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Introduction 

Integrated development environments (commonly abbreviated as IDE) are 
a set of software applications that provide tools and facilities to software 
developers. They greatly ease the process of development, providing features 
like intelligent code completion, syntax highlighting, build automation tools, 
debugger, and many others. 

Most IDEs are built as text editors that provide additional features when 
editing a source code. The editors usually parse the code; generate a parse 
tree, which allows static code analysis and generic error checking of the 
written program.  

A different approach to designing an IDE can be done via projectional 
editing. A projectional editor (also known as structured editor) is a document 
editor that is cognizant of the document’s underlying structure. It is usually 
used to edit hierarchical or marked-up text, computer programs, diagrams, 
and any other type of content with a clear and well-defined structure [1]. 
While for the most computer programs, due to their complexity, a 
conventional text-based IDE may be more suitable, for specific programming 
languages, especially DSL (domain specific language) a projectional editor 
might prove to be a more effective tool. 

In this work, we intended to create a projectional IDE for the functional 
programming language Frege to evaluate, whether such approach makes sense 
and whether projectional editors offer more convenience than regular text-
based IDEs when it comes to working with functional languages in general. 
The application we implemented in this text is often referred to as Frege-IDE. 

Frege, named after the German mathematician, Gottlob Frege, is a 
functional language, heavily based on Haskell, trying to bring the language to 
Java ecosystem. It is considered a Haskell dialect, sometimes called a Haskell 
for the JVM (Java Virtual Machine) [2]. 

There are several IDEs for Haskell1. Most of the known IDEs provide 
mainly syntax highlighting, macros and project management features, while 
some also support more advanced functionalities, such as code completion 
and type checking. Frege, being a relatively new project, does not have as 
extensive support in IDEs as Haskell, which is one of the reasons why we 
decided to create an environment specifically for that language. 

As an underlying tool for designing our environment, we have chosen an 
open-source language workbench JetBrains MPS2. MPS (standing for Meta-
Programming System) is a software solution allowing developers and language 
designers to create a projectional editor, together with advanced features 
found in many IDEs, such as code completion, syntax highlighting and 
others. It is primarily used for designing editors for DSLs, for developing new 
languages and also extending existing ones, when the languages available do 
not meet the needs of a developer. MPS has a large set of features, allowing 
for designing editors which closely resemble those from conventional, text-
based, IDEs. It allows a language designer to define a structure of AST 

                                                 
1 Examples available from the WWW [12/07/2018]: <https://wiki.haskell.org/IDEs> 
2 MPS is available at the WWW [14/07/2018]: <https://www.jetbrains.com/mps/> 
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(abstract syntax tree) to represent the code, editor for manipulating the AST 
and a text generator to transform the AST into pure text. More about the 
platform is described in Chapter 1. 

Frege, based on Haskell language, has also rather many syntactic and 
semantic constructs for this work to be able to include them all. We have 
therefore focused our attention only on the most important features worth 
examining, such as function declaration and definition, operators and custom 
data types. Our ideal IDE would have to have a user-friendly editor, which 
closely emulates writing Frege code in such a way most developers in that 
language are used to. This should be accompanied by a contextual code 
completion feature, which would allow referencing already defined functions, 
operators, variables, and other elements in the correct spots in the code. Last, 
but not least, we have strived for a type checker that would be able to find 
small mistakes in the code, such as calling a function with illegal arguments, 
or infer type of an expression. Section 3.1 describes the supported features of 
the language in a greater detail. 

Organization 

The thesis is organized in the following way: 

 Chapter 1 is devoted to MPS tool. It describes what MPS is, what it can 
do and what its limitations are. The chapter introduces a project 
structure in MPS, how to define an editor for a simple language and how 
to tackle certain common problems. 

 Chapter 2 describes the Frege language. It takes a look into the features 
of the language and shows their applications on concrete examples.  

 Chapter 3 is dedicated to the concrete work implementation. It looks into 
Frege grammar and shows, how it was transformed into MPS concepts. It 
explores editor aspect, how it was designed with usability in mind and 
shows its concrete implementation. Then, code completion feature is 
explained. The chapter is concluded with type system, where some of the 
more interesting algorithms used in the work are described. 

 Chapter 4 evaluates our decisions and explores the advantages and 
disadvantages of the projectional editor over a standard, text-based, IDE. 

 In the conclusion, a brief summary of the whole work may be found, 
where we also strived to answer the final question, whether projectional 
IDEs are actually good for functional languages. 
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1. JetBrains MPS 

JetBrains MPS is an open-source language workbench that focuses on 
DSLs. It is a tool that helps its users to create a new language and then write 
other programs in that language.  

MPS has a wide range of users. The areas MPS is currently applied in 
include electrical engineering, data mining, insurance industry and others. 
The tool can be used to create new languages as well as extending existing 
ones. Programs written in the defined languages may then be conveniently 
transformed into pure text in a specific, usually generic-purpose language. 

This chapter provides an informal introduction to the MPS tool and 
describes the usage details later. 

MPS is a complex tool built around projectional editing, which means it 
does not treat the document as a text, but rather as structured concepts. 
This allows its users to create languages which involve non-parsable 
notations, such as decision tables, diagrams, and other controls. Additionally, 
several editors may be specified for a single language, thus allowing users to 
switch between different visual representations of a document. Figure 1.1 
shows an example editor for an extension of Java language with matrices and 
other non-parsable controls. 

 

Figure 1.1: Editor for an extension of Java language with non-parsable 
controls 
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Traditional IDEs, on the other hand, involve a similar processing of the 
code, usually expressed in the form of plain text files, as compilers do. 
Traditional process of compiling written code involves lexers and parsers to 
read programs, which are then transformed into tree-like data structures, 
called ASTs. Figure 1.2 illustrates an example of such an AST for a simple 
arithmetic expression (7 + 1) * 2 + 3. After that, in the process of semantic 
analysis and code generation, an executable program is created. During these 
processes a text-based IDE may report and underline any found errors for the 
user. 

 

Figure 1.2: AST for a simple arithmetic expression 
 

In contrast, in MPS, the user works with AST directly, therefore 
completely omitting the process of lexical analysis and subsequent parsing. 
This brings certain advantages: 

 It may be easier to extend an existing language.  

 MPS can check for type errors and other mistakes in the code at almost 
any time. 

Extending lexers and parsers to accommodate for the changes in a 
language requires a certain set of skills and a deeper knowledge of the 
language’s grammar. The process is complicated, since it requires a 
programmer to keep track of the possible ambiguities that may arise when 
defining new grammar rules for a parser (a well-known example is the 
‘dangling else’ problem). However, in MPS the process usually only requires 
defining new concepts that can act as AST nodes and specifying places in the 
corresponding AST where the new nodes can be created. This also means 
that in MPS we can combine syntax of several different languages and 
introduce no syntax ambiguities whatsoever (this, however, may still look 
ambiguous to the user, if there are several different concepts with the same 
visual representation). 

On the other hand, to check for errors in the code in a traditional IDE, 
one has to define a specific set of rules to deal with the incorrect syntax. 
Code being currently typed means, it almost certainly cannot be correctly 
evaluated by the standard parser for the corresponding language. Therefore, 
in an example below, we might not be able to tell a user that the integer and 
string types are incomparable between themselves, until the ‘if’ expression is 
properly finished with the required body: 
 
if (1 == "") 
  // a statement is required here 

 
Understandably, there are ways to deal with the illustrated problem, but 
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it requires extra effort. In MPS, this is not an issue, since the code is already 
‘parsed’. Even though the body of the if expression is not set yet, there is 
already a node in the corresponding AST associated with the conditional 
expression inside the if brackets. The node then may be further checked and 
underlined with red color (a well-known technique of many popular IDEs, 
such as Visual Studio or Eclipse, to report errors). This quality is also useful 
when designing a smart code completion feature, which requires certain 
knowledge of the context surrounding the target piece of code. 

Working with AST directly also carries some downsides. They mainly 
include worse code editing. In the example depicted in Figure 1.2, a user 
would need to define the AST from root to leaves, which at least in case of 
arithmetic expressions is not very user-friendly. Fortunately, MPS provides 
several functionalities to allow the language designer to define custom 
automatic transformations of the AST. The designer can define a 
transformation for a case, when, for instance, a certain node (or a whole 
subtree) is deleted, a specific text is written at the end (or a beginning) of 
a node, and so on. The MPS actions are described in Section 1.3. 

We will now describe the MPS platform in a more detail. 

1.1 Project Structure 

A project in MPS is divided into two main categories: solutions and 
languages. 

Language is the user defined programming language. It may represent a 
completely new language or an extension of an existing one. Several different 
languages may be defined in a single MPS project. They can act as an 
extension of each other, or be completely independent languages. 

Solution, on the other hand, is a part of the project that represents 
documents (a code) written in one or more of the defined languages. 
Sometimes, the solution acts only as a runtime support for one or more of the 
defined languages, to be used, for example, in the code generation process.  

Figure 1.3 shows a logical view of the typical project in MPS. 

 

Figure 1.3: Logical view of the project in MPS 
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Solution is a set of models. They act as packaging units that make it 
possible to reference the corresponding set of models from other solutions or 
languages. The model is simply a set of ASTs. We can imagine a single AST 
as a representation of the single document (an analogy to a source file in the 
traditional programming paradigm). The model then consists of one or more 
such documents. 

Language describes what types of ASTs can be created with it. It also 
includes a visual representation of each node, AST transformation actions, 
syntax and semantic rules together with many other ‘settings’. It is divided 
into several categories, called aspects.  

The following is the description of the most important MPS aspects 
which we have also used in this work. 

1.2 Structure 

Before we describe the structure aspect, we have to explain the notion of 
MPS concepts. Concept represents a sort of a class of AST nodes. It closely 
resembles working with classes and instances in many popular object-oriented 
programming languages, such as Java. In this analogy, the concept is a class, 
whereas an AST node is an instance of that class. Concepts, in a similar 
manner as classes, can have defined methods, properties, can extend (inherit 
from) other concepts or implement interfaces. They can contain fields, which 
are either valued types or instances of (possibly) different concepts. This way, 
the language designer can specify a structure of possible ASTs that can be 
created. A concept may also be declared abstract, in which case no AST 
nodes may be created directly for such a concept.  

There are several different ‘points of view’ to the concept. The language 
designer can define methods for them, fields and properties, visual 
appearance of the AST nodes, and other. These are called aspects. Structure 
aspect allows to define structure of possible ASTs that can be expressed with 
the corresponding language. It defines what kind of AST nodes may be used 
in a program, what properties, children and references they may have [3]. An 
example of the structure aspect for a concept is shown in Figure 1.4. 

 

Figure 1.4: Structure aspect for a concept in MPS 
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A new concept should be named. This is similar to naming a class in 
languages like Java and must follow a similar set of naming rules. In the 
example depicted in Figure 1.4, the corresponding concept is named 
MoneyCreator. 

The extends clause provides a reference to the super-concept. By default, 
all concepts are created with BaseConcept as their super-concept, but this can 
be changed to a more specific one. Similarly to Java, the clause encodes 
inheritance (or ‘is-a’ relationship in UML) and each concept, except the 
BaseConcept itself, directly or indirectly has to extend BaseConcept in the 
formed hierarchy. In terms of MPS, this means that if the concept A extends 
the concept B, it indicates that the concept A has all of properties, children, 
references, methods, and definitions from all aspects, as B. 

Concepts can also implement interfaces by using implements clause. 
Interface is in this case a special interface concept. It is a mechanism to 
declare characteristics that can be used across several concept types. Unlike 
concepts, we cannot define an alias for them (see below) nor can they extend 
concepts, only other interfaces. They are mostly used for grouping properties 
that are commonly used together and passing them onto necessary concepts.  

Alias acts as a string that triggers a built-in auto-completion menu. An 
example of such a menu is depicted on Figure 1.5. If the name is 
unambiguous (i.e. it is not a prefix of another item in the menu), an instance 
of the concept is immediately created. More about the menu is discussed in 
Section 1.3 which describes the editor aspect. 

 

 

Figure 1.5: Example of the auto-completion menu in MPS 
 

A concept may be set to act as a root. What this means is that its 
instances, together with their children, may represent a single unit of a 
program, a single document or a source code. There should be at least one 
such concept for the corresponding language to make sense. A concept may 
be set to act as a root by using the instance can be root clause and setting 
the value to true. 

An analogy to Java fields is represented by concept properties and 
children. Properties define concept’s custom values (values that are owned by 
the concept). These are set under the properties section. They can be one of 
the following: 

 Primitive type: integer, boolean, or string. 

 Enumeration type: a custom enumeration data type may be created in 
MPS structure aspect to be used within a concept. 
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 Constrained data type: a custom constrained data type may be 
created in MPS structure aspect, which is a simple string type validated 
by a regular expression defined by the language designer. 

Note that primitive types can be derived from usage of the other two 
options. 

Children (found under children section), on the other hand, resemble 
aggregation relationship. These are the instances that belong to the instance 
of the current concept. While there may be references set to these AST nodes 
from other instances as well, in terms of their lifetime, they strictly depend 
on the life of the current instance. In case the current instance is removed 
from the AST, all of its children (and therefore children of their children, 
recursively) are removed as well. 

Children are defined by setting a name, a concept and a cardinality. The 
cardinality may be one of the following options: 

 [1]: exactly one instance of the specified concept is required. 

 [0..1]: there may or may not be one instance of the specified concept. 

 [1..*]: at least one instance of the specified concept is required. These 
then form an ordered array. 

 [0..*]: there may be zero or more instances of the specified concept. 

Expressing relationship between the nodes can be also done via 
references. It is only possible to create a reference to a node if that node 
already exists in the corresponding AST. Contrary to children, cardinality 
can take here only two forms:  

 [0..1]: the reference is optional.  

 [1]: the reference to an instance of the specified concept is required. 

Where would a language designer use a reference? Consider the following 
piece of code in Frege: 

 
f = 7 
g = 1 + f 
 

The code represents a definition of two constant functions returning an 
integer number. An (almost) equivalent piece of code could be written in Java 
in the following way: 

 
int f() { return 7; } 
int g() { return 1 + f(); } 
 

We could express the corresponding AST in many different ways, but let 
us imagine for the sake of simplicity a root node, representing the source file, 
consisting of statement nodes. Both f = 7 and g = 1 + f are statements. It 
is easy to imagine the expression, such as 1 + 2, as a tree with a node + on 
top having two children, representing the literals 1 and 2. But in the case of 
1 + f, it is less clear what f is. Using a reference here might be helpful. We 
already have the statement declaring what f is in the corresponding AST. In 
1 + f we are only applying an existing function f. Therefore, we are 
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referencing the existing function f in the node representing the f operand. 
An example of such AST is illustrated on Figure 1.6. 

 

 

Figure 1.6: Illustration of AST for statements using a reference 

1.3 Editor 

Editor aspect is responsible for rendering and editing ASTs by the user of 
the language being created. This includes textual and graphical 
representation of each AST node and certain AST transformation actions. 
This aspect is what makes MPS a projectional editor, rather than using 
lexers and parsers to process the user-written code. 

The easiest way to define the editor for the language is to define the 
editor for each concept (called concept editor). There may be several different 
editors defined for a single concept, which offers different views of the same 
concept for different needs. If a concept has no editor defined, the default one 
will be provided by MPS.  

Figure 1.7 shows an example of the concept editor for the MoneyCreator 
concept from the previous section. 

 

 
Figure 1.7: Concept editor in MPS 
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Another way of creating the editor for the language is to create an editor 
component. It is an editor responsible for rendering and editing only a part of 
an AST node. It does not focus on any single concept and as such may be 
reused across several concept editors to render certain parts similarly. 

A usual representation of an AST node consists of, so called, editor cells. 
An editor cell is the smallest unit which can be used to render (and possibly 
edit) a certain portion of the AST node over a rectangular region in MPS 
editor window. For instance, MoneyCreator concept contains a string 
property called name. To show and edit the property value of any instance of 
the concept MoneyCreator, we specify a property editor cell for the 
corresponding property name. 

The main types of editor cells include: 

 Constant cells: constant cells are used to render keywords and other 
constant text in editor. Figure 1.8 shows an editor from the user 
perspective of a demo language, which is an extension of Java. On the 
example, we use a while-loop, which is an instance of WhileStatement 
concept. The string while (blue) is a constant editor cell. In Figure 1.7, 
the rectangle with the string Money also denotes the constant editor cell, 
but from the perspective of the language designer, who is creating the 
concept editor for the MoneyCreator concept. 

 
Figure 1.8: Editor for a language that is an extension of Java  

 Property cells: they render content of a specific property of a concept 
for which the editor is being defined. Editing such a cell in the editor 
window for a concrete AST is immediately reflected in the given property 
of the corresponding AST node. The cell provides automatic binding to 
the concept’s property. On the example above depicted on Figure 1.8, a 
declaration of the integer variable i is an instance of a concept with a 
string property name. The identifier is rendered by the property cell. By 
invoking a node explorer window (alt + x), we can see that the property of 
the AST node is indeed set to the name we entered. The node explorer is 
shown on Figure 1.9. 
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Figure 1.9: Node explorer for the declaration of the integer variable i 

 Child cells: these cells delegate the rendering of a specific concept’s child 
(or a set of children) to their corresponding concept editors. The concrete 
behavior of such a cell depends on the child’s cardinality: 

◦ [1]: the editor cell is always present 

◦ [0..1], [0..*] or [1..n]: child nodes are bound to their 
corresponding editors and removing a child in MPS editor window 
results in removing it from the parent node of the corresponding 
AST as well 

◦ [0..*] or [1..*]: the children’s corresponding concept editors are 
separated by a specified textual delimiter 

On Figure 1.8 we can see a method invocation represented by the 
statement handle(i, "default"). The provided two arguments are 
children of cardinality [0..n] of a concept Expression and are 
represented by child cells delimited by a comma. 

 Referent cells: referent cells are used to display an attribute of the 
referenced node from the given concept. As in the case of property cells, 
they are mapped to a certain property of the referenced node in the AST. 
However, they can only reflect the property of the original node, but not 
affect it. Figure 1.10 shows an editor with Money variable declaration. It 
has a form of a subtree with an AST node representing the variable’s 
name (originally m2). The variable is then referenced in an expression, 
which prints a subtraction of the variable by another variable into the 
standard output. The change in the variable’s name (m2_2) is immediately 
reflected into the reference. This way MPS support renaming refactoring 
feature out of the box. 

 
Figure 1.10: Editor for an extension of Java language depicting the usage of 
referent editor cells 

 Collection cells: wrapper-like cells to contain other editor cells are 
called collection cells. They affect visual arrangement of the cells being 
rendered. There are three main types of collection cells: 

◦ Horizontal cells: cells enwrapped are placed horizontally in row. 
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◦ Vertical cells: cells enwrapped are placed vertically. 

◦ Indent cells: cells enwrapped are placed in a text-like manner. 

There are several other types of editor cells. Here we only described the 
most-used ones from the perspective of this work. 

The editor cells may also be rendered in different ways. This can be 
changed by using editor styles. Applying editor style could be described as 
analogous to applying CSS (Cascading Style Sheets) styles to DOM nodes in 
HTML and XML documents. This allows the language designer to change the 
cells’ visual properties, such as text color, background color, spacing, padding 
as well as functional aspects, such as editor cell being editable or read-only 
and many others. Figure 1.11 shows a usage of editor style for a selected 
editor cell. 

 
Figure 1.11: Editor style for a selected editor cell 

1.3.1 Editor Actions 

So far we have described how we can customize appearance of each AST 
node. Now we will discuss editor actions, how we can allow automatic 
transformations of the corresponding AST and how to easily add new AST 
nodes to the code tree. 

A lot of developers are used to write programs in text-based IDEs or just 
in a plain-text editor. To simulate such a behavior, MPS comes with a notion 
of editor actions. We have to remind the reader that MPS keeps the code at 
tree-like data structures at all times. This means that what seems in a text-
based editor as a trivial operation (such as adding a new operator and an 
operand to an arithmetic expression) is a non-trivial AST transformation in 
MPS. 

Let us consider a simple arithmetic expression: 7 – 1 * 2 + 3. In a plain-
text editor, a normal user would write the expression from left to right. In 
MPS, however, the expression has to be encoded within an AST, and as such 
has to be entered from root node to the leaves. In this particular example, a 
user would need to create an instance of the concept representing the + 
operator. This creates a binary tree. The right operand is an AST node 
representing the literal 3. The left operand is a new subtree representing the 
expression 7 – 1 * 2, which has to be, again, entered from root node to the 
leaves, starting with the concept representing the – operator. 

Understandably, the mentioned approach is not very user-friendly. 
However, we can use MPS editor actions to create the editor where such an 
arithmetic expression may be entered from left to right. We will show the 
approach for the concrete expression from the high-level point of view. 

1. First, the user types the literal 7. That is a very simple unary expression 
and no further work is to be done here. 
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2. Then, user hits -. MPS immediately creates a binary expression subtree, 
where root is the operator -. 7 is put as its left operand and the focus is 
set on the right operand, so the user may edit that. 

3. User types in 1, which only concludes the editing of the right operand. 
Figure 1.12 illustrates the AST in its current state. 

 
Figure 1.12: Illustration of an AST for the arithmetic expression 7 – 1 

4. Then, however, follows the operator *. User is now editing the right child 
of the AST corresponding to the expression 7 – 1. MPS, therefore, takes 
a look at the parent’s operator’s precedence. It is clear that - is less 
precedent, than *. Thus, a subtree for binary operator * is created, 1 is 
put as its left child and a focus on the right child is set. The subtree is 
placed in the original stead of the node representing operand 1. Figure 
1.13 illustrates an AST after finishing the current step. 

 
Figure 1.13: Illustration of an AST representing the arithmetic expression   
7 – 1 * unset-operand 

5. User types the literal 2, which concludes the editing of the right operand 
for the operator *. 

6. Finally, user types in operator +. MPS again takes a look on the parent’s 
operator which is * and has a higher precedence. The new subtree, 
therefore, has to be created elsewhere. The parent of the node 
representing operator * is, however, –. While – has the same precedence 
as +, all of the operators are left associative which means the new subtree 
has to be created even on the higher level. MPS creates the subtree, puts 
the current AST corresponding to the expression 7 – 1 * 2 as its left 
child and sets the focus on its right child. The current AST is depicted on 
Figure 1.14. 

 
Figure 1.14: Illustration of an AST representing the arithmetic expression   
7 – 1 * 2 + unset-operand 
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7. Typing 3 only finishes editing of the right child and the expression is 
concluded. 

In the description above, we were always editing a specific editor cell 
corresponding to a single node in the AST. We always handled an event of 
writing a specific textual pattern to the right of a certain editor cell. This is 
just what MPS allows us to do. These type of actions are usually referred to 
as transformation menu actions and we will describe them in a more detail in 
the following section. 

Another important type of actions are substitute menu actions, which 
allow the user to substitute a certain AST node (or a whole subtree) for a 
different AST node. These actions are usually invoked when a certain text is 
written in place of an AST node, which we want to automatically substitute 
for something else. The substitute menu actions are described in Section 
1.3.3. 

