two other entropy conditions. One of them is the Oleinik entropy
condition

∃c > 0,∀x ∈ R,∀t ∈ (0,∞),∀z ∈ [0,∞) : u(x+z,t)−u(x,t) ≤ c
(

1 + 1
t

)
z, (3.10)

which was introduced by Oleinik in [11]. Now we define the entropy solution.

Definition 7 (Entropy solution). Let f : R → R be a concave up function. Then
a function u ∈ L1

loc (R × [0,∞)) is called an entropy solution of the problem (3.6)
if u is a weak solution, i.e. equation (3.7) holds for all ϕ ∈ C1

0 (R × [0,∞)), and
if the Oleinik entropy condition (3.10) is satisfied almost everywhere in x and t.

The entropy solution is important for us, because under some assumptions,
we can prove the uniqueness of this solution.
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Theorem 2 (Uniqueness of the entropy solution). Let u0 ∈ L∞(R) and f ∈ C2

be uniformly concave up, i.e. there exists c > 0 such that f ′′(u) ≥ c. Then there
exists a unique entropy solution of the problem (3.6).

Proof. We do not prove this theorem. There are at least three different ap-
proaches how to prove it. We can find two of them in the book by Evans [12]. f

The second condition is called the Lax entropy condition, which was presented
in [13]. This condition says that only those discontinuities where the character-
istics go into the shock (like in Figure 3.5) are allowed. Discontinuities where
characteristics are generated by the shock (like Figure 3.6) are not allowed. The
explanation is that characteristic curves only transport information, which can be
destroyed, but they do not create it. The Lax entropy condition can be written
mathematically as

f ′(ul) > s′ > f(ur),
where s′ denotes the shock speed.

It can be shown that the limit of small viscosity satisfies the other mentioned
entropy conditions.

3.1.4 Traffic context
Now, we would like to apply all the theory above to our traffic problem (3.5).

Assume that we have equilibrium quantities satisfying equation (1.3). Then our
traffic problem is written as

ρt + Qe (ρ)x = 0, x ∈ R, t > 0,

ρ(x,0) = ρ0(x), x ∈ R.
(3.11)

As we could notice in Section 1.3, equilibrium traffic flow is typically concave
down. Thus, our function “f” is concave down and we cannot use the Oleinik
entropy condition (see conditions of Definition 7) and the assumption on f in
the uniqueness theorem (Theorem 2) does not hold. That is the reason why we
set u = −ρ and define function F : R → R, F (u) := −Qe(−u) = −Qe(ρ). We
multiply traffic problem (3.11) by (−1) and obtain a new problem

ut + F (u)x = 0, x ∈ R, t > 0,

u(x,0) = −ρ0(x), x ∈ R.

Due to F ′′(u) = −Q′′
e(−u) = −Q′′

e(ρ), the function F is concave up if Qe is concave
down. Now we can apply the theory above. We have the entropy condition and
Definition 7. If Qe is uniformly concave down, function F is uniformly concave
up and we can show the uniqueness of entropy solution u by Theorem 2. Thus,
the solution ρ = −u is the unique entropy solution.

There exists a special traffic entropy condition presented by Ansorge [14].
This condition says that whenever cars drive into denser traffic then there should
be no smoothing (i.e. no rarefaction waves). On the other hand, whenever cars
drive into less dense traffic then there should be taken the smoothest solution
(i.e. rarefaction waves). Unfortunately, we do not obtain anything new when we
compare the traffic entropy condition to the Lax entropy condition.

21



3.2 Traffic flow models
In this section we introduce macroscopic traffic models. We follow the book

by Kachroo and Sastry [10].
We proceed from conservation equation (3.5), where we have unknowns ρ(x,t)

and V (x,t). Our aim is to look for the second equation. There is a lot of ap-
proaches how to obtain it.

3.2.1 Lighthill-Whitham-Richards model
The Lighthill-Whitham-Richards model (abbreviated LWR) is an approach

where we use the equilibrium velocity. Thus, we have only one unknown ρ and
we do not need another equation. Our problem is written as

ρt + (ρVe(ρ))x = 0, x ∈ R, t > 0,

ρ(x,0) = ρ0(x), x ∈ R,
(3.12)

There are a lot of different proposals for the equilibrium velocity Ve derived from
the real traffic data.

Greenshields model This model uses a linear relationship between traffic den-
sity and traffic velocity. The equilibrium velocity is given by

Ve(ρ) = vmax

(
1 − ρ

ρmax

)
,

where vmax is the maximal velocity and ρmax is the maximal density. We can see
the fundamental diagram in Figure 3.8, where vmax = ρmax = 1.
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(a) Velocity-density diagram.
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(b) Flow-density diagram.

Figure 3.8: Fundamental diagrams of the Greenshields model.

Greenberg model This model uses the equilibrium velocity represented by
the logarithmic function. Thus, we can overcome the maximal velocity vmax. The
equilibrium velocity is given by

Ve(ρ) = vmax ln
(

ρmax

ρ

)
,

where vmax is the maximal velocity and ρmax is the maximal density. We can see
the fundamental diagram in Figure 3.9, where vmax = ρmax = 1.
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Figure 3.9: Fundamental diagrams of the Greenberg model.

Underwood model This model uses the equilibrium velocity represented by
the exponential function. Thus, we do not obtain zero velocity at the maximal
density ρmax. The equilibrium velocity is given by

Ve(ρ) = vmax exp
(

−ρ

ρmax

)
,

where vmax is the maximal velocity and ρmax is the maximal density. We can see
the fundamental diagram in Figure 3.10, where vmax = ρmax = 1. The maximal
equilibrium traffic flow Qe is reached at maximal density ρmax.
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(b) Flow-density diagram.

Figure 3.10: Fundamental diagrams of the Underwood model.

Diffusion model This model is derived from the Greenshields model. The
equilibrium velocity depends not only on the traffic density but also on the deriva-
tive of the traffic density. The equilibrium velocity is given by

Ve(ρ) = vmax

(
1 − ρ

ρmax

)
− D

ρ

∂ρ

∂x
,

where vmax is the maximal velocity, ρmax is the maximal density and D is a
diffusion coefficient. The coefficient is given by D = τv2

rand, where τ is a relaxation
parameter and vrand is a random velocity.

23



Other models There exists a lot of different types of models. Most of them are
based on real traffic data. We are looking for the approximation of the velocity-
-density relationships.

3.2.2 Payne-Whitham model
The Payne-Whitham model (abbreviated PW) is an approach where we use

two PDEs to represent the traffic dynamics. The second equation is analogous to
the fluid momentum equation. We still use the equilibrium velocity. In the most
general form, our problem is described by the system

ρt + (ρV )x = 0,

Vt + V Vx = Ve(ρ) − V

τ
− (A(ρ))x

ρ
+ µ

Vxx

ρ
,

(3.13)

where Ve(ρ)−V
τ

is a relaxation term, (A(ρ))x

ρ
is an anticipation term and µVxx

ρ
is a

viscosity term. Let us remind that Ve(ρ) is an equilibrium velocity (e.g. from
LWR models) and τ is a relaxation time.

The anticipation term is similar to the pressure term in fluids. In some specific
models the term is taken as A(ρ) = c2

0ρ for some constant c0. If we ignore the
viscosity term in the system (3.13), then we obtain the PW model similar to
isothermal flow as

ρt + (ρV )x = 0,

Vt + V Vx = Ve(ρ) − V

τ
− (c2

0ρ)x

ρ
.

Now, our aim is to calculate eigenvalues and eigenvectors of the system (3.13).
We need them for studying the characteristics and direction of transport of infor-
mation. Moreover, we use eigenvalues later in the calculation of numerical flux
(Subsection 4.2.2). First, we transform the system (3.13) into the vector form

ut + f(u)x = S,

where

u =
[

ρ
ρV

]
, f(u) =

[
ρV

ρV 2 + c2
0ρ

]
, S =

⎡⎣ 0

ρ
Ve(ρ) − V

τ
+ µVxx

⎤⎦ .

We can write this linear form as

ut + A(u)ux = S,

where
A(u) = ∂f

∂u
=
[

0 1
c2

0 − V 2 2V

]
.

The two eigenvalues of the matrix A(u) are λ1 = V + c0 and λ2 = V − c0 and the
corresponding eigenvectors are

v1 =
[

1
V + c0

]
and v2 =

[
1

V − c0

]
.
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There are a lot of disadvantages to the PW model. One of them is that
the PW model imitates the fluid behaviour too closely. Especially the fact that
it shows isotropic behaviour, while the traffic behaviour should by anisotropic.
Isotropic models exhibit that disturbances can travel in both directions. On the
other hand, for vehicular traffic, the driver behaviour should be affected by what
happens in front of the car and not in the back.

