

MASTER THESIS

István Satmári

Frege IDE with JetBrains MPS

Department of Distributed and Dependable System

Supervisor of the master thesis: RNDr. Pavel Parízek, Ph.D.
Study programme: Computer Science

Study branch: Software and Data Engineering

Prague 2018

2

I declare that I carried out this master thesis independently, and only with
the cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact
that the Charles University has the right to conclude a license agreement on
the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague date 15/07/2018 István Satmári

3

I would like to thank my thesis supervisor RNDr. Pavel Parízek, Ph.D.
for his time, valuable advice and remarkable patience while guiding and
helping me with writing this thesis. Without him this work would never have
been finished.

I would also like to express my gratitude to Václav Pech from the
JetBrains Company who helped me with some of the technical challenges I
encountered during the course of this work and patiently explained the
difficult or otherwise confusing parts of the MPS tool.

4

Title: Frege IDE with JetBrains MPS

Author: István Satmári

Department: Department of Distributed and Dependable Systems

Supervisor of the master thesis: RNDr. Pavel Parízek, Ph.D., Department of
Distributed and Dependable Systems

Abstract: Frege is an open-source project which brings the popular functional
programming language Haskell to the Java ecosystem. JetBrains MPS is an
open-source language workbench which allows users to design a new language
and build an integrated development environment with a projectional
(structured) editor for the created language. In this work we analyzed Frege
grammar and created an IDE based on MPS that assists developers with
writing code in the Frege language. Our environment includes a set of
intuitive editors for editing Frege syntax, provides a simple type checking
and implements code generators for the Frege language. Aim of the Frege
IDE is its usability. Additionally, the thesis compares projectional editors
with the more common plain-text IDEs, such as Eclipse, and evaluates
whether they offer any advantage for editing purely functional programming
languages.

Keywords: Frege, Haskell, IDE, MPS, projectional editor

5

Contents

Introduction 7

 Organization .. 8

1 JetBrains MPS 9

 1.1 Project Structure .. 11
 1.2 Structure ... 12
 1.3 Editor .. 15
 1.3.1 Editor Actions .. 18
 1.3.2 Transformation Menu Actions ... 20
 1.3.3 Substitute Menu Actions .. 23
 1.3.4 Cell Action Map ... 27
 1.4 Behavior .. 28
 1.5 Intentions .. 29
 1.6 Constraints .. 31
 1.6.1 Scope .. 31
 1.7 Typesystem ... 32
 1.8 Textgen ... 35

2 Frege 37

 2.1 Hello, World! ... 38
 2.2 Pattern Matching .. 38
 2.3 Types .. 39
 2.3.1 Tuples .. 40
 2.3.2 Lists ... 40
 2.3.3 Custom Algebraic Data Types ... 42
 2.3.4 Type Synonyms .. 43
 2.3.5 Function Types .. 43
 2.3.6 Generic Type ... 44
 2.4 Operators .. 44
 2.5 Currying .. 45
 2.6 Where ... 46
 2.7 Guards ... 46
 2.8 Constant Definitions ... 47
 2.9 Import and Export .. 48
 2.10 Further Reading .. 50

3 Frege in MPS 51

 3.1 Supported Subset of Frege .. 51
 3.2 Structure Aspect ... 54
 3.2.1 Notation Description .. 54
 3.2.2 Program Structure ... 55
 3.2.3 Definitions .. 56
 3.2.4 Import Statements ... 57
 3.2.5 Function Definition .. 62
 3.2.5.1 Left Hand Side .. 63

6

 3.2.5.2 Right Hand Side ... 64
 3.2.5.3 Expression ... 64
 3.2.5.4 Grouped Representation ... 67
 3.2.6 Types ... 67
 3.3 Editor Aspect .. 70
 3.3.1 Visual Appearance of AST Nodes .. 71
 3.3.2 Side Transformation Menus ... 72
 3.3.3 Transformation Menu Inclusion Pattern 74
 3.3.4 Substitute Menu Actions .. 76
 3.3.5 Wrap Substitute Menu ... 78
 3.3.6 Cell Action Map ... 79
 3.3.7 Seamless Definitions ... 80
 3.3.8 Expression Operators ... 83
 3.3.9 Final Remarks .. 84
 3.4 Code Completion .. 85
 3.4.1 Scope .. 85
 3.4.2 Scope Hierarchy Pattern .. 87
 3.4.3 Import and Export ... 89
 3.4.4 Implicitly Imported Library ... 92
 3.5 Type Checking .. 92
 3.5.1 Types ... 92
 3.5.2 Infix Expressions .. 94
 3.5.3 Function Application ... 99
 3.5.4 Function Definition Type Inference 100
 3.5.5 Arguments Type Decomposition .. 102

4 Evaluation 104

 4.1 Editing Programs in Frege-IDE .. 104
 4.2 Features and Limitations .. 107
 4.3 Comparison with Plain-Text IDE ... 109

Conclusion 111

 Future Work ... 112

Bibliography 113

Attachments 114

7

Introduction

Integrated development environments (commonly abbreviated as IDE) are
a set of software applications that provide tools and facilities to software
developers. They greatly ease the process of development, providing features
like intelligent code completion, syntax highlighting, build automation tools,
debugger, and many others.

Most IDEs are built as text editors that provide additional features when
editing a source code. The editors usually parse the code; generate a parse
tree, which allows static code analysis and generic error checking of the
written program.

A different approach to designing an IDE can be done via projectional
editing. A projectional editor (also known as structured editor) is a document
editor that is cognizant of the document’s underlying structure. It is usually
used to edit hierarchical or marked-up text, computer programs, diagrams,
and any other type of content with a clear and well-defined structure [1].
While for the most computer programs, due to their complexity, a
conventional text-based IDE may be more suitable, for specific programming
languages, especially DSL (domain specific language) a projectional editor
might prove to be a more effective tool.

In this work, we intended to create a projectional IDE for the functional
programming language Frege to evaluate, whether such approach makes sense
and whether projectional editors offer more convenience than regular text-
based IDEs when it comes to working with functional languages in general.
The application we implemented in this text is often referred to as Frege-IDE.

Frege, named after the German mathematician, Gottlob Frege, is a
functional language, heavily based on Haskell, trying to bring the language to
Java ecosystem. It is considered a Haskell dialect, sometimes called a Haskell
for the JVM (Java Virtual Machine) [2].

There are several IDEs for Haskell1. Most of the known IDEs provide
mainly syntax highlighting, macros and project management features, while
some also support more advanced functionalities, such as code completion
and type checking. Frege, being a relatively new project, does not have as
extensive support in IDEs as Haskell, which is one of the reasons why we
decided to create an environment specifically for that language.

As an underlying tool for designing our environment, we have chosen an
open-source language workbench JetBrains MPS2. MPS (standing for Meta-
Programming System) is a software solution allowing developers and language
designers to create a projectional editor, together with advanced features
found in many IDEs, such as code completion, syntax highlighting and
others. It is primarily used for designing editors for DSLs, for developing new
languages and also extending existing ones, when the languages available do
not meet the needs of a developer. MPS has a large set of features, allowing
for designing editors which closely resemble those from conventional, text-
based, IDEs. It allows a language designer to define a structure of AST

1 Examples available from the WWW [12/07/2018]: <https://wiki.haskell.org/IDEs>
2 MPS is available at the WWW [14/07/2018]: <https://www.jetbrains.com/mps/>

8

(abstract syntax tree) to represent the code, editor for manipulating the AST
and a text generator to transform the AST into pure text. More about the
platform is described in Chapter 1.

Frege, based on Haskell language, has also rather many syntactic and
semantic constructs for this work to be able to include them all. We have
therefore focused our attention only on the most important features worth
examining, such as function declaration and definition, operators and custom
data types. Our ideal IDE would have to have a user-friendly editor, which
closely emulates writing Frege code in such a way most developers in that
language are used to. This should be accompanied by a contextual code
completion feature, which would allow referencing already defined functions,
operators, variables, and other elements in the correct spots in the code. Last,
but not least, we have strived for a type checker that would be able to find
small mistakes in the code, such as calling a function with illegal arguments,
or infer type of an expression. Section 3.1 describes the supported features of
the language in a greater detail.