1.3.2 Transformation Menu Actions 

Transformations menu actions provide a way to manipulate an AST when 
a certain textual pattern is entered, usually either left or right of a certain 
editor cell. They allow us to replace a certain AST node for a different one, 
change a whole code subtree, or otherwise manipulate the corresponding data 
structures. 

From a certain perspective we could say that the transformation menu 
actions are specific set of event handlers. The handlers are specified in a 
general-purpose programming language, which is based on Java (so called 
BaseLanguage). This allows for almost any type of AST manipulation and 
offers a lot of flexibility. 

An example of a usage scenario can be a concept, which represents a 
certain type of expression enclosed within brackets, for example, (x1). 
However, the corresponding AST node may be changed to represent either: 

 A tuple, which has a form of several expressions within round brackets 
separated by commas, e.g. (x1, x2, x3) 

 A list, which has a form of several expressions within round brackets 
separated by colons, e.g. (x1 : x2 : x3) 

We want to change the AST node based on the user-entered text. If the 
expression x1 is followed by a comma, we will replace the node for an 
instance of the tuple concept. In case the user enters a colon, an instance of 
the list concept should be created. Figure 1.15 shows the concrete 
implementation of the corresponding transformation action, which is also 
described in a greater detail below. 

The actions have to be always associated with a certain editor cell and 
the corresponding concept. However, the editor actions in general apply only 
to the following types of cells: 

 Constant cells 

 Property cells 
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 Referent cells 

In the example above, the editor for the concept representing the 
expression enclosed within round brackets consists of three parts: 

1. A constant cell representing the left round bracket 

2. A child cell representing the expression 

3. A constant cell representing the right round bracket 

This means the transformation action described in the example above has 
to be created for the concept representing the expression, rather than the 
whole bracketed expression (we will assume here that the concept 
representing the expression consists only of one of the three mentioned types 
of editor cells, for example, the property cell denoting the identifier x1). 

Transformation menu action can be created as either: 

 A default transformation menu for a concept 

 A named transformation menu 

A default transformation menu is associated with a specific concept. The 
action is triggered by entering a specific textual pattern either left or right 
(we can choose either of the two options) of all three types of the mentioned 
editor cells the corresponding concept editor consists of. For instance, if we 
created a default right-side transformation menu for the bracketed expression 
concept, the action would be triggered by entering the specified textual 
pattern right of both of the bracket symbols, but would not be triggered by 
entering the pattern right of the expression. 

Additionally, every concept is implicitly associated with a default 
transformation menu. If the language designer does not provide one explicitly, 
the transformation menu defined for the closest super-concept is assumed. If 
none are defined, the one implicitly defined for BaseConcept is used.  

A named transformation menu is an additional action associated with a 
specific concept. Unlike the default menu, it is not associated with all of the 
three types of the mentioned editor cells in the corresponding concept editor 
implicitly. Instead the language designer has to attach the action explicitly to 
the concrete editor cells he or she likes. However, the same restriction for the 
editor cell types applies here as well, i.e. the language designer cannot attach 
the named action to child editor cells, only to the constant, property and 
referent cells. 

Let us now describe the implementation process of the transformation 
menu action on the example for the bracketed expression. We will create a 
default transformation menu for the concept representing the expression. 
Then we specify the section, i.e. where the transformation should take place. 
There are several options, but for the purpose of this work, either the action 
is triggered upon typing a text right of an editor cell, or left of an editor cell. 
(We chose right. In Figure 1.15 this is represented with the clause section({ 
side transformation: right }).) 

Then, we define the action from the three main sections: 

 Text: represents a string that triggers the current action. This is the 
string a user can type either right or left of the associated editor cells. It 
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can be either a constant, or a piece of code which returns the string that 
triggers the action. 

 Can execute: a piece of code that is executed once the action is 
triggered. If the code returns false, the current action is prevented from 
execution. However, due to how MPS works, it is mostly best to leave the 
section empty, as returning true indicates the possibility to execute the 
action even if not triggered by the current Text. 

 Execute: the specific handler of the current action, written in a higher-
level Java-like language. It specifies the concrete transformation of the 
AST. 

On Figure 1.15 we can see the concrete implementation consisting of two 
separate actions. Each action performs its own transformation of the 
bracketed expression node, either to the tuple or the list. The former 
expression x1 is copied and placed as their first item. The bracketed 
expression node is a parent of the current expression, which is why we have 
to use the statement node.parent.replace with(newNode). The last line of 
the both handlers denotes setting a focus on the newly created AST node - 
on its last editable editor cell. 

 
Figure 1.15: The default transformation menu for the concept representing 
the expression, which is also a child of the bracketed expression concept 
 

There is also a way to reuse transformation menu actions. Instead of 
specifying an action, a language designer may use include statement. It 
includes a specific default or named transformation menu. Furthermore, a 
transformation menu aimed for a different concept, than the one being 
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currently dealt with, may also be included. Consider the example above and a 
scenario, where we want to execute the actions defined for the expression 
concept also when the user types the coma or colon symbol right of the 
bracket symbols. We may simply create a default transformation menu for 
the concept representing the bracketed expression and include the default 
transformation for the expression concept. 

1.3.3 Substitute Menu Actions 

Substitute menu actions define transformations to some parts of the AST, 
where one node (or a whole subtree) is substituted by another node (or a 
whole subtree).  

Typically substitute actions are triggered by user when pressing ctrl + 
space in the editor. This invokes the completion menu that contains options 
that, when selected by the user, will replace the current AST node under 
caret. Substitute menu actions allow the language designer to add specific 
items into the completion menu as well as overriding the behavior of the ones 
included in the menu by default. The default substitute menu is provided by 
MPS for all concepts, when the caret’s position is in front of a node, or the 
whole node is selected. Figure 1.16 depicts such a scenario in Frege-IDE [4]. 

 

 

Figure 1.16: The default substitute menu provided by MPS for a selected 
node 

 
To trigger a substitute action, a user may also simply enter the text in 

place of an AST node from the completion menu for one of its items. This, 
understandably, does not work in every case, as not every AST node is 
completely editable (consider, for instance, an AST node with non-editable 
constant editor cells). However, instances of abstract concepts, which are 
created by default for the concepts with children of such abstract concepts, 
are editable. They are highlighted by reddish rectangle to denote an error and 
that MPS expects an instance of a concrete concept instead. Figure 1.17 
captures the usage scenario. First we have the AST node, which is an 
instance of an abstract concept. Then we enter a text from the substitute 
menu, Just. Upon hitting the last character, the substitute action is triggered 
in the same way, as if the user selected the item manually from the menu and 
pressed enter key. 
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Figure 1.17: Using substitute menu actions by entering text directly 

 
The completion menu follows the following scheme: 

 All concepts applicable in the given context are displayed in the menu. 
This follows the structure aspect of the language project. For example, if 
a concept A contains a child of an abstract concept B and there are two 
concrete concepts, which extend B – B1 and B2, then B1 and B2 are added 
to the menu. If B11 extends B1, it is also added to the menu. 

 Abstract concepts are not included in the menu. 

 Concepts, for which their constraints do not allow their presence in the 
current place in the code, are not included either. More about the 
constraints aspect is discussed in Section 1.6. 

 Smart references are not added to the completion menu, but rather all of 
the referenceable items are included instead. 

Smart reference is a term we use for concepts that contain only a single 
reference and nothing else. For instance, it may be a concept representing a 
variable in an expression. In most programming languages, a variable has to 
be declared first, before it can be used: 
 
int i; 
boolean b = i > 10; // i is a reference here 
 

Such a concept would consist only of the reference to the concept 
representing the corresponding variable declaration int i. MPS then instead 
of adding the concept itself to the substitution menu adds to the menu all of 
the referenceable variable declarations. Thus, in the example above, the menu 
would be populated with the presentation of the AST node i (among other 
visible variables in the given context). 

The completion menu may be altered by creating a substitute menu for a 
concept. If the language designer creates a default, empty, substitute menu 
for a concrete concept, it will not be populated by that concept, regardless of 
the context where the menu is invoked. This feature may be used to treat 
concepts, such as EmptyStatement. A typical program is usually a series of 
statements. For the sake of simplicity, let us consider that each statement 
goes onto a new line. To allow empty lines in the editor, we would create an 
EmptyStatement concept. However, it does not make much sense to allow 
creating the EmptyStatement instances from the completion menu. Instead 
each line should be an instance of EmptyStatement by default and easily 
rewritten to a different statement. To prevent EmptyStatement populating the 
completion menu, we would do just that - that is, creating an empty default 
substitute menu for the concept. 
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The language designer may also specify substitute actions and wrap 
substitute menus inside a substitute menu for a concept. We will describe 
them in a more detail, as they are important and heavily used in Frege-IDE. 

Substitute actions populate the completion menu by a new entry at all 
places, where the current concept (for which we are defining the substitute 
menu) would be applicable. A language designer then specifies a custom 
handler, which has to return a new AST node for the current concept, or a 
concept which extends, directly or indirectly, the current concept (in the 
analogy with OOP languages, the new AST node has to have the type of the 
current concept). 

We will demonstrate substitute menu actions on an example. Let us 
assume an abstract concept Literal. We have two concepts which extend 
Literal: IntegerValue and BooleanValue. What we want is to automatically 
create a concrete AST node, where a node for Literal concept is expected. If 
the user types an integer number, an instance of IntegerValue should be 
created, whereas if user types true or false, an instance of BooleanValue 
should be created. 

From the point of view of completion menu, in places where an instance 
of Literal concept is expected, there should be three items in the menu 
available: two for BooleanValue (true and false) and one representing a 
generic IntegerValue. We will handle BooleanValue in the following way: 

1. Set BooleanValue as an abstract concept. 

2. Create two concrete concepts, which extend BooleanValue, i.e. TrueValue 
and FalseValue, representing the corresponding values. 

3. Set aliases to true and false for the corresponding concepts representing 
the boolean values. This populates the completion menu with the defined 
aliases instead of the names of the corresponding concepts. 

The IntegerValue is trickier, because there is no single value to represent 
the concept with. To solve the problem, we will create a default substitute 
menu for the Literal concept and add a single substitute menu action. 
Figure 1.18 shows an implementation of such a menu. We describe the details 
below. 

 

 
Figure 1.18: Implementation of a default substitute menu for Literal concept 
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The substitute menu action consists of defining the following sections: 

 Create node: this is a custom handler of the current substitute action 
and has to return a new node for the current concept. 

 Matching text: a string that triggers the current substitute action, 
when typed. This is also the string that will be displayed on the left side 
of the invoked completion menu. 

 Can substitute: a boolean telling the MPS whether the current 
substitute action may be executed when triggered. 

In the case of our example, the IntegerValue is a concept with a single 
property representing the user-entered integer value. Therefore, in create 
node section, we simply create a new node and set its value property to be 
equal to the user-entered text. The matching text section is set to return 
whatever value the user types. This may make not much sense, but it is 
important to understand that we cannot represent all integer numbers with a 
single string. Finally, can substitute checks whether the user-entered string 
actually represents an integer value. It tries to match the string against a 
regular expression capturing integer values, and if successful, returns true. 

Wrap substitute menu populates the completion menu by a different 
concept as a ‘replacement’ for the current concept. The corresponding 
handler still has to return an instance of the current concept, however, to 
conform to the defined structure.  

Let us consider the following scenario. We have Literal concept from the 
example above, which, according to the structure, extends an abstract 
Expression concept. Then we have another abstract concept, Pattern, 
completely independent from Expression. However, we want to be able to use 
Literal also in places, where Pattern is expected. Since Literal may only 
extend one of the two concepts, we would need to create a new Literal 
concept, which would extend Pattern. Copying the Literal together with its 
sub-concepts would create a lot of code duplicity and the language would 
quickly become unmaintainable.  

A different solution is to create a ‘wrapping’ concept, let us call it 
PLiteral. The concept extends Pattern and has a single child of cardinality 
[1] of type Literal. However, we want to preserve everything about the 
Literal concept from the example above, i.e. automatic substitution to 
IntegerValue and BooleanValue. In the current state, the user of the 
language would first need to create an instance of the PLiteral and only then 
would he or she be able to use the defined substitute menu for Literal (this 
is the ‘top-down’ approach of creating the AST). 

The language designer may use, however, the option of defining the wrap 
substitute menu. He or she would specify that in places where concept 
PLiteral is expected, the completion menu may be populated by the entries 
from completion menu for Literal concept instead. Selecting any of the 
corresponding entries from the completion menu would create an instance of 
Literal, and then the handler, defined by the language designer, would take 
the AST node and enwrap it by an instance of the PLiteral concept. 

Figure 1.19 depicts the implementation details of the wrap substitute 
menu for the PLiteral concept. The language designer selects a concept of 
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which the completion menu should be copied (menu to wrap default 

substitute menu for), then specifies the handler which wraps the original 
AST node by a new instance of the current concept. 

 

 
Figure 1.19: Default substitute menu for the PLiteral concept with the wrap 
substitute menu 

1.3.4 Cell Action Map 

Cell action map is a custom defined event handler associated with an 
editor cell. Unlike the previously mentioned types of actions, these allow the 
language designer to define a handler for events, such as editor cell selection, 
cell removal, pressing a concrete keyboard key when the editor cell is focused, 
and so on.  

Consider the example from Section 1.3.2. We have these types of 
concepts: 

 A concept representing the bracketed expression, e.g. (x1) 

 A concept representing the tuple, e.g. (x1, x2, x3) 

 A concept representing the list, e.g. (x1 : x2 : x3) 

However, this time, we are faced with the opposite problem – how to 
change the AST node, representing either a tuple or a list, back to the simple 
bracketed expression, upon removal of the last item? 

We will demonstrate the usage of the action map on the Tuple concept. 
Tuple is a concept containing at least two children of type Expression. Figure 
1.20 provides an example implementation of its structure aspect in MPS.  

In the corresponding concept editor we associate the child editor cells for 
rest children from Figure 1.20 with the new cell action map we named 
Tuple_RemoveRestItems. In the cell action map, we define a new handler for 
DELETE action. The handler itself is relatively simple – we only create a new 
AST node for the bracketed expression, set the expression between the 
brackets to be equal to the last remaining item in the Tuple AST node and 
replace the Tuple node with the newly created bracketed expression. Finally, 
we set the focus on the newly created AST node in the editor. Figure 1.21 
depicts an implementation of the cell action map. 
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Figure 1.20: Implementation of structure aspect of Tuple concept 

 
 

 
Figure 1.21: Implementation of the cell action map for Tuple concept 

 
To conclude the editor section, editor actions provide a flexible way to 

build a user-friendly editor that can mimic many features of a traditional, 
text-based, editor. However, it is impossible to allow the completely same 
behavior, since a user is actually editing the AST data structure and not the 
text he or she sees. This means that almost every editing feature has to be 
implemented manually. The language designer should, however, optimize the 
editor for the most common cases, at least. 

1.4 Behavior 

Behavior aspect allows to, simply said, define methods on concepts. If we 
take the analogy with OOP further, then structure aspect allows a language 
designer to declare classes and their fields, while the behavior aspect allows to 
declare and implement their methods, including constructors. 

In behavior aspect, constructor is a block of code which is executed when 
a new node of the corresponding concept is created. However, certain 
exceptions exist, when the constructor is not, in fact, executed. These mainly 
include creating an instance of the concept by using other means in the MPS 
BaseLanguage, than the statement new initialized node<MyConcept>(). 
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Similar concept of methods as in OOP languages, such as Java, is present 
here as well. A concept may be associated with several methods with strictly 
defined visibility (public, protected, or private). Methods that can be 
overridden in sub-concepts, have to be marked virtual. Static methods exist 
here too. They are methods not attached to any instance of the concept, but 
rather have to be called on the concept itself.  

Important characteristic of the behavior aspect is that it allows to 
traverse the AST being created. The language designer can easily inspect 
parent and children of any node as well as nodes’ references. 

An example of the concept’s behavior aspect is depicted on Figure 1.22. 
The corresponding Import concept, which represents import declaration in 
Frege, has defined the constructor setting its property to a default value. The 
getPrefix method returns the import’s alias. More about the Frege import 
declaration is discussed in Section 2.9. 

 

 
Figure 1.22: Example of a concept’s behavior aspect in MPS 

1.5 Intentions 

Intentions aspect allows to define special user interface elements (called 
intentions) that allow executing predefined actions in certain places in the 
code. They usually perform some modification of the current AST.  

Let us assume a program which consists of a series of statements. Each 
statement is placed on a single line, but some lines may be empty. Statements 
consist of several items. In this case, when the caret is positioned at the end 
of a statement, pressing enter key is, from the user’s perspective, ambiguous. 
Either it should add a new item to the current statement, or a new line. The 
scenario is illustrated on Figure 1.23. 
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Figure 1.23: A program in MPS consisting of a series of simple statements  

 
We can approach the problem by letting the user decide. A user would 

invoke a menu that would let him or her decide whether an item should be 
added to the current statement, or a new line created below the statement. 

The intentions menu is generally invoked by pressing alt + enter keys. The 
menu may contain several items and the selection of a concrete intention is 
confirmed by pressing the enter key. An example of the menu is shown on 
Figure 1.24. 
 

 
Figure 1.24: Intentions menu in MPS 

 
Standard type of intention is defined for a specific concept. There is also 

another type of intention (surround-with type) we have not used in this work 
and will therefore not describe. 

When created, the corresponding intention will be added to all intentions 
menu invoked on that corresponding concept (this means that the caret has 
to be positioned on the editor cells associated with the given concept at the 
time of the menu invocation). The intention may also be executed within the 
subtree defined by the corresponding concept, if available in child nodes 
is set to true. 

An example of the intention implementation is show on Figure 1.25. The 
language designer has to provide the intention’s description, which will be 
shown in the invoked menu, and the handler to specify the required action. 
Additionally, he or she can define the context in which the intention may be 
displayed in the menu, by returning a boolean value inside the isApplicable 
section. 

 
Figure 1.25: New intention definition in MPS 
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1.6 Constraints 

Constraints aspect lets the language designer declare constraints that help 
him or her control where nodes of the language are allowed. They also allow 
to specify and put a set of restrictions on valid values (properties) of AST 
nodes and to define scopes for referenced nodes. 

Scope is an object which defines a list of potential targets that can be 
referenced. Nodes outside the list may not be set a reference to. Additionally, 
scope object also helps to locate a suitable target from the given list based on 
what the user has entered in the corresponding place in the editor. When no 
scope is defined in the concept’s constraint aspect, all nodes of the 
appropriate type are considered eligible. The auto-completion menu is filled 
with nodes based on this rule. 

Concept constraints are divided into several sections: 

 Can be child: the section allows specifying a boolean method which 
returns, whether a node of the current concept can be a child in a specific 
AST context. If the method returns false, then the node will not be 
suggested in the auto-completion menu. Sections Can be parent and Can 
be ancestor work in the similar way. 

 Property constraints: property constraints allow restricting a set of 
values of a concept property. In a sub-section is valid the language 
designer may specify a boolean method for checking the corresponding 
property’s value. If the method returns false, the value is considered 
invalid and MPS marks the associated editor property cell with a reddish 
rectangle. 

 Referent constraints: in this section the language designer controls 
how references are established to nodes of the concept. He or she may 
restrict what nodes will be referenceable from the given concept by 
specifying the scope object. 

1.6.1 Scope 

Scope is an object in MPS which defines a list of potential targets that 
can be referenced. It is an (indirect) instance of the abstract class Scope in 
the BaseLanguage in MPS. 

A language designer may specify his or her own implementation of Scope. 
The new class must inherit from the Scope class provided by MPS implicitly 
and implement the necessary abstract methods. Notable methods from the 
class include: 

 public abstract sequence<node<>> getAvailableElements(string prefix); 

returns all of the nodes from the scope that begin with the string prefix. 

 public abstract node<> resolve(node<> contextNode, string refText); 
returns a node, if the entered string refText can unambiguously 
determine a referenceable node from the current scope.  
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1.7 Typesystem 

Typesystem aspect makes it possible to report semantic errors to the user 
of the language. On its highest level, it could be said it contains mechanisms 
to check for both non-type related and type related rules. 

Non-type related rules are called checking rules. These serve the language 
designer to implement custom semantic error checks. For instance, consider a 
type declaration statement in Frege language: 

 
type MyType a b = [Int] -> a -> b 

 
The statement declares a new type MyType with a and b being type 

variables. Type variables have to have different names to be distinguishable 
and thus the following statement is invalid in Frege: 

 
type MyType a a = [Int] -> a -> a 
 

To check and report the error, the language designer can create a 
checking rule for the concept representing the type declaration statement. A 
checking rule is a simple method, associated with a specific concept, which is 
executed by MPS automatically for each AST node of the concept in the 
current document. The method is executed mainly when the AST node is 
changed in any way, or when the document is opened. The error is reported 
to the user by using error statement in MPS BaseLanguage. The language 
designer specifies a string message and the AST node which caused the error. 
If the error statement gets executed, the MPS underlines the corresponding 
node with red color in the editor to denote the problem. 

Figure 1.26 provides the implementation of the checking rule in our Frege-
IDE for the concept representing the type declaration statement. We compare 
each two type variables between themselves and report an error in case two 
have the same name. 
 

 
Figure 1.26: The checking rule in Frege-IDE for the concept representing the 
type declaration statement 
 

Type related (typesystem) rules offer a declarative way to express rules 
which support type calculations. The language designer can let MPS calculate 
types of expressions in the runtime and upon finding inconsistencies, MPS 
will report errors to the user automatically. 

MPS supports several types of declarative rules. We will describe the ones 
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we used in this work, which include inference and subtyping rules. 
Inference rules are created to calculate a type of a node for the given 

concept. These can also be used to enforce a type, i.e. to perform a type 
check. The rule consists of these sections: 

 Name: determines name of the current typesystem rule. 

 Applicable for: used to specify the concept which the rule applies for. 

 Do: defines the rule for the given concept. The rule is written in a 
variant of the MPS BaseLanguage, which is extended with statements 
regarding the typesystem aspect. 

Figure 1.27 shows an example of the inference rule for a concept 
representing an integer literal. The section Do contains a single statement, 
which tells MPS the type associated with the concept. We describe the 
statement typeof(integerLiteral) :==: <int> in a more detail below. 

 

 
Figure 1.27: The inference rule for a concept representing an integer literal 

 
The statement is a special form of an assignment. There are several 

different operators in MPS the language designer can use: 

 :==: The operator tells MPS that the type on the left hand side must be 
the same, as the type on the right hand side. This performs both the 
check and the assignment. 

 :<=: This tells MPS that the type on the left hand side is a sub-type of 
the type on the right hand side. 

 :~: Usage of the operator tells MPS that the type of operands on either 
side of it are weakly comparable. 

typeof(integerLiteral) denotes the type of an instance of the 
IntegerValue concept. The inference rule is executed for each AST node of 
the current concept. 

The <int> part denotes a quotation. It is used when the language designer 
needs to create nodes of concepts in a language (even the language he or she 
may be now creating) via MPS BaseLanguage. The equivalent piece of code 
without the quotation would be as follows: 

 
node<IntTypeNode> intTypeNode = new initialized node<IntTypeNode>(); 
typeof(integerLiteral) :==: intTypeNode; 

 
Anything displayed inside the quotations symbols <…> is what the node 

would look like as if an actual editor of the corresponding language was used 
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to edit the AST. int in this case is the textual representation of the concept 
IntTypeNode in its concept editor. 