3.2.3 Aw-Rascle model
The Aw-Rascle model (abbreviated AR) is an approach where we model the

anisotropic traffic behaviour. We still use the equilibrium velocity. Our problem
is described by the system

ρt + (ρV )x = 0,

(V + p(ρ))t + V (V + p(ρ))x = Ve(ρ) − V

τ
.

The pressure term is usually taken as

p(ρ) = ργ

where γ > 0.
For further analysis, we ignore the relaxation term. We define the new variable

m = ρ(V + p(ρ)). Then we transform the system into the vector form

ut + f(u)x = 0,

where

u =
[

ρ
m

]
, f(u) =

⎡⎢⎣ m − ρp
m2

ρ
− mp

⎤⎥⎦ .

We can write this linear form as

ut + A(u)ux = 0,

where

A(u) = ∂f

∂u
=

⎡⎢⎣ −(γ + 1)p 1

−m2

ρ2 − γpm

ρ

2m

ρ
− p

⎤⎥⎦ .

The two eigenvalues of the matrix A(u) are λ1 = V and λ2 = V − γp and the
corresponding eigenvectors are

v1 =
[

1
V + (γ + 1)p

]
and v2 =

[
1

V + p

]
.

3.2.4 Zhang model
The Zhang model is an approach where we use an equation derived from a

microscopic car following model. This method is called the micro-macro link and
we present it later in Section 3.3. Our problem is described by the system

ρt + (ρV )x = 0,

Vt + (V + ρV ′
e (ρ))Vx = Ve(ρ) − V

τ
.
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For further analysis, we ignore the relaxation term. We define the new variable
m = ρ(V − Ve(ρ)). Then we transform the system into the vector form

ut + f(u)x = 0,

where

u =
[

ρ
m

]
, f(u) =

⎡⎢⎣ m + ρVe(ρ)
m2

ρ
+ mVe(ρ)

⎤⎥⎦ .

We can write this linear form as

ut + A(u)ux = 0,

where

A(u) = ∂f

∂u
=

⎡⎢⎣ ρV ′
e (ρ) + Ve(ρ) 1

−m2

ρ2 + mV ′
e (ρ) 2m

ρ
+ Ve(ρ)

⎤⎥⎦ .

The two eigenvalues of the matrix A(u) are λ1 = V and λ2 = V + ρV ′
e (ρ) and the

corresponding eigenvectors are

v1 =
[

1
V − Ve(ρ) − ρV ′

e (ρ)

]
and v2 =

[
1

V − Ve(ρ)

]
.

3.3 Micro-macro link
As we mention above, conservation law gives us one equation (3.5) with two

unknowns. So, we need to use a second equation. There are a lot of different
options for choosing it. Section 3.2 gives us some examples how to choose it,
but these are not all the possibilities. In this section we introduce the method
called micro-macro link. This method takes ODEs from the microscopic model
and adds it to equation (3.5) in the macroscopic model. The advantage is that
we can bring some behaviour of the microscopic models into the macroscopic one.
We follow the lecture by Gasser.

We demonstrate the micro-macro link on two microscopic models

a) vi(t) = Vopt (xi+1(t) − xi(t)),

b) dvi

dt
(t) = 1

τ
(Vopt (xi+1(t) − xi(t)) − vi(t)).

The model a) represents the fact that the velocity of car is equal to the optimal
velocity. This model is primitive, and we use it to show that we don’t need
an ODE in this case. Consequently, we do not obtain a second PDE but the
definition of function V in equation (3.5). This is similar to LWR models. The
model b) is the Bando model (2.1).
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3.3.1 Scaling
The choice of a suitable scaling of the quantities is very important. We define

reference values
vr = vmax, tr = L

vr

, ρr = 1
l
,

where vmax is the maximal velocity, L is the length of the road and l is the length
of a car. The traffic density is given by

ρ

(
xi+1(t) + xi(t)

2 , t

)
= 1

xi+1(t) − xi(t)
. (3.14)

The connection between an optimal velocity Vopt(y) from the microscopic model
and an equilibrium velocity Ve(ρ) from the macroscopic model is given by

Ve

(
ρ

(
xi+1(t) + xi(t)

2 , t

))
= Vopt (xi+1(t) − xi(t)) .

Now we are ready to calculate the scaled models a) and b). We use

t̃ = t

tr

, τ̃ = τ

tr

, ϵ = l̃ = l

L
,

ρ̃

(
x̃i+1(t̃) + x̃i(t̃)

2 , t̃

)
= 1

ρr

ρ

(
xi+1(t) + xi(t)

2 , t

)
, (3.15)

x̃i(t̃) = 1
L

xi(t̃tr), ṽi(t̃) = 1
vr

vi(t̃tr), Ṽe(ρ̃) = 1
vr

Ve(ρ̃ρr)

and obtain

a) ṽi(t̃) = Ṽe

(
ρ̃

(
x̃i+1(t̃) + x̃i(t̃)

2 , t̃

))
,

b) dṽi

dt̃
(t̃) = 1

τ̃

(
Ṽe

(
ρ̃

(
x̃i+1(t̃) + x̃i(t̃)

2 , t̃

))
− ṽi(t̃)

)
.

One can notice that we can use equation (3.14) and apply it to equation (3.15).
Then we obtain

ρ̃

(
x̃i+1(t̃) + x̃i(t̃)

2 , t̃

)
= 1

ρr

ρ

(
xi+1(t) + xi(t)

2 , t

)

= 1
ρr

1
xi+1(t) − xi(t)

= l
1

Lx̃i+1(t̃) − Lx̃i(t̃)

= l

L

1
x̃i+1(t̃) − x̃i(t̃)

= ϵ
1

x̃i+1(t̃) − x̃i(t̃)
. (3.16)
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3.3.2 Transformation
Now we have everything prepared for the transformation from a scaled mi-

croscopic model to the macroscopic model. For simplicity, we omit tildes in this
whole subsection and we use the notation ρ = ρ(x,t), V = V (x,t).

We must introduce new independent variables x and t. We approximate

x ≈ xi(t), V (x,t) ≈ vi(t).

According to equation (3.16), we obtain the continued fraction

ρ

(
xi+1(t) + xi(t)

2 , t

)
= ρ

(
xi(t) + xi+1(t) − xi(t)

2 , t

)

= ρ

⎛⎝xi(t) + ϵ

2ρ
(
xi(t) + ϵ

2ρ(...)

) , t

⎞⎠
≈ ρ

⎛⎝x + ϵ

2ρ
(
x + ϵ

2ρ(...)

) , t

⎞⎠ . (3.17)

We expend continued fraction (3.17) in powers of ϵ and obtain

ρ

(
xi+1(t) + xi(t)

2 , t

)
≈ ρ

⎛⎝x + ϵ

2
(
ρ + ϵ

2ρ
ρx + O (ϵ2)

) , t

⎞⎠
= ρ

(
x + ϵ

2ρ

(
1 − ϵ

2ρ2 ρx + O
(
ϵ2
))

, t

)

= ρ + ϵ

2ρ
ρx − ϵ2

4ρ3 ρ2
x + ϵ2

8ρ2 ρxx + O
(
ϵ3
)

= ρ + ϵ

2ρ
ρx + ϵ2

8ρ2

(
ρxx − 2ρ2

x

ρ

)
+ O

(
ϵ3
)

. (3.18)

Since we have the approximate density (3.18), we can expand the equilibrium
velocity in powers of ϵ in the same way and obtain

Ve

(
ρ

(
xi+1(t) + xi(t)

2 , t

))
≈ Ve(ρ) + V ′

e (ρ)
(

ϵ

2ρ
ρx + ϵ2

8ρ2

(
ρxx − 2ρ2

x

ρ

))

+ V ′′
e (ρ)ϵ2ρ2

x

8ρ2 + O
(
ϵ3
)

= Ve(ρ) + ϵV ′
e (ρ)ρx

2ρ
+ ϵ2

8ρ2

(
V ′

e (ρ)
(

ρxx − 2ρ2
x

ρ

)

+ V ′′
e (ρ)ρ2

x

)
+ O

(
ϵ3
)

= Ve(ρ) + ϵ

2ρ
Ve(ρ)x + ϵ2

8ρ2

(
Ve(ρ)xx − 2Ve(ρ)x

ρx

ρ

)
+ O

(
ϵ3
)

.
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Finally, we must approximate the left-hand side of the Bando model. We can
develop velocity in power of ∆t and obtain

dvi

dt
(t) = lim

∆t→0

vi(t + ∆t) − vi(t)
∆t

≈ lim
∆t→0

V (x + V ∆t,t + ∆t) − V

∆t

= lim
∆t→0

V + VxV ∆t + Vt∆t + O ((∆t)2) − V

∆t
= Vt + V Vx.