Organization

The thesis is organized in the following way:

 Chapter 1 is devoted to MPS tool. It describes what MPS is, what it can
do and what its limitations are. The chapter introduces a project
structure in MPS, how to define an editor for a simple language and how
to tackle certain common problems.

 Chapter 2 describes the Frege language. It takes a look into the features
of the language and shows their applications on concrete examples.

 Chapter 3 is dedicated to the concrete work implementation. It looks into
Frege grammar and shows, how it was transformed into MPS concepts. It
explores editor aspect, how it was designed with usability in mind and
shows its concrete implementation. Then, code completion feature is
explained. The chapter is concluded with type system, where some of the
more interesting algorithms used in the work are described.

 Chapter 4 evaluates our decisions and explores the advantages and
disadvantages of the projectional editor over a standard, text-based, IDE.

 In the conclusion, a brief summary of the whole work may be found,
where we also strived to answer the final question, whether projectional
IDEs are actually good for functional languages.

9

1. JetBrains MPS

JetBrains MPS is an open-source language workbench that focuses on
DSLs. It is a tool that helps its users to create a new language and then write
other programs in that language.

MPS has a wide range of users. The areas MPS is currently applied in
include electrical engineering, data mining, insurance industry and others.
The tool can be used to create new languages as well as extending existing
ones. Programs written in the defined languages may then be conveniently
transformed into pure text in a specific, usually generic-purpose language.

This chapter provides an informal introduction to the MPS tool and
describes the usage details later.

MPS is a complex tool built around projectional editing, which means it
does not treat the document as a text, but rather as structured concepts.
This allows its users to create languages which involve non-parsable
notations, such as decision tables, diagrams, and other controls. Additionally,
several editors may be specified for a single language, thus allowing users to
switch between different visual representations of a document. Figure 1.1
shows an example editor for an extension of Java language with matrices and
other non-parsable controls.

Figure 1.1: Editor for an extension of Java language with non-parsable
controls

10

Traditional IDEs, on the other hand, involve a similar processing of the
code, usually expressed in the form of plain text files, as compilers do.
Traditional process of compiling written code involves lexers and parsers to
read programs, which are then transformed into tree-like data structures,
called ASTs. Figure 1.2 illustrates an example of such an AST for a simple
arithmetic expression (7 + 1) * 2 + 3. After that, in the process of semantic
analysis and code generation, an executable program is created. During these
processes a text-based IDE may report and underline any found errors for the
user.

Figure 1.2: AST for a simple arithmetic expression

In contrast, in MPS, the user works with AST directly, therefore
completely omitting the process of lexical analysis and subsequent parsing.
This brings certain advantages:

 It may be easier to extend an existing language.

 MPS can check for type errors and other mistakes in the code at almost
any time.

Extending lexers and parsers to accommodate for the changes in a
language requires a certain set of skills and a deeper knowledge of the
language’s grammar. The process is complicated, since it requires a
programmer to keep track of the possible ambiguities that may arise when
defining new grammar rules for a parser (a well-known example is the
‘dangling else’ problem). However, in MPS the process usually only requires
defining new concepts that can act as AST nodes and specifying places in the
corresponding AST where the new nodes can be created. This also means
that in MPS we can combine syntax of several different languages and
introduce no syntax ambiguities whatsoever (this, however, may still look
ambiguous to the user, if there are several different concepts with the same
visual representation).

On the other hand, to check for errors in the code in a traditional IDE,
one has to define a specific set of rules to deal with the incorrect syntax.
Code being currently typed means, it almost certainly cannot be correctly
evaluated by the standard parser for the corresponding language. Therefore,
in an example below, we might not be able to tell a user that the integer and
string types are incomparable between themselves, until the ‘if’ expression is
properly finished with the required body:

if (1 == "")
 // a statement is required here

Understandably, there are ways to deal with the illustrated problem, but

11

it requires extra effort. In MPS, this is not an issue, since the code is already
‘parsed’. Even though the body of the if expression is not set yet, there is
already a node in the corresponding AST associated with the conditional
expression inside the if brackets. The node then may be further checked and
underlined with red color (a well-known technique of many popular IDEs,
such as Visual Studio or Eclipse, to report errors). This quality is also useful
when designing a smart code completion feature, which requires certain
knowledge of the context surrounding the target piece of code.

Working with AST directly also carries some downsides. They mainly
include worse code editing. In the example depicted in Figure 1.2, a user
would need to define the AST from root to leaves, which at least in case of
arithmetic expressions is not very user-friendly. Fortunately, MPS provides
several functionalities to allow the language designer to define custom
automatic transformations of the AST. The designer can define a
transformation for a case, when, for instance, a certain node (or a whole
subtree) is deleted, a specific text is written at the end (or a beginning) of
a node, and so on. The MPS actions are described in Section 1.3.

We will now describe the MPS platform in a more detail.

1.1 Project Structure

A project in MPS is divided into two main categories: solutions and
languages.

Language is the user defined programming language. It may represent a
completely new language or an extension of an existing one. Several different
languages may be defined in a single MPS project. They can act as an
extension of each other, or be completely independent languages.

Solution, on the other hand, is a part of the project that represents
documents (a code) written in one or more of the defined languages.
Sometimes, the solution acts only as a runtime support for one or more of the
defined languages, to be used, for example, in the code generation process.

Figure 1.3 shows a logical view of the typical project in MPS.

Figure 1.3: Logical view of the project in MPS

12

Solution is a set of models. They act as packaging units that make it
possible to reference the corresponding set of models from other solutions or
languages. The model is simply a set of ASTs. We can imagine a single AST
as a representation of the single document (an analogy to a source file in the
traditional programming paradigm). The model then consists of one or more
such documents.

Language describes what types of ASTs can be created with it. It also
includes a visual representation of each node, AST transformation actions,
syntax and semantic rules together with many other ‘settings’. It is divided
into several categories, called aspects.

The following is the description of the most important MPS aspects
which we have also used in this work.

1.2 Structure

Before we describe the structure aspect, we have to explain the notion of
MPS concepts. Concept represents a sort of a class of AST nodes. It closely
resembles working with classes and instances in many popular object-oriented
programming languages, such as Java. In this analogy, the concept is a class,
whereas an AST node is an instance of that class. Concepts, in a similar
manner as classes, can have defined methods, properties, can extend (inherit
from) other concepts or implement interfaces. They can contain fields, which
are either valued types or instances of (possibly) different concepts. This way,
the language designer can specify a structure of possible ASTs that can be
created. A concept may also be declared abstract, in which case no AST
nodes may be created directly for such a concept.

There are several different ‘points of view’ to the concept. The language
designer can define methods for them, fields and properties, visual
appearance of the AST nodes, and other. These are called aspects. Structure
aspect allows to define structure of possible ASTs that can be expressed with
the corresponding language. It defines what kind of AST nodes may be used
in a program, what properties, children and references they may have [3]. An
example of the structure aspect for a concept is shown in Figure 1.4.

Figure 1.4: Structure aspect for a concept in MPS

13

A new concept should be named. This is similar to naming a class in
languages like Java and must follow a similar set of naming rules. In the
example depicted in Figure 1.4, the corresponding concept is named
MoneyCreator.

The extends clause provides a reference to the super-concept. By default,
all concepts are created with BaseConcept as their super-concept, but this can
be changed to a more specific one. Similarly to Java, the clause encodes
inheritance (or ‘is-a’ relationship in UML) and each concept, except the
BaseConcept itself, directly or indirectly has to extend BaseConcept in the
formed hierarchy. In terms of MPS, this means that if the concept A extends
the concept B, it indicates that the concept A has all of properties, children,
references, methods, and definitions from all aspects, as B.

Concepts can also implement interfaces by using implements clause.
Interface is in this case a special interface concept. It is a mechanism to
declare characteristics that can be used across several concept types. Unlike
concepts, we cannot define an alias for them (see below) nor can they extend
concepts, only other interfaces. They are mostly used for grouping properties
that are commonly used together and passing them onto necessary concepts.

Alias acts as a string that triggers a built-in auto-completion menu. An
example of such a menu is depicted on Figure 1.5. If the name is
unambiguous (i.e. it is not a prefix of another item in the menu), an instance
of the concept is immediately created. More about the menu is discussed in
Section 1.3 which describes the editor aspect.