The concept IntTypeNode is not a part of the MPS BaseLanguage. It is, 
however, a concept which extends Type concept from the BaseLanguage. The 
concept may be created in a new language, which is then added to the 
dependencies of MPS typesystem aspect. It represents a new type.  

To represent a more complex type, such as an array of items of a certain 
type, a similar approach would have to be used. In Frege, the equivalent 
language construct is called a list. The concept representing its type is a new 
concept extending the Type concept from the BaseLanguage. It should 
contain a single child determining the type of its items. The child is, again, 
an instance of the Type concept. The structure aspect of such concept is 
depicted on Figure 1.28. 

 

 
Figure 1.28: Structure aspect of the concept representing the list type in 
Frege-IDE 

 
When the operator :==: is used to compare a type of an AST node, MPS 

checks the whole tree for equivalence. In the example above, a list of integer 
items is, according to the operator :==:, different from a list of double items. 

To check whether a list of integer items is assignable to a variable 
denoting a list of double items, we have to use the sub-typing operator :<=:. 
There is no concrete assignment statement in Frege language, but certain 
semantic checks of function definition statements against their type 
annotations behave similarly. For the sake of simplicity, let us consider a 
concept representing the assignment statement as in languages, like Java, 
which consists of left and right hand side. For the right hand side to be 
assignable to the variable on the left, it must be of the same or a ‘more 
concrete’ type, than the variable. The following statement illustrates an 
inference rule of such a concept: 

 
typeof(assignment.rightExpression) :<=: typeof(assignment.leftVariable); 
 

Let us consider a new concept representing the numeric type double, 
DoubleTypeNode. So far, there is no defined type relation between 
DoubleTypeNode and IntTypeNode and an attempt to assign an integer list to 
a double list variable would MPS underline with red color denoting the error.  
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To specify that integer is a sub-type of double, we create a sub-typing rule. 
Sub-typing rule is a simple method which returns a list of instances of 

Type concept that are ‘more abstract’ than the current type. In the case of 
IntTypeNode, we return the DoubleTypeNode instance. Figure 1.29 shows the 
concrete implementation for our example. 

 

 
Figure 1.29: The subtyping rule for IntTypeNode concept 

 
By implementing the rule, we have also allowed for sub-typing comparison 

of the list type. Now, MPS would have no objections against assigning an 
expression of an integer list to a variable of double list type. 

In certain cases, however, the provided mechanisms are not enough to 
perform type checks. Sometimes a language designer needs to inspect the 
inferred type of an expression in a more detail. For this, MPS has a notion of 
when concrete block. 

Since MPS offers only a strictly declarative way of defining types of AST 
nodes, it is not certain when a node will have its type inferred. However, a 
language designer may use when concrete statement to surround a block of 
code which will be executed only when the type of the given node is already 
known. The surrounded code is executed in a separate thread, which means 
the rest of the code in the corresponding typesystem rule will continue with 
its execution independently. 

1.8 Textgen 

The optional aspect component of a language, textgen, allows to define a 
mapping from AST nodes to a text. The feature allows the translation of the 
code written in MPS to a plain text. The user can then compile the code 
using a standard compiler to an executable program. 

Textgen can be triggered for a specific document by using a right mouse 

button in the editor space and selecting Preview generated text. 
The language designer has to define the textgen aspect for each concept 

independently. He or she has to specify a string which is put into a buffer for 
each AST node encountered. If the corresponding concept contains children, 
their textgen should be invoked manually as well in a recursive manner, down 
to the leaf concepts. 

Definition of the textgen consists of a single method written in the MPS 
BaseLanguage. It specifies, what should be outputted to the buffer, by using 
append statement. The indentation of certain portions of the code may be 
manually increased by using with indent block. Last, but not least, it should 
call the textgen of child concepts, again, by using append statement. 
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Figure 1.30 depicts an example of a usage of the textgen aspect for a 
concept in Frege-IDE. The corresponding concept FDGuards, representing a 
function definition with guards, does not output anything on its own, but 
rather calls the textgen of its children. Its pattern child is outputted on a 
single line, then the guards are printed starting from the following line, 
indented. where is printed out only if it is actually defined, since the 
cardinality of the child is set to [0..1]. 

Note that when using the textgen, an error arises when MPS tries to call 
the textgen for a concept which does not have this aspect specified. This can 
be useful when a given AST is currently incomplete or in an erroneous state. 
That is why abstract concepts usually should not implement it. 

 
Figure 1.30: Example of the textgen aspect for the concept FDGuards in 
Frege-IDE 
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2. Frege 

Frege is a variant of Haskell language, targeted for the JVM platform. It 
is a purely functional programming language, has a strong static type system 
with global type inference and non-strict evaluation. The language compiles 
to Java and runs naturally on the JVM. This way it can be used inside any 
Java project.  

In this chapter, we describe the Frege syntax and what the most common 
patterns of writing programs in Frege are. We describe differences between 
Frege and Haskell and mention certain approaches when programming in 
functional languages in general. It is important to note that Frege is a robust 
and complex language, which is why we could not include the full set of 
language constructs in the implemented IDE. Certain features not mentioned 
in this chapter were omitted. 

Frege was designed by Ingo Wechsung, who named it after the German 
mathematician, logician and philosopher, Gottlob Frege. Its syntax is very 
close to that of Haskell, with only small differences. The following is a brief 
description of the main differences. 

 In general, Frege could be considered a subset of Haskell language. 
Certain features are missing, such as the foreign function interface, which 
allows Haskell to interact with code written in other languages [5]. Instead 
there are language constructs to make Java types and methods usable (all 
primitive types are simply Java types). 

The Frege-Prelude library, an equivalent of Haskell-Prelude library which 
defines many standard types (for instance, Maybe), functions and operators 
(<=, !=, &&, …), has many functions, type classes and types known from 
Haskell. However, Frege uses the Java APIs whenever possible, so certain 
aspects of the language may feel different. For example, implementation of 
type classes is incomplete and multi parameter type classes are not supported 
by Frege at all. Additionally, the support for newtype declaration (an 
algebraic data type with exactly one constructor) is missing as well as 
deriving clause for data type declarations, and a few other keywords. 
The string value in Frege, unlike in Haskell, is not a list of characters, but an 
instance of the Java class java.lang.String [6]. Furthermore, Frege does not 
have any operator data constructor other, than colon : to separate the head 
and the tail of a list. This, however, allows the user to define in Frege even 
such custom operators that begin with the colon character, which is not valid 
in Haskell (e.g. :-: is a valid custom operator function in Frege). 

There are several other minor differences between Haskell and Frege. 
However, they mostly do not affect this work in any way, which is why we do 
not describe them. 

The following sections describe Frege syntax on several small examples as 
well as overview of certain principles used when programming in a functional 
language. For the most part, the described syntax is also supported in Frege-
IDE. Though recommended to read, people familiar with Haskell or Frege 
may skip this part. 
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2.1 Hello, World! 

The following piece of code is an example of a ‘Hello, world!’ program in 
Frege: 
 

module Hello where 
 
greeting friend = "Hello, " ++ friend ++ "!" 
 
main args = do 
    println (greeting "world") 

 

This code would compile to Hello.class and Hello.java with a regular 
Java entry point method main. Moreover, the Hello.class would have the 
method public static String greeting(String ...) {...} that one can 
call from Java, or any other JVM language. 

Just like in Haskell, the function greeting is pure, which means it is 
stateless and does not have any side effects. For the same given input 
parameters it always returns the same result. This is a great advantage of 
functional languages that basically allow the results of such functions to be 
cached. Function main, however, is not pure. Since it corresponds to the main 
function in Java language, it may produce side effects, like printing to the 
standard output, which it actually happens to do so in this concrete example.  

2.2 Pattern Matching 

An important aspect of programming in both Frege and Haskell is 
pattern matching. When we define a new function, we may define different 
variants of its implementation for different input arguments. To elaborate, 
consider the following definition of the function charToName: 

 
charToName :: Char -> String 
charToName 'a' = "Albert" 
charToName 'b' = "Broseph" 
charToName 'c' = "Cecil" 
charToName _ = "No Name" 
 

The main idea behind the function above is to provide the caller with a 
human name beginning with the given character. (Here we only provide 
definition for the first three characters of English alphabet, albeit it should 
suffice for the demonstration.)  

The first line of the program tells us that charToName is a function 
accepting a single character argument and outputting a string (we discuss 
Frege types and type annotations in Section 2.3). 

Then, we provide for each character a specific definition. The wildcard 
underscore character _ matches any input. This way, if we were to call the 
function charToName with an input 'a', it would return "Albert", but for 'z' 
character we would get "No Name".  

The ordering of the definitions is important here. Moving the definition 
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for the pattern with wildcard _ above the definition for input character 'a' 
would result in all calls to charToName returning the "No Name" string. 

Regarding the pattern matching in Frege, it is also important to mention 
variables. These ‘formal parameters’ are also patterns; it’s just that they 
never fail to match a value. This is in a certain way similar to the wildcard 
pattern _. However, as a side effect of the successful match, the formal 
parameter is bound to the value it is being matched against. For this reason, 
patterns may not contain multiple variables with the same identifier [7]. 

Based on this, we can create a function returning a second element of any 
three-item-tuple. A tuple is simply an ordered sequence of items of (possibly) 
different types, separated by comma. The following are examples of constant 
functions returning tuples: 

 
tupleExample1 = (1, 'a') 
 
tupleExample2 = (1 + 1, 2.7, true && false, 'a') 
 
tupleExample3 = (1, 2.7, true, ("hello", 'a'), 'z') 

 
To explain the third function tupleExample3, the expression (1, 2.7, 

true, ("hello", 'a'), 'z') is a tuple of five items, fourth of which is 
another tuple of two items.  

Our function, returning the second element of a three-item-tuple, would 
then look like this: 
 
second (_, x, _) = x 

 

When calling the second function with a three-item-tuple argument, the 
second value is automatically bound to the variable x. This is what we then 
return on the right hand side of the definition. We call this mechanism data 
deconstruction. 

2.3 Types 

Frege is a strongly and statically typed language. If the types are not 
specified by the programmer, they are automatically inferred. To provide 
types for the function greeting from Section 2.1, the user can write: 
 
greeting :: String -> String 
 

We call this signature a type annotation of the function. Here, we denote 
that function greeting accepts a single argument of the type String and 
returns a result of the type String too.  

Additional types, which are also supported by Frege-IDE include: 

 Bool: represents boolean values (true, false). 

 Char: represents a single utf-8 character. 

 Int: represents integer numbers. 
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 Double: represents floating point numbers. It is an equivalent to Java 
double type. 

 Tuple 

 List 

 Custom algebraic data types 

 Function type 

2.3.1 Tuples 

A tuple, as mentioned in the previous section, is a sequence of items of 
(possibly) different types, separated by a comma. Here we show the examples 
of constant functions returning tuples together with their type annotations: 

 
tupleExample1 :: (Int, Char) 
tupleExample1 = (1, 'a') 
 
tupleExample2 :: (Int, Double, Bool, Char) 
tupleExample2 = (1 + 1, 2.7, true && false, 'a') 
 
tupleExample3 :: (Int, Double, Bool, (String, Char), Char) 
tupleExample3 = (1, 2.7, true, ("hello", 'a'), 'z') 

2.3.2 Lists 

Besides tuples, there is also another fundamental data structure to hold 
multiple values in Frege - a list. A list is a homogenous data structure (i.e. all 
of its elements need to be of the same type). An example of a function 
returning a list is as follows: 
 
listExample :: [Int] 
listExample = [4, 8, 15, 16, 23, 42] 
 

In this specific example we return a list of integer numbers, which is 
defined by enumeration. For ordinal data types, however, we can also specify 
a range of values: 

 
rangeListExample :: [Int] 
rangeListExample = ['a' .. 'z'] 
 

rangeListExample is a function which defines a list of 26 characters from 
‘a’ to ‘z’.  

Generally, each list can be separated into two parts: the head and the tail. 
Head is a single element at the beginning of the list. Tail is the remaining 
part. If the list contains only one element, the tail is an empty list. 
A completely empty list has to be represented by [] symbols. 

This picture of lists is important, because it allows us to pattern-match it 
against the data constructor operator :. For instance, consider the following 
example: 
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getTop :: [String] -> String 
getTop [] = "No elements" 
getTop (x:xs) = x 
 

The function above returns the first element from the given list of strings. 
If the corresponding list is empty, the function returns "No elements". The 
pattern (x : xs) matches the input list in the following way:  

 Head of the list is bound to the variable x. 

 Tail of the given list is bound to the variable xs. 

 The matching is successful only if the given list is not empty. 

The function may be invoked in the following way: 
 
frege> getTop ["hey", "hi", "hello"] 
hey 
 

This principle allows us to work with lists in an actually useful way, 
otherwise we would need to match them against an exact pre-defined pattern.  

The following example shows a definition for a function which joins two 
lists into a single one: 

 
listJoin [] ys = ys 
listJoin (x:xs) ys = x : (listJoin xs ys) 
 

The implementation follows a recursive approach, which is a common 
practice in most of the functional languages. The first line of the definition is 
a trivial join of two lists, first of which is empty. The result in this case is 
simply the second list. In the second line, however, we say that the result of 
the join is a new list with first item the same as the first item of the given 
first list. The tail of the new list is a result of the recursive application of the 
function on the remaining part of the first list and the whole second list. 

A usage example is as follows: 
 
frege> listJoin [1, 2, 3, 4, 5, 6] [7, 8, 9] 
[1,2,3,4,5,6,7,8,9] 
 

There is also another way of declaring a list, using so called list 
comprehension. We can think of this as an analogy to declarative 
programming, where we define what data we want, input sets, which specify 
where to get the data from, and condition to filter out the unwanted records.  

For example, a function returning a list of Pythagorean triplets can be 
defined as follows: 
 
pt = [(x, y, z) | x <- [1..15], y <- [1..15], z <- [1..15], x < y, y < z, 
x*x + y*y == z*z] 
 

The part before the vertical line symbol, (x, y, z), denotes the single 
item of the resulting list. Expression x <- [1..15] specifies that the input 
set for variable x is [1..15]. Lastly, x*x + y*y == z*z denotes a condition so 
that only the relevant items are included in the resulting list. 
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A usage example is as follows:  
 
frege> pt 
[(3, 4, 5),(5, 12, 13),(6, 8, 10),(9, 12, 15)] 

2.3.3 Custom Algebraic Data Types 

Custom algebraic data types allow to create a completely new type in the 
Frege program. Consider the following example: 

 
data Days = Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |  
Sunday 
 

The statement above introduces the new type, called Days, to be used 
inside the corresponding Frege program. Monday, Tuesday, and the other parts 
of the declaration are called constructors. They denote the value of the 
declared data type.  

The following function definition shows an example usage of the new 
type: 

 
getNextDay :: Days -> Days   
getNextDay (Monday) = Tuesday     
getNextDay (Tuesday) = Wednesday 
… 
 

In this particular example, we have defined only a simple enumeration 
type. However, we can also wrap additional data as demonstrated by the 
following example: 

 
data Point = Point Double Double 
… 
                                 
movePointX :: Point -> Double -> Point 
movePointX (Point x y) _x = Point (x + _x) y 
 

We have defined a simple type representing a point in the 2D space and a 
function moving that point by the given value in x-axis. In this case, our 
custom data type has only a single constructor. Notice that the name of the 
data type and the constructor are treated completely independently by the 
compiler and therefore may be named equally. 

However, the constructor arguments do not necessarily have to be of 
primitive types. Consider the following, more advanced, example: 

 
data Shape = Circle Point Double | Rectangle Point Point 
…                  
surface :: Shape -> Double  
surface (Circle _ r) = pi * sqr r 
surface (Rectangle (Point x1 y1) (Point x2 y2)) = abs (x2 - x1) * abs (y2  
  - y1) 

The data type Shape contains additional data of type Point, which we 
have defined earlier in this section. It is used to denote a center of a circle, or 
an upper-left and a bottom-right point of a rectangle. 
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Furthermore, we can also construct recursive data structures, as 
illustrated by the following piece of code in Frege: 

 
data Tree = Nil | Node Int (Tree) (Tree) 
 

The data type Tree represents a binary-tree-like data structure, where 
each node contains a single integer value and up to two child nodes. Nil 
constructor represents an empty node (a leaf), which does not contain any 
values. 

To provide more flexibility for custom data types, we can also use the 
notion of type variables. In the example below, a represents a type variable. 
We can use any type in its place. Instead of then having to define several 
data types for several different functions, we can reuse the type while 
specifying, what a is, for each one: 

 
data Maybe a = Just a | Nothing 
… 
 
getTopIntList :: [Int] -> Maybe Int 
getTopIntList [] = Nothing 
getTopIntList (x:xs) = Just x 
 
getTopCharList :: [Char] -> Maybe Char 
getTopCharList [] = Nothing 
getTopCharList (x:xs) = Just x 

2.3.4 Type Synonyms 

Type synonyms are similar declarations to algebraic data types. Unlike 
the data types, however, they do not introduce any new types into the 
program, but only wrap a complex type by a single type name. Additionally, 
the similar mechanism of type variables as in the data type declarations is 
supported. The example below demonstrates a usage of a type synonym to 
declare a new type Stack, which is represented by a simple list of items: 
 
type Stack a = [a] 
… 
 
pop :: Stack Int -> Stack Int 
pop [] = [] 
pop (x:xs) = xs 

2.3.5 Function Types 

In functions, functions can also be used as arguments. Consider, for 
instance, a list of integer numbers. We may want to apply a certain function 
to each item of the list and return the new list of integers created this way. 
The function applied is unknown to us beforehand, but we can still 
implement the high-level ‘mapping’ function. We can do it in the following 
way: 
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map :: (Int -> Int) -> [Int] -> [Int] 
map _ [] = []                        
map ff (x:xs) = (ff x) : (map ff xs) 
 

(Int -> Int) denotes the function argument. This represents a function 
accepting a single integer argument and returning a new integer. We then 
apply this function, bound to the variable ff upon a successful match, to 
each item of the input list and return the new list. 

2.3.6 Generic Type 

An important aspect of type annotation is providing an interpreter with a 
‘generic type’. Consider the example from Section 2.3.5. We may want to 
implement the mapping function more generally, for all list types, not just the 
list of integer numbers. Understandably, the implementation of the function is 
completely equivalent to the map function from the mentioned section. What 
has to be changed, is its type annotation: 

 
map :: (a -> b) -> [a] -> [b] 
 

What this says is that the function map accepts a function that takes an 
argument of a certain type a, and returns an element of a possibly different 
type b. Then map accepts as for its second argument the list of items of the 
type a and returns a list of items of the type b. 

2.4 Operators 

Both Haskell and Frege provide a lot of flexibility, when it comes to infix 
operators. There are several standard built-in operators, such as arithmetic 
addition +, subtraction -, comparison operators ==, >=, and so on. It is, 
however, possible to define almost any custom operators consisting of allowed 
symbols. These include: # $ % & * + . / < = > ? @ \ \ ^ | ~ : - 

For example, we can create a custom operator +++ for adding two integer 
numbers, while also incrementing the result by 1. The implementation is as 
follows: 
 
(+++) :: Int -> Int -> Int 
a +++ b = a + b + 1 

 
The newly defined operator is simple to use in expressions. For instance, 

the following is a definition of a constant function ff returning integer 6: 
 
ff = 2 +++ 3 

 

Since operators are basically binary functions, there are no major 
differences between the two. The type annotation differs only in obligation to 
wrap the operator inside the brackets. 
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A user may also specify the custom operator’s precedence and 
associativity. By default, the custom operator is non-associative and has a 
precedence of 16. There are 16 levels of precedence in Frege (numbered 1 to 
16), the higher number denoting the more prioritized operator inside an 
expression. 

The precedence and associativity may be changed by writing the following 
statement: 
 
infixl 5 +++ 
 

The first part specifies the associativity. Three modes of associativity 
exist:  

 Left associativity: the statement begins with keyword infixl. 

 Right-associativity: the statement begins with keyword infixr. 

 Non-associative operator: the statement begins with keyword infix. 
There must not be several non-associative operators used in a single 
expression in a sequence, with exception of using brackets or changing 
precedence of a sub-expression in another way. 

It is important to note that a combination of several operators with both 
types of associativity (left and right) with the same precedence in a single 
expression is not possible and results in a compilation error. 

Function application, constructors, and bracketed expressions have all 
higher precedence, than any operator. For an operator to be used as a 
function argument, it has to be enwrapped inside brackets. Compare the 
following two statements: 

 
ff = 1 +++ foo 2 3 +++ 7 
ff = 1 +++ foo 2 3 (+++) 7 
 

In the first statement, we apply the function foo with arguments 2 and 3. 
In the second statement, we apply the function foo with arguments 2, 3, 
operator +++ and 7. 

2.5 Currying 

Currying is the technique of translating the evaluation of a function that 
takes multiple arguments, into evaluating a sequence of functions, each with a 
single argument. In Frege, a function may use for its implementation another 
function, while providing only some of its arguments. The technique may be 
demonstrated by the following example: 

 
multiplyThree :: Int -> Int -> Int -> Int 
multiplyThree x y z = x * y * z        
multiplyByEighteen = multiplyThree 2 9 

In the example above, the function multiplyThree takes three arguments 
and returns their product. multiplyByEighteen is then implemented by 
applying the function multiplyThree on two out of three possible arguments.  
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It is interesting that we do not have to provide in the implementation of 
multiplyByEighteen any arguments. This is the main idea behind the 
technique, otherwise we would need to write the following piece of code: 

 
multiplyByEighteen x = multiplyThree 2 9 x 
 

Currying may be also used with operators, and also applies in cases of a 
partial function application, as demonstrated by the following example: 

 
max :: Int -> Int -> Int 
… 
six = (max 4) 6 
 

Expression (max 4) applies the function max only partially, resulting in a 
function with type annotation Int -> Int. This is then applied again for 
argument 6, resulting in a constant integer. 

2.6 Where 

In Frege, it is possible to create local definitions with local scope inside a 
function definition. Such definitions may be placed inside where code block. 
The scoping rules prevent the functions created this way to pollute the 
working namespace, which is useful for creating reusable modules. 

The following piece of code shows the implementation of a function which 
describes length of a given list using words: 

 
describeListWhere xs = "The list is " ++ what xs 
   where  
      what [] = "empty."  
      what [x] = "a singleton list."  
      what ys = "a longer list."  
… 
 
frege> describeListWhere [1] 
The list is a singleton list. 
 

In the example above, in where block we define a new function called 
what which accepts a single list argument. It cannot be used outside the 
function describeListWhere where it is defined. 

When working with where block, keeping a correct indentation is 
important. In the block, each local definition should be aligned with the 
where keyword, or have a greater indentation. 

2.7 Guards 

Guards are a mechanism in Frege which allow a user to return an 
expression based on boolean conditions. 

Let us consider a signum function, which is used to describe a sign of a 
real number by an integer number. The function takes a single argument, 
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which is a real number, and then performs a check of its sign: 

 If the given number is greater than 0, the function returns 1. 

 If the given number is smaller than 0, the function returns -1. 

 If the given number is equal to 0, the function returns 0. 