Using these calculations, we can approximate scaled microscopic models a)
and b) and get the missing equation in macroscopic model. From the microscopic
model a) we obtain the scalar second order equation

ρt + (ρVe(ρ))x = − ϵ

2Ve(ρ)xx + O
(
ϵ2
)

.

From the Bando model b) we obtain the first order systems of balance equations

ρt + (ρV )x = 0

Vt + V Vx = 1
τ

(
Ve(ρ) − V + ϵ

2ρ
Ve(ρ)x

)
+ O

(
ϵ2
)

.

We use approximation up to first order in powers of ϵ. On a short road,
i.e. when ϵ is large, we must use higher order and we obtain more complicated
equations.

3.4 Junctions
This section follows the book by Garavello and Piccoli [15]. We study a

complex network represented by a directed graph. The graph is a finite collection
of directed edges, connected together at some vertices. Each vertex has a finite
set of incoming edges and outgoing edges. First, we define the network.

Definition 8 (Network). We define a network as a couple (I,J ), where I =
{In}N

n=1 is a finite set of edges and J = {Jm}M
m=1 is a finite set of vertices. Each

edge In is an interval [ai,bi] ⊆ [−∞,∞], i = 1, . . . ,N . Each vertex Jm is a union
of two non-empty subsets Inc(Jm) and Out(Jm) of {1, . . . ,N}. We assume the
following:

(i) ∀Ji,Jj ∈ J , i ̸= j : (Inc(Ji) ∩ Inc(Jj) = ∅) ∧ (Out(Ji) ∩ Out(Jj) = ∅).

(ii) If i /∈ ∪J∈J Inc(J), i ∈ {1, . . . ,N}, then bi = ∞ and if i /∈ ∪J∈J Out(J), i ∈
{1, . . . ,N}, then ai = −∞. Moreover, ∀i ∈ {1, . . . ,N} : (i ∈ ∪J∈J Inc(J)) ∨
(i ∈ ∪J∈J Out(J)).

The two conditions define the network as a graph. Condition (i) implies that
each edge can be incoming for at most one vertex and outgoing for at most vertex.
Condition (ii) implies that some edges may extend to infinity but are connected
to at least one vertex. We can see an example in Figure 3.11.
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Figure 3.11: Example of a network.

If we want to find a solution on a network, we need to solve the same problem
on each edge and at each vertex. Because it is enough to extend the problem
from one vertex and its incoming and outgoing edges to all vertices and all edges,
we will study our problem only at one vertex and on its incoming and outgoing
edges.

3.4.1 Riemann solver
In this subsection, we assume that the traffic on edge number i ∈ {1, . . . ,N}

is represented by the hyperbolic system

(ui)t + fi (ui)x = 0, x ∈ R, t > 0,

ui(x,0) = ui,0(x), x ∈ R,
(3.19)

where fi : Rp → Rp. Now we fix (I,J ) and a vertex J ∈ J and assume that
Inc(J) = {1, . . . ,n} and Out(J) = {n + 1, . . . ,n + m}. We would like to define
and solve the Riemann problems at vertices.

Definition 9 (Riemann problem at a vertex). The problem (3.19) with initial
data which are constant on each edge is called a Riemann problem.

Now we define a Riemann solver.

Definition 10 (Riemann solver for a vertex). We define a Riemann solver for
the vertex J as a function

RS : (Rp)n+m → (Rp)n+m

that associates to every Riemann datum u0 = (u1,0, . . . ,un+m,0)T at J a vector
û = (û1, . . . ,ûn+m)T such that the following holds:

(i) On each edge Ii, i = 1, . . . ,n + m, the solution is given by the solution to
the initial-boundary value problem with initial data ui,0 and boundary data
ûi.

(ii) RS(RS(u0)) = RS(u0). This equation is called the consistency condition.

We can say that Riemann solver is a map assigning a solution to each Riemann
initial datum.

Since a Riemann solver is defined, we can define admissible solution at J .
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Definition 11 (Admissible solution at a vertex). Assume a Riemann Solver RS
is given at junction J . Let u = (u1, . . . ,un+m)T , ui : [ai,bi] × [0,∞) → Rp be such
that ui(·,t) is of bounded variation ∀t ≥ 0. Then u is called an admissible weak
solution to (3.19) related to RS at the vertex J if the following holds:

(i) ui is a weak solution to (3.19) on the edge.

(ii) Setting

uJ(t) = (u1(b1,−,t), . . . ,un(bn,−,t),un+1(an+1,+,t), . . . ,un+m(an+m,+,t))T ,

we have RS(uJ(t)) = uJ(t) for almost every t.

Unfortunately, this general definition does not give us unique solutions. More-
over, it includes “non-physical” cases. For example, the quantity u, or some com-
ponents of u, must be conserved also at vertex J . In our traffic case, our u is
traffic density. Now, it is possible to create or lose some density in a junction. One
necessary condition is to hold equality of incoming and outgoing fluxes for the
obtained solution û. However, that is still not enough. The initial-boundary value
problem on each edge can produce a solution which does not reach the boundary
value pointwise. So, the solution to the initial-boundary value problems needs
to have negative characteristic velocities on incoming edges and positive char-
acteristic velocities on outgoing edges. In summary, we must satisfy these two
conditions

(Condition 1) If û = RS(u0), then for incoming edges, i.e. i = 1, . . . ,n, the so-
lution to the Riemann problem (ûi,ui,0,) has all waves with strictly negative
velocity. On the other hand, for outgoing edges, i.e. j = n + 1, . . . ,n + m,
the solution to the Riemann problem (ûj,uj,0) has all waves with strictly
positive velocity.

(Condition 2) If û = RS(u0), then the incoming flux is equal to the outgoing
one, i.e.

n∑
i=1

fi(ûi) =
n+m∑

j=n+1
fj(ûj).

We can reformulate the second condition to traffic situation as follows: the num-
ber of cars which enter the junction is equal to the number of cars which leave
the junction.

3.4.2 LWR model on junctions
On each road (edge) we consider the LWR model (mentioned above in Sub-

section 3.2.1), while at the junctions (vertices) we consider the Riemann solver
satisfying the two conditions above and the following rules:

a) There are some prescribed preferences of drivers how the traffic from incom-
ing roads is distributed to outgoing roads according to fixed coefficients.

b) Respecting a), drivers choose so as to maximize fluxes through each junc-
tion.

31



Recall that LWR models solve the problem (3.12) and Qe(ρ) = ρVe(ρ). As-
sume that ρmax = 1, Qe(ρ) ∈ C2 is a strictly concave down function and Qe(0) =
Qe(1) = 0. At each junction J , there is a matrix describing the distribution of
the traffic among outgoing roads.
Definition 12 (Traffic-distribution matrix). Let J be a fixed vertex with n in-
coming edges and m outgoing edges. Then we define a traffic-distribution matrix
A as

A =

⎡⎢⎢⎣
αn+1,1 · · · αn+1,n

... ... ...
αn+m,1 · · · αn+m,n

⎤⎥⎥⎦ ,

where ∀i ∈ {1, . . . ,n},j ∈ {n + 1, . . . ,n + m} : 0 ≤ αj,i ≤ 1 and ∀i ∈ {1, . . . ,n}:
n+m∑

j=n+1
αj,i = 1.

The ith column of A describes how the traffic from the incoming road Ii

distributes in percentages to the outgoing roads at the junction J . In other words,
if X is the quantity of traffic coming from road Ii then αj,iX is the quantity of
traffic moving towards road Ij.

We add a third rule to the rules a) and b) from the beginning of this section.
This added rule is a technical condition on matrix A.

c) Let {e1, . . . ,en} be the canonical basis of Rn and let αj = (αj,1, . . . ,αj,n)T ∈
Rn for every j = n + 1, . . . ,n + m. Define Hi = {ei}⊥ for every i = 1, . . . ,n
and define Hj = {αj}⊥ for every j = n + 1, . . . ,n + m. Let K be a set of
indices k = (k1, . . . ,kl), 1 ≤ l ≤ n − 1, such that 0 ≤ k1 < k2 < . . . < kl ≤
n + m and for every k ∈ K set Hk = ∩l

h=1Hkh
. Let 1 = (1, . . . ,1)T . Then

for every k ∈ K : 1 /∈ H⊥
k .

The condition c) is important to isolate a unique solution to Riemann prob-
lems at junctions. From c) we immediately derive m ≥ n. Otherwise, we take
k = {n + 1, . . . ,n + m} and obtain 1 = ∑n+m

j=n+1 αj from Definition 12. Thus, we
get 1 ∈ H⊥

k , where
Hk = ∩n+m

j=n+1Hj = ∩n+m
j=n+1{αj}⊥.