Figure 1.5: Example of the auto-completion menu in MPS

A concept may be set to act as a root. What this means is that its
instances, together with their children, may represent a single unit of a
program, a single document or a source code. There should be at least one
such concept for the corresponding language to make sense. A concept may
be set to act as a root by using the instance can be root clause and setting
the value to true.

An analogy to Java fields is represented by concept properties and
children. Properties define concept’s custom values (values that are owned by
the concept). These are set under the properties section. They can be one of
the following:

 Primitive type: integer, boolean, or string.

 Enumeration type: a custom enumeration data type may be created in
MPS structure aspect to be used within a concept.

14

 Constrained data type: a custom constrained data type may be
created in MPS structure aspect, which is a simple string type validated
by a regular expression defined by the language designer.

Note that primitive types can be derived from usage of the other two
options.

Children (found under children section), on the other hand, resemble
aggregation relationship. These are the instances that belong to the instance
of the current concept. While there may be references set to these AST nodes
from other instances as well, in terms of their lifetime, they strictly depend
on the life of the current instance. In case the current instance is removed
from the AST, all of its children (and therefore children of their children,
recursively) are removed as well.

Children are defined by setting a name, a concept and a cardinality. The
cardinality may be one of the following options:

 [1]: exactly one instance of the specified concept is required.

 [0..1]: there may or may not be one instance of the specified concept.

 [1..*]: at least one instance of the specified concept is required. These
then form an ordered array.

 [0..*]: there may be zero or more instances of the specified concept.

Expressing relationship between the nodes can be also done via
references. It is only possible to create a reference to a node if that node
already exists in the corresponding AST. Contrary to children, cardinality
can take here only two forms:

 [0..1]: the reference is optional.

 [1]: the reference to an instance of the specified concept is required.

Where would a language designer use a reference? Consider the following
piece of code in Frege:

f = 7
g = 1 + f

The code represents a definition of two constant functions returning an
integer number. An (almost) equivalent piece of code could be written in Java
in the following way:

int f() { return 7; }
int g() { return 1 + f(); }

We could express the corresponding AST in many different ways, but let
us imagine for the sake of simplicity a root node, representing the source file,
consisting of statement nodes. Both f = 7 and g = 1 + f are statements. It
is easy to imagine the expression, such as 1 + 2, as a tree with a node + on
top having two children, representing the literals 1 and 2. But in the case of
1 + f, it is less clear what f is. Using a reference here might be helpful. We
already have the statement declaring what f is in the corresponding AST. In
1 + f we are only applying an existing function f. Therefore, we are

15

referencing the existing function f in the node representing the f operand.
An example of such AST is illustrated on Figure 1.6.

Figure 1.6: Illustration of AST for statements using a reference

1.3 Editor

Editor aspect is responsible for rendering and editing ASTs by the user of
the language being created. This includes textual and graphical
representation of each AST node and certain AST transformation actions.
This aspect is what makes MPS a projectional editor, rather than using
lexers and parsers to process the user-written code.

The easiest way to define the editor for the language is to define the
editor for each concept (called concept editor). There may be several different
editors defined for a single concept, which offers different views of the same
concept for different needs. If a concept has no editor defined, the default one
will be provided by MPS.

Figure 1.7 shows an example of the concept editor for the MoneyCreator
concept from the previous section.

Figure 1.7: Concept editor in MPS

16

Another way of creating the editor for the language is to create an editor
component. It is an editor responsible for rendering and editing only a part of
an AST node. It does not focus on any single concept and as such may be
reused across several concept editors to render certain parts similarly.

A usual representation of an AST node consists of, so called, editor cells.
An editor cell is the smallest unit which can be used to render (and possibly
edit) a certain portion of the AST node over a rectangular region in MPS
editor window. For instance, MoneyCreator concept contains a string
property called name. To show and edit the property value of any instance of
the concept MoneyCreator, we specify a property editor cell for the
corresponding property name.

The main types of editor cells include:

 Constant cells: constant cells are used to render keywords and other
constant text in editor. Figure 1.8 shows an editor from the user
perspective of a demo language, which is an extension of Java. On the
example, we use a while-loop, which is an instance of WhileStatement
concept. The string while (blue) is a constant editor cell. In Figure 1.7,
the rectangle with the string Money also denotes the constant editor cell,
but from the perspective of the language designer, who is creating the
concept editor for the MoneyCreator concept.

Figure 1.8: Editor for a language that is an extension of Java

 Property cells: they render content of a specific property of a concept
for which the editor is being defined. Editing such a cell in the editor
window for a concrete AST is immediately reflected in the given property
of the corresponding AST node. The cell provides automatic binding to
the concept’s property. On the example above depicted on Figure 1.8, a
declaration of the integer variable i is an instance of a concept with a
string property name. The identifier is rendered by the property cell. By
invoking a node explorer window (alt + x), we can see that the property of
the AST node is indeed set to the name we entered. The node explorer is
shown on Figure 1.9.

17

Figure 1.9: Node explorer for the declaration of the integer variable i

 Child cells: these cells delegate the rendering of a specific concept’s child
(or a set of children) to their corresponding concept editors. The concrete
behavior of such a cell depends on the child’s cardinality:

◦ [1]: the editor cell is always present

◦ [0..1], [0..*] or [1..n]: child nodes are bound to their
corresponding editors and removing a child in MPS editor window
results in removing it from the parent node of the corresponding
AST as well

◦ [0..*] or [1..*]: the children’s corresponding concept editors are
separated by a specified textual delimiter

On Figure 1.8 we can see a method invocation represented by the
statement handle(i, "default"). The provided two arguments are
children of cardinality [0..n] of a concept Expression and are
represented by child cells delimited by a comma.

 Referent cells: referent cells are used to display an attribute of the
referenced node from the given concept. As in the case of property cells,
they are mapped to a certain property of the referenced node in the AST.
However, they can only reflect the property of the original node, but not
affect it. Figure 1.10 shows an editor with Money variable declaration. It
has a form of a subtree with an AST node representing the variable’s
name (originally m2). The variable is then referenced in an expression,
which prints a subtraction of the variable by another variable into the
standard output. The change in the variable’s name (m2_2) is immediately
reflected into the reference. This way MPS support renaming refactoring
feature out of the box.

Figure 1.10: Editor for an extension of Java language depicting the usage of
referent editor cells

 Collection cells: wrapper-like cells to contain other editor cells are
called collection cells. They affect visual arrangement of the cells being
rendered. There are three main types of collection cells:

◦ Horizontal cells: cells enwrapped are placed horizontally in row.

18

◦ Vertical cells: cells enwrapped are placed vertically.

◦ Indent cells: cells enwrapped are placed in a text-like manner.

There are several other types of editor cells. Here we only described the
most-used ones from the perspective of this work.

The editor cells may also be rendered in different ways. This can be
changed by using editor styles. Applying editor style could be described as
analogous to applying CSS (Cascading Style Sheets) styles to DOM nodes in
HTML and XML documents. This allows the language designer to change the
cells’ visual properties, such as text color, background color, spacing, padding
as well as functional aspects, such as editor cell being editable or read-only
and many others. Figure 1.11 shows a usage of editor style for a selected
editor cell.

Figure 1.11: Editor style for a selected editor cell

1.3.1 Editor Actions

So far we have described how we can customize appearance of each AST
node. Now we will discuss editor actions, how we can allow automatic
transformations of the corresponding AST and how to easily add new AST
nodes to the code tree.

A lot of developers are used to write programs in text-based IDEs or just
in a plain-text editor. To simulate such a behavior, MPS comes with a notion
of editor actions. We have to remind the reader that MPS keeps the code at
tree-like data structures at all times. This means that what seems in a text-
based editor as a trivial operation (such as adding a new operator and an
operand to an arithmetic expression) is a non-trivial AST transformation in
MPS.

Let us consider a simple arithmetic expression: 7 – 1 * 2 + 3. In a plain-
text editor, a normal user would write the expression from left to right. In
MPS, however, the expression has to be encoded within an AST, and as such
has to be entered from root node to the leaves. In this particular example, a
user would need to create an instance of the concept representing the +
operator. This creates a binary tree. The right operand is an AST node
representing the literal 3. The left operand is a new subtree representing the
expression 7 – 1 * 2, which has to be, again, entered from root node to the
leaves, starting with the concept representing the – operator.

Understandably, the mentioned approach is not very user-friendly.
However, we can use MPS editor actions to create the editor where such an
arithmetic expression may be entered from left to right. We will show the
approach for the concrete expression from the high-level point of view.