The following example is an implementation of the function in Frege: 
 
sign x             
   | x < 0 = (- 1) 
   | x > 0 = 1     
   | otherwise = 0 

 

The lines starting with vertical line symbol | are called guards. They 
consist of a boolean expression and the resulting expression to return, if the 
corresponding condition is evaluated to true. The special otherwise keyword 
denotes a condition that always evaluates to true. Ordering of the guards is, 
therefore, important and the conditions are evaluated in the top-down 
manner. 

2.8 Constant Definitions 

In Frege, there is a special kind of the function definition where the user 
can define several constant functions in a single statement. The following 
example demonstrates definition of the three new constant functions a, b and 
c: 
 
(a, b, c) = (1, 2, 3) 
 

The values of the corresponding constants a, b and c are 1, 2 and 3 in 
their respective order.  

Frege is a relatively flexible language in this manner and the following 
expression is a valid one as well: 
 

[2, f] = [2, 3] 
 

In this case, the value of f is 3. Furthermore, from the grammatical point 
of view, even the following statement is valid: 
 
[1, f] = [2, 3] 
 

A program with the example above would pass its compilation, however, 
an exception would be thrown upon an attempt to evaluate the constant f in 
any way. It still allows the user to specify constant functions in a flexible 
manner. The compiler only checks that the expression on the right hand side 
of the definition is of the same type as is the pattern on the left. For example, 
the following is the alternative definition of the constants a, b and c from the 
beginning of the current section: 
 
(a, b, c) = (1, 1 + a, 1 + b) 
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2.9 Import and Export 

To use functions, operators and data types from other modules, we must 
first import them. An import declaration has the following form: 

 
import frege.prelude.Math (**, log) 
 

The fully qualified name of the module being imported 
(frege.prelude.Math) has to be used. After that, the user may specify which 
items will be imported into the current namespace of the current module. For 
all other items the user has to use the qualified name of the item. The full 
details of the import declaration are described further in this section. 

Import declarations are processed in the order they occur in the program 
text. However, their placement relative to other declarations is irrelevant. 
Nevertheless, it is considered a good practice to write all import declarations 
somewhere near the top of the program. 

The user may or may not enumerate the items to import into the current 
namespace. If he or she chooses not to do so, everything from the given 
module is imported into the current namespace. The declaration in this case 
has the following form: 

 
import frege.prelude.Math 
 

The imported module Math contains several functions and constants for 
performing standard calculations. The constant pi may be referenced in this 
use-case directly in the following way: 

 
circumference r = 2 * pi * r 
 

In the example at the beginning of this section, there are two explicitly 
enumerated items: operator ** and function log. Everything else has to be 
referenced using a qualified name. The constant pi in this scenario has to be 
prepended by the Math namespace: 

 
circumference r = 2 * Math.pi * r 
 

A user also has an option to enumerate none of the items, but to use the 
brackets symbols () anyway in the import declaration. This forces a 
programmer to use the qualified name for every item from the imported 
module. 

When using the qualified name of the items, the imported module’s name 
may be aliased by using as clause. The following example demonstrates the 
usage scenario: 

 
import frege.prelude.Math as MM () 
… 
 
circumference r = 2 * MM.pi * r 
 

Last, but not least, there is an option to use a reverse manner of 
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importing items into the namespace. Instead of enumerating items which we 
do not have to use the qualified name for, we may specify the only items, we 
will need to use the qualified names for. This is done by using hiding clause, 
as demonstrated by the following example:  
 
import frege.prelude.Math hiding (pi) 
… 
 
circumference r = 2 * Math.pi * r 
rightTriangleC a b = sqrt (a ** 2 + b ** 2) 

 
Among the items that can be imported into the module, constructors are 

imported into the current namespace independently from the data types 
where they are defined. Frege additionally supports a special syntax to treat 
the import of data type constructors and ease their enumeration. Consider, 
for example, the following data type declaration from Section 2.3.3: 

 
data Days = Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |  
Sunday 

 
The data type Days can be imported together with its constructors 

Monday and Tuesday into the current namespace using the following syntax: 
 

import frege.example.DaysExample as DE (Days(Monday, Tuesday)) 

 
However, all of the remaining constructors belonging to the Days data 

type need to be referenced using the qualified names (e.g.DE.Thursday). To 
import all of data type’s Days constructors, a syntax with two dot symbols 
.. can be used, as described below: 

 
import frege.example.DaysExample as DE (Days(..)) 

 
Regarding the importing mechanism, all modules by default import the 

built-in module Frege-Prelude. It contains standard arithmetic operators, 
such as +, -, * and /, comparison operators, many data types, such as Maybe 
and a lot of other definitions [8]. 

A similar approach to importing modules is also used to export items of 
the current module. Not exported definitions may not be referenced at all.  

To export all of the definitions of the current module, we can use: 
 

module Hello where 
 

Hello denotes the name of the current module. The declaration has to be 
put at the beginning of the module. 

To export only the functions greeting and getTop, we can write the 
following piece of code: 

 
module Hello (greeting, getTop) where 

 

A reader should be aware that based on how the platform MPS works, it 
is, unfortunately, not possible to work with the Frege modules and libraries 
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written in a plain text directly. These have to be rewritten in a specific MPS 
project to make them usable. In this work we offer only a limited support of 
the standard module Frege-Prelude. 

2.10 Further Reading 

Frege and Haskell include many other aspects that are not mentioned in 
this work. While the current version of Frege-IDE supports all of the features 
of the language used in our examples throughout the Chapter 2 (and much 
more), due to the scale and complexity, a lot was still not implemented. 
However, for an interested reader we recommend visiting the Frege language 
specification and Frege Goodness book3. 
  

                                                 
3 Available from the WWW [12/07/2018]: <https://dierk.gitbooks.io/fregegoodness/>  
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3. Frege in MPS 

Frege has rather too many syntactic and semantic constructs for us to 
cover them all within the scope of this work. We have therefore focused our 
attention only on the most important features worth implementing, such as 
function definition and type annotation, operators and custom data types. 
Our goal was to create an IDE that has a user-friendly editor that emulates 
normal text editing and writing code in the way that most Frege and Haskell 
developers are used to. This is accompanied by the context help, sometimes 
referred to as a code completion, which allows for referencing already defined 
functions, operators, variables, etc. Last, but not least, we strived for a type 
checker, which would be able to find small mistakes in the code, such as 
calling a function with invalid arguments, or check types of expressions. 

This chapter assumes knowledge of the reader at least on the level 
covered in Chapter 2, which describes Frege syntax and features of the 
language we focused on.  

3.1 Supported Subset of Frege 

In this work, we focused our attention only on the most important parts 
of the Frege language, which gained its popularity (or, rather, popularity of 
Haskell). For the most part, so called ‘syntactic sugars’ are omitted, as well 
as monads, which make Frege appear less of a functional and more of an 
imperative programming language. To also include more advanced features, 
such as context help and type checking, we had to keep the complexity of the 
work within reasonable limits, and thus concepts, like type classes and type 
instances, were omitted as well. 

In this section, we review the features of the Frege language that we have 
implemented from the high-level point of view. 

 
Program structure. A program in Frege has to be properly structured. 

We expect the Frege module to have a header, depicting its name. We have 
also tried to emulate recommended practices of writing programs in Frege by, 
for instance, forcing import declarations to be written at the top of the 
program. Since a program is then just a series of definitions, we have left the 
rest up to the user of the IDE.  

 
Import and export. To demonstrate the capabilities of the MPS 

platform regarding the scoping and code completion area, we decided to 
implement importing and exporting features of Frege, as they are depicted in 
Section 2.9, i.e. allowing users to reference functions, operators, custom 
algebraic data types and their constructors. The imported module may or 
may not be aliased and the corresponding import declarations occupy the top 
of the program’s code layout. 

 
Comments. Comments should be easily applicable where all of the 
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normal definitions are expected. There are two types of supported comments: 

 A single-line comment beginning with two dashes symbols -- 

 A multi-line comment that can be nested, which is surrounded with 
braces with dashes {- … -} 

Function definition. The user must be able to define new functions. A 
function may accept any number of arguments, it consists of the patterns (see 
Section 2.2 for more details about the pattern matching) and the right-hand 
side, which provides the implementation for each function pattern. 

 
Type annotation. We allow the user to specify the type of a function. 

This also plays a role during the type checking and evaluation, where we have 
an easier job to infer the types of the given functions and their arguments. 

 
Operator definition. Infix operators are functions that strictly accept 

(at least) two arguments. The operator definition should be able to populate 
the namespace with new operators, allow these new operators to be used in 
new expressions and allow the operators to be annotated in the same way the 
regular functions can be. 

 
Operator precedence and associativity. The statements beginning 

with the infix keyword (infixl, infixr, infix) specify and alter the 
specified operator’s precedence together with its associativity. These have a 
significant impact on the type checking of expressions consisting of the infix 
operators. 

 
Custom algebraic data types. The user should be able to declare new 

algebraic data types, which can be later used in functions. The name of the 
new data type becomes a new type, whereas the constructors become new 
values of that type. 

 
Type synonyms. Similar to the data types, these statements introduce 

a new type inside the module, where they are defined. Unlike the data types, 
type synonyms only wrap a more complex type and do not introduce any new 
values. 

 
Standard types and literals. Bool, Char, Int, and Double are types 

that are all part of the standard Frege library. Even though the standard 
library defines several additional types, such as Float, Decimal, and others, 
these were selected due to their prevalence and representative status and are 
therefore included in Frege-IDE. Additionally, type String is also supported 
with the standard syntax of using quotation marks (e.g. "Hello, world!"). 

 
Tuples. Standard tuples are fully supported in Frege-IDE, including their 

syntax and type checking. 
 
Lists. In Frege there are three main ways of defining a list in an 

expression: 
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 Enumeration: e.g. ['a', 'b', 'c'] 

 Range: e.g. ['a' .. 'z'] 

 List comprehension: e.g. [x | x <- ['a' .. 'z']] 

We offer only a limited support in Frege-IDE for the list comprehension 
due to its complexity. Additionally, we have to account for the usage of the 
constructor operator for deconstructing lists denoted by colon symbol :. The 
operator can be also used for attaching a single list element at the beginning 
of another list. The following example demonstrates the usage of the operator 
in an expression: ff = [1] : [[2, 2], [3, 3, 3], [4, 4, 4, 4]] 

 

Function type. The function type is another standard type which covers 
the type of the function. For instance, a function accepting two integer 
arguments and outputting a string has the following type: 

 
Int -> Int -> String 
 

The type must be declarable inside the type annotations.  
 
Where. where clause allows to provide additional local definitions with 

local scope inside a function definition. These are then visible only to the 
closest outer definition, as demonstrated by the following example: 
 
five = 1 + four 
  where 
    four = 1 + three 
      where 
        three = 3 
 

In the example above, the constant function three is not visible in the 
right-hand side of the function five. 

Similarly to the export and import feature of the Frege language, we aim 
to demonstrate the scoping capabilities of our IDE. 

 
Guards. Guards provide an alternative way of the function definition 

with respect to the standard ‘assignment definition’ (e.g. f = "value"), where 
each guard contains a boolean condition for whether its branch should 
execute. This is an analogy to a series of if-else statements. 

 
Additional concepts. From the Frege language we should also include 

the if statement, case expression, let statement and definition of lambda 
functions (anonymous functions defined within another definition). These 
together with the above should cover most of the standard usage of the Frege 
language, excluding classes and instances. 

 
Type checking and evaluation. A separate aspect of the IDE is a type 

checker. We have implemented a simple type checking capability into our 
IDE, which is able to infer types of certain expressions and compare types of 
function definitions to their type annotations. 

Providing a user with a complete type-checking capabilities is not feasible 
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within the scope of this work, and thus we only intended to implement a 
rather restricted type evaluation, capable of handling only certain scenarios. 
However, the system should be easily extensible and robust enough to 
demonstrate the potential of the MPS platform. 

3.2 Structure Aspect 

Defining the structure aspect in MPS for each language concept is one of 
the most important part of this work. The concepts are ‘building bricks’ 
when it comes to working with AST. Every other aspect of Frege-IDE 
depends on this part, therefore a careful analysis is required to be done here. 

Working with structure aspect in MPS to a certain extent resembles 
defining a grammar of the language for the compiler parser. To implement it 
correctly, we should understand the Frege grammar and how its different 
parts relate to the actual features of the language. 

In this section, we are going to describe certain parts of the Frege 
grammar, show what actual features they correspond to and how we 
transformed them into the MPS concepts. A complete analysis would far 
exceed the scope of this text, so we will focus only on the most important or 
otherwise interesting parts we had to deal with.  

The section focuses mainly on Frege grammar rules and how they are 
reflected on structure aspect of the IDE. Nonterminal symbols usually 
correlate to individual concepts in MPS, but it is not the one-to-one 
relationship. On the other hand, terminal symbols only rarely need to be 
represented by individual MPS concepts and are mostly only a part of the 
editor aspect. This section takes a look at certain Frege grammar rules, 
describes their high-level meaning and shows implementation of the related 
concepts from their structure aspect in MPS. 

During the analysis, we used materials from Frege official website, namely 
Frege grammar used in the official Frege compiler and the language reference. 
The resources are also provided in the attachments. 

The grammar uses mainly the EBNF (extended Backus-Naur form) 
notation, which we often refer to in this work. Explanation of the notation is 
provided below.  

3.2.1 Notation Description 

Throughout the Section 3.2, we often use EBNF notation to describe the 
grammar of certain features of the Frege language. In this section, we briefly 
describe the notation and explain certain parts. 

Grammar of most programming languages is described with rules by 
which can one replace a nonterminal symbol for a sequence of terminal and 
nonterminal symbols. For instance, a program in many languages consists of 
series of statements separated by a semicolon. A rule describing this is 
provided below: 

 
statements ::= statement ';' statements | statement 
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The example above states, that the nonterminal symbol statements may 

be replaced for any number of nonterminal symbols statement separated by 
the terminal symbol semicolon ;, but at least one statement has to be 
present. 

We use a convention that terminal symbols are surrounded with 
apostrophes, such as the semicolon symbol ';' in the example above. If there 
are several options on how to replace a nonterminal symbol, the options are 
separated with the vertical line symbol |. Additionally, we use these regular 
expression symbols to express certain rules: 

 token*: symbol token repeats in a sequence any number of times 

 token+: symbol token repeats in a sequence at least once 

 token?: symbol token may or may not be present 

 ( … ): symbols inside the brackets are treated as one 

It should be noted that in many cases we try to simplify the grammar 
and omit the irrelevant parts not included in the final project. This is done 
for clarity and better readability of the corresponding grammar rules. If a 
major part is omitted, it is mentioned explicitly. 

3.2.2 Program Structure 

We start defining MPS concepts from the root level. A root concept 
represents a single document in MPS - a module in Frege. 

A high level view of the module definition is described by the following 
rule: 

 
module ::= moduleclause (';' definitions | 'where' '{' definitions '}') 
 

In Frege code, the places where a proper indentation is required may be 
replaced by usage of curly brackets { and } and a semicolon ;. Consider the 
following example: 

 
describeListWhere xs = "The list is " ++ what xs 
   where  
      what [] = "empty."  
      what [x] = "a singleton list."  
      what ys = "a longer list."  
 

The example may be rewritten in the following way: 
 
describeListWhere xs = "The list is " ++ what xs where { what [] = 
"empty."; what [x] = "a singleton list."; what ys = "a longer list." } 
 

In most of the compiler implementations, the parser works with the 
second variant, while most of the Haskell and Frege programmers use the 
style with indentation, which we have actually stuck to in this work. The 
process of converting the first variant to the second is normally done during 
the lexical analysis.  
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Knowing this, we will demonstrate the module grammar rule on the 
example from Section 2.1. After we define the module and its qualified name, 
we may or may not use the keyword where, which only visually denotes the 
separation from the rest of the program. After that the module is just a series 
of definitions: 

1. Part: moduleclause 'where'  

(We decided to use the variant with the where keyword in Frege-IDE. 
moduleclause symbol is usually translated to string module followed by the 
user-entered qualified name, and so on.) 
 
module Hello where 
 
 

2. Part: '{' definitions '}' 

definitions ::= definition (';' definition)* ';'? 
 

(The rule above states that definitions are a series of definition 
symbols separated by the colon symbol, which is translated from separation 
of the definitions by creating new lines during the lexical analysis. There has 
to be at least one definition in a module.) 
 
greeting friend = "Hello, " ++ friend ++ "!" 
 
main args = do 
    println (greeting "World") 

 

 

The implementation of the concept representing the single module in 
Frege is described in the later subsections, as it is important to look on the 
symbol definition first. 

3.2.3 Definitions 

A definition in the Frege grammar is a substitute for one of the following 
language concepts:  

 Import declaration: states, what is to be imported into the current 
module. 

 Fixity: specifies associativity and precedence of an infix operator. 

 Type declaration: declares a new type synonym. 

 Data declaration: allows to create a new custom data type. 

 Class declaration: omitted in this work. 

 Instance declaration: omitted in this work. 

 Local definition: covers function definitions and type annotations. 

We have mentioned that it is a good practice to include the import 
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statements in the top of a module definition before any other statements. We 
can enforce this by not following the exact Frege grammar, but rather 
implement our own version of the module grammar rule. It will have to be a 
root concept responsible for the overall program structure with the following 
children: 

 module: corresponds to the moduleclause symbol from the previous 
section. Represents a name of the module together with additional 
specifications that usually go onto the first line of a Frege program. 

 import: corresponds to the import statements, which are part of the 
definition rule. They have to be separated from the rest of the 
definitions to enforce their placement at the top of the program. Import 
statements are described in more detail in the following section. 

 definitions: represents the rest of the statements that are part of the 
definition rule. 

A possible implementation of the concept from the structure aspect view 
is depicted on Figure 3.1. The corresponding root concept is named Skeleton. 
 

 
Figure 3.1: Structure aspect for the Skeleton concept in Frege-IDE 

3.2.4 Import Statements 

According to the Frege reference, the following rules are associated with 
the import statements: 
 
import ::= 'import' packagename ('as'? namespace)? 'public'? importlist? 
 
importlist ::= 'hiding'? '(' (importitem (', ' importitem)*)? ')' 
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The import rule represents the import statement as it was described in 
Section 2.9. For instance, the relations between the different parts of the rule 
are described on the following example: 
 

import mps.frege.ExampleTree as ET (Tree(Nil), ->>, traverse) 
… 
 

import  ~  'import' 

mps.frege.ExampleTree  ~  packagename 

as ET  ~  ('as'? namespace)? 

(Tree(Nil), ->>, traverse)  ~  importlist? 
 

Unlike in the official Frege compiler implementation, we did not include 
the visibility (public keyword) and aliasing of the imported items in the final 
work (however, aliasing of the imported module was included). 

The importitem symbol represents a function, operator, type or a data 
type, which is to be imported into the current namespace. The rule from the 
official reference is as follows: 
 
importitem ::= VARID  
               | OPERATOR  
               | CONID ('(' (member (',' member)*)? ')')? 

 

The nonterminal symbols from the rule above are referenced in this work 
several times. The distinction is as follows: 

 VARID: represents identifiers beginning with the lowercase symbol (a-z) or 
with the underscore symbol. It is used to describe names of functions, 
variables, type variables, etc. 

 CONID: represents identifiers beginning with the uppercase symbol (A-Z). 
Describes names of types, data types, constructors, etc. 

 OPERATOR: it is used to describe the sequence of symbols an infix operator 
can consist of. The available symbols are mentioned in Section 2.4. 

The member enumeration described by the third variant in the 
importitem rule above also allows to enumerate constructors associated with 
a specific data type. Only the constructors enumerated are to be imported 
into the current namespace. An example of such an import declaration is as 
follows: 

 
import frege.example.DaysExample as DE (Days(Monday, Tuesday)) 

 
The example above is from Section 2.9 and imports the data type Days 

into the current namespace together with its constructors Monday and 
Tuesday. Rest of the constructors from the data type need to be referenced 
using their qualified names. 

To implement the import statements in Frege-IDE, we can mostly follow 
the official grammar. We create the concept Import with the three main 
parts: 

 Name, which references an existing module’s name. 
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 Optional aliasing part of the import statement (clause as). 

 Optional list of imported items into the current namespace. 

An example of such implementation is captured in Figure 3.2. Note that 
terminal symbol import is not a part of the structure aspect of the 
corresponding Import concept, but rather of its editor. The terminal symbols 
usually do not affect the structure of the AST in any way and only affect its 
visual representation. 

Additionally, we set the concept’s alias to import. This tells MPS to 
create an instance of the concept whenever the user types the string import 
(the set alias) in the correct places of the code.   

 
Figure 3.2: Structure aspect of the Import concept in Frege-IDE 

 
In Figure 3.2., the implementation of the Import concept consists of the 

children concepts ImportAs and ImportItems. The concept ImportAs wraps 
the ('as'? namespace)? part of the import rule, whereas ImportItems relates 
to the importlist symbol. 

The reference to Module concept correlates to the packagename symbol of 
the import rule. This tells MPS that we will allow only importing of such 
modules that exist and are visible to the current module in Frege-IDE 
(however, this means we will not be able to import modules and libraries 
from external sources made outside the Frege-IDE). 

As we have mentioned, the concept ImportItems correlates to the 
importlist nonterminal symbol. In the Frege-IDE implementation, the 
concept simply contains an optional child of the concept ImportHiding, which 
represents the optional hiding keyword, and [0..n] children of the concept 
ImportItem. 

ImportItem represents one of the three main types of identifiers. In MPS, 
however, we want to take the advantage of the references to allow the import 
only of the existing items from the corresponding module that is being 
imported. From the high-level point of view, we may import only one of the 
following types of items: 

 Functions 

 Operators 
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 Type synonyms 

 Data types 

 Data type constructors 

The idea is to represent the import item with an abstract concept and 
then to create concrete concepts for each type of the import items. The 
corresponding abstract concept in Frege-IDE is the already mentioned 
ImportItem. The concrete concepts are as follows: 

 IIFunction for importing functions 

 IIOperator for importing operators 

 IIType for importing type synonyms and data types 

 IIConstructor for importing constructors 

Why is it enough to create only one concept as a substitute for importing 
both type synonyms and data types? The reason is the grammar - there is 
basically no syntactical difference between the two since they both define a 
type. Thus, where there is the former, there can also be the latter. 

Each of the four concepts needs to contain a reference to the language 
construct it represents. Since the language constructs are referred from 
multiple places in the Frege grammar, the implementation is best solved by 
using smart references. As a reminder, the smart reference is a concept that 
contains only a single reference. In the case of the Frege language, the four 
mentioned language constructs have to be separated - for each one we need to 
create a new smart reference. 

Let us take for example the import item IIType. It may represent a data 
type and for this reason, it must contain an optional member enumeration list 
we named IITConstructorList. The type name it references is enwrapped 
inside a new smart reference concept called TypeReference. The 
implementation of the IIType concept in the structure aspect is depicted on 
Figure 3.3. 

 
Figure 3.3: Structure aspect of the concept IIType in Frege-IDE 

 
The implementation of IITConstructorList concept is to a greater extent 
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similar to the implementation of the ImportItems concept, since they both 
represent a sequence of members enclosed within brackets, hence we will not 
describe it. 