If the condition c) does not hold, we introduce further parameters. The case of
n ≥ 2 incoming roads and m = 1 outgoing road is described in [15, Subsection
5.2.2, page 103].

Now we are ready to present the definitions of solution at junctions.
Definition 13 (Traffic solution at a junction). Let J be a junction with incoming
roads I1, . . . ,In and outgoing road In+1, . . . ,In+m. Then we define a weak solution
at J as a collection of functions ρl : Il × [0,∞) → R, l = 1, . . . ,n + m such that

n+m∑
l=1

(∫ bl

al

∫ ∞

0

(
ρl

∂ϕl

∂t
+ Qe(ρl)

∂ϕl

∂x

)
dtdx

)
= 0

holds for every ϕl ∈ C1
0([al,bl] × [0,∞)), l = 1, . . . ,n + m, that are also smooth

across the junction, i.e.

ϕi(bi−,·) = ϕj(aj+,·), ∂ϕi

∂x
(bi−,·) = ∂ϕj

∂x
(aj+,·),

where i ∈ {1, . . . ,n} and j ∈ {n + 1, . . . ,n + m}.
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Lemma 3. Let ρ = (ρ1, . . . ,ρn+m)T be a weak solution at the junction J such
that each x → ρi(x,t) has bounded variation. Then ρ satisfies

n∑
i=1

Qe(ρi(bi−,t)) =
n+m∑

j=n+1
Qe(ρj(aj+,t)) (3.20)

for almost every t > 0 at the junction J .

Proof. We do not prove this lemma. We can find the proof in the book [15,
Lemma 5.1.9, page 98]. f

The equation (3.20) is called the Rankine-Hugoniot condition. Finally, we
formulate the definition of an admissible weak solution.

Definition 14 (Admissible traffic solution at a junction). Let ρ = (ρ1, . . . ,ρn+m)T

be such that ρi(·,t) is of bounded variation for every t ≥ 0. Then ρ is called an
admissible weak solution of (3.12) related to the matrix A at the junction J if the
following properties hold:

(i) ρ is a weak solution at the junction J .

(ii) Qe(ρj(aj+,·)) = ∑n
i=1 αj,iQe(ρi(bi−,·)), ∀j = n + 1, . . . ,n + m.

(iii) ∑n
i=1 Qe(ρi(bi−,·)) is a maximum subject to (i) and (ii).

Due to Lemma 3, the assumption (i) of the previous definition is the conser-
vation of car at junctions. The assumption (ii) describe the condition a) and the
assumption (iii) describe the condition b) from the beginning of this subsection.
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4. Discontinuous Galerkin
method

In this chapter we follow the book by Doleǰśı, Knobloch, Kučera and Vlasák
[16]. Our aim is to study a method which fits perfectly into our traffic problem.
Our method must be able to approximate discontinuous solutions of the systems
of PDEs. This method should be fast and robust. This is the reason why we
choose the discontinuous Galerkin method.

4.1 Introduction
The “standard” conforming finite element method (abbreviated FEM) has

many advantages and this method is well known and studied. Unfortunately,
FEM has the problem called Gibbs phenomenon. This phenomenon is manifested
by spurious oscillations that are caused by steep gradients and discontinuities in
the exact solution.

In 1973, Reed and Hill [17] invented a new numerical scheme called the discon-
tinuous Galerkin finite element method (abbreviated DG) which avoids the Gibbs
phenomenon. The method is similar to conforming FEM. We use piecewise poly-
nomial functions, but there are no continuity assumptions between neighbouring
elements. Thus, we approximate by piecewise smooth, but globally discontinuous
functions. As we will see later in Subsection 4.2.2, we must calculate a numerical
flux. This is similar to the finite volume method (abbreviated FVM). Hence, DG
is a combination of FEM and FVM and it combines their advantages.

Originally, the DG method is described on a polygonal (polyhedral) domain
Ω ⊂ Rd, d ∈ N. Since the traffic model is defined on a line, we consider Ω ⊂ R,
Ω = (a,b). Let Th be a partition of Ω into a finite number of closed elements K
with mutually disjoint interiors, such that

Ω =
⋃

K∈Th

K.

In the 1D case, an element K is an interval [aK , bK ], where aK and bK are
boundary points of K. We set hK = |bK − aK |, h = maxK∈T hK . We denote the
set of all boundary points of all elements by Fh. Further, we define the set of all
inner points by

F I
h = {x ∈ Fh; x ∈ Ω}

and the set of all boundary points by

FB
h = {a, b}.

Obviously Fh = F I
h ∪ FB

h .
In the continuous case, we use standard Sobolev spaces. Now, we need the

space of discontinuous functions. So, we define broken Sobolev spaces.

Definition 15 (Broken Sobolev space). Let Hk(I), k ∈ N be the Sobolev space
over an interval I and let Th be a partition of open interval Ω. Then we define
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the broken Sobolev space over Th as
Hk(Ω, Th) = {v; v|K ∈ Hk(K), ∀K ∈ Th}

equipped with the seminorm

|v|Hk(Ω,Th) =
⎛⎝ ∑

K∈Th

|v|2Hk(K)

⎞⎠ 1
2

.

This space consists of functions which are piecewise Sobolev, i.e. weakly dif-
ferentiable on separate elements, but which are in general globally discontinuous.

Instead of the broken Sobolev space Hk(Ω, Th), we use approximation of that
space. Let p ≥ 0 be an integer. Then we define the space of discontinuous
piecewise polynomial functions as

Sh = {v; v|K ∈ P p(K), ∀K ∈ Th},

where P p(K) denotes the space of all polynomials on K of degree at most p.
For each point x ∈ F I

h there exist two neighbours K(L)
x , K(R)

x ∈ Th such that
x = K(L)

x ∩ K(R)
x . Every function v ∈ Hk is generally discontinuous at x ∈ F I

h .
Thus, we introduce the following notation:

v(L)(x) = lim
y→x−

v(y), v(R)(x) = lim
y→x+

v(y),

⟨v⟩x = 1
2(v(L)(x) + v(R)(x)), [v]x = v(L)(x) − v(R)(x).

In the point x ∈ FB
h there are not two neighbours. In order to have consistent

notation, we define
v(R)(a) = lim

y→a+
v(y), v(a) = ⟨v⟩a = − [v]a = v(L)(a) := v(R)(a),

v(L)(b) = lim
y→b−

v(y), v(b) = ⟨v⟩b = [v]b = v(R)(b) := v(L)(b).

The definition of jump [v]a := −v(R)(a) or [v]b := v(L)(b) may seem inconsistent
with the definition on interior points. This notation is used due to the integration
by parts in following sections. Our notation allows us to simplify those terms.

For simplicity, if ⟨·⟩x, [·]x appear in a sum of the form ∑
x∈Fh

. . ., we omit the
index x and write ⟨·⟩, [·].

4.2 First order hyperbolic problems
We begin with formulating the DG method for first order hyperbolic problems

ut + f(u)x = g, x ∈ Ω, t ∈ (0,T ), (4.1)
u = uD, x ∈ FD

h t ∈ (0,T ), (4.2)
u(x,0) = u0(x), x ∈ Ω, (4.3)

where the right-hand side g : Ω × (0,T ) → R, the Dirichlet boundary condition
uD : FD

h × (0,T ) → R and the initial condition u0 : Ω → R are given functions.
The Dirichlet boundary condition is prescribed only on the inlet FD

h ⊆ FB
h ,

respecting the direction of information propagation, cf. also Subsection 4.2.2.
The function f ∈ C1(R) is called the convective flux. Our aim is to seek a
function u : Ω × (0,T ) → R such that (4.1)-(4.3) is satisfied. As we have seen,
problem (4.1) is the main part of macroscopic equations for traffic.
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4.2.1 Formulation
We would like to derive a weak form of equation (4.1). We multiply (4.1) by

a test function ϕ ∈ H1(Ω,Th) and integrate over arbitrary element K ∈ Th. Then
we apply integration by parts and obtain∫

K
utϕ dx−

∫
K

f(u)ϕ′ dx+f(u(bK ,t))ϕ(L)(bK)−f(u(aK ,t))ϕ(R)(aK) =
∫

K
gϕ dx.

(4.4)
Finally, we sum equation (4.4) over all K ∈ Th and obtain∫

Ω
utϕ dx −

∑
K∈Th

∫
K

f(u)ϕ′ dx +
∑

x∈Fh

f(u) [ϕ] =
∫

Ω
gϕ dx.