1. First, the user types the literal 7. That is a very simple unary expression
and no further work is to be done here.

19

2. Then, user hits -. MPS immediately creates a binary expression subtree,
where root is the operator -. 7 is put as its left operand and the focus is
set on the right operand, so the user may edit that.

3. User types in 1, which only concludes the editing of the right operand.
Figure 1.12 illustrates the AST in its current state.

Figure 1.12: Illustration of an AST for the arithmetic expression 7 – 1

4. Then, however, follows the operator *. User is now editing the right child
of the AST corresponding to the expression 7 – 1. MPS, therefore, takes
a look at the parent’s operator’s precedence. It is clear that - is less
precedent, than *. Thus, a subtree for binary operator * is created, 1 is
put as its left child and a focus on the right child is set. The subtree is
placed in the original stead of the node representing operand 1. Figure
1.13 illustrates an AST after finishing the current step.

Figure 1.13: Illustration of an AST representing the arithmetic expression
7 – 1 * unset-operand

5. User types the literal 2, which concludes the editing of the right operand
for the operator *.

6. Finally, user types in operator +. MPS again takes a look on the parent’s
operator which is * and has a higher precedence. The new subtree,
therefore, has to be created elsewhere. The parent of the node
representing operator * is, however, –. While – has the same precedence
as +, all of the operators are left associative which means the new subtree
has to be created even on the higher level. MPS creates the subtree, puts
the current AST corresponding to the expression 7 – 1 * 2 as its left
child and sets the focus on its right child. The current AST is depicted on
Figure 1.14.

Figure 1.14: Illustration of an AST representing the arithmetic expression
7 – 1 * 2 + unset-operand

20

7. Typing 3 only finishes editing of the right child and the expression is
concluded.

In the description above, we were always editing a specific editor cell
corresponding to a single node in the AST. We always handled an event of
writing a specific textual pattern to the right of a certain editor cell. This is
just what MPS allows us to do. These type of actions are usually referred to
as transformation menu actions and we will describe them in a more detail in
the following section.

Another important type of actions are substitute menu actions, which
allow the user to substitute a certain AST node (or a whole subtree) for a
different AST node. These actions are usually invoked when a certain text is
written in place of an AST node, which we want to automatically substitute
for something else. The substitute menu actions are described in Section
1.3.3.

1.3.2 Transformation Menu Actions

Transformations menu actions provide a way to manipulate an AST when
a certain textual pattern is entered, usually either left or right of a certain
editor cell. They allow us to replace a certain AST node for a different one,
change a whole code subtree, or otherwise manipulate the corresponding data
structures.

From a certain perspective we could say that the transformation menu
actions are specific set of event handlers. The handlers are specified in a
general-purpose programming language, which is based on Java (so called
BaseLanguage). This allows for almost any type of AST manipulation and
offers a lot of flexibility.

An example of a usage scenario can be a concept, which represents a
certain type of expression enclosed within brackets, for example, (x1).
However, the corresponding AST node may be changed to represent either:

 A tuple, which has a form of several expressions within round brackets
separated by commas, e.g. (x1, x2, x3)

 A list, which has a form of several expressions within round brackets
separated by colons, e.g. (x1 : x2 : x3)

We want to change the AST node based on the user-entered text. If the
expression x1 is followed by a comma, we will replace the node for an
instance of the tuple concept. In case the user enters a colon, an instance of
the list concept should be created. Figure 1.15 shows the concrete
implementation of the corresponding transformation action, which is also
described in a greater detail below.

The actions have to be always associated with a certain editor cell and
the corresponding concept. However, the editor actions in general apply only
to the following types of cells:

 Constant cells

 Property cells

21

 Referent cells

In the example above, the editor for the concept representing the
expression enclosed within round brackets consists of three parts:

1. A constant cell representing the left round bracket

2. A child cell representing the expression

3. A constant cell representing the right round bracket

This means the transformation action described in the example above has
to be created for the concept representing the expression, rather than the
whole bracketed expression (we will assume here that the concept
representing the expression consists only of one of the three mentioned types
of editor cells, for example, the property cell denoting the identifier x1).

Transformation menu action can be created as either:

 A default transformation menu for a concept

 A named transformation menu

A default transformation menu is associated with a specific concept. The
action is triggered by entering a specific textual pattern either left or right
(we can choose either of the two options) of all three types of the mentioned
editor cells the corresponding concept editor consists of. For instance, if we
created a default right-side transformation menu for the bracketed expression
concept, the action would be triggered by entering the specified textual
pattern right of both of the bracket symbols, but would not be triggered by
entering the pattern right of the expression.

Additionally, every concept is implicitly associated with a default
transformation menu. If the language designer does not provide one explicitly,
the transformation menu defined for the closest super-concept is assumed. If
none are defined, the one implicitly defined for BaseConcept is used.

A named transformation menu is an additional action associated with a
specific concept. Unlike the default menu, it is not associated with all of the
three types of the mentioned editor cells in the corresponding concept editor
implicitly. Instead the language designer has to attach the action explicitly to
the concrete editor cells he or she likes. However, the same restriction for the
editor cell types applies here as well, i.e. the language designer cannot attach
the named action to child editor cells, only to the constant, property and
referent cells.

Let us now describe the implementation process of the transformation
menu action on the example for the bracketed expression. We will create a
default transformation menu for the concept representing the expression.
Then we specify the section, i.e. where the transformation should take place.
There are several options, but for the purpose of this work, either the action
is triggered upon typing a text right of an editor cell, or left of an editor cell.
(We chose right. In Figure 1.15 this is represented with the clause section({
side transformation: right }).)

Then, we define the action from the three main sections:

 Text: represents a string that triggers the current action. This is the
string a user can type either right or left of the associated editor cells. It

22

can be either a constant, or a piece of code which returns the string that
triggers the action.

 Can execute: a piece of code that is executed once the action is
triggered. If the code returns false, the current action is prevented from
execution. However, due to how MPS works, it is mostly best to leave the
section empty, as returning true indicates the possibility to execute the
action even if not triggered by the current Text.

 Execute: the specific handler of the current action, written in a higher-
level Java-like language. It specifies the concrete transformation of the
AST.

On Figure 1.15 we can see the concrete implementation consisting of two
separate actions. Each action performs its own transformation of the
bracketed expression node, either to the tuple or the list. The former
expression x1 is copied and placed as their first item. The bracketed
expression node is a parent of the current expression, which is why we have
to use the statement node.parent.replace with(newNode). The last line of
the both handlers denotes setting a focus on the newly created AST node -
on its last editable editor cell.

Figure 1.15: The default transformation menu for the concept representing
the expression, which is also a child of the bracketed expression concept

There is also a way to reuse transformation menu actions. Instead of
specifying an action, a language designer may use include statement. It
includes a specific default or named transformation menu. Furthermore, a
transformation menu aimed for a different concept, than the one being

23

currently dealt with, may also be included. Consider the example above and a
scenario, where we want to execute the actions defined for the expression
concept also when the user types the coma or colon symbol right of the
bracket symbols. We may simply create a default transformation menu for
the concept representing the bracketed expression and include the default
transformation for the expression concept.

1.3.3 Substitute Menu Actions

Substitute menu actions define transformations to some parts of the AST,
where one node (or a whole subtree) is substituted by another node (or a
whole subtree).

Typically substitute actions are triggered by user when pressing ctrl +
space in the editor. This invokes the completion menu that contains options
that, when selected by the user, will replace the current AST node under
caret. Substitute menu actions allow the language designer to add specific
items into the completion menu as well as overriding the behavior of the ones
included in the menu by default. The default substitute menu is provided by
MPS for all concepts, when the caret’s position is in front of a node, or the
whole node is selected. Figure 1.16 depicts such a scenario in Frege-IDE [4].

Figure 1.16: The default substitute menu provided by MPS for a selected
node

To trigger a substitute action, a user may also simply enter the text in

place of an AST node from the completion menu for one of its items. This,
understandably, does not work in every case, as not every AST node is
completely editable (consider, for instance, an AST node with non-editable
constant editor cells). However, instances of abstract concepts, which are
created by default for the concepts with children of such abstract concepts,
are editable. They are highlighted by reddish rectangle to denote an error and
that MPS expects an instance of a concrete concept instead. Figure 1.17
captures the usage scenario. First we have the AST node, which is an
instance of an abstract concept. Then we enter a text from the substitute
menu, Just. Upon hitting the last character, the substitute action is triggered
in the same way, as if the user selected the item manually from the menu and
pressed enter key.