TypeReference concept is a smart reference to a type name. Both type 
synonym and data type declaration are named by the CONID variant of the 
identifier in Frege, which means their names need to begin with an uppercase 
letter. The two concepts representing the declarations then need to contain 
the same type of child to represent their name to be referenceable from the 
TypeReference concept. Figure 3.4 shows the structure aspect of the smart 
reference concept TypeReference. 

 

 
Figure 3.4: Structure aspect of the concept TypeReference in Frege-IDE 

 
Concepts Data representing the data type declaration and concept Type 

representing the type synonym declaration are depicted from their structure 
aspect in Frege-IDE on Figures 3.5 and 3.6. Their name is represented by a 
child of the same concept TypeName, which is used in the smart reference 
TypeReference. 

 

 
Figure 3.5: Structure aspect of the concept Data representing the data type 
declaration in Frege-IDE 
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We have not yet explained how to allow referencing only the import items 

actually corresponding to the Frege module being imported. The feature is 
more advanced and cannot be solved simply by defining the structure of 
possible ASTs. It is related to the scopes in constraints aspect in MPS and we 
describe it in Section 3.4. 

 

 
Figure 3.6: Structure aspect of the concept Type representing a type synonym 
declaration in Frege-IDE 

3.2.5 Function Definition 

Function definition covers the area of defining new functions, operators 
and certain special expressions for defining constants. 

On its highest level, we could divide the function definition into two 
parts: left and right hand side. When the user is providing a definition, he or 
she always specifies a pattern and an expression corresponding to that 
pattern. To demonstrate, let us consider the following example: 
 
getTop (x:xs) = x 
 

Here, the single statement defines a new function getTop, which returns 
the first item of a non-empty list. In this case, the left hand side consists of 
the string getTop (x:xs), which describes the name of the function and its 
arguments. The part (x:xs) is usually referred to as pattern. On the right 
hand side, we have the simple expression x referencing the argument from the 
pattern.  

A slightly different example is the definition of the signum function as 
provided below: 
 
sign x             
   | x < 0 = (- 1) 
   | x > 0 = 1     
   | otherwise = 0 
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Similarly to the previous case, the string sign x is considered to be the 
left hand side of the function sign, whereas the rest of the definition is the 
right hand side. This corresponds to the actual Frege grammar, where the 
high-level function pattern binding is defined as follows: 
 
binding ::= lhs rhs 
 
 
rhs ::= '=' expression ('where' declarations)?  
            | guardedExpressions ('where' declarations)? 

 
(Symbol lhs stands for the ‘left hand side’ and rhs for the ‘right hand 

side’.) 

3.2.5.1 Left Hand Side 

There are three main ways of defining a function: 

 Standard definition, e.g. multiply x y = x * y 

 Operator definition, e.g. x :-: y = x + y + 1 

 Any pattern definition, e.g.: (a, b, c) = (1, 2, 3) 

The grammar for the left hand side is associated with the following 
grammar rules: 
  
lhs ::= VARID patternTerm* 
        | patternTerm OPERATOR patternTerm 
        | pattern 
 
pattern ::= listPattern 
            | patternTerm 
 
listPattern ::= patternTerm ':' listPattern 
                | patternTerm 
 

patternTerm ::= VARID (1) 
                | '_' (2) 
                | literal (3) 
                | '[' (pattern (',' pattern)*)? ']' (4) 
                | '(' (pattern (',' pattern)*)? ')' (5) 
                | CONID pattern* (6) 
                                   

The grammar rules above are simplified due to the Frege-IDE not 
supporting certain features, such as word-like operators (e.g. x `plus` y = x 
+ y) or argument capture, while other changes were made for clarity.  

From the rules above it is clear that the lhs symbol corresponds to the 
three ways of the function definition mentioned earlier. patternTerm symbol 
allows us to do one of the following: 

(1) Define a new variable: factorial n = n * factorial (n - 1)  

(2) Use the wildcard symbol _: charToName _ = "No Name"

(3) Use a literal: factorial 0 = 1
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(4) Use a list: getTop [] = "No elements" 

(5) Use a tuple or surround a single pattern inside the brackets:  
second (_, x, _) = x

(6) Apply a data type constructor: surface (Circle _ r) = pi * sqr r 

Additionally, a list may be matched also by creating a pattern by using 
the grammar rule for listPattern symbol. The example is as follows: 
 

getTop (x:xs) = x 
 

The part representing the list (x:xs) can be created by using the 
corresponding rule. Additionally, any number of items at the beginning of the 
list may be specified. The following example demonstrates the usage on a 
function, which returns a first item of a given list. The given list, however, 
must contain at least three items, otherwise it will not be matched: 
 
getTop (item1 : item2 : item3 : tail) = item1 
 

In the final work we made several simplifications to ease us the 
implementation of the typesystem and editor aspect. First, we require each 
AST node corresponding to the listPattern symbol to be enclosed within 
brackets. This bears no semantic restrictions and is an actually recommended 
practice, because it makes the code easier to read. Second, pattern consisting 
of empty brackets makes no sense in the restricted set of features we provide, 
therefore it was not included either. 

3.2.5.2 Right Hand Side 

The right hand side of the function definition can be either a single 
expression optionally followed by the where block, or a series of guards 
optionally followed by the where block. This can be seen on the grammar rule 
for the symbol rhs. 

where block consists of the function definitions and type annotations. 
These are described later in Section 3.2.6. 

Guards, in contrast to the single expression variant of the function 
definition, consist of at least two expressions and in their most simple form a 
grammar for them looks like this: 
 
guardedExpressions ::= ('{' guard '}')+ 
 
guard ::= '|' expression '=' expression 

3.2.5.3 Expressions 

The expression symbol consists of a series of binary expressions (infix 
operators with operands) and an optional type, or the forall construct. The 
rule defining the expression is as follows: 
 
expression ::= binex ('::' (forall | type))? 
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Even though the forall construct is linked to type declaration, it is 
a part of a more advanced feature in Frege and we have not included it. The 
type symbol, on the other hand, is described later in Section 3.2.6. 

binex symbol represents a series of operands separated by operators. In 
Frege-IDE, the concept representing the operands is named TopExpression, 
which corresponds to the symbol topex from the official Frege grammar. 
A single operand may take one of the following forms: 

 Case expression 

 Let expression 

 Conditional expression (if) 

 Lambda 

 A series of primary expressions separated by a whitespace 

Primary expressions are a subset of expressions that include terms, 
monads (omitted in this work) and a usage of (qualified) names, for instance 
application of imported functions or operators [9]. In Frege grammar, terms 
are literals, lists and tuples, or in other words, values. Additionally, bracketed 
expression is also a part of the primary expressions. 

The last point of the topex grammar rule also includes a usage only of a 
single primary expression. A single primary expression can act as an operand: 

 
six = 3 + 3 

 
However, for a series of primary expressions separated by a whitespace to 

be meaningful, it must be some kind of an application - an application of a 
function, operator, or the data type constructor. Let us consider the following 
function: 

 
six = max 4 (3 + 3) 
 

In the example above, max is part of the primary expressions. It is a name 
of a function that is visible in the current namespace. The number 4 is a 
literal, which is part of the terms. (3 + 3)is a bracketed expression. 
Together they form the application of the function max with the arguments 4 
and (3 + 3). 

A special case of the application is the application of the bracketed 
expression. In the following example, we enclose the expression max 4 with 
brackets, which is the currying technique described in Section 2.5. What 
remains is the function accepting a single argument, to which we provide the 
literal 6: 

 
six = (max 4) 6 
 

Not every sequence of primary expressions is an application. For instance, 
a sequence of literals makes no sense when standing alone: 
 
invalid = 1 2 3 4 5 6 7 
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We have modified the grammar in Frege-IDE to better distinguish 
between the different forms of the applications and to allow only the valid 
applications to occur in the program. As such, the expression from the 
example above is impossible to type in Frege-IDE. This additionally helped 
us in the typesystem aspect, where the corresponding type-checking 
algorithms were easier to implement. 

Figure 3.7 shows a hierarchy of concepts in Frege-IDE, starting from the 
TopExpression concept in the corresponding ‘inheritance tree’. As we have 
already described, the TopExpressionmay take several different forms, such 
as the case expression (conceptCase) or the conditional expression (concept 
IfThenElse). There is no direct variant corresponding to the series of primary 
expressions part of the topex grammar rule. Instead we introduce two custom 
concepts, ApplicationEntity and GenericApplication.  

GenericApplication represents any kind of application, for instance, 
application of a function, operator, data type constructor and so on. From a 
certain point of view, the concept does correspond to the series of primary 
expressions, but only partially. For cases when we have a single literal in an 
expression, an instance of the Literal concept is used in the corresponding 
AST instead. 

ApplicationEntity represents the entity we are applying in the 
GenericApplication concept. It may be a function, operator, but also a 
bracketed expression. 

 
Figure 3.7: Hierarchy of concepts starting from the TopExpression concept in 
Frege-IDE 
 

In Section 2.4, we have already mentioned that the applications have 
higher precedence, than any operator. Now, as we have described the 
grammar of the expressions in Frege, it is clear they are syntactically bound 
to act that way.  
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3.2.5.4 Grouped Representation 

A problem with the pattern matching in Frege is that it may seem like we 
are providing several definitions for the same function. Consider the example: 

 
getTop [] = "No elements" 
getTop (x:xs) = x 
 

In the example above, for different versions of input arguments we are 
specifying different bodies of the same function. However, in Frege-IDE, we 
need to reference the existing function name from multiple places, such as 
import declarations, or the function application. We need to reference an 
existing node in the corresponding AST representing the current program. If 
we were to reference the getTop function, for instance, from a different 
function, which one of the two AST nodes would we have to point to? 
Understandably, the answer should be ‘all of them’, as they all define the 
same function. This can be achieved in MPS by creating a new concept, 
which wraps all of the function definitions that define the same entity.  

The ‘grouping’ concept should contain a single child, which represents the 
function’s name, and [1..n] children representing different variants of the 
function’s implementation for its different patterns. The patterns also need to 
be adjusted so they do not introduce their custom function names, but rather 
reference the single child of the ‘grouping’ concept representing the function 
name. In Frege-IDE, the concept representing the grouped definition is called 
FDGrouped. 

Additionally, the grouped representation has to be created also for the 
operator definitions. However, in the third case of the grammar rule for the 
lhs symbol, there is no grouping necessary – only constant functions can be 
defined this way and providing different pattern matchers for the constant 
functions makes little to no sense.  

There was also a different way of dealing with the problem, which 
involved the type annotation to be the AST node which is referenced, instead 
of the grouped function definition. While this is definitely also an option, in 
Frege we can have a function without the type annotation whereas the other 
way around we would get an error during the compilation. We believe the 
approach we took and described in this section is more appropriate and 
actually conforms to the Frege specification, which would not be the case in 
the latter way. 

3.2.6 Types 

Types are a vital part of the Frege grammar. They play a role in the 
definition of the type annotation, or when declaring custom data types. 

There are several ‘native’ types, which translate directly to the types from 
the JVM. These include: 

 Bool 

 Char  
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 String  

 Numeric types (in this work, only Int and Double are supported) 

These types are part of the Frege-Prelude library and are implicitly 
imported to all Frege modules.  

Additional types we included are: 

 Tuple

 List 

 Custom algebraic data types 

 Function types 

Types connected to the monads, exceptions, and the data types that are 
part of the Frege-Prelude library were not included in this work. 

Before we describe the Frege types and how we implemented them in 
Frege-IDE, it is important to note that by omitting classes and instances, we 
lose an important aspect of the Frege language, which is called parametric 
polymorphism. This feature allows to apply certain functions and operators 
on a selected class of types, but not all of them. Consider, for instance, a 
built-in operator +. It allows to add any numeric values together. Its type 
annotation would look like this: 

 
(+) :: a -> a -> a 
 

The problem is to specify that the type variable a represents a numeric 
type. This is, unfortunately, not possible without Frege classes and instances. 
We omitted the feature due to the size and scope of the work and leave it as 
a possible future extension of Frege-IDE. 

Without the type classes, the grammar describing the Frege types is as 
follows: 
 
type ::= (typeApplication '->')* typeApplication 
 
typeApplication ::= simpleType+ 
 

simpleType ::= VARID (1) 
               | CONID (2) 
               | '(' type ')' (3) 
               | '(' type (',' type)+ ')' (4) 
               | '[' type ']' (5) 
 

On the highest level, we specify the function type, which corresponds to 
the symbol type. Each part of the function type, representing either an 
argument or the return type, consists of one or more simpleType symbols, 
which is denoted by the typeApplication grammar rule. As the name 
suggests, this rule is responsible for the application of the type on a type 
variable. Consider, for example, the data type Maybe, which consists of a 
single type variable. A type of the function getTopIntList from Section 2.3.3 
looks as follows: 
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data Maybe a = Just a | Nothing 
… 

 
getTopIntList :: [Int] -> Maybe Int 
 

In the example above, the part Maybe Int is made possible by the 
application of the typeApplication grammar rule.  

The simpleType symbol denotes one of the following options: 

(1) Usage of a type variable: (+) :: a -> a -> a 

(2) Usage of a type name: data type names, together with the built-in 
types, such as Int, or String, are part of the grammar rule. 
getTopIntList :: [Int] -> Maybe Int 

(3) Type inside brackets: semantically the type of the expression is the 
same, as the type inside the brackets. This allows, for instance, to 
specify a function type argument of a function, as depicted in Section 
2.3.5: map :: (Int -> Int) -> [Int] -> [Int] 

(4) Tuple type: second :: (a, b, c) -> b 

(5) List type: getTop :: [a] -> a 

Types are used in several places throughout the Frege grammar, but we 
will mention just two main representatives: type annotation and declaration 
of new data types. 

In type annotation, we provide a name of the function or an operator we 
want to specify the type for. It is even possible to specify the type for several 
items at once, as demonstrated by the following example: 

 
(+), (-), (*) :: Double -> Double -> Double 
 

The right hand side of the type annotation Double -> Double -> Double 
corresponds to the grammar described in this section. It is important here to 
note the possibility to declare new type variables: 

 
map :: (a -> b) -> [a] -> [b] 
 

This is an important distinction from the data type declaration, where on 
the right hand side, only the type variables declared on the left hand side can 
be used. Consider the following example: 
 
data Tree a = Nil | Node a (Tree a) (Tree a) 

 

The left hand side of the data type declaration declares a new type 
variable a. This variable then can be used on the right hand side, where 
constructors Nil and Node are defined.  

We want to incorporate the mentioned behavior by using references. On 
the right hand side of the data type declaration, an instance of the concept 
containing a reference to an existing type variable has to be used. In the type 
annotation’s right hand side, an instance of the concept containing a property 
has to be used instead. The property, in this case, represents the new type 
variable’s name. 
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To implement the types for data type declarations and type annotations, 
we can take one of these two main approaches: 

 We can create two sets of concepts for types, each with a different 
implementation of type variable usage. In the first set, only the 
declaration of the new type variables would be possible. In the second, 
type variables could be only referenced. 

 We can implement two different concepts that inherit from the concept 
corresponding to the simpleType symbol: one for creating type variables 
and one for referencing them. Using the constraints aspect in MPS, we 
are able to allow or restrict the concepts instances in specific places of the 
AST. 

We have chosen the second approach, because it is less time-consuming to 
implement and poses fewer problems. First, it is syntactically more 
appropriate as the two different sets of concepts would mean there is a 
different grammar for the types in the data type declaration and in the type 
annotation. This is not true as the type variables are simply checked during 
semantic analysis. Additionally, this solution is easier to maintain if certain 
changes are to be incorporated. 

The remaining part of the types are the built-in native types. In this case, 
there are also two main implementation approaches: 

 We can ‘hard-code’ the native types into the Frege-IDE, creating a 
concept inheriting from simpleType for each of the native types 
mentioned at the beginning of this section. 

 We can define the types using the data type declaration statements inside 
a new module. This module will be implicitly imported to all of the other 
modules a user will create, as in the case of Frege-Prelude library.  

While the second option may seem easier to maintain, there are actual 
benefits to the first approach, which have to do with the typesystem aspect of 
MPS. Specifically, it would be especially difficult to link the type names to 
the types of the corresponding literals in case of the latter option. Hence, we 
opted for the first approach. 

3.3 Editor Aspect 

The process of creating the editor for Frege-IDE involves defining visual 
appearance for each AST node and providing the user with a way to 
manipulate the AST in a user-friendly manner. 

As mentioned before, MPS is a projectional editor and thus it is not 
possible for the user to work with the code in the text form directly. Every 
function, name, variable, type etc. is in some way associated with a specific 
AST node which has to be presented to the user in some way. 

In this section, we show how the editor aspect in MPS allows us to tackle 
many different challenges we came across when implementing the user 
interface part of our IDE. We also present a couple of non-trivial problems we 
had to deal with, and what approach we took to solve them. 
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3.3.1 Visual Appearance of AST Nodes 

Appearance of the most of the concepts is rather straightforward to 
implement. We have already analyzed and implemented the structure aspect 
in the previous section, so it is clearly visible which concept is connected to 
what language feature. Frege is the text-based programming language, thus 
creating concept editors involves only specifying the correct set of strings for 
constant editor cells and the right set of other types of cells mentioned in 
Section 1.3. 

We will demonstrate the implementation of the concept editors on the 
example for the concept associated with the data type declarations. The 
corresponding concept Data inherits from the Definition concept, which was 
introduced in Section 3.2.3. The structure aspect of the Data concept is 
depicted on Figures 3.5 and 3.8. Its concept editor is depicted on Figure 3.9.  

 

 
Figure 3.8: Structure aspect of the Data concept in Frege-IDE 

 

 
Figure 3.9: Visual representation of the AST for the data type declaration 
(top) together with the Data concept editor (bottom) 
 

In Frege, the data type declaration has to begin with the keyword data. 
In our editor, it is a constant editor cell with the string data. We have 
additionally applied editor styles to denote the keyword by changing its color 
and making the text bold. The keyword is then followed by the data type’s 
name. As mentioned in the previous section, the name must not be a 
property, but rather a child node due to the implementation of the reference 
concept TypeReference. In the editor, we simply use the child editor cell 
pointing to the concept editor of the TypeName concept. Type variable 
declarations and the set of constructors are both lists of child nodes. For 
these we had to use the (horizontal) child collection editor cell. They again, 
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as in the case of the data type’s name, refer to their corresponding concept 
editors, which are used when editing their values. The delimiter for the set of 
constructors is set to the vertical bar symbol |, which is added between the 
child editor cells automatically. 

 The editor implementation for the concept representing the data type 
constructor is depicted on Figure 3.10. The data type constructor concept 
DataConstructor consists of the name and an arbitrary amount of type nodes 
to depict the type of values the constructor accepts. On the example for the 
Tree data type, the constructor Node accepts the first argument of type a set 
by the corresponding type variable a from the left hand side of the data type 
declaration. The subsequent two arguments are of types Tree a, therefore 
recursively pointing to the type Tree with the same type variable a. The 
editor therefore consists of the child editor cells for the constructor’s name 
and for the collection of type nodes. 
 

 
Figure 3.10: Visual representation of the AST for the data type constructor 
(top) together with the DataConstructor concept editor (bottom) 

3.3.2 Side Transformation Menus 

Side transformations allow the language designer to change the concrete 
AST in a specific manner when the user of that language writes a certain text 
either right or left of the given editor cell.  

Let us take for example the list expression in the right hand side of the 
function definition. We have mentioned there are three main ways to define 
the list: 

 By enumerating elements: ['a', 'b', 'c'] 

 By specifying a range of elements: ['a', 'c' .. 'z'] 

 Using the list comprehension: [x * y | x <- [1..5], y <- [3..7]] 

For each of the three methods there is a specific concept associated with 
the list definition. Now we want to enable a seamless transformation from the 
first to the second method when the user enters .. right of the last element 
in the list. To do that, we need to know how both of the concepts are 
implemented. 

Enumeration list concept is a simple term that contains arbitrary amount 
of children of the Expression concept. Its editor consists of two constant 
editor cells representing square brackets [ and ], and the horizontal collection 
cell representing the children items of the list.  

The range list concept is based on the enumeration list, but it has to have 
at least one child left of the .. symbol. Additionally it may or may not 
contain a child of the Expression concept for specifying the upper bound of 
the range. Figure 3.11 represents the editor implementation for the range list 
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concept. The upper bound child cell upTo is preceded by the question mark 
symbol to denote that the editor cell is to be displayed only if the upper 
bound is actually specified.  

 

 
Figure 3.11: Editor for the concept representing the range list expression 

 

The implementation of the transformation is rather straightforward and 
follows a similar pattern as in the example described in Section 1.3.2. We set 
the default transformation menu for the concept associated with the list item 
(Expression concept), as the only editor cells that can trigger an action are 
constant, property and referent cells (list item is the child editor cell). We set 
the action’s properties as follows: 

 Text triggering the transformation should be set to .. 

 The Can execute part should be left to <always> to prevent the other 
text patterns from triggering the current transformation menu. 

 In the Execute part we specify that the new instance of the range list 
concept should copy all of the items from the former instance of the 
enumeration list concept. Then it should replace the former instance 
completely. The items that are copied are the ones that will go before the 
.. symbol. In most cases the user actually wants to specify the upper 
bound of the range list as well, which is why we then create a new 
instance of the Expression concept and set the focus on the new node. 

 

 
Figure 3.12: Default transformation menu for the Expression concept 
 
The problem with the current approach is that the concept that triggers 

the transformation is Expression, which is a child of several different 
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concepts, not all of which are list enumeration concepts. We need to include 
an additional condition where we check that the current Expression node is 
indeed a child of the list enumeration concept and only then allow the action 
to be executed. Figure 3.12 shows the implementation of the default 
transformation menu for the Expression concept. The described action is 
enwrapped inside the action group which checks whether the parent of the 
current Expression node is an instance of the list enumeration concept. In 
the Execute part, we replace the parent AST node, which is the actual list 
enumeration, for the new instance of the range list concept. 

3.3.3 Transformation Menu Inclusion Pattern 

As described in the previous section, the child editor cells cannot trigger 
editor actions and therefore the actions are defined on the corresponding 
child concepts instead. However, certain concepts, such as the Expression, 
are children of several different concepts. The individual actions have to be 
restricted so that they are applicable only for the relevant parents. 

There is, however, another problem with the editor related to the parent-
child relationship. In the previous section we described how to transform the 
list enumeration to the list range upon entering the .. symbol right of the 
Expression concept. For the sake of simplicity, let us assume the 
transformation menu was actually defined for the TopExpression concept. We 
want the transformation to also work for the concept GenericApplication 
which is associated with the function application and inherits from the 
TopExpression concept. Consider the following example: 

                                               
ff = [1, 2, getTop [3 .. 100]] 
 

The expression getTop [3 .. 100] is a text representation of an instance 
of the GenericApplication concept.  Upon entering the .. symbol right of 
the [1 .. 100] expression, the user might expect the list would be 
transformed to the list range, as demonstrated by the following example: 

 
ff = [1, 2, getTop [3 .. 100] .. 7] 
 

Unfortunately, this is not the implicit behavior. First, the 
GenericApplication has to have its own default transformation menu 
defined where it includes the transformation menu for the TopExpression 
concept. The implementation is illustrated on Figure 3.13. 