Up until now, the function u : Ω × (0,T ) → R was a continuous function. Let
us take uh ∈ H1(Ω,Th) which is in general discontinuous in Fh. Thus, we have
a problem with function f(uh) in the point x ∈ Fh, because uh does not have
a uniquely defined value on Fh. We proceed similarly as in the finite volume
method and use the approximation

f(uh) ≈ H(u(L),u(R)), (4.5)

where H(u(L),u(R)) is a numerical flux. We derive the numerical flux later in
Subsection 4.2.2. So, a weak form of equation (4.1) on H1(Ω,Th) is∫

Ω
(uh)tϕ dx −

∑
K∈Th

∫
K

f(uh)ϕ′ dx +
∑

x∈Fh

H(u(L),u(R)) [ϕ] =
∫

Ω
gϕ dx. (4.6)

Now we can define a DG finite element solution.

Definition 16 (DG finite element solution of hyperbolic problem). The function
uh : Ω × (0,T ) → R is called a DG finite element solution of hyperbolic problem
(4.1)-(4.3) if the following properties hold:

(i) uh ∈ C1 ([0,T ] ; Sh).

(ii) uh(0) = uh0, where uh0 denotes an Sh approximation of the initial condition
u0.

(iii) uh = uD for all x ∈ FD
h , t ∈ (0,T ).

(iv) The equation (4.6) holds for all ϕ ∈ Sh and for all t ∈ (0,T ).

4.2.2 Numerical flux
To calculate the left-hand side in equation (4.6), we need use the numerical

flux H(u(L),u(R)). From (4.5), we know that the numerical flux approximates the
convective flux in points x ∈ Fh. We use upwinding and some of the conservative
schemes from the paper by Shu [18] and the lecture notes by Sonnendrücker [19].

The numerical fluxes are thoroughly studied and well understood from the
finite volume method. We assume that numerical flux H has the following prop-
erties:
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a) H(u,v) is consistent:

H(u,u) = f(u), ∀u ∈ R.

b) H(u,v) is monotone: H(u,v) is a non-decreasing function of its first argu-
ment u and a non-increasing function of its second argument v.

c) Whenever f is Lipschitz continuous, H(u,v) is Lipschitz continuous: there
exists constant L > 0 such that

|H(u1,v1) − H(u2,v2)| ≤ L (|u1 − u2| + |v1 − v2|) , ∀u1,u2,v1,v2 ∈ R.

The obvious choices of numerical flux are

H(u(L),u(R)) = ⟨f(uh)⟩ =
f
(
u(L)

)
+ f

(
u(R)

)
2

or
H(u(L),u(R)) = f (⟨uh⟩) = f

(
u(L) + u(R)

2

)
.

However, it can be shown that these choices lead to unstable schemes. This is
caused by the fact that the averaging is natural for diffusive problems, not for
convective problems. Thus, we must introduce other schemes which transport
the information in the same way as convective terms.

We use the upwind flux as the basic numerical flux. We define

α = f ′ (⟨uh⟩) = f ′
(

u(R) + u(L)

2

)

Then we calculate the numerical flux as

H
(
u(L),u(R)

)
=

⎧⎨⎩f
(
u(L)

)
, α ≥ 0,

f
(
u(R)

)
, α < 0.

This scheme was inspired by the method of characteristics. The slope of the char-
acteristics depends on the derivative of f . Since the positive derivative transports
the information to the right, we take the left point u(L) to evaluate f and vice
versa.

The second example is the Lax-Friedrichs flux. We define

α = max
u∈(u(L),u(R))

|f ′(u)| .

We assume that interval
(
u(L),u(R)

)
is non-empty, i.e. we take interval

(
u(R),u(L)

)
in the case of u(R) < u(L). In practice, we do not solve the maximization problem.
We approximate by calculating |f ′(u)| in the points u(L), u(R) and u(L)+u(R)

2 and
we take the maximal value. Then we calculate the numerical flux as

H
(
u(L),u(R)

)
= 1

2
(
f
(
u(L)

)
+ f

(
u(R)

)
− α

(
u(R) − u(L)

))
. (4.7)
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The last flux is for systems of PDEs. We call it the generalised Lax-Friedrichs
flux or the Rusanov flux. We must calculate f ′(u), which for systems represents
the Jacobi matrix. We find its eigenvalues {λ1(u), . . . ,λp(u)} and define

α = max
u∈(u(L),u(R))

max
k=1,...,p

|λk (u)| ,

where
(
u(L),u(R)

)
denotes a box

(
u

(L)
1 ,u

(R)
1

)
× . . .×

(
u(L)

p ,u(R)
p

)
. Again, we assume

that intervals
(
u

(L)
i ,u

(R)
i

)
are non-empty for all i = 1, . . . ,p. We do not solve the

maximization problem. Again, we approximate by taking |λk(u)| in the points
u(L), u(R) and u(L)+u(R)

2 for all k = 1, . . . ,p and we take the maximal value. Then
we calculate the numerical flux same as the Lax-Friedrichs flux (4.7).

4.3 Second order elliptic problems
The second case is the DG method for second order elliptic problems

−u′′ = g, x ∈ Ω, (4.8)
u = uD, x ∈ FD

h , (4.9)
∂u

∂n
= gN , x ∈ FN

h , (4.10)

where the right-hand side g : Ω → R is a given function and the Dirichlet bound-
ary condition uD : FD

h → R and the Neumann boundary condition gN : FN
h → R

are given constants. Sets FD
h ⊆ FB

h and FN
h ⊆ FB

h are disjoint and satisfy
FD

h ∪ FN
h = FB

h . Our aim is to seek a function u : Ω → R such that (4.8)-(4.10)
is satisfied. We need to solve problem (4.8) in the PW model.

4.3.1 Formulation
We would like to derive a weak form of equation (4.8). Assume that u ∈ C2(Ω).

We multiply (4.8) by a test function ϕ ∈ H2(Ω,Th) and integrate over arbitrary
element K ∈ Th. Then we apply integration by parts and obtain∫

K
u′ϕ′ dx − u′(bK ,t)ϕ(L)(bK) + u′(aK ,t)ϕ(R)(aK) =

∫
K

gϕ dx. (4.11)

Since u′ is continuous, then u′ = ⟨u′⟩ on F I
h . Finally, we sum equation (4.11) over

all K ∈ Th and obtain∑
K∈Th

∫
K

u′ϕ′ dx −
∑

x∈FI
h

⟨u′⟩ [ϕ] −
∑

x∈FD
h

u′ [ϕ] =
∫

Ω
gϕ dx +

∑
x∈FN

h

gNϕ. (4.12)

This equation represents a weak formulation of problem (4.8). Unfortunately,
the left-hand side of equation (4.12) has several disadvantages:

a) The left-hand side is not symmetric with respect to u and ϕ.

b) The left-hand side is not elliptic with respect to some suitable energy norm.

c) Equation (4.12) does not include the Dirichlet boundary condition (4.9).
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4.3.2 Penalty terms
In order to manage the problem a), we add the term

−Θ
∑

x∈FI
h

⟨ϕ′⟩ [u] ,

where Θ is a constant, to the left-hand side. Since the classical solution u satisfies
[u] = 0 on interior points, the new term is identically zero. Thus, we do not affect
the consistency with the problem (4.8).

In order to manage the problem c), we add the terms
−Θ

∑
x∈FD

h

ϕ′ [u] = −Θ
∑

x∈FD
h

ϕ′ [uD] ,

where Θ is a same constant as in the first term. There are three options how to
choose Θ.
Remark. Usually, we choose Θ = −1, 0, 1. Θ = 1 leads to the symmetric (abbre-
viated SIPG), Θ = 0 to incomplete (abbreviated IIPG) and Θ = −1 to nonsym-
metric interior penalty Galerkin method (abbreviated NIPG).

In order to manage the problem b) and c), we add the so-called interior and
boundary penalty terms

CW

∑
x∈FI

h

[u] [ϕ] + CW

∑
x∈FD

h

uϕ = CW

∑
x∈FD

h

uDϕ,

where CW > 0 is a constant, which provides ellipticity of the resulting form.
Up until now, the function u : Ω → R was classical solution. Let us take

uh ∈ Sh which is in general discontinuous in Fh. Combining the terms above
with the equation (4.12), we obtain

ah(uh,ϕ) + Jh(uh,ϕ) = lh(ϕ), (4.13)
where

ah(u,ϕ) =
∑

K∈Th

∫
K

u′ϕ′ dx −
∑

x∈FI
h

⟨u′⟩ [ϕ] −
∑

x∈FD
h

u′ [ϕ]

− Θ
∑

x∈FI
h

⟨ϕ′⟩ [u] − Θ
∑

x∈FD
h

ϕ′ [u]

is the DG diffusion form,
Jh(u,ϕ) = CW

∑
x∈FI

h

[u] [ϕ] + CW

∑
x∈FD

h

uϕ

is the interior and boundary penalty form and

lh(ϕ) =
∫

Ω
gϕ dx +

∑
x∈FN

h

gNϕ − Θ
∑

x∈FD
h

ϕ′ [uD] + CW

∑
x∈FD

h

uDϕ

is the right-hand side form.
Now we can define a DG finite element solution.