24

Figure 1.17: Using substitute menu actions by entering text directly

The completion menu follows the following scheme:

 All concepts applicable in the given context are displayed in the menu.
This follows the structure aspect of the language project. For example, if
a concept A contains a child of an abstract concept B and there are two
concrete concepts, which extend B – B1 and B2, then B1 and B2 are added
to the menu. If B11 extends B1, it is also added to the menu.

 Abstract concepts are not included in the menu.

 Concepts, for which their constraints do not allow their presence in the
current place in the code, are not included either. More about the
constraints aspect is discussed in Section 1.6.

 Smart references are not added to the completion menu, but rather all of
the referenceable items are included instead.

Smart reference is a term we use for concepts that contain only a single
reference and nothing else. For instance, it may be a concept representing a
variable in an expression. In most programming languages, a variable has to
be declared first, before it can be used:

int i;
boolean b = i > 10; // i is a reference here

Such a concept would consist only of the reference to the concept
representing the corresponding variable declaration int i. MPS then instead
of adding the concept itself to the substitution menu adds to the menu all of
the referenceable variable declarations. Thus, in the example above, the menu
would be populated with the presentation of the AST node i (among other
visible variables in the given context).

The completion menu may be altered by creating a substitute menu for a
concept. If the language designer creates a default, empty, substitute menu
for a concrete concept, it will not be populated by that concept, regardless of
the context where the menu is invoked. This feature may be used to treat
concepts, such as EmptyStatement. A typical program is usually a series of
statements. For the sake of simplicity, let us consider that each statement
goes onto a new line. To allow empty lines in the editor, we would create an
EmptyStatement concept. However, it does not make much sense to allow
creating the EmptyStatement instances from the completion menu. Instead
each line should be an instance of EmptyStatement by default and easily
rewritten to a different statement. To prevent EmptyStatement populating the
completion menu, we would do just that - that is, creating an empty default
substitute menu for the concept.

25

The language designer may also specify substitute actions and wrap
substitute menus inside a substitute menu for a concept. We will describe
them in a more detail, as they are important and heavily used in Frege-IDE.

Substitute actions populate the completion menu by a new entry at all
places, where the current concept (for which we are defining the substitute
menu) would be applicable. A language designer then specifies a custom
handler, which has to return a new AST node for the current concept, or a
concept which extends, directly or indirectly, the current concept (in the
analogy with OOP languages, the new AST node has to have the type of the
current concept).

We will demonstrate substitute menu actions on an example. Let us
assume an abstract concept Literal. We have two concepts which extend
Literal: IntegerValue and BooleanValue. What we want is to automatically
create a concrete AST node, where a node for Literal concept is expected. If
the user types an integer number, an instance of IntegerValue should be
created, whereas if user types true or false, an instance of BooleanValue
should be created.

From the point of view of completion menu, in places where an instance
of Literal concept is expected, there should be three items in the menu
available: two for BooleanValue (true and false) and one representing a
generic IntegerValue. We will handle BooleanValue in the following way:

1. Set BooleanValue as an abstract concept.

2. Create two concrete concepts, which extend BooleanValue, i.e. TrueValue
and FalseValue, representing the corresponding values.

3. Set aliases to true and false for the corresponding concepts representing
the boolean values. This populates the completion menu with the defined
aliases instead of the names of the corresponding concepts.

The IntegerValue is trickier, because there is no single value to represent
the concept with. To solve the problem, we will create a default substitute
menu for the Literal concept and add a single substitute menu action.
Figure 1.18 shows an implementation of such a menu. We describe the details
below.

Figure 1.18: Implementation of a default substitute menu for Literal concept

26

The substitute menu action consists of defining the following sections:

 Create node: this is a custom handler of the current substitute action
and has to return a new node for the current concept.

 Matching text: a string that triggers the current substitute action,
when typed. This is also the string that will be displayed on the left side
of the invoked completion menu.

 Can substitute: a boolean telling the MPS whether the current
substitute action may be executed when triggered.

In the case of our example, the IntegerValue is a concept with a single
property representing the user-entered integer value. Therefore, in create
node section, we simply create a new node and set its value property to be
equal to the user-entered text. The matching text section is set to return
whatever value the user types. This may make not much sense, but it is
important to understand that we cannot represent all integer numbers with a
single string. Finally, can substitute checks whether the user-entered string
actually represents an integer value. It tries to match the string against a
regular expression capturing integer values, and if successful, returns true.

Wrap substitute menu populates the completion menu by a different
concept as a ‘replacement’ for the current concept. The corresponding
handler still has to return an instance of the current concept, however, to
conform to the defined structure.

Let us consider the following scenario. We have Literal concept from the
example above, which, according to the structure, extends an abstract
Expression concept. Then we have another abstract concept, Pattern,
completely independent from Expression. However, we want to be able to use
Literal also in places, where Pattern is expected. Since Literal may only
extend one of the two concepts, we would need to create a new Literal
concept, which would extend Pattern. Copying the Literal together with its
sub-concepts would create a lot of code duplicity and the language would
quickly become unmaintainable.

A different solution is to create a ‘wrapping’ concept, let us call it
PLiteral. The concept extends Pattern and has a single child of cardinality
[1] of type Literal. However, we want to preserve everything about the
Literal concept from the example above, i.e. automatic substitution to
IntegerValue and BooleanValue. In the current state, the user of the
language would first need to create an instance of the PLiteral and only then
would he or she be able to use the defined substitute menu for Literal (this
is the ‘top-down’ approach of creating the AST).

The language designer may use, however, the option of defining the wrap
substitute menu. He or she would specify that in places where concept
PLiteral is expected, the completion menu may be populated by the entries
from completion menu for Literal concept instead. Selecting any of the
corresponding entries from the completion menu would create an instance of
Literal, and then the handler, defined by the language designer, would take
the AST node and enwrap it by an instance of the PLiteral concept.

Figure 1.19 depicts the implementation details of the wrap substitute
menu for the PLiteral concept. The language designer selects a concept of

27

which the completion menu should be copied (menu to wrap default

substitute menu for), then specifies the handler which wraps the original
AST node by a new instance of the current concept.

Figure 1.19: Default substitute menu for the PLiteral concept with the wrap
substitute menu

1.3.4 Cell Action Map

Cell action map is a custom defined event handler associated with an
editor cell. Unlike the previously mentioned types of actions, these allow the
language designer to define a handler for events, such as editor cell selection,
cell removal, pressing a concrete keyboard key when the editor cell is focused,
and so on.

Consider the example from Section 1.3.2. We have these types of
concepts:

 A concept representing the bracketed expression, e.g. (x1)

 A concept representing the tuple, e.g. (x1, x2, x3)

 A concept representing the list, e.g. (x1 : x2 : x3)

However, this time, we are faced with the opposite problem – how to
change the AST node, representing either a tuple or a list, back to the simple
bracketed expression, upon removal of the last item?

We will demonstrate the usage of the action map on the Tuple concept.
Tuple is a concept containing at least two children of type Expression. Figure
1.20 provides an example implementation of its structure aspect in MPS.

In the corresponding concept editor we associate the child editor cells for
rest children from Figure 1.20 with the new cell action map we named
Tuple_RemoveRestItems. In the cell action map, we define a new handler for
DELETE action. The handler itself is relatively simple – we only create a new
AST node for the bracketed expression, set the expression between the
brackets to be equal to the last remaining item in the Tuple AST node and
replace the Tuple node with the newly created bracketed expression. Finally,
we set the focus on the newly created AST node in the editor. Figure 1.21
depicts an implementation of the cell action map.

28

Figure 1.20: Implementation of structure aspect of Tuple concept

Figure 1.21: Implementation of the cell action map for Tuple concept

To conclude the editor section, editor actions provide a flexible way to

build a user-friendly editor that can mimic many features of a traditional,
text-based, editor. However, it is impossible to allow the completely same
behavior, since a user is actually editing the AST data structure and not the
text he or she sees. This means that almost every editing feature has to be
implemented manually. The language designer should, however, optimize the
editor for the most common cases, at least.