 

 
Figure 3.13: Default transformation menu for the GenericApplication 
concept 
 

The GenericApplication concept contains the following children: 
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 A single child of the ApplicationEntity concept, which specifies what is 
to be applied (e.g. a function, operator or a bracketed expression). 

 Arbitrary amount of children of the PrimaryExpression concept, which 
represent the arguments passed to the application entity. 

The GenericApplication editor consists solely of the child editor cells, as 
depicted in Figure 3.14. As explained in the Section 1.3.2, the transformation 
therefore cannot be triggered by the GenericApplication, since its editor 
does not contain the necessary type of editor cells. Instead the transformation 
menu has to be defined also for all of its children ApplicationEntity and 
PrimaryExpression concepts.  

 

 
Figure 3.14: Concept editor for the GenericApplication concept 

 

The default transformation menu for the GenericApplication concept 
should be triggered only if the specific text pattern is written right of the 
whole node. An instance of the GenericApplication concept may contain 
none, single, or several children of the PrimaryExpression concept, which 
means either the transformation menu should be triggered by the last 
PrimaryExpression child node, or by the single ApplicationEntity child 
node if the application happens not to contain any arguments at all (i.e. there 
are no PrimaryExpression children nodes inside the corresponding 
GenericApplication node). 

We, therefore, create the default transformation menu for both of the 
concepts ApplicationEntity and PrimaryExpression. We enwrap the editor 
action inside the group, where we check for the following conditions: 

 The parent of the current AST node has to be an instance of the 
GenericApplication concept. 

 For the ApplicationEntity default transformation menu, the parent AST 
node must not contain any children of the PrimaryExpression concept.  

 For the PrimaryExpression default transformation menu, the parent AST 
node’s last child of the PrimaryExpression concept must be the current 
AST node. 

The editor action is a simple include action, where we specify that the 
transformation menu to be included is the default transformation menu from 
the GenericApplication concept and that it applies to the parent AST node.  

The implementation for the PrimaryExpression concept is depicted in 
Figure 3.15 (a similar approach would be used also for the 
ApplicationEntity concept). Since the PrimaryExpression concept also 
inherits from the TopExpression concept, it should include its default menu 
as well.  
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Figure 3.15: Default transformation menu for the PrimaryExpression concept 
 

Understandably, there are also several concepts that inherit from the 
PrimaryExpression, hence they need to include the default transformation 
menu for the PrimaryExpression concept too. The concepts which editors 
additionally contain the child editor cells also need to follow the similar 
approach we described in this section. 

The main idea behind the pattern is therefore not to define the 
transformation menus on the concepts which can actually trigger the action 
(such as IntegerValue representing an integer literal which has the necessary 
type of editor cell), but rather on the higher-level, possibly abstract, concepts 
(such as TopExpression) and to include whatever transformation menus they 
might have in their child concepts and descendants (descendant in terms of 
the concept inheritance). We used this pattern throughout most of the 
implementation of the transformation menus, since a direct implementation 
would be very difficult to maintain and prone to many mistakes. 

3.3.4 Substitute Menu Actions 

We use substitute actions whenever we need to allow the user to 
substitute certain AST nodes for another nodes. In the most cases we need to 
allow a seamless substitution of an abstract concept instance to a concrete 
one.  

We will now take a look on how literals work in Frege-IDE and 
demonstrate the substitute menu actions on them. 

Literal is an abstract concept which inherits from the Term concept that 
represents literals, lists and tuples. Literal has the following sub-concepts: 

 StringValue: contains a single property of the string type. The value is 
enclosed with quotes. 

 CharValue: represents a single character. The property is of the custom 
constrained type which allows only a single character to be typed, 
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otherwise the node will not be validated correctly. Similarly to the 
StringValue concept, in the editor the value is enclosed with apostrophes. 

 BooleanValue: it is an abstract concept. The editor consists of the single 
cell pointing to the content of the concept’s alias. The two concrete 
concepts TrueValue and FalseValue have then aliases set to true and 
false that represents their actual value. 

 IntegerValue: it is a concept with a single property. Its editor contains 
the single property editor cell. 

 DoubleValue: similar to the IntegerValue, the concept contains only a 
single property. However, the property is of a different type to allow the 
floating-point numeric values to be typed instead of only the integer ones. 

Let us assume a situation where there is a focus on an abstract 
Expression AST node. The node should be replaced by an instance of a 
‘more concrete’ Literal sub-concept based on the value a user enters. We can 
think of the following scenarios: 

 If a user is about to enter a string value or a character, he or she would 
most likely enter the corresponding apostrophe or the quote symbol 
before entering the inner content in the plain text editor. This means that 
quotation mark can serve as a trigger for entering string values while the 
apostrophe symbol for entering character literals. This is done by 
declaring alias of the StringValue concept to the " symbol and ' for the 
CharValue concept. 

 Boolean values are entered by typing either true of false. The similar 
approach with the concept alias works therefore here as well, i.e. we set 
the alias of the TrueValue concept to true and the alias of the 
FalseValue concept to false. 

 When an integer value is entered, the node should be substituted for an 
instance of the IntegerValue concept. To cover all possible integer values, 
a single value in the concept’s alias is not enough and thus the default 
substitute menu has to be created to handle the cases. We describe the 
process in Section 1.3.3 where we create the substitute menu for the 
Literal concept. We test the user-entered text for being an integer and if 
true, the abstract AST node is replaced by a new instance of the 
IntegerValue concept. 

 Double values are handled in a similar manner as the integer values. We 
create a new substitute menu action for the Literal concept and check 
whether the user-entered text is a double value (but not an integer value 
since an ambiguity would arise). If true, we replace the current node with 
the new instance of the DoubleValue concept. 

Figure 3.16 shows the implementation of the default substitute menu for 
the Literal concept. We only need to handle the two cases related to the 
concepts IntegerValue and DoubleValue.  
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Figure 3.16: Default substitute menu for the Literal concept 

3.3.5 Wrap Substitute Menu 

Wrap substitute menu is a special type of the substitution menu to be 
used when we need to populate the completion menu by instances of a 
different concept, than we will actually substitute the current AST node for. 

Section 1.3.3 demonstrates a usage of the wrap substitute menu on the 
concept PLiteral which is replaced in the corresponding completion menu by 
the relevant entries related to the Literal concept. PLiteral concept inherits 
from the PatternArgument concept, which is used in the representation of the 
left hand side of the function definition (corresponds to the patternTerm 
symbol which is described in Section 3.2.5.1). 

The Frege grammar tells us that the symbol literal may be created 
either by replacing the patternTerm symbol (part of the patterns of the 
function definition) or by replacing the term symbol (part of the expressions 
of the function definition). Since MPS does not allow the language designer 
to create a concept inheriting from multiple concepts at once, a workaround 
was used in the implementation of Frege-IDE. We created the concept 
PLiteral containing a single child - an instance of the Literal concept - and 
created a wrap substitute menu so that the PLiteral behaves similarly to the 
Literal concept. 

Figure 3.17 depicts the code completion menu for substituting a function 
argument in Frege-IDE which is an instance of the PatternArgument concept.  
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Figure 3.17: Completion menu for substituting a function argument in Frege-
IDE 

 
The completion menu on the example is, among others, now populated by 

the items discussed in Section 3.3.4 regarding the Literal concept (quote and 
apostrophe symbol, true and false). The items for creating instances for 
IntegerValue and DoubleValue concepts are not shown as they are 
automatically created upon typing the corresponding literal. The created 
instances are then automatically enwrapped inside the new instance of the 
PLiteral concept as implemented in the corresponding wrap substitute menu 
handler. 

On a side note, the Literal concept can now be a child of the PLiteral 
concept. According to the transformation menu inclusion pattern from 
Section 3.3.3, the default transformation menu for the Literal concept 
should now include the default menu intended for the PLiteral concept as 
well, otherwise certain transformation actions would not be applicable. 

3.3.6 Cell Action Map 

Side transformation menus allow us to transform a certain AST node to 
another when a specific text is written to the right or left of an editor cell. 
However, in some cases we may also want to put an event handler on a 
specific editor cell when it is selected, removed, or otherwise manipulated 
with. For these cases we use the cell action maps. 

In Frege-IDE, most of the scenarios, in which we have to use the cell 
action maps, are simply connected to the editor cell deletion. In Section 3.3.2 
we described side transformation menus in Frege-IDE and demonstrated, how 
we could allow the user to easily transform a list defined by enumeration to 
the ranged list. To allow the backwards transformation from the ranged list 
to the enumeration, we have to use the cell action map.  

The ranged list’s editor consists of constant cells representing the square 
brackets [ and ], the child cells representing the enumerated items on the 
left, the constant cell for the .. symbol and the child cell for the 
representation of the upper bound of the range. The user might expect to 
change the range list back to the enumeration upon removal of the .. editor 
cell. While this is not the implicit behavior, we can create a handler for the 
corresponding editor cell. 

Figure 3.18 shows the implementation of the cell action map for the 
aforementioned editor cell. The handler creates a new instance of the list 
enumeration concept, copies all of the items from the current list range 
(together with the upper bound if present) and replaces the current node 
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with the new instance. 
 

 
Figure 3.18: Cell action map for the editor cell representing the .. symbol in 
the list range concept 

3.3.7 Seamless Definitions 

Important aspect of Frege-IDE is a user-friendly editor. During the 
implementation we wanted to emulate the standard process of writing code in 
the plain text editor the most Frege users are used to. Since a program in 
Frege consists of a series of definitions, we wanted to focus on this part of the 
language and provide the best experience for typing new definitions in a 
Frege module. 

In Section 3.2.3 we have discussed what kind of definitions there are and 
which are supported in Frege-IDE. The subset includes the following: 

 Import declaration 

 Fixity 

 Type declaration 

 Data declaration 

 Local definition (function definition and type annotation) 

Except the type annotation and function definition, all of the above 
definitions begin with a certain keyword that makes them easily 
distinguishable, such as infix, type or data. Defining an alias inside those 
concepts’ structure aspect is enough to provide the user with a relatively 
user-friendly interface - for instance, upon typing data, MPS creates the 
instance of the corresponding data type declaration concept. However, type 
annotations and function definitions cannot be represented by a single 
keyword and require a careful analysis. We have made several observations, 
which will help us: 

 When the user begins the definition with the left square bracket symbol 
[, or a constructor’s name, or a literal, then it is clear he or she is 
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providing a function or an operator definition. Consider the following 
examples: 

◦ [a, b, c] = [1, 2, 3] 

◦ Just _ *** Nothing = Nothing 

◦ 1 +-+ x = x 

 When the user begins the definition with the left bracket symbol (, then 
the step is ambiguous and has two valid outcomes: 

◦ The user may be trying to annotate an operator. Upon typing any 
operator symbol right of the bracket symbol, a transformation 
menu action can transform the corresponding AST node to a type 
annotation instance. Example: (+-+) :: Int -> Int -> Int 

◦ Upon typing anything else from what is allowed to be inside the 
patterns, the definition is a function definition as demonstrated by 
the following examples: 

▪ (a, b) = (1, 2) 

▪ (1, c) = (1, 2) 

▪ ([a, b], c) = ([1, 2], 3) 

 When the user types a new identifier (excluding the keywords associated 
with other definitions), it is not yet clear whether the definition will be a 
type annotation, or a function definition. There must be an ambiguous 
step in the process represented by a special concept. The outcome is 
determined by one of the following cases: 

◦ If the identifier is followed by :: symbol, it is a type annotation. 
Example: idf :: Int -> Int -> Char 

◦ If the identifier is followed by a comma symbol, it is a type 
annotation, as the user is probably adding new items to collectively 
annotate. Example: idf1, idf2 :: Int -> Int -> Char 

◦ If the identifier is followed by an operator symbol, it is an operator 
definition. Example: idf1 -+- idf2 = idf1 * idf2 

◦ If the identifier is followed by the = symbol, it is either a constant 
function definition, or an operator definition. For example: 

▪ idf = "Hello, world!" (constant function definition) 

▪ idf1 =+= idf2 = 0 (=+= operator definition) 

◦ Upon typing anything else from the set of allowed symbols for the 
patterns, the user is most probably providing arguments to the 
function definition. Example: idf (a, b) [0] = [a .. b] 

The described observations form a rather complex decision tree, therefore 
we will describe the implementation only briefly. All definitions are concepts 
that inherit from the abstract Definition concept. We created the concept 
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FunctionDefinition which represents the step from the first observation (i.e. 
what we get upon typing either [ symbol, or a constructor’s name, or a 
literal). It is not the real function definition that also has to consist of the 
right hand side which is missing in this concept. Instead it is an ‘incomplete 
definition’, considered invalid until properly finished.  The 
FunctionDefinition concept is composed of a single child representing the 
pattern, which has its own editor actions that allow the node to be 
transformed to the final definition form. 

To allow the seamless substitution of the Definition node to the 
FunctionDefinition, we defined a wrap substitute menu for all of the three 
mentioned cases: 

 List pattern: the menu handler wraps the list pattern concept. Upon 
typing the input symbol [ which is normally a trigger for creating a list 
pattern instance,  the handler creates  a new instance of the 
FunctionDefinition concept instead and puts the new list pattern as its 
child. 

 PConstructor: the menu handler wraps the concept representing a 
constructor application in a pattern 

 PLiteral: the menu handler wraps the concept representing a literal in a 
pattern 

By creating the wrap substitute menus, whenever an instance of the 
Definition concept is expected, a user may instead use one of the three 
options mentioned above and the handler will automatically wrap the 
corresponding AST node into a new instance of the FunctionDefinition 
concept. Thus, typing, for example, the literal 7 on an empty line would 
result in creation of the instance of the FunctionDefinition concept.  

The case for the left bracket symbol ( was handled in a similar manner. 
We created a new concept representing the brackets, which are empty at first 
and are considered to be an ‘incomplete definition’. The right-side 
transformation menus associated with the left bracket then handle both of 
the possible outcomes mentioned in the second observation. The 
implementation is as follows: 

 We created two transformation menu actions associated with the editor 
cell representing the left bracket symbol. 

 The first action is triggered by typing any character from the set of 
allowed characters for custom operators (see Section 2.4). The menu 
handler transforms the current node into an instance of the type 
annotation concept. 

 Upon typing anything else, the node is to be transformed to an instance 
of the FunctionDefinition concept. 

The last observation is solved by creating a new concept and defining an 
appropriate substitute menu for the Definition concept to the new concept. 
The substitute action has to check the user-entered text for whether it 
actually can act as an identifier and that it does not equate to one of the 
reserved words (such as true, false, type or infix). After that it is 
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necessary to implement all of the cases from that observation by creating the 
necessary side transformation menus. The approach is no different from the 
ones described in this section, so we will not go through it. 

An interesting problem is to correctly transform the identifier to a 
reference in case the identifier is followed by :: symbol, thus transforming 
the whole AST node to an instance of the type annotation concept. While 
this problem is related to scoping, if we have the list of available nodes 
representing the function names, it is sufficient to find the one that is the 
best match for the user-entered identifier. We pick one and create the new 
node referencing the picked node. 

It is important to mention that the approach described in this section 
regarding the Frege-IDE editor is just one of many, since there is no exact set 
of rules for how the IDE should behave. We took this path to closely emulate 
the common plain text editors and as an experiment which we refer to later 
in Chapter 4. On the one hand we allow the user to type the Frege code as he 
or she may be used to, but now we offer only a limited assistance in 
referencing existing functions and operators when defining type annotations. 
There are advantages and disadvantages to both approaches. 

3.3.8 Expression Operators 

Frege language allows users to define custom infix operators with an 
almost arbitrary precedence. However, the precedence may be changed at any 
time and handling such an event properly would be complicated to 
implement. Instead we opted for keeping expressions in linear structures in 
contrast to a tree that would need to be recomputed and reshaped each time 
a precedence of an operator is changed. Evaluating type of an expression is 
therefore left to the typesystem aspect, where a special algorithm must be 
used to handle various scenarios. 

To allow adding operators inside the expressions, we need to obtain a set 
of available operators first. This topic is described in Section 3.4 that deals 
with code completion feature and scopes. Once the set is obtained, we can 
define right-side transformation menu for the operands.  

What we want to achieve is to add a new operator and then set focus to 
the new operand node upon typing an operator the user wants to use. 
However, there may be a case when the typed operator is a prefix of another. 
Consider, for instance, the operators + and ++. When the user types an 
expression x+, it is not clear, whether he or she will continue by typing 
another + symbol, or the entered operator is finished. Fortunately, MPS 
simplifies the scenario by automatically handling ambiguous transformation 
menu actions once the user-entered text does not conform to any of the 
triggering text parts of the transformation menu anymore. For instance, this 
means that once a user types x+y, it is clear that the text that should have 
triggered one of the two aforementioned actions was + only. Thus, the 
corresponding action is activated and the operator + is added to the 
expression together with the new operand y. 

Somewhat unpleasant feature of MPS is that we cannot specify a list of 
strings in the text part of the side transformation menu action, but rather 
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only a single string that can trigger the action. Therefore we have to return 
the closest operator that begins with the user-entered string. For instance, let 
us assume that the only operators visible in the given Frege module are +-+ 
and :-:. When the user types the symbol +, we need to return the +-+ string 
as that is the closest operator beginning with the +. However, if the user tries 
to type a non-existent operator, such as +:, we must return a completely 
irrelevant string to prevent the action from triggering. This approach is 
necessary as the number of operators is dynamically changed by the user and 
thus cannot be each represented by a separate transformation menu action.  

However, the described approach does not account for the case where one 
operator is a prefix of another, such as operators + and ++. If the 
transformation menu action returned the string + as the closest operator for 
the user-entered text +, the action would be immediately triggered as there is 
no ambiguity. We can force the ambiguity by creating a second 
transformation menu action with the similar handler, as the first one. In the 
text part, however, we return the second-closest operator beginning with the 
user-entered text. For instance, given the operators +, ++ and +-+, the 
corresponding two menu actions would return the following strings based on 
the user-entered text: 

 If the user types +, the first action returns + and the second returns ++. 

 If the user types ++, the first action returns ++ and the second returns an 
irrelevant string, such as ‘illegal pattern’. 

 If the user types +-, the first action returns +-+ and the second returns an 
irrelevant string, such as ‘illegal pattern’. 

To implement the feature, we have used a custom trie-like data structure. 
We give the trie the user-entered text and find out if there is a leaf node with 
the same prefix as the given input. If true, we return the operator, if not, we 
return ‘Illegal pattern’.  

3.3.9 Final Remarks 

While the editor aspect of MPS provides powerful options to allow the 
creation of a user-friendly IDE, it takes a considerable effort and resources. 
Rather than analyzing different usage scenarios of the language, it may be 
sometimes easier to define a set of executable actions (intentions) which the 
user may choose from to create the required AST nodes. As it has been 
mentioned, since the MPS does not rely on lexers and parsers to process the 
code, we have to take a reverse approach and that is costly.  
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3.4 Code Completion 

An important feature of many great IDEs is the context-aware code 
completion. This feature speeds up the development process by putting less 
pressure on the programmer’s memorization of the identifiers, members and 
other language constructs. It usually has a form of a list (see Figure 1.5) 
which is invoked either automatically or manually from which the user may 
select the necessary item. A lot of simplified implementations only include a 
list of members whose name starts with the given prefix or all possible words 
that were written in the corresponding code. Context-aware code completion 
differs from such implementations by providing the list of only those 
constructs that are actually ‘visible’ in the given context. Consider the 
following piece of code in Frege: 

 
length (y:ys) = 1 + length ys 
getTop (x:xs) = x 
 

The example introduces two new functions into the given Frege module: 
length and getTop. On the left hand side of the function getTop we have 
declared variables x and xs whereas on the left hand side of the function 
length we introduced the variables y and ys. Their corresponding right hand 
sides must contain only their own declared variables from their left hand 
sides. For example, the user should not be able to pick the variable y from 
the context-aware code completion menu in the getTop function’s expression 
(we assume there are not any visible functions named x or y in the given 
Frege module).  

MPS provides tools to implement the context-aware code completion 
menu by taking advantage of the constraints aspect. As described in Section 
1.6, the constraints aspect allows the language designer to restrict the set of 
referenceable targets for given concepts by specifying the custom scope 
object. In this section, we analyze the overall problem with the code 
completion, discuss possible solutions and provide several examples. 

3.4.1 Scope 

Scope is an object in MPS which defines a list of targets that can be 
referenced. The language designer can specify a concrete scope for the 
concepts that contain a reference in their structure aspect. This can be done 
by defining a new referent constraint in the constraints aspect of the given 
concept. 

Let us look at the data type and type synonym declarations in Frege-IDE. 
In Section 3.2.4 we discuss the structure aspect of the corresponding Data 
and Type concepts. The type name these language constructs introduce into 
the given Frege module is represented by the TypeName concept. The name is 
also enwrapped in the smart reference concept called TypeReference, which is 
used, for example, as a child in the concept representing the usage of the type 
name in the static type declaration. Without specifying any scope for the 
concept TypeReference, the user is able to pick the type name from any of 
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the Frege modules defined in the current MPS model. To restrict the set only 
to the type names from the current or actually imported modules, we can 
create a new scope instance where we specify the list of type names that are 
actually referenceable. 

However, specifying the list of referenceable nodes for each relevant 
concept would be tedious and difficult to maintain. Instead we can take a 
different approach and proclaim certain concepts to be scope providers. What 
we mean by this is that they contain certain children which are referenced by 
other concepts. In the example above, both Data and Type concepts are, 
according to our definition, scope providers, because they contain the child 
concept TypeName, which is further referenced, for example, by the 
TypeReference concept. Upon request, these concepts should provide a list of 
AST nodes that are available to them. 

Figure 3.19 shows a simplified version of the method that provides the 
scope of the Data concept. The method is defined in the concept’s behavior 
aspect. The Data concept consists of the type name, data constructors and 
type variables. Each of its parts may be referenced, as the data type 
declaration creates a new type name used in the static type declarations, 
defines constructors used in the function definitions and optionally specifies 
type variables which are referenced by its constructors, as in the example of 
the data type Maybe. 

 

 
Figure 3.19: Method getPublicScope for returning the requested scope in the 
Data concept behavior aspect 

 
In the implementation above, we use custom classes for creating new 

instances of the scope. We differentiate between the kinds of the scope 
requested - if the scope for the concept TypeName is requested, then that is 
what the method returns. If the scope for the completely unrelated concept is 
requested, the method returns an empty scope containing no nodes at all. 

The approach with scope providers then forms a hierarchy. The Data and 
Type concepts both inherit from the Definition and are therefore children of 
the root Skeleton concept. Skeleton represents a single Frege module. Upon 
request for the scope it delegates the call to all of its children. If its child 
contains another children, it delegates the call to them recursively. In the end, 
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the scopes are merged and returned. This way, in its most simplified form, 
the TypeReference concept can request the scope from the root concept 
Skeleton. The returned scope then contains the list of available type names 
the TypeReference concept can reference. 

3.4.2 Scope Hierarchy Pattern 

In the previous section we described the notion of scope providers. The 
concepts in Frege-IDE form a tree and delegate the requests for the scope 
creation to their child concepts recursively. If a certain concept on the path 
contains children of the requested type, it is called the scope provider. Upon 
request it creates the new scope with the list containing the relevant child 
nodes and returns it to the parent. The concepts that do not provide 
anything return the empty scope. These scopes are eventually merged on the 
root level and returned to the requesting node. 