Definition 17 (DG finite element solution of elliptic problem). The function
uh : Ω → R is called a DG finite element solution of elliptic problem (4.8)-(4.10)
if the following properties hold:

(i) uh ∈ Sh.

(ii) The equation (4.13) holds for all ϕ ∈ Sh.
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4.4 Implementation
In this section, we discuss the implementation of DG. We ask the question

how to define numerical flux at the junctions. In the end, we apply limiters.
We use the discontinuous Galerkin method in space and Adams–Bashforth

method in time. Because we calculate physical quantities (density and velocity),
we know that the result must be in some interval. Thus, we use limiters after
every iteration to obtain the solution in an admissible interval. In this section,
we consider the general hyperbolic problem (4.1)-(4.3).

We use the notation from Section 4.1. We take the partition of space with
equidistant interpolation points. For practical purposes, the basis of the test func-
tions space should contain functions from Sh which are non-zero on one element
and zero on the other elements. We take these functions such that they are orthog-
onal to each other in the L2(a,b) space with the scalar product (u,v) =

∫ b
a uv dx.

Thus, we use Legendre polynomials. We know, that ∥p∥2
L2(aK ,bK) = h, where p

is a Legendre polynomial and h is the size of one element. The maximal degree
of Legendre polynomials is the same as the required degree of the approximate
solution. B denotes this orthogonal basis.

To evaluate the integrals over elements, we need numerical integration. We
use the Gauss–Legendre quadrature rule. If we use n quadrature points (nodes),
the Gauss–Legendre quadrature rule is exact for polynomials of degree 2n − 1.
We need to keep in mind, that we integrate the product of two functions. If
we approximate the solution by a piecewise linear function, we need to integrate
polynomials of degree 2. Thus, we need 2 quadrature points.

4.4.1 Time discretization
Let uh(x,t) ∈ R be our solution at the position x at the time t and B =

{ϕ1, . . . ,ϕN} be the basis of the test functions space, which was described above.
We write our solution in the form:

uh(x,t) =
N∑

j=1
uj(t)ϕj(x),

where uj(t) ∈ C1(R). Due to the linearity of the weak form (4.6) in variable ϕ, we
can use only the elements of basis B instead of all test functions ϕ ∈ Sh. Thus,
we can reformulate the property (iv) in Definition 16 as

N∑
j=1

(
duj(t)

dt
(ϕj,ϕi)

)
−
∑

K∈Th

∫
K

f(uh)ϕ′
i dx+

∑
x∈Fh

H(u(L),u(R)) [ϕi] = (g,ϕi) (4.14)

for all ϕi ∈ B and for all t ∈ (0,T ). Since the elements of basis B are orthogonal
and ϕi is non-zero only on Ki ∈ Th, we can write the equation (4.14) as

h
dui(t)

dt
−
∫

Ki

f(uh)ϕ′
i dx +

∑
x∈{aKi

,bKi
}
H(u(L),u(R)) [ϕi] =

∫
Ki

gϕi dx.

This leads to a system of N ODEs for unknowns ui(t), i = 1, . . . ,N . Now, we
introduce the time discretization.
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As we mention above, we discretize the time by the Adams-Bashforth method.
This method is a linear multistep method for ODEs. We want to solve our system
of ODEs

duj

dt
= Fj, j = 1, . . . ,N,

where uj(t) : R → R are unknowns and

Fj (uh(t),t) := 1
h

⎛⎜⎝∫
Ki

gϕi dx +
∫

Kj

f(uh)ϕ′
j dx −

∑
x∈{aKj

,bKj
}
H(u(L),u(R)) [ϕj]

⎞⎟⎠ .

The right-hand sides Fj are non-linearly depending on the unknowns. We take
the time step τ . Then we obtain discrete time values ti = iτ , where i ∈ N.
We denote ui

j := uj(ti) and F i
j := Fj (uh(ti),ti). We use one of the equations in

Table 4.1 where S denotes the number of steps. The equations from the table
are derived in the lecture notes by Janovský [20]. The first equation is called the
forward Euler method. We have u0

j from the initial condition. Then we can use
the Euler method to calculate the first time step. Thus, we obtain u1

j . If the
Euler method is good enough, we still use this method. Otherwise, we can use
the two-steps method and so on.

S Equation
1 ui+1

j = ui
j + τF i

j

2 ui+2
j = ui+1

j + τ
(3

2F i+1
j − 1

2F i
j

)
3 ui+3

j = ui+2
j + τ

(23
12F i+2

j − 4
3F i+1

j + 5
12F i

j

)
4 ui+4

j = ui+3
j + τ

(55
24F i+3

j − 59
24F i+2

j + 37
24F i+1

j − 3
8F i

j

)
5 ui+5

j = ui+4
j + τ

(1901
720 F i+4

j − 1387
360 F i+3

j + 109
30 F i+2

j − 637
360F i+1

j + 251
720F i

j

)

Table 4.1: Adams-Bashforth formulae for different numbers of steps.

4.4.2 Numerical fluxes at junctions
If we would like to model traffic on networks, there arise special problems

with numerical fluxes at junctions. We must decide, which values are from the
left and which from the right. We use the notation from Section 3.4.

Our aim is to conserve the number of cars at the junctions. The number of cars
which inflow or outflow through the junction is given by the traffic flow Qe. More
precisely, the traffic flow from incoming road Ii, i = 1, . . . ,n, at time t is given
by Qe (ρi(bi−,t)). Due to the traffic-distribution matrix, we know the ratio of the
traffic flow distribution between the outgoing roads. Thus, the traffic flow to the
outgoing road Ij, j = n + 1, . . . ,n + m, at time t is given by Qe (ρj(aj+,t)) =∑n

i=1 αj,iQe (ρi(bi−,t)). We know that the traffic flow at the boundary of the
element is represented by the numerical flux. The DG solution on the ith road is
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denoted by ρhi. Thus, we take the numerical flux Hj(t) at the left point of the
outgoing road Ij, i.e. point at the junction, at time t as

Hj(t) :=
n∑

i=1
αj,iH(ρhi(bi−,t),ρhj(aj+,t)),

where j = n + 1, . . . ,n + m. The numerical flux Hj(t) approximates the traffic
flow Qe (ρj(aj+,t)). Similarly, we take the numerical flux Hi(t) at the right point
of the incoming road Ii, i.e. point at the junction, at time t as

Hi(t) :=
n+m∑

j=n+1
αj,iH(ρhi(bi−,t),ρhj(aj+,t)),

where i = 1, . . . ,n. The numerical flux Hi(t) approximates the traffic flow
Qe (ρi(bi−,t)).

It can be shown, that our solution conserves the number of cars at junctions.
But it can be also shown, that it does not satisfy property (ii) in Definition 14.

Theorem 4 (Properties of our solution). Let us use the method described above.

a) Our solution ρhi, i = 1, . . . ,n + m satisfies the Rankine-Hugoniot condition
(3.20).

b) There exists an example such that our solution ρhi, i = 1, . . . ,n + m, does
not satisfy the property (ii) in Definition 14.

Proof. a) In our case, we want to show
n∑

i=1
Hi(t) =

n+m∑
j=n+1

Hj(t).

From the definition of Hi and Hj, we immediately obtain
n∑

i=1
Hi(t) =

n∑
i=1

n+m∑
j=n+1

αj,iH(ρhi(bi−,t),ρhj(aj+,t))

=
n+m∑

j=n+1

n∑
i=1

αj,iH(ρhi(bi−,t),ρhj(aj+,t)) =
n+m∑

j=n+1
Hj(t).

b) Let us take the situation with one incoming and two outgoing roads. We want
to show that H2(·) ̸= α2,1H1(·) or H3(·) ̸= α3,1H1(·). Assume that ρh1(b1−,0) =
0.5, ρh2(a2+,t) = 0.2, ρh3(a3+,t) = 0, α2,1 = 0.75 and α3,1 = 0.25. We use the
Greenshields model (with vmax = ρmax = 1) and the Lax-Friedrichs flux (4.7).
Then

H2(0) = α2,1H(ρh1(b1−,0),ρh2(a2+,0)) = 0.22125
and

H1(0) = α2,1H(ρh1(b1−,0),ρh2(a2+,0)) + α3,1H(ρh1(b1−,0),ρh3(a3+,0)) = 0.315.