1.4 Behavior

Behavior aspect allows to, simply said, define methods on concepts. If we
take the analogy with OOP further, then structure aspect allows a language
designer to declare classes and their fields, while the behavior aspect allows to
declare and implement their methods, including constructors.

In behavior aspect, constructor is a block of code which is executed when
a new node of the corresponding concept is created. However, certain
exceptions exist, when the constructor is not, in fact, executed. These mainly
include creating an instance of the concept by using other means in the MPS
BaseLanguage, than the statement new initialized node<MyConcept>().

29

Similar concept of methods as in OOP languages, such as Java, is present
here as well. A concept may be associated with several methods with strictly
defined visibility (public, protected, or private). Methods that can be
overridden in sub-concepts, have to be marked virtual. Static methods exist
here too. They are methods not attached to any instance of the concept, but
rather have to be called on the concept itself.

Important characteristic of the behavior aspect is that it allows to
traverse the AST being created. The language designer can easily inspect
parent and children of any node as well as nodes’ references.

An example of the concept’s behavior aspect is depicted on Figure 1.22.
The corresponding Import concept, which represents import declaration in
Frege, has defined the constructor setting its property to a default value. The
getPrefix method returns the import’s alias. More about the Frege import
declaration is discussed in Section 2.9.

Figure 1.22: Example of a concept’s behavior aspect in MPS

1.5 Intentions

Intentions aspect allows to define special user interface elements (called
intentions) that allow executing predefined actions in certain places in the
code. They usually perform some modification of the current AST.

Let us assume a program which consists of a series of statements. Each
statement is placed on a single line, but some lines may be empty. Statements
consist of several items. In this case, when the caret is positioned at the end
of a statement, pressing enter key is, from the user’s perspective, ambiguous.
Either it should add a new item to the current statement, or a new line. The
scenario is illustrated on Figure 1.23.

30

Figure 1.23: A program in MPS consisting of a series of simple statements

We can approach the problem by letting the user decide. A user would

invoke a menu that would let him or her decide whether an item should be
added to the current statement, or a new line created below the statement.

The intentions menu is generally invoked by pressing alt + enter keys. The
menu may contain several items and the selection of a concrete intention is
confirmed by pressing the enter key. An example of the menu is shown on
Figure 1.24.

Figure 1.24: Intentions menu in MPS

Standard type of intention is defined for a specific concept. There is also

another type of intention (surround-with type) we have not used in this work
and will therefore not describe.

When created, the corresponding intention will be added to all intentions
menu invoked on that corresponding concept (this means that the caret has
to be positioned on the editor cells associated with the given concept at the
time of the menu invocation). The intention may also be executed within the
subtree defined by the corresponding concept, if available in child nodes
is set to true.

An example of the intention implementation is show on Figure 1.25. The
language designer has to provide the intention’s description, which will be
shown in the invoked menu, and the handler to specify the required action.
Additionally, he or she can define the context in which the intention may be
displayed in the menu, by returning a boolean value inside the isApplicable
section.

Figure 1.25: New intention definition in MPS

31

1.6 Constraints

Constraints aspect lets the language designer declare constraints that help
him or her control where nodes of the language are allowed. They also allow
to specify and put a set of restrictions on valid values (properties) of AST
nodes and to define scopes for referenced nodes.

Scope is an object which defines a list of potential targets that can be
referenced. Nodes outside the list may not be set a reference to. Additionally,
scope object also helps to locate a suitable target from the given list based on
what the user has entered in the corresponding place in the editor. When no
scope is defined in the concept’s constraint aspect, all nodes of the
appropriate type are considered eligible. The auto-completion menu is filled
with nodes based on this rule.

Concept constraints are divided into several sections:

 Can be child: the section allows specifying a boolean method which
returns, whether a node of the current concept can be a child in a specific
AST context. If the method returns false, then the node will not be
suggested in the auto-completion menu. Sections Can be parent and Can
be ancestor work in the similar way.

 Property constraints: property constraints allow restricting a set of
values of a concept property. In a sub-section is valid the language
designer may specify a boolean method for checking the corresponding
property’s value. If the method returns false, the value is considered
invalid and MPS marks the associated editor property cell with a reddish
rectangle.

 Referent constraints: in this section the language designer controls
how references are established to nodes of the concept. He or she may
restrict what nodes will be referenceable from the given concept by
specifying the scope object.

1.6.1 Scope

Scope is an object in MPS which defines a list of potential targets that
can be referenced. It is an (indirect) instance of the abstract class Scope in
the BaseLanguage in MPS.

A language designer may specify his or her own implementation of Scope.
The new class must inherit from the Scope class provided by MPS implicitly
and implement the necessary abstract methods. Notable methods from the
class include:

 public abstract sequence<node<>> getAvailableElements(string prefix);

returns all of the nodes from the scope that begin with the string prefix.

 public abstract node<> resolve(node<> contextNode, string refText);
returns a node, if the entered string refText can unambiguously
determine a referenceable node from the current scope.

32

1.7 Typesystem

Typesystem aspect makes it possible to report semantic errors to the user
of the language. On its highest level, it could be said it contains mechanisms
to check for both non-type related and type related rules.

Non-type related rules are called checking rules. These serve the language
designer to implement custom semantic error checks. For instance, consider a
type declaration statement in Frege language:

type MyType a b = [Int] -> a -> b

The statement declares a new type MyType with a and b being type

variables. Type variables have to have different names to be distinguishable
and thus the following statement is invalid in Frege:

type MyType a a = [Int] -> a -> a

To check and report the error, the language designer can create a
checking rule for the concept representing the type declaration statement. A
checking rule is a simple method, associated with a specific concept, which is
executed by MPS automatically for each AST node of the concept in the
current document. The method is executed mainly when the AST node is
changed in any way, or when the document is opened. The error is reported
to the user by using error statement in MPS BaseLanguage. The language
designer specifies a string message and the AST node which caused the error.
If the error statement gets executed, the MPS underlines the corresponding
node with red color in the editor to denote the problem.

Figure 1.26 provides the implementation of the checking rule in our Frege-
IDE for the concept representing the type declaration statement. We compare
each two type variables between themselves and report an error in case two
have the same name.

Figure 1.26: The checking rule in Frege-IDE for the concept representing the
type declaration statement

Type related (typesystem) rules offer a declarative way to express rules
which support type calculations. The language designer can let MPS calculate
types of expressions in the runtime and upon finding inconsistencies, MPS
will report errors to the user automatically.

MPS supports several types of declarative rules. We will describe the ones

33

we used in this work, which include inference and subtyping rules.
Inference rules are created to calculate a type of a node for the given

concept. These can also be used to enforce a type, i.e. to perform a type
check. The rule consists of these sections:

 Name: determines name of the current typesystem rule.

 Applicable for: used to specify the concept which the rule applies for.

 Do: defines the rule for the given concept. The rule is written in a
variant of the MPS BaseLanguage, which is extended with statements
regarding the typesystem aspect.

Figure 1.27 shows an example of the inference rule for a concept
representing an integer literal. The section Do contains a single statement,
which tells MPS the type associated with the concept. We describe the
statement typeof(integerLiteral) :==: <int> in a more detail below.

Figure 1.27: The inference rule for a concept representing an integer literal

The statement is a special form of an assignment. There are several

different operators in MPS the language designer can use:

 :==: The operator tells MPS that the type on the left hand side must be
the same, as the type on the right hand side. This performs both the
check and the assignment.

 :<=: This tells MPS that the type on the left hand side is a sub-type of
the type on the right hand side.

 :~: Usage of the operator tells MPS that the type of operands on either
side of it are weakly comparable.

typeof(integerLiteral) denotes the type of an instance of the
IntegerValue concept. The inference rule is executed for each AST node of
the current concept.

The <int> part denotes a quotation. It is used when the language designer
needs to create nodes of concepts in a language (even the language he or she
may be now creating) via MPS BaseLanguage. The equivalent piece of code
without the quotation would be as follows:

node<IntTypeNode> intTypeNode = new initialized node<IntTypeNode>();
typeof(integerLiteral) :==: intTypeNode;

Anything displayed inside the quotations symbols <…> is what the node

would look like as if an actual editor of the corresponding language was used

34

to edit the AST. int in this case is the textual representation of the concept
IntTypeNode in its concept editor.