However, this hierarchy only gathers all of the nodes of the requested 
type and returns it in the form of the scope object. To also restrict the nodes 
based on the requester context, we used a custom pattern. 

Let us take for example the function definition. The function definition 
consists of its left and right hand side. The left hand side specifies the 
function’s name together with the arguments it accepts. As described at the 
beginning of Section 3.4, the function’s name should be visible to all of the 
sibling definitions whereas the declared variables inside its arguments should 
be referenceable only from its own right hand side.  

We will illustrate the pattern on the following example: 
 

f x y = x + y 
g = f 1 7 
 

Figure 3.20 shows a visualization of the AST for the given two function 
definitions. Function f declares two variables x and y which are referenced 
from its right hand side. On the other hand, function g references from its 
right hand side the function f. This is valid as the function f is its sibling. 
However, the g function’s right hand side cannot contain references to the 
variables x and y as they are defined in the other function definition. 

From the MPS perspective, the concept related to the function definition 
is the scope provider. It provides the scope either for the function’s name or 
for its declared variables. Based on the grammar, the function’s name is 
indistinguishable from the variables and thus the problem cannot be solved 
simply by requesting the scope for a different type of the concept. Instead the 
decision to either include or exclude the declared variables from the returned 
scope has to be made on the function definition’s level. The corresponding 
concept has to know where the request for the scope comes from. If the 
request comes from its right hand side, it returns all of its variables together 
with the function’s name. If the request for the scope comes from the 
‘outside’ (e.g. the call to the function definition f was made by its sibling 
function g), it returns only the function’s name. 
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Figure 3.20: A visualization of the AST for a single Frege module with two 
function definitions 

 
However, this is not enough as the function f in the example above is 

referenced from the function’s g right hand side which is the actual requester 
of the scope. The request for the scope therefore gets to the node associated 
with the g function definition and returns the function’s g name and its 
variables (which in this particular case there are not any). The function 
definition for the g then has to include its parent scope as well to also cover 
the reference to its sibling f. 

Thus, the pattern to implement the scope for referencing concepts is as 
follows: 

 The concept containing a reference requests the scope from its closest 
ancestor that is a scope provider (provided the given concept is not the 
scope provider itself). The root concept Skeleton is a scope provider and 
thus such an AST node always exists. 

 The scope provider creates the requested scope based on the AST node 
the request came from.  

◦ If the request came from its parent, it creates its own scope as 
necessary and optionally delegates the call to its children (function 
definition does not delegate the call to the children nodes). It 
merges its own scope with the scopes from its children and returns 
it to the parent. 

◦ If the request for the scope came from one of its children, it creates 
its own scope as necessary, delegates the call to its parent (which 
delegates the call recursively up to the root node) and optionally 
delegates the call to the other children as well. Then the scopes are 
merged into the single one and returned to the requesting node. 
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 The root concept Skeleton always delegates the call to all of its relevant 
children and returns the merged scope. 

To help us implement the pattern, we have created the interface 
DCScopeProvider which extends the built-in interface ScopeProvider. It 
contains two main methods: one called by the child nodes and one called by 
parent scope providers. The default implementation, which may be overridden 
using behavior MPS aspect, is to always include only the parent scope upon a 
request from children. The scope creation is then delegated recursively up to 
the root node, which then calls the second method (for calling by parents) on 
all of its relevant children. The default implementation of that is to, similarly, 
call the same method recursively on all of the relevant children of the given 
concept implementing the DCScopeProvider interface. 

3.4.3 Import and Export 

Section 3.2.4 describes the concepts related to the import and export 
declarations. Import declaration is represented by the Import concept, which 
is a child of the root Skeleton concept. The Import contains a reference to an 
existing Frege module represented by the Module concept which is also a child 
of the Skeleton. The export declaration is a part of the Frege module 
definition at the top of the Frege program, thus it is included in the 
aforementioned Module concept. 

According to the scope hierarchy pattern mentioned earlier, the concept 
Skeleton delegates the requests for the scope creation to all of its relevant 
children. Thus the responsibility to create the scope for the imported modules 
is left to the Import concept. 

Consider the following example of two Frege modules: 
 
 

ExportExample module: 

 -------------------------  
module mps.frege.ExportExample (ff, gg) where 
  
ff = 0 
gg = 1 
hh = 2 

 

 

ImportExample module: 

 -------------------------  
module mps.frege.ImportExample where 
import mps.frege.ExportExample as EP (ff) 
 
ii = ff + EP.gg 

 

 

Upon the request for the scope, the Import concept looks into the 
referenced Module node. In our example, the import declaration import 

mps.frege.ExportExample references the AST node from the ExportExample 
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module corresponding to the statement module mps.frege.ExportExample 

(ff, gg) where. Then it asks for the scope. There are two possible outcomes 
for the given request: 

 The module declaration exports all of the definitions from the current 
Frege module (i.e. no brackets are specified in the corresponding 
declaration). The Module node therefore delegates the request to its 
parent node Skeleton which then creates the scope based on the scope 
hierarchy pattern. However, in this special case it is important not to 
include the items from the imported modules if there are any, since those 
are omitted by default. 

 The module declaration exports only some of the items from the current 
Frege module (see the example above). The Module node has to iterate 
through the specified exported items and create the scope containing all 
of them. 

However, the import declaration does not always import all of the items 
from the referenced Frege module into the current namespace. As in the 
example above, the module ImportExample imports only the function ff from 
the ExportExample module while the function gg has to be accessed using the 
qualified name EP.gg. This means that the Import concept has to be able to 
provide two different scopes: one for all of the items from the referenced 
module which are accessed by their qualified names, and the second one for 
the items that are specified in the corresponding brackets (if the hidden 
clause is used in the import declaration, then the items not specified within 
the brackets have to be included in the second scope). 

The second type of the scope is created simply by filtering the scope from 
the referenced Module node by the items specified within the corresponding 
brackets in the import declaration. It is the default scope the Import concept 
provides and the items it contains are easily referenceable by concepts such as 
VariableReference used for applying existing functions and variables inside 
the expressions. 

The first type of the scope is provided by the Import concept upon the 
specific direct request. In Frege-IDE, we created special concepts to denote 
the usage of qualified names. For instance, in Section 3.2.5.3 we described the 
ApplicationEntity concept of which there is also the sub-concept 
ImportedEntityApplication. Figure 3.21 depicts its structure aspect. The 
concept ImportedEntityApplication contains a reference to the import 
declaration. It also contains the ApplicationEntity concept as the child 
node, which references a node from the imported module. 
ImportedEntityApplication is a special type of scope provider which 
delegates the scope creation solely to the referenced import declaration. It 
requests from the Import node its first type of the scope that contains all of 
the exported definitions from the corresponding module and nothing else. 
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Figure 3.21: Structure aspect of the ImportedEntityApplication concept in 
Frege-IDE 

 
On the example at the beginning of the current section, the function ii 

contains in its right hand side the expression EP.gg. In Frege-IDE this is 
represented by the AST node of the concept ImportedEntityApplication. EP 
consists of the editor cell that points to the corresponding Import concept’s 
presentation (in this case the import’s alias EP). The child entity 
(ApplicationEntity concept) is restricted by the scope returned from the 
corresponding Import node, which contains the function definitions ff and gg 
and thus these are the only functions or entities that can be applied in the 
given context. Figure 3.22 depicts the ImportExample module in Frege-IDE. 
The corresponding code completion menu contains only the aforementioned 
items ff and gg when using the qualified name starting with EP. 

 

 
Figure 3.22: ImportExample module in Frege-IDE 

 

Additionally, the Import concept has to provide a very specific scope for 
its children as well. First, it should allow to import only the other modules 
and not the one currently being defined. Then, we have to provide the scope 
for the items to be specified inside the brackets, which will describe, what 
items will be actually imported into the current namespace. The scope must 
not include the items from the current Frege module and thus the request for 
the scope creation from the Import concept’s children is not delegated to the 
Import’s parent node. All in all, the scope hierarchy pattern does not fully 
apply here as the current case is fairly specific. 

  



92 
 

3.4.4 Implicitly Imported Library 

A library with several standard functions and operators has been created 
to simulate the behavior of the implicit library Frege-Prelude. The module is 
simply labeled as Default in Frege-IDE (mps.frege.Default). 

Every new module imports the library implicitly upon its construction by 
searching the visible modules and finding the one with the corresponding 
name. The module is then imported with the hidden flag, which makes it 
invisible in the editor. 

The module contains basic arithmetic operators, such as +, -, *, /, % as 
well as boolean comparison operators, for example <, >, <=, >= and ==. The 
module is not a complete copy of the Frgee-Prelude library and serves only as 
a demonstration of the capabilities of Frege-IDE. However, it can be easily 
extended with the new functions, data types or operators. 

3.5 Type Checking 

To implement a simple type checking capability into Frege-IDE, we used 
the typesystem aspect in MPS. The current feature has some limitations and 
supports only type checking of the functions, where a type annotation is 
provided. In this section, we will go through several examples, describe the 
problems we encountered during the implementation and discuss the final 
result. 

3.5.1 Types 

As discussed in Section 3.2.6, we wanted to include the following types in 
Frege-IDE: 

 Bool 

 Char 

 String 

 Numeric types (Int, Double) 

 Tuple 

 List 

 Function types 

Custom algebraic data types were omitted due to the scope of this work. 
Every other type mentioned, however, has to be modeled by a new concept, 
as explained in Section 1.7. Additionally, we created a special concept 
Unknown to denote the types of expressions we could not or did not want to 
infer the types of. 

Section 1.7 discusses the implementation of the concept representing the 
list type. The similar approach is used for the remaining complex types, 
which include tuple and function types. 
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The concept representing the tuple type in Frege-IDE is named 
TupleTypeNode. It inherits from the Type concept from the MPS 
BaseLanguage and contains an arbitrary amount of children based on the 
concrete tuple it represents the type of. The children are also sub-concepts of 
the Type concept.  

Figure 3.23 shows the structure aspect of the TupleTypeNode concept in 
Frege-IDE. 

 

 
Figure 3.23: Structure aspect of the TupleTypeNode concept in Frege-IDE 

 
From the structural point of view, the concept representing the function 

type in Frege-IDE (named FunctionTypeNode) is the same as the 
TupleTypeNode concept. It also contains an arbitrary amount of children 
representing the types of the function’s arguments with the last child 
representing the return type. The two are, however, not separated due to the 
currying technique in Frege, which allows the function’s return type to be 
also a function. Consider the following example: 

 
multiplyThree :: Int -> Int -> Int -> Int 
multiplyThree x y z = x * y * z        
curriedMultiplyThree = multiplyThree 1 
 

In the example above, the type annotation of the function 
curriedMultiplyThree is Int -> Int -> Int which could be considered from 
a certain point of view to be the return type of the function application 
multiplyThree 1. To ease the implementation, we do not draw any lines 
between the type of the function’s argument and its return type in the Frege-
IDE typesystem aspect.  

The final implementation of the concept FunctionTypeNode in the 
structure aspect is depicted in Figure 3.24. 
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Figure 3.24: Structure aspect of the FunctionTypeNode concept in Frege-IDE 

3.5.2 Infix Expressions 

In Frege, the user may define custom infix operators with different 
associativity and precedence. From the semantic point of view, the operator is 
simply a function accepting two arguments and returning a certain result. 
A result of such a function may be again a function accepting additional 
arguments. 

Frege differs from most programming languages such as C# or C++ that 
allow mostly only operator overloading. This means that in these languages a 
developer may adjust the behavior of the operators for different input types, 
but not define new operators or change the precedence or associativity of the 
existing ones. Thus the syntax tree generated by the parser in these 
languages always stays the same. However, that is not the case in Frege. In 
Frege the user may create a completely new operator of an (almost) arbitrary 
precedence, altering the syntax tree that is generated for the expressions in 
which the new operator is used. 

To ease the implementation of the editor in Frege-IDE, we have decided 
to keep the expressions in linear data structures instead of keeping them in 
the form of binary trees regarding the structure aspect of Frege-IDE. The 
latter would require handling events related to the user changing precedence 
or an associativity for all of the infix operators and non-trivial reconstruction 
of the AST. Instead we decided to compute the expression binary tree only in 
the typesystem aspect. 

The user may change the precedence or associativity of a custom operator 
by entering the following statement in the Frege module: 

 
infixl 5 +++ 

 
The example above sets the custom operator +++ to be left-associative 

with the precedence 5. According to the Frege specification, the statement 
can be used only in the same module in which the custom operator +++ is 
also defined.  

In Frege-IDE the statement above corresponds to the concept Fixity 
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which inherits from the Definition concept. Thus, it is a child of the 
Skeleton concept. Given the operator reference, we can get the Skeleton root 
node in which the given operator is defined. Then we can iterate its children 
and find the corresponding Fixity node that adjusts the precedence and the 
associativity of the given operator. If no related Fixity node is found, then 
the operator is by default non-associative and has the precedence 16. 

To implement the type checking of infix expressions, we took the 
following approach: 

1. Infer the types of the sub-expressions recursively, such as expression 
enclosed within brackets, or expressions inside the terms (e.g. tuples or 
lists). 

2. The result of the previous step is an array of operands with the operators 
in between them. The type of the operands is known from the previous 
step. The type of the infix operators is given by their corresponding type 
annotations (if the type annotation for an operator is not provided, then 
the type of the whole expression is set to Unknown). 

3. Construct the binary expression tree for the current expression. 

4. Check the types of the binary expression tree’s nodes. Set the type of the 
whole expression according to the root node of the binary expression tree. 

To demonstrate the approach, let us consider the following expression in 
Frege: 

 
ff = 4 * 5 * 6 
 

First, the types of the sub-expressions need to be inferred. The operands 
4, 5 and 6 are simple integer literals and thus their types is Int.  

In the second step, we find out the type of the operator *. Due to the 
absence of parametric polymorphism in Frege-IDE the type annotation of the 
operator * is set to Double -> Double -> Double.  

Next the binary expression tree is constructed. The operator * is a left-
associative operator, which means the expression can be rewritten in the 
following manner: 
 
ff = ((4 * 5) * 6) 

 
The precedence does not play any role in the current expression as there 

are no other operators than *. The constructed binary expression tree is 
depicted in Figure 3.25. 

 

 
Figure 3.25: Binary expression tree for the expression 4 * 5 * 6 in Frege-IDE 
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In the last step, the types of the nodes of the constructed expression tree 
are checked. The types are checked in the bottom-to-top approach, i.e. first 
the type of the subtree given by the expression 4 * 5 is checked. Both 
children 4 and 5 are of the type Int which are acceptable arguments for the 
function with the type annotation Double -> Double -> Double. The type of 
the given subtree is therefore Double. Similarly the remaining part of the 
expression tree is checked. The type of the whole expression is then set to 
Double. 

Assuming that we can easily infer the types of the sub-expressions and 
find out the types of the operators used in the given expression we will now 
describe how the binary expression tree is constructed. We used a derivation 
of the standard algorithm for translating infix expressions to postfix which 
uses a single stack. Our algorithm uses two stacks and iterates through the 
elements of the expression three times in total. The pseudocode of the 
corresponding algorithm is as follows: 
 
 

function ConstructTree( Expression ): 
 
  create stack S 
  lastPrecedence ← 0 
 
  for each element e in Expression (taken left-to-right): 
     if e is an operator: 
        if precedence of e < lastPrecedence: 
           item ← HandlePrioritized( S, precedence of e )  
           push item into S 
 

        lastPrecedence ← precedence of e 
  
     push e into S 
 
  return HandlePrioritized( S, MAX_VALUE ) 
 
 

function HandlePrioritized( Stack, Precedence ): 
 
  create stack S 
  lastPrecedence ← 0    
  lastAssociativity ← none 
 
  for each element e in Stack (taken from top): 
     if e is an operator:         
        if precedence of e <= Precedence: 
           return ConstructTreeFromStack( S ) 
        
        if precedence of e = lastPrecedence 
           and (associativity of e <> lastAssociativity 
           or associativity of e = none): 
           error 

         

        if precedence of e < lastPrecedence 
           or associativity of e = right: 
           item ← ConstructTreeFromStack( S ) 
           push item into S 
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        lastPrecedence ← precedence of e 
        lastAssociativity ← associativity of e 
      
     pop e from Stack 
     push e into S 
 

  return ConstructTreeFromStack( S ) 
 
 
function ConstructTreeFromStack( Stack ): 
 
  root ← top from Stack 
  pop top from Stack 
 

  for each two elements (operator, operand) in Stack (taken from top): 
     create binary tree: 
        tree.root ← operator 
        tree.left ← root 
        tree.right ← operand 
 

     root ← tree 
     pop operator and operand from Stack 
 

  return root 

 

     
The algorithm expects on the input a non-empty expression in the form 

of an array of operands with operators in between them. The entry function 
ConstructTree iterates the elements of the expression from left to right and 
pushes them onto the first stack. It keeps the track of the precedence of the 
last operator and if an operator with a lower precedence is encountered, it 
lets the function HandlePrioritized construct the binary expression tree for 
the items with the higher priority.  

To illustrate the work of the algorithm, let us consider the following 
expression: 

 
x1 + x2 + x3 + x4 * x5 * x6 . x7 . x8 . x9 

 
Let us assume the three operators used in the expression have the 

following attributes: 

 + is a left-associative operator with the precedence 1 

 * is a left-associative operator with the precedence 3 

 . is a right-associative operator with the precedence 2 

In the example above we are not actually interested in the types of the 
variables x1 - x9 or the type annotation of the operators as the constructed 
binary expression tree depends only on the two mentioned properties 
(associativity and precedence). 

The first step of the algorithm pushes the items onto the first stack until 
the operator . is encountered. Then it calls the function HandlePrioritized 
to handle the items from the stack up to the operator + which has a smaller 
precedence than the . operator. This ensures the subtree for the prioritized 
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part of the expression x4 * x5 * x6 is constructed first. 
In the second step, the function HandlePrioritized iterates the items in 

the stack which means it looks at the items in the reversed order as they 
came first in the input expression. The function stops either when the first 
stack is empty or when an operator with a small precedence is encountered, 
thus handling only the prioritized part of the expression. As the function 
iterates the items, it can perform the following two important checks:  

 There must not be several operators with the same precedence but 
different associativity in a sequence. 

 There must not be several non-associative operators in a sequence. 

At this point, the function decides how it creates the expression tree for 
the given part of the input expression. If the right-associative operator is 
encountered, the subtree can be created right away as the items of the 
expression are visited in the right-to-left order. If the left-associative operator 
is encountered, the function has to wait until the operator with a different 
precedence is encountered. The algorithms puts the items onto the new stack 
and when it hits the new operator, it lets the function 
ConstructTreeFromStack construct the expression tree for the postponed 
items from the new stack. 

In the example above, at the time of the first call of the function 
HandlePrioritized, the given stack contains the following items in order 
from the top: x6 * x5 * x4 + x3 + x2 + x1. The function iterates the items 
up to the operator +. The only operator encountered up to the + is operator * 
which is the left-associative operator, therefore it pushes the items onto the 
new second stack. Finally, it lets the function ConstructTreeFromStack create 
the expression tree from the new stack with the following items: x4 * x5 * 
x6 (ordered from the top). 

The last function ConstructTreeFromStack takes the items from the given 
stack and creates the binary expression tree for them. The function expects 
the encountered operators to be left-associative with an exception of creating 
the expression tree for only a single operator with two operands. Figure 3.26 
illustrates the created binary expression tree for the input stack with the 
items x4 * x5 * x6. 

 

 
Figure 3.26: Binary expression tree for the expression x4 * x5 * x6  

 

At this point, the algorithm continues with the function ConstructTree. 
The first stack contains the following items: ((x4 * x5) * x6) + x3 + x2 + 
x1 where ((x4 * x5) * x6) represents the single item in the form of the 
binary expression tree as depicted above. The function continues to iterate 
the items from the input expression until there is nothing left. The stack now 
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looks as follows: x9 . x8 . x7 . ((x4 * x5) * x6) + x3 + x2 + x1 and the 
execution is passed to the HandlePrioritized function. 

In the second step, the function HandlePrioritized stops only after all of 
the items from the given stack are processed. It first encounters the 
operator . which is the right-associative operator and thus the binary 
expression tree is constructed immediately. Then it continues with the items 
x3 + x2 + x1 on the input stack where the operator + is, again, left-
associative and thus the construction of the tree has to be postponed until a 
different operator with a different precedence is encountered, or the first stack 
does not contain any more items. The second stack with items x1 + x2 + x3 
+ (((x4 * x5) * x6) . (x7 . (x8 . x9))) is passed to the 
ConstructTreeFromStack function which constructs the final binary 
expression tree as depicted in Figure 3.27. 

 

 
Figure 3.27: Binary expression tree for the expression x1 + x2 + x3 + x4 * 
x5 * x6 . x7 . x8 . x9 
 

The last step of our approach is to check the types of the binary 
expression tree’s nodes. As we have the tree constructed, this is done easily 
by checking the type of both left and right subtrees recursively and 
comparing them to the type of the operator for each operator node. The 
return type of the operator application is also the type of the whole subtree 
defined by the current node. This step, however, requires the implementation 
of the function application, which is discussed in Section 3.5.3. 

3.5.3 Function Application 

In Section 3.5.1 we discussed the overall structure and implementation of 
the concept related to the function type. The corresponding 
FunctionTypeNode concept is structurally similar to the concept representing 
the tuple type and contains at least one child of the Type concept to represent 
the types of the function’s arguments or the function’s return type.  

The function application is represented by the GenericApplication 
concept. It contains the single child of the ApplicationEntity concept to 
represent what is being applied (for instance, function, operator or a 
bracketed expression). In this work, we completely omitted the type checking 
for the user defined types which includes type synonym and data type 
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declarations. This means we will not be dealing with the constructor 
application which is normally also part of the corresponding 
GenericApplication concept. 

The implementation of the type checking for function application is done 
in the typesystem aspect of the GenericApplication concept. The Frege-IDE 
first looks at the inferred type of the ApplicationEntity child of the 
corresponding concept. Due to the type inspection the when concrete block 
described in Section 1.7 has to be used. 

 ApplicationEntity may or may not be of the function type. This 
depends on the expression being applied. Consider the following two 
examples: 

 
six_1 = (max 4) 6 
six_2 = (max 4 6) 

 
In Frege-IDE, both constant functions six_1 and six_2 would contain an 

instance of the GenericApplication concept in their respective right hand 
sides. (max 4) 6 is an application of the bracketed expression max 4 with 
argument 6. (max 4 6) is an application of the bracketed expression with no 
arguments. The result of the expression surrounded within the brackets in the 
former case is a function, whereas in the latter it is an integer value.  

The resulting type of the function application has to be properly inferred 
depending on the ApplicationEntity and the arguments provided. Let us 
demonstrate the process on the following function: 

 
multiplyThree :: Int -> Int -> Int -> Int 
multiplyThree x y z = x * y * z 
 

The function multiplyThree accepts up to three Int arguments. The 
following examples of functions apply the multiplyThree in two different 
ways: 
 
ff = multiplyThree 1 
gg = multiplyThree 1 2 3 + 7 
 

The function ff depicts the currying technique and the type annotation 
of the expression multiplyThree 1 is therefore Int -> Int -> Int (i.e. the 
type of the expression is still a function). However, in the function gg the 
expression multiplyThree 1 2 3 uses all three arguments, thus leaving us 
with the resulting type Int instead of the function type. Therefore the result 
of the function application may not be a constant function. 