Since H2(0) = 0.2212 ̸= 0.23625 = α2,1H1(0), we find an example, where the
property (ii) in Definition 14 in not satisfied. f
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Due to the good results of our model, we would like to interpret the differences
between our solution and the admissible traffic solution from Definition 14 and
put our solution into the real traffic situation.

The method how to obtain a solution which satisfies the properties from Def-
inition 14 is described in the book [15] or paper [21]. As an example, we take the
junction with one incoming and two outgoing roads. For simplicity, we fix the
time. We compare the maximum possible fluxes which can inflow into the junc-
tion from the incoming road (γmax

1 ) or outflow from the junction to the outgoing
roads (γmax

2 and γmax
3 ). We take γ = min{γmax

1 ,
γmax

2
α2,1

,
γmax

3
α3,1

} and use it as inflow into
the junction from the incoming road, i.e. Ĥ1 = γ. We obtain the outflow through
the outgoing roads as an inflow multiplied by the traffic-distribution coefficients,
i.e. Ĥ2 = α2,1γ and Ĥ3 = α3,1γ. Thus, if there is a traffic jam in one of the
outgoing roads, the cars cannot go into the second outgoing roads, either.

In our model, we calculate the numerical fluxes, where the left value is the
traffic density of an incoming road and the right value is the traffic density of
one of the outgoing roads. Then we take the possible fluxes and multiply them
by the traffic-distribution coefficients. Thus, if there is a traffic jam in one of the
outgoing roads, the cars can still go into the second outgoing road according to
the traffic-distribution coefficients. So, we model something which corresponds
to turning lines. The advantage is that our traffic does not collapse due to the
traffic jam on one of the outgoing roads. Since the macroscopic models are aimed
for the long (multi-line) roads with huge number of cars, our model makes sense
in this situation. The original approach from Definition 14 is aimed for one-line
roads, where overtaking is not possible.

In other words, in the model of [15] and [21], a traffic jam on outgoing road
blocks the traffic on the incoming road, since cars that want to go to another
road cannot overtake the standing cars. In our model this is possible, and the
standing cars do not block the incoming road due to overtaking.

The disadvantage of our model is that we do not conserve the traffic-distri-
bution. It could correspond with the real traffic situation where the cars decide
to use another road instead of staying in the traffic jam. The problem is when
there is no traffic jam. Because we do not control the traffic-distribution, we do
not conserve it, see Proof of Theorem 4. This problem will be our aim in the
future works, where we would like to present the nonconstant traffic-distribution
matrix, which conserve the required traffic-distribution.

4.4.3 Limiters
Our solution could be a physical quantity. Thus, we have some admissibility

conditions, e.g. ρ ∈ [0,ρmax]. If we obtain a solution which is not in the admissible
interval, e.g. due to overshoots or undershoots, we must put it in this interval.
As an example, we take the traffic density ρ as a solution.

It is important to not change the total number of cars. We introduce a method
which works for the linear approximation of the traffic density in LWR models.
Assume the space discretization from the beginning of this section. Let K be
the element with the described problem, i.e. there exists x ∈ [aK ,bK ] such that
ρ(x) /∈ [ρmin,ρmax].

If the average density on element K is not in the admissible interval [ρmin,ρmax],
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then we change the solution such that ρ ≡ ρmax or ρ ≡ ρmin on the whole element
K. This operation changes the number of cars, which we do not want. We rather
use other changes, e.g. we decrease the time step or increase the number of
elements.

If the average density on element K is in admissible interval, we decrease the
slope of our solution so that the modified density lies in [ρmin,ρmax]. We can see
the process in Figure 4.1. In that example, we have the left side below ρmin = 0.
Thus, we make our solution more horizontal. The important property is that the
integral

∫ bK
aK

ρ(x) dx does not change after the application of the limiter.

0.2 0.4 0.6 0.8 1.0
x

-0.2

0.2

0.4

0.6

ρ

(a) Before applying the limiter.

0.2 0.4 0.6 0.8 1.0
x

-0.2

0.2

0.4

0.6

ρ

(b) After applying the limiter.

Figure 4.1: The application of our limiter.

The limiters can provide also the stability of our solution. If the discontin-
uous Galerkin method has jumps of the solution near discontinuities which are
unphysical, we use the limiters to make the solution more “well-behaved”. This
is good to prevent spurious numerical oscillations. To handle this problem, we
follow the paper by Shu [18].

We calculate the solution by one of the methods in Table 4.1. The solution,
which we obtain, is considered as a preliminary solution and we denote it ui+1,pre

h .
Then, we apply the limiting procedure to go from ui+1,pre

h ∈ Sh to ui+1
h ∈ Sh. This

procedure should satisfy the following conditions:

• In each element, it does not change the averages of ui+1,pre
h , i.e. the averages

of ui+1
h and ui+1,pre

h are the same in each element. This is for the conservation
property of the DG method.

• It does not affect the accuracy of the method in smooth regions, i.e. if
ui+1,pre

h (x) is smooth function for all x ∈ M , M ⊆ Ω, then ui+1
h (x) =

ui+1,pre
h (x) in M .

For simplicity, we omit the upper index i + 1.
There are many different types of limiters. The problem is still open and there

is an active research area. In our program, we use the modified minmod limiting
from paper [22].

We denote the average of the preliminary solution upre
h on element Ki ∈ Th as

ui = 1
h

∫
Ki

upre
h dx (4.15)
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and further denote

ũi = u
pre,(L)
h (bKi

) − ui, ˜̃ui = ui − u
pre,(R)
h (aKi

).

As we mention above, the limiter should not change ui but it may change ũi or
˜̃ui. In particular, minmod limiting changes ũi and ˜̃ui into

ũmod
i = m (ũi, △+ui, △−ui) , ˜̃umod

i = m (˜̃ui, △+ui, △−ui) ,

where
△+ui = ui+1 − ui, △−ui = ui − ui−1

and the modified minmod function m is defined by

m (a1, a2, a3) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
a1, |a1| ≤ Mh2,

sgn(a1) min (|a1| , |a2| , |a3|) , |a1| > Mh2 and
sgn(a1) = sgn(a2) = sgn(a3),

0, otherwise,

where the parameter M must be chosen adequately, see [22]. Then the solution
uh is recovered to conserve the average (4.15) and to satisfy

u
(L)
h (bKi

) = ui + ũmod
i , u

(R)
h (aKi

) = ui − ˜̃umod
i (4.16)

on each element Ki ∈ Th. This recovery is unique for P k polynomials with k ≤ 2.
For k > 2, we have extra degrees of freedom in obtaining uh. We could for
example choose uh to be the unique P 2 polynomial satisfying (4.15) and (4.16).
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5. Numerical results
In this chapter we present our program and numerical results. Our program

is written in the C++ language. It can solve first order hyperbolic problems or
second order parabolic problems. Both scalar problems and systems of equations
can be solved. As we mention above, we use the combination of Adams-Bashforth
method and DG method. We discuss the result of different methods and show the
result of calculation on networks. We can compare our results with the approach
in the paper [21] where the authors use the Runge-Kutta method instead of the
Adams–Bashforth method. The Adams–Bashforth is a linear multistep method
while the Runge-Kutta is a one-step method.

We calculate the piecewise linear approximations of solutions and we use two
quadrature points in each element.

5.1 Comparison of the traffic flow models
We begin with the comparison of the models from Subsection 3.2.1. We use

the Greenshields model, Greenberg model and Underwood model. We consider
problem (3.12) on a circular road, i.e. we have periodical boundary condition.
The length of the road is 1. The initial condition is defined by

ρ0(x) =

⎧⎪⎪⎨⎪⎪⎩
5x − 1.5, x ∈ [0.3,0.5],
−5x + 3.5, x ∈ [0.5,0.7],
0, otherwise.

Assume that ρmax = 1 and vmax = 1. We use the Euler method with the step size
τ = 10−4 and the number of elements is N = 100. This example is good to study
the behaviour of traffic jams.

The first is the Greenshields model. We can see the solution of this model in
Figure 5.1 (it is represented by a blue line). We can see the basic phenomenon that
the traffic jam moves backward. As the cars leave the traffic jam, the maximal
value of traffic density is decreasing, and the traffic jam starts to move forward.
We use the limiters for this model and we do not need to be afraid of the case
ρ = 0.