The concept IntTypeNode is not a part of the MPS BaseLanguage. It is,
however, a concept which extends Type concept from the BaseLanguage. The
concept may be created in a new language, which is then added to the
dependencies of MPS typesystem aspect. It represents a new type.

To represent a more complex type, such as an array of items of a certain
type, a similar approach would have to be used. In Frege, the equivalent
language construct is called a list. The concept representing its type is a new
concept extending the Type concept from the BaseLanguage. It should
contain a single child determining the type of its items. The child is, again,
an instance of the Type concept. The structure aspect of such concept is
depicted on Figure 1.28.

Figure 1.28: Structure aspect of the concept representing the list type in
Frege-IDE

When the operator :==: is used to compare a type of an AST node, MPS

checks the whole tree for equivalence. In the example above, a list of integer
items is, according to the operator :==:, different from a list of double items.

To check whether a list of integer items is assignable to a variable
denoting a list of double items, we have to use the sub-typing operator :<=:.
There is no concrete assignment statement in Frege language, but certain
semantic checks of function definition statements against their type
annotations behave similarly. For the sake of simplicity, let us consider a
concept representing the assignment statement as in languages, like Java,
which consists of left and right hand side. For the right hand side to be
assignable to the variable on the left, it must be of the same or a ‘more
concrete’ type, than the variable. The following statement illustrates an
inference rule of such a concept:

typeof(assignment.rightExpression) :<=: typeof(assignment.leftVariable);

Let us consider a new concept representing the numeric type double,
DoubleTypeNode. So far, there is no defined type relation between
DoubleTypeNode and IntTypeNode and an attempt to assign an integer list to
a double list variable would MPS underline with red color denoting the error.

35

To specify that integer is a sub-type of double, we create a sub-typing rule.
Sub-typing rule is a simple method which returns a list of instances of

Type concept that are ‘more abstract’ than the current type. In the case of
IntTypeNode, we return the DoubleTypeNode instance. Figure 1.29 shows the
concrete implementation for our example.

Figure 1.29: The subtyping rule for IntTypeNode concept

By implementing the rule, we have also allowed for sub-typing comparison

of the list type. Now, MPS would have no objections against assigning an
expression of an integer list to a variable of double list type.

In certain cases, however, the provided mechanisms are not enough to
perform type checks. Sometimes a language designer needs to inspect the
inferred type of an expression in a more detail. For this, MPS has a notion of
when concrete block.

Since MPS offers only a strictly declarative way of defining types of AST
nodes, it is not certain when a node will have its type inferred. However, a
language designer may use when concrete statement to surround a block of
code which will be executed only when the type of the given node is already
known. The surrounded code is executed in a separate thread, which means
the rest of the code in the corresponding typesystem rule will continue with
its execution independently.

1.8 Textgen

The optional aspect component of a language, textgen, allows to define a
mapping from AST nodes to a text. The feature allows the translation of the
code written in MPS to a plain text. The user can then compile the code
using a standard compiler to an executable program.

Textgen can be triggered for a specific document by using a right mouse

button in the editor space and selecting Preview generated text.
The language designer has to define the textgen aspect for each concept

independently. He or she has to specify a string which is put into a buffer for
each AST node encountered. If the corresponding concept contains children,
their textgen should be invoked manually as well in a recursive manner, down
to the leaf concepts.

Definition of the textgen consists of a single method written in the MPS
BaseLanguage. It specifies, what should be outputted to the buffer, by using
append statement. The indentation of certain portions of the code may be
manually increased by using with indent block. Last, but not least, it should
call the textgen of child concepts, again, by using append statement.

36

Figure 1.30 depicts an example of a usage of the textgen aspect for a
concept in Frege-IDE. The corresponding concept FDGuards, representing a
function definition with guards, does not output anything on its own, but
rather calls the textgen of its children. Its pattern child is outputted on a
single line, then the guards are printed starting from the following line,
indented. where is printed out only if it is actually defined, since the
cardinality of the child is set to [0..1].

Note that when using the textgen, an error arises when MPS tries to call
the textgen for a concept which does not have this aspect specified. This can
be useful when a given AST is currently incomplete or in an erroneous state.
That is why abstract concepts usually should not implement it.

Figure 1.30: Example of the textgen aspect for the concept FDGuards in
Frege-IDE

37

2. Frege

Frege is a variant of Haskell language, targeted for the JVM platform. It
is a purely functional programming language, has a strong static type system
with global type inference and non-strict evaluation. The language compiles
to Java and runs naturally on the JVM. This way it can be used inside any
Java project.

In this chapter, we describe the Frege syntax and what the most common
patterns of writing programs in Frege are. We describe differences between
Frege and Haskell and mention certain approaches when programming in
functional languages in general. It is important to note that Frege is a robust
and complex language, which is why we could not include the full set of
language constructs in the implemented IDE. Certain features not mentioned
in this chapter were omitted.

Frege was designed by Ingo Wechsung, who named it after the German
mathematician, logician and philosopher, Gottlob Frege. Its syntax is very
close to that of Haskell, with only small differences. The following is a brief
description of the main differences.

 In general, Frege could be considered a subset of Haskell language.
Certain features are missing, such as the foreign function interface, which
allows Haskell to interact with code written in other languages [5]. Instead
there are language constructs to make Java types and methods usable (all
primitive types are simply Java types).

The Frege-Prelude library, an equivalent of Haskell-Prelude library which
defines many standard types (for instance, Maybe), functions and operators
(<=, !=, &&, …), has many functions, type classes and types known from
Haskell. However, Frege uses the Java APIs whenever possible, so certain
aspects of the language may feel different. For example, implementation of
type classes is incomplete and multi parameter type classes are not supported
by Frege at all. Additionally, the support for newtype declaration (an
algebraic data type with exactly one constructor) is missing as well as
deriving clause for data type declarations, and a few other keywords.
The string value in Frege, unlike in Haskell, is not a list of characters, but an
instance of the Java class java.lang.String [6]. Furthermore, Frege does not
have any operator data constructor other, than colon : to separate the head
and the tail of a list. This, however, allows the user to define in Frege even
such custom operators that begin with the colon character, which is not valid
in Haskell (e.g. :-: is a valid custom operator function in Frege).

There are several other minor differences between Haskell and Frege.
However, they mostly do not affect this work in any way, which is why we do
not describe them.

The following sections describe Frege syntax on several small examples as
well as overview of certain principles used when programming in a functional
language. For the most part, the described syntax is also supported in Frege-
IDE. Though recommended to read, people familiar with Haskell or Frege
may skip this part.

38

2.1 Hello, World!

The following piece of code is an example of a ‘Hello, world!’ program in
Frege:

module Hello where

greeting friend = "Hello, " ++ friend ++ "!"

main args = do
 println (greeting "world")

This code would compile to Hello.class and Hello.java with a regular
Java entry point method main. Moreover, the Hello.class would have the
method public static String greeting(String ...) {...} that one can
call from Java, or any other JVM language.

Just like in Haskell, the function greeting is pure, which means it is
stateless and does not have any side effects. For the same given input
parameters it always returns the same result. This is a great advantage of
functional languages that basically allow the results of such functions to be
cached. Function main, however, is not pure. Since it corresponds to the main
function in Java language, it may produce side effects, like printing to the
standard output, which it actually happens to do so in this concrete example.

2.2 Pattern Matching

An important aspect of programming in both Frege and Haskell is
pattern matching. When we define a new function, we may define different
variants of its implementation for different input arguments. To elaborate,
consider the following definition of the function charToName:

charToName :: Char -> String
charToName 'a' = "Albert"
charToName 'b' = "Broseph"
charToName 'c' = "Cecil"
charToName _ = "No Name"

The main idea behind the function above is to provide the caller with a
human name beginning with the given character. (Here we only provide
definition for the first three characters of English alphabet, albeit it should
suffice for the demonstration.)

The first line of the program tells us that charToName is a function
accepting a single character argument and outputting a string (we discuss
Frege types and type annotations in Section 2.3).

Then, we provide for each character a specific definition. The wildcard
underscore character _ matches any input. This way, if we were to call the
function charToName with an input 'a', it would return "Albert", but for 'z'
character we would get "No Name".

The ordering of the definitions is important here. Moving the definition

39

for the pattern with wildcard _ above the definition for input character 'a'
would result in all calls to charToName returning the "No Name" string.