3.5.4 Function Definition Type Inference 

There are two main, relatively independent, parts when it comes to the 
type inference of a function or an operator definition. The return type of 
either is given by its respective right hand side. On the other hand, types of 
the arguments the function or an operator accepts are not always 
unambiguously inferable. For example, consider the following function 
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definition: 
 

ff x y = 0 
 

While the function ff accepts arguments x and y, its result does not 
depend on the two. Thus the function can be called with any type of 
arguments. 

However, in some cases it is possible to deduce the type of the function 
arguments depending on their usage in the corresponding function’s right 
hand side as demonstrated by the following example: 

 
getTop :: [String] -> String 
getTop [] = "No elements" 
getTop (x:xs) = x 
… 
 
ff x y = getTop [x, y] 
 

On the example above, the function getTop accepts only a list of the 
String items. This means that for the expression getTop [x, y] on the right 
hand side of the function ff to be valid, the x and y must be arguments of 
the String type too. This approach to the type inference is relatively complex 
to implement and we did not include it in the final work. Instead we opted 
for a reasonable compromise: 

 If the type annotation is provided for a function or an operator definition, 
it is considered to be the actual type of that definition. The return type 
from the type annotation is then checked against the type of the right 
hand side of the corresponding function or the operator definition. 

 If the type annotation is not provided, the types of the function 
arguments are considered ambiguous and are never checked (the types are 
set to Unknown). The return type of the function is then based on the type 
of the expression in its right hand side. 

Based on this, Frege-IDE infers the type for the example function ff at 
the beginning of this section as follows: ff :: Unknown -> Unknown -> Int. 
If we additionally specify the type annotation for the function ff, then the 
arguments will have the specified types. Figure 3.28 shows an example of 
incompatible type annotation for the function definition ff x y = getTop 
[x, y] at the beginning of this section.  

 

 
Figure 3.28: Example of an invalid function arguments usage in Frege-IDE 
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3.5.5 Arguments Type Decomposition 

In the previous section we described that we want the types of function 
arguments to be inferred from the corresponding type annotation, if it is 
provided.  

A certain challenge is posed by the fact that a variable, which we intend 
to infer the type for, may be included deep within a subtree representing a 
certain function argument. Let us consider the following example: 

 
gg :: [[Char]] -> [Char]  
gg [['a'], ['b', 'c'], [x]] = [x, x, x] 
 

The type annotation of the function gg describes that the first argument 
of the function gg is a list of a list of Char items. Thus the pattern [['a'], 
['b', 'c'], [x]]  in the function definition below is also a list of a list of 
Char items, which makes the variable x to be of the type Char. 

To implement the type inference for the pattern variables, Frege-IDE 
needs to look at the related type annotation. It looks into the corresponding 
argument’s type and tries to decompose it.  

We will illustrate the approach on the example above. Frege-IDE knows 
that the argument [['a'], ['b', 'c'], [x]] corresponds to the type 
[[Char]] from the related type annotation. This means that each item of the 
list has to correspond to the type [Char]: 

 ['a'] should be [Char] 

 ['b', 'c'] should be [Char] 

 [x] should be [Char] 

However, the items of the list are also more complex language constructs 
created from the simpler ones. Frege-IDE therefore checks each list item 
individually: 

 ['a'] should be [Char], therefore 'a' should be Char 

 ['b', 'c'] should be [Char], therefore 'b' and 'c' should be Char 

 [x] should be [Char], therefore x should be Char 

The type Char cannot be further decomposed and thus the Frege-IDE’s 
work is over. 

We have implemented the feature by properly setting up the typesystem 
aspect in the concepts related to the pattern in the left hand side of the 
function definition. Most pattern concepts can be associated with a certain 
type. For instance, the concept representing the list pattern is associated with 
the list type whereas the PLiteral concept for representing the literals inside 
patterns is associated with the corresponding primitive type depending on the 
literal used (e.g. Int, Bool). The concept representing a pattern variable 
cannot be associated with a specific type. Instead the type of the 
corresponding variable will be either Unknown or the type deduced from the 
related type annotation. 
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The implementation follows the following scheme: 

 The concept representing the whole left hand side of the function 
definition looks into the related type annotation. It compares the amount 
of declared arguments in the type annotation to the amount of arguments 
defined in the current left hand side. If the numbers are equal, then the 
current node assigns the type of each argument from the type annotation 
to each its child. 

 The concrete pattern concept compares the type assigned by its parent to 
the type the current concept is normally associated with. For instance, 
the list pattern concept checks that the type assigned by its parent is [t] 
where t is the type of the corresponding list item. The pattern concept 
then decomposes the type (if applicable) and assigns the inner types to 
the corresponding children. In the example with the list pattern, the 
concept assigns to each its child the type t. 

 The type of the variable is the type assigned by the corresponding node’s 
parent. If no type was assigned, the variable is of the Unknown type. 

  



104 
 

4. Evaluation 

In this work, we have focused on creating a projectional IDE for the 
functional language Frege. We wanted to see whether projectional IDEs offer 
more convenience or any other advantage over the regular text-based IDEs in 
assisting developers with creating programs in functional languages in 
general. We have included support for code completion, simple error and type 
checking and refactoring. This chapter looks into the convenience of the usage 
of such an IDE, how it compares to the classic plain-text IDEs and what are 
its advantages and disadvantages over the conventional plain-text IDEs. 

4.1 Editing Programs in Frege-IDE 

Frege-IDE is built on top of the MPS platform which is used for creating 
projectional editors. This puts several restrictions on how a typical program 
may be written or edited.  

We have already mentioned in this work that projectional editors differ 
significantly from the plain-text editors. The user is not editing the code in 
the text form, but rather works with the corresponding AST directly, having 
a great impact on how the code is further processed. This brings many 
advantages, such as allowing for an easier extension of an existing language or 
bringing non-conventional visual elements for representing and altering the 
program’s code. 

However, using a projectional editor for writing code brings certain 
limitations, too. As the code is not actually a text, the user is limited in what 
he or she can alter or type. In Frege-IDE, only certain editor cells are 
modifiable. The rest is static, resulting in a removal of the whole subtree they 
are part of when trying to change the text they represent. Additionally, only 
certain modifications of the corresponding AST are allowed which have to be 
included by the language designer himself or herself.  

The editor is only as good as it is designed. The user of the language may 
type only certain text in appropriate places in the code defined by the 
language designer in advance. Every editing feature has to be implemented, 
even a seemingly trivial functionality such as adding new operator with 
operands to an existing expression. This puts a considerable amount of work 
on the language designer, who has to think of multiple usage scenarios of the 
IDE he or she is developing. 

Even though the projectional IDE built on top of the MPS platform will 
never be as flexible as the editing of the plain text, there are advantages to 
this approach. They include, for instance, the possibility to force the users of 
such an IDE to adhere to a specific coding style. The language designer can 
limit the usage of unwanted features of the language or to prevent the 
programmers from writing ‘unaesthetic’ code. 

The language designer has several options for how to build the editor for 
the IDE he or she is creating. Transformation and substitute menu actions 
can be used to handle events related to writing particular text phrases. Cell 



105 
 

action maps are used to handle deletion, selection or other manipulation of 
concrete editor cells. Last but not least, there is the notion of intentions 
which are manually-invoked actions designed to be usable in specific places in 
the code to handle various scenarios. 

Side transformation menus are actions which are triggered when a certain 
text pattern is written next to an editor cell. In this work, we used the 
menus, for example, for adding a new operator to the right of an expression. 
The usage scenario is depicted in Figure 4.1. First, the user positions the 
caret to the right of the expression x. Then, he or she types the infix operator 
which is visible in the current namespace, such as +. Upon finishing by 
typing, for example, a literal, the action is immediately triggered, 
transforming the current AST to include the additional operator with the 
new operand. The action then positions the caret on the new operand. 

 

 
Figure 4.1: Process of adding a new operator with an operand into an 
existing expression in Frege-IDE 
 

We used cell action maps throughout the work to handle deletion of 
certain editor cells. As described in Section 3.3.6, an example usage scenario 
is the range list AST node where we delete the .. symbol which corresponds 
to a specific editor cell. The example is depicted in Figure 4.2 in which the 
user first positions the caret to the beginning of the upper bound literal 10. 
Then he or she presses the backspace key invoking the DELETE event handler 
for the corresponding editor cell representing the .. symbol. The handler 
transforms the node to the enumeration list node and places the former upper 
bound literal as the enumeration list’s new item. 

 

 
Figure 4.2: Process of deleting the range symbol .. in the range list in Frege-
IDE 

 

Certain actions may seem ambiguous from the user’s perspective. Pressing 
enter key in certain scenarios adds a different construct in Frege-IDE than he 
or she might expect. Additionally the user may not know how to create a 
certain AST or how to execute a specific AST transformation. For the 
unintuitive cases like these, we used the MPS intentions. As described in 
Section 1.5, they are special user-interface elements that allow the user to 
execute predefined actions in certain places in the code. Figure 4.3 shows an 
example usage in Frege-IDE. In the example, the user tries to add a new 
guard to the definition of the function sign. However, adding the guard 
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requires the transformation of the corresponding AST representing the 
function definition to include the new child. From the user’s perspective it is 
not clear how to add the new guard. In the plain-text editor, the process 
would require typing a vertical line symbol with an indentation on a new 
empty line. Simulating such a sequence of operations is not an easy task in 
MPS. Instead we defined several intentions to allow the user to execute the 
necessary action as he or she sees fit. 

 

 
Figure 4.3: Process of adding a new guard into the right hand side of the 
sign function definition in Frege-IDE 

 
In Figure 4.3 the user of Frege-IDE positions the caret into the right hand 

side of the definition of the function sign. He or she then invokes the 
intentions menu via key combination alt + enter and selects the appropriate 
item. This invokes the corresponding handler which then transforms the 
current AST and repositions the caret into the newly created guard. 

Overall, while MPS has powerful tools that allow the language designer to 
create great editors for IDEs, it is still not feasible to simulate the experience 
of the plain-text editors completely. Editing the plain text provides a lot of 
flexibility for what the user can do with the written code. On the other hand, 
projectional editor is cognizant of the document’s underlying structure which 
helps the user greatly in navigating him or her to what can be entered and 
still considered valid. This allows the language designer to craft an editor 
which is predictive and saves the user a lot of unnecessary keystrokes. The 
potential drawback to this is, however, the necessity to learn working with 
the designed editor as it may come unintuitive to a lot of unexperienced 
users. We believe this is the case with Frege-IDE as well. While Frege-IDE 
may seem restrictive at first, given time the user will develop Frege programs 
in Frege-IDE faster than in the ordinary plain-text editor. The nature of the 
IDE also limits the potential errors in the code the user can make.  
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4.2 Features and Limitations 

Frege-IDE contains a lot of features to assist Frege developers with 
writing code. We have already discussed the editor, its nature and high-level 
design in the previous section. In this section we take a deeper look on the 
editor, the features Frege-IDE provides and how they can help Frege 
developers with writing programs. 

 Most of the Frege language constructs are easily representable by the 
MPS concepts. A simple reserved keyword or a symbol is usually enough to 
comprehend what the user wanted to enter. Consider the following statement 
in Frege: 

 
data Maybe a = Just a | Nothing 

 
The example above is mentioned throughout the work multiple times and 

denotes the declaration of a new data type. In this case data keyword is 
enough to comprehend the intention of the user to declare the new data type. 
However, not all Frege language constructs are representable by a single 
string. 

In Section 3.3.7 we discussed the approach for allowing the user to define 
new functions or provide type annotations. The most challenging part was to 
understand from the user input, which one of the two is currently being 
typed. However, there were several possibilities on how to approach the 
matter. The one we took and discussed was mainly demonstrating the 
capabilities of the MPS platform and showing how similar scenarios can be 
generally handled. The additional considered approaches include the 
following: 

 Intentions aspect can be used to allow the user to choose, what kind of 
definition he or she plans to create. 

 Creating a wrap substitute menu over all defined functions and operators 
would allow for creating a type annotation immediately once a name of 
an existing function or an operator is typed. Anything else would be 
considered to be the function definition. 

Ability to invoke intentions menu on an empty line may improve the 
overall experience with Frege-IDE, since the user would now have several 
options on how to create the new definition. Choosing a specific item from 
the intentions menu is also less confusing for the user than typing a text that 
eventually gets transformed to either of the two aforementioned options. We 
have implemented this feature in Frege-IDE due to the mentioned reasons as 
well. However, it is questionable whether leaving only this option of providing 
the function definition or type annotation would be sufficient. Different users 
might have different opinions on the matter. 

The second approach can be also useful as it is quite convenient to have 
the code-completion menu populated with the defined functions and 
operators. During our evaluation, we have encountered situations where we 
tried creating a type annotation of a function and were unsuccessful due to a 
small typographical error. The error meant that Frege-IDE was not able to 
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find the definition with the provided name and resulted in an unset function 
reference. Figure 4.4 captures such a scenario. 

 

 
Figure 4.4: An unsuccessful attempt of providing a type annotation for the 
function ff in Frege-IDE 
 

However, this approach has also a few downsides. Typing a new name for 
a new function definition would not be resolvable until the name was not a 
prefix of any other, already defined, function. This is due to Frege-IDE not 
being able to tell whether the user is not trying to type in a name of an 
existing function instead to provide the type annotation for the corresponding 
function. This is not resolvable until the name is completely unambiguous. 
For instance, if the current Frege module contained a definition for a function 
named foo, the user would not be able to type fo and provide the definition 
for the new function fo (however, the workaround with selecting an item for 
creating a new function definition from the intentions menu would work). In 
the end, we leave the answer to what is the best approach for the given 
scenario rather unanswered and only speculate over several options, none of 
which is perfect. The projectional editor while being powerful has a different 
behavior than a conventional plain-text one and has some limitations. 

Additional feature in Frege-IDE that can greatly ease the development 
process is the context-aware code completion. The implementation of the 
feature in Frege-IDE was allowed by utilizing the notion of MPS concept 
references. Similarly to the plain-text IDEs, the completion menu can be 
populated only by the exiting items in the code. However, consider the 
following example: 
 
five = 1 + four 
  where 
    four = 1 + 3 
 

In the example above, functions four is defined within the where block of 
the function definition five. Since the expression 1 + four references the 
function four, it has to be defined after the definition of the function four in 
Frege-IDE. In plain-text IDEs this does not play any significant role, since 
the code completion menu would simply not contain the item four if the user 
specified the expression 1 + four first. This limitation is posed due to how 
references work in MPS. The user needs to keep the correct order of 
providing definitions in Frege-IDE. Every language construct which references 
another construct needs to be specified after that construct it references. On 
the other hand, this provides a powerful refactoring tool where the change of 
the original AST node is immediately reflected on all of the referencing 
nodes. This was discussed in Section 1.3 and illustrated in Figure 1.10. 

The last major feature we will mention from Frege-IDE is the type 
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checking. The feature infers the type of expressions, checks the correctness of 
provided functions arguments and compares the return types of the function 
definitions to their corresponding type annotations. Type checking is 
restricted only to the built-in types mentioned in Section 3.5.1 and cannot 
compare the usage of the custom data types or type synonyms. However, this 
limitation is posed by the scope of this work rather than being somehow 
related to MPS. 

4.3 Comparison with Plain-Text IDE 

fregIDE is a plugin for the Eclipse platform which adds, among other 
things, a support for syntax highlighting, code completion and type checking 
of Frege programs [10]. It works as an extension of the built-in plain-text 
editor of the Eclipse platform. 

We have tried the plugin to compare it to our Frege-IDE and see, what 
advantages and disadvantages there are to a projectional IDE over a plain-
text based one. We have chosen this specific plugin due to its popularity and 
extensive support. 

fregIDE is a rather robust system and offers many features we could not 
afford to implement in Frege-IDE. First, it provides a support for the whole 
Frege language and not just its subset. Its type checking capabilities cover 
almost all of the cases and do not pose the limitations on existence of the 
function’s type annotation, as we had to make. The code completion feature 
is similar to ours, however, fregIDE provides the full support for the 
implicitly included Frege-Prelude library. It also has no problem referencing 
the items imported from other Frege modules represented as text files. This is 
a major disadvantage for our Frege-IDE which can work solely with the Frege 
modules implemented in Frege-IDE itself. This is, unfortunately, given by the 
fact that MPS cannot work with the text directly and has to keep the code 
written by the user in tree-like data structures at all times. At present it is 
not even possible to transfer the documents between different MPS language 
projects as they are usually represented by completely different ASTs. 

An example of fregIDE usage in Eclipse platform is depicted in Figure 
4.5. Hovering mouse over a function displays its type annotation. 
 

 
Figure 4.5: An example of a usage of fregIDE 

 

When trying fregIDE plugin ourselves, we experienced some performance 
issues with the plugin and difficulties with the code completion menu during 
testing which was not the case with our Frege-IDE. Frege-IDE keeps the user-
written code already processed in the necessary data structures and as such 
does not suffer from the lexical and syntactical analysis, which takes a certain 
amount of time to process. However, the issues may have very likely been 



110 
 

related to the Eclipse platform rather than the plugin itself and the actual 
performance of the plugin does not present any real downside when compared 
to our Frege-IDE. 

The fregIDE plugin is based on the plain-text code editing and as such 
offers a great flexibility on how the user can write and edit the Frege code. 
On the other hand, in our Frege-IDE, the designed editor takes care of the 
visual appearance of the defined AST nodes and does not require its user to 
spend much time pressing unnecessary keys or writing unnecessary symbols. 
For instance, in Section 4.1 in Figure 4.1 we showed an example of adding 
operators with operands to an expression. The relevant nodes are 
automatically visually separated by whitespaces. The written code has a 
unified structure dependent only on the underlying AST itself rather than 
counting on users to write the clean code. 

Overall, we consider the editor to be one of the most powerful features of 
Frege-IDE. When used correctly, it saves its users a lot of time and troubles 
of keeping the code clean. Its predictive abilities also mean the user does not 
need to type everything - Frege-IDE puts the necessary keywords and 
symbols based on the context where the new AST nodes are created. This 
also helps the novice Frege programmers to better navigate in the code and 
easily understand what language constructs are allowed in what context. 

At the same time, for an experienced Frege developer used to 
programming in a certain coding style, the editor in our Frege-IDE might 
seem to be limiting. It does not allow for switching between coding styles 
without changing the editor itself. The code is represented in AST and 
cannot be arbitrarily changed as in the plain-text editor. Furthermore, only 
certain editor cells may be copied into the clipboard and pasted elsewhere in 
the code, which puts additional restrictions on the user. However, there are 
situations in which these restrictions may be helpful, such as the 
aforementioned limitation of unwanted features of the language or enforcing a 
certain coding guideline in programming teams. 

In the end, while fregIDE with its much larger support of Frege features 
is a better pick for most of the serious Frege developers, we believe Frege-IDE 
still has its place in the development community and in certain cases might 
prove to be an even more efficient tool than the regular text-based IDE. 
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Conclusion 

In this work, we have analyzed and implemented an IDE infrastructure on 
top of the JetBrains MPS platform for a subset of the Frege language. The 
final application, called Frege-IDE, can assist developers with writing, 
editing, and testing programs in Frege. The IDE includes support for 
refactoring, code completion and type checking. 

Frege-IDE differs from most IDEs in regards that it is a projectional 
editor, rather than being centered on a code written in a plain text. This 
brings certain restrictions on how the user may work with the Frege code.  

Since all of the source code is represented in the form of AST, the user 
can enter only the allowed characters in the appropriate places in the code. 
Certain textual patterns invoke transformations of the underlying AST, 
others can substitute a specific AST node for another. However, the user is 
limited by the designed editor in what he or she can do. 

While seemingly not as flexible as plain-text based IDEs, it can enforce 
recommended practices when writing code or restrict the programmers from 
using undesirable language constructs. The projectional editor only shows 
what the underlying AST looks like and thus also keeps the textual details of 
the code, such as whitespaces or indentation, fully automatic and off the 
developer’s mind, so he or she can focus on the development process itself. 
Additionally, the editor is predictive when used correctly, saving the user 
unnecessary keystrokes and making the process of writing code faster and 
arguably more convenient. However, this requires a certain time investment 
from the user to learn how to work with Frege-IDE in an effective way. 

Frege-IDE additionally brings its users support for context-aware code 
completion and simplified type checking. The features allow the developers to 
detect the potential errors early in the implementation process thus allowing 
them to be even more efficient. While during our evaluation the features 
worked well, it has to be noted that they do not necessarily bring anything 
new or different from the similar features in their text-based-IDE 
counterparts. 

This work also serves as a demonstration of the capabilities of JetBrains 
MPS platform and to see, whether it can be used for development of 
projectional IDEs for functional languages, such as Haskell or Frege. In our 
experience, we found that the MPS platform is really robust and offers many 
different ways how to solve typical problems a language designer may come 
across in his or her work. However, we also lacked some features we needed 
when developing Frege-IDE, especially the ones related to the editor aspect 
and had to use a few workarounds. Additionally, the documentation found on 
the JetBrains official website is rather short and could use more examples. 
That being said, we were still able to create an IDE we wanted and which, in 
our opinion, works well for the Frege language.  

When speculating whether projectional editors offer more convenience for 
editing purely functional languages compared to plain-text editors in general, 
we cannot provide a definitive answer. We believe there are advantages to 
both approaches. There are many restrictions a projectional editor puts on 
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the user used to work with a certain language in the plain-text editor, who 
may then feel the environment to be limiting. We feel like the fewer features a 
language has, the better projectional IDE for the language may be designed. 
In complex languages, such as Java, or C++, the user has many options how 
to structure his or her code. This inherently goes against the philosophy of 
projectional editors, where each language construct should have its own 
visual appearance and editor, usually not very customizable. All in all, in our 
opinion, the convenience of a projectional editor is not related to a language 
being functional or imperative, but rather to the cardinality of the set of the 
features the language has and, possibly, to the coding style most users of that 
language are used to. 

Future Work 

Project Frege-IDE is open for future extensions. These can include 
extending the set of supported features of Frege language, improving the type 
checking capabilities and user experience with the environment’s editor. 
Additionally, the built-in Frege libraries were not implemented in this project 
and could be included in the future work as well. 
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Attachments 

The attached CD has the following content: 

 MPS/ 

◦ Contains the JetBrains MPS (version 2018.1) installation file for 
Microsoft Windows operating systems 

◦ In case of using a different operating system, other variants of MPS 
can be obtained at <https://www.jetbrains.com/mps/download/> 

 Frege-IDE/ 

◦ The Frege-IDE project as described in this work for JetBrains MPS 
2018.1 

◦ Contains the defined language and a single solution with examples 

 Grammar/ 

◦ The Frege grammar in EBNF as used in the official Frege compiler 
implementation 

 Reference/ 

◦ The Frege language reference in PDF format by Ingo Wechsung 

 Text/ 

◦ Text of this thesis in PDF format 