Our next model is the Greenberg model. Before we start, it is important to
note that the equation is not defined for ρ = 0 because Ve(ρ) is given by the
logarithmic function. Thus, we do not take exactly the value 0 in the initial
condition, but we take very small ϵ, e.g. ϵ = 10−8. In this case the limiters are
important to prevent the traffic density from reaching the value 0. We can see
the solution of this model in Figure 5.1 (it is represented by a red line). In this
case the traffic jam moves backward for some time. We can see some differences
between this model and the Greenshields model. The density after the traffic
jam is not as linear as in the Greenshields model. We can notice that the very
low density region disappears. The reason is shown in the fundamental diagram
of the Greenberg model (Figure 3.9). The velocity at small density is very high.
Thus, the cars at the end of the traffic jam are fast and can reach the traffic jam
on the other side of the circular road in a very short time.
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Figure 5.1: Comparison of the Greenshields, Greenberg and Underwood models.
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The last LWR model is the Underwood model. We can see the solution of this
model in Figure 5.1 (it is represented by a green line). The main difference is that
the traffic jam does not move backward. The reason is shown in the fundamental
diagram of the Underwood model (Figure 3.10). The velocity at ρmax is not 0.
Thus, even cars in the traffic jam can move. We use limiters for this model and
zero density does not cause problems.

The LWR models converge to the same stationary solution. We can see in
Figure 5.2 that the traffic density tends to ρ ≡ 0.2 as time t tends to ∞. Thus,
we obtain the same results in the closed system independently of the choices of
the LWR model. The difference is in how we get to the stationary solution.
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Figure 5.2: Convergence to the stationary solution of the Greenshields, Greenberg
and Underwood models.

5.2 Influence of parameters
Now, we compare results from our program to the exact solution. We use the

Greenshields model and we have a Riemann problem on a circular road, i.e. we
have periodical boundary condition. The length of the road is 1. We want two
jumps; one at 0 and second at 0.5. So, we obtain both a rarefaction wave and
a shock wave. Assume that ρmax = 0.5 and vmax = 0.5. The initial condition is
defined by

ρ0(x) =

⎧⎨⎩0, x ≤ 0.5,

0.5, x > 0.5.

The difference between the approximate solution and exact solution is shown in
Figure 5.3. We use the Euler method with the step size τ = 10−4 and the number
of elements is N = 100. As we can see, we obtain the largest error at x = 0.5.
Thus, the main problem is caused by the shock wave.

We try different settings of τ , N and the type of multistep method S. We can
see the result in Table 5.1. Due to the approximation of the shock wave, the L∞
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Figure 5.3: Comparison of the approximate and exact solutions.
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norm of error is quite large. Next, we can notice that using the Euler method
is good enough for this example. Using more steps does not help to reduce the
error. Even the changing of step size τ does not help. On the other hand, adding
elements is very useful. The L1 error in the case where N = 100, i.e. the length of
the element is h = 0.01, is approximately twice as large as the L1 error in the case
where N = 200, i.e. h = 0.005. This is very important to know that the number
of elements makes the solution more accurate. Thus, the error is propagated in
the space, not in the time.

t = 1 t = 3
S τ N L1 error L∞ error L1 error L∞ error

1
10−4 100 0.001814 0.086862 0.000453 0.028101

200 0.000910 0.085212 0.000219 0.027945

10−5 100 0.001814 0.087018 0.000460 0.028092
200 0.000913 0.085595 0.000227 0.027935

2
10−4 100 0.001815 0.087035 0.000460 0.028091

200 0.000914 0.085575 0.000228 0.027934

10−5 100 0.001815 0.087035 0.000460 0.028091
200 0.000914 0.085578 0.000228 0.027934

3
10−4 100 0.001815 0.087035 0.000460 0.028091

200 0.000914 0.085584 0.000228 0.027934

10−5 100 0.001815 0.087035 0.000460 0.028091
200 0.000914 0.085578 0.000228 0.027934

Table 5.1: Error of the solution.

Now we demonstrate the difference between the method with and without
limiters. The norm of the error is similar in both cases. The difference is in
the admissibility of the solution. As we can see in Figure 5.4, the solution with
limiters is in the interval [ρmin,ρmax], where ρmin = 0 and ρmax = 0.5 in our
example. When we do not use limiters, our solution is outside the admissible
interval. That is the reason why we use limiters.
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Figure 5.4: Influence of limiters on the solution. (t = 0.8)
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5.3 Networks

R o a d 2R o a d 3 R o a d 1

1.

1.

0. 7 5

0 . 2 5

Figure 5.5: Our test network.

We would like to demonstrate how our program computes traffic on networks.
Thus, we define network from Figure 5.5. This network is closed, so we can show
the conservation of the number of cars. We have three roads and two junctions.
The length of all roads is 1. At the first junction we have one incoming road and
two outgoing roads. At the second junction we have the opposite situation. We
use a different distribution of cars at the first junction. Assume that 3

4 go from
the first road to the second and 1

4 from the first road to the third. We denote
the distribution matrix for the first junction as A1 and the distribution matrix
for the second junction as A2. Then

A1 =
[
0.75
0.25

]
, A2 =

[
1 1

]
.

Matrix A2 does not satisfy the technical condition c) from Subsection 3.4.2. We
define different initial conditions for each road. The initial condition for the first
road is defined by

ρ0(x) =

⎧⎪⎪⎨⎪⎪⎩
5x − 1.5, x ∈ [0.3,0.5],
−5x + 3.5, x ∈ [0.5,0.7],
0, otherwise.

The second and third road has a constant initial condition equal to 0.4. The total
number of cars in the whole network is 1. We use the Greenshields model on all
roads. But we can choose an arbitrary LWR model. We use the Euler method
with the step size τ = 10−4 and the number of elements is N = 100.

We can see the results in Figure 5.6. Road 1 distributes the traffic density
between the other roads. We have too many cars at the second junction, where
we have two incoming roads. Thus, we create a traffic jam on Road 2 and Road
3. We can observe the transporting and the distribution of the jump from the
first road through the junction on the Figure 5.6g and Figure 5.6h. The result
converges to the stationary solution. The traffic density in Figure 5.6i is close to
the stationary solution. We check the total amount of cars. For every iteration,
the amount of cars is conserved.

Our program can compute traffic on bigger networks and we are not limited
by the number of incoming or outgoing roads at junctions. The problem is with
the presentation of results. In the future work, we would like to introduce a
graphical output.
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Figure 5.6: Network with Road 1, Road 2 and Road 3.
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Conclusion
We have presented the basics for the theory of traffic flow for which we showed

several approaches. We have explained the difference in microscopic and macro-
scopic models. Microscopic models simulate every single car. This is very good to
imagine the traffic situation. On the other hand, it is very expensive to calculate
big systems of ODEs on large networks.

This is the reason why we introduce macroscopic models. Our unknown is
the traffic density. Using these models, it is possible to make simulations on big
networks with a lot of cars. The disadvantage is that we cannot follow individual
cars. We take all the cars as a continuum and study the flow of the traffic. We
need to preserve the total amount of cars.

Due to the typical discontinuity of the solution, we use the discontinuous
Galerkin method. The discontinuity in the solution is produced by shock waves.
For the approximation in time we choose explicit multistep methods. These
methods use previous time steps to find the next (future) solution. Thus, we can
use the results of previous iteration and the calculation itself is quite fast.

We have created our own program in the language C++. All the methods
and models are implemented by us. We had to solve the problem with numerical
fluxes at the junctions. The biggest problem was to conserve the number of cars
passing through junctions.

The using of DG method on networks is not standard. We were unable to
find any work using the same approach as us. We can only compare our approach
with the paper [21] by Čanić, Piccoli, Qiu and Ren. They use the discontinuous
Galerkin method combined with the Runge-Kutta method.

We use different solutions at the junctions. Our solutions are better on spe-
cific types of roads, which are more common for macroscopic models. In the
future works, we would like to solve the problem with the conservation of traffic
distribution.

As we observed, the use of multistep methods does not bring any major im-
provements especially in the presence of shock waves. Since the Euler method is
good enough in our cases, we do not need to take a higher number of time steps.

This work demonstrated the use of the discontinuous Galerkin method on
roads. It is important to have working models which can help us to improve
traffic flow. We can model real traffic situations and optimize the timing of traffic
lights. The benefits of modelling of traffic flows are ecological and economical.
The calculation itself is very fast.

Modelling of traffic flows will have an important role in the future. With a
rising number of cars on the roads, we must optimize the traffic situation. That is
the reason we started to study traffic flows. We want to continue with this work
in the next few years. We would like to improve our program. We are currently
looking for interesting projects in traffic modelling.
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[16] Vı́t Doleǰśı, Petr Knobloch, Václav Kučera, and Miloslav Vlasák. Finite
element methods: theory, applications and implementations. MatfyzPress,
Charles University in Prague, 2013.

[17] William H. Reed and T. R. Hill. Triangular mesh methods for the neu-
tron transport equation. Technical report, Los Alamos Scientific Lab., N.
Mex.(USA), 1973.

[18] Chi-Wang Shu. Discontinuous galerkin methods: general approach and sta-
bility. Numerical solutions of partial differential equations, 201, 2009.
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