Regarding the pattern matching in Frege, it is also important to mention
variables. These ‘formal parameters’ are also patterns; it’s just that they
never fail to match a value. This is in a certain way similar to the wildcard
pattern _. However, as a side effect of the successful match, the formal
parameter is bound to the value it is being matched against. For this reason,
patterns may not contain multiple variables with the same identifier [7].

Based on this, we can create a function returning a second element of any
three-item-tuple. A tuple is simply an ordered sequence of items of (possibly)
different types, separated by comma. The following are examples of constant
functions returning tuples:

tupleExample1 = (1, 'a')

tupleExample2 = (1 + 1, 2.7, true && false, 'a')

tupleExample3 = (1, 2.7, true, ("hello", 'a'), 'z')

To explain the third function tupleExample3, the expression (1, 2.7,

true, ("hello", 'a'), 'z') is a tuple of five items, fourth of which is
another tuple of two items.

Our function, returning the second element of a three-item-tuple, would
then look like this:

second (_, x, _) = x

When calling the second function with a three-item-tuple argument, the
second value is automatically bound to the variable x. This is what we then
return on the right hand side of the definition. We call this mechanism data
deconstruction.

2.3 Types

Frege is a strongly and statically typed language. If the types are not
specified by the programmer, they are automatically inferred. To provide
types for the function greeting from Section 2.1, the user can write:

greeting :: String -> String

We call this signature a type annotation of the function. Here, we denote
that function greeting accepts a single argument of the type String and
returns a result of the type String too.

Additional types, which are also supported by Frege-IDE include:

 Bool: represents boolean values (true, false).

 Char: represents a single utf-8 character.

 Int: represents integer numbers.

40

 Double: represents floating point numbers. It is an equivalent to Java
double type.

 Tuple

 List

 Custom algebraic data types

 Function type

2.3.1 Tuples

A tuple, as mentioned in the previous section, is a sequence of items of
(possibly) different types, separated by a comma. Here we show the examples
of constant functions returning tuples together with their type annotations:

tupleExample1 :: (Int, Char)
tupleExample1 = (1, 'a')

tupleExample2 :: (Int, Double, Bool, Char)
tupleExample2 = (1 + 1, 2.7, true && false, 'a')

tupleExample3 :: (Int, Double, Bool, (String, Char), Char)
tupleExample3 = (1, 2.7, true, ("hello", 'a'), 'z')

2.3.2 Lists

Besides tuples, there is also another fundamental data structure to hold
multiple values in Frege - a list. A list is a homogenous data structure (i.e. all
of its elements need to be of the same type). An example of a function
returning a list is as follows:

listExample :: [Int]
listExample = [4, 8, 15, 16, 23, 42]

In this specific example we return a list of integer numbers, which is
defined by enumeration. For ordinal data types, however, we can also specify
a range of values:

rangeListExample :: [Int]
rangeListExample = ['a' .. 'z']

rangeListExample is a function which defines a list of 26 characters from
‘a’ to ‘z’.

Generally, each list can be separated into two parts: the head and the tail.
Head is a single element at the beginning of the list. Tail is the remaining
part. If the list contains only one element, the tail is an empty list.
A completely empty list has to be represented by [] symbols.

This picture of lists is important, because it allows us to pattern-match it
against the data constructor operator :. For instance, consider the following
example:

41

getTop :: [String] -> String
getTop [] = "No elements"
getTop (x:xs) = x

The function above returns the first element from the given list of strings.
If the corresponding list is empty, the function returns "No elements". The
pattern (x : xs) matches the input list in the following way:

 Head of the list is bound to the variable x.

 Tail of the given list is bound to the variable xs.

 The matching is successful only if the given list is not empty.

The function may be invoked in the following way:

frege> getTop ["hey", "hi", "hello"]
hey

This principle allows us to work with lists in an actually useful way,
otherwise we would need to match them against an exact pre-defined pattern.

The following example shows a definition for a function which joins two
lists into a single one:

listJoin [] ys = ys
listJoin (x:xs) ys = x : (listJoin xs ys)

The implementation follows a recursive approach, which is a common
practice in most of the functional languages. The first line of the definition is
a trivial join of two lists, first of which is empty. The result in this case is
simply the second list. In the second line, however, we say that the result of
the join is a new list with first item the same as the first item of the given
first list. The tail of the new list is a result of the recursive application of the
function on the remaining part of the first list and the whole second list.

A usage example is as follows:

frege> listJoin [1, 2, 3, 4, 5, 6] [7, 8, 9]
[1,2,3,4,5,6,7,8,9]

There is also another way of declaring a list, using so called list
comprehension. We can think of this as an analogy to declarative
programming, where we define what data we want, input sets, which specify
where to get the data from, and condition to filter out the unwanted records.

For example, a function returning a list of Pythagorean triplets can be
defined as follows:

pt = [(x, y, z) | x <- [1..15], y <- [1..15], z <- [1..15], x < y, y < z,
x*x + y*y == z*z]

The part before the vertical line symbol, (x, y, z), denotes the single
item of the resulting list. Expression x <- [1..15] specifies that the input
set for variable x is [1..15]. Lastly, x*x + y*y == z*z denotes a condition so
that only the relevant items are included in the resulting list.

42

A usage example is as follows:

frege> pt
[(3, 4, 5),(5, 12, 13),(6, 8, 10),(9, 12, 15)]

2.3.3 Custom Algebraic Data Types

Custom algebraic data types allow to create a completely new type in the
Frege program. Consider the following example:

data Days = Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |
Sunday

The statement above introduces the new type, called Days, to be used
inside the corresponding Frege program. Monday, Tuesday, and the other parts
of the declaration are called constructors. They denote the value of the
declared data type.

The following function definition shows an example usage of the new
type:

getNextDay :: Days -> Days
getNextDay (Monday) = Tuesday
getNextDay (Tuesday) = Wednesday
…

In this particular example, we have defined only a simple enumeration
type. However, we can also wrap additional data as demonstrated by the
following example:

data Point = Point Double Double
…

movePointX :: Point -> Double -> Point
movePointX (Point x y) _x = Point (x + _x) y

We have defined a simple type representing a point in the 2D space and a
function moving that point by the given value in x-axis. In this case, our
custom data type has only a single constructor. Notice that the name of the
data type and the constructor are treated completely independently by the
compiler and therefore may be named equally.

However, the constructor arguments do not necessarily have to be of
primitive types. Consider the following, more advanced, example:

data Shape = Circle Point Double | Rectangle Point Point
…
surface :: Shape -> Double
surface (Circle _ r) = pi * sqr r
surface (Rectangle (Point x1 y1) (Point x2 y2)) = abs (x2 - x1) * abs (y2
 - y1)

The data type Shape contains additional data of type Point, which we
have defined earlier in this section. It is used to denote a center of a circle, or
an upper-left and a bottom-right point of a rectangle.

43

Furthermore, we can also construct recursive data structures, as
illustrated by the following piece of code in Frege:

data Tree = Nil | Node Int (Tree) (Tree)

The data type Tree represents a binary-tree-like data structure, where
each node contains a single integer value and up to two child nodes. Nil
constructor represents an empty node (a leaf), which does not contain any
values.

To provide more flexibility for custom data types, we can also use the
notion of type variables. In the example below, a represents a type variable.
We can use any type in its place. Instead of then having to define several
data types for several different functions, we can reuse the type while
specifying, what a is, for each one:

data Maybe a = Just a | Nothing
…

getTopIntList :: [Int] -> Maybe Int
getTopIntList [] = Nothing
getTopIntList (x:xs) = Just x

getTopCharList :: [Char] -> Maybe Char
getTopCharList [] = Nothing
getTopCharList (x:xs) = Just x

2.3.4 Type Synonyms

Type synonyms are similar declarations to algebraic data types. Unlike
the data types, however, they do not introduce any new types into the
program, but only wrap a complex type by a single type name. Additionally,
the similar mechanism of type variables as in the data type declarations is
supported. The example below demonstrates a usage of a type synonym to
declare a new type Stack, which is represented by a simple list of items:

type Stack a = [a]
…

pop :: Stack Int -> Stack Int
pop [] = []
pop (x:xs) = xs

2.3.5 Function Types

In functions, functions can also be used as arguments. Consider, for
instance, a list of integer numbers. We may want to apply a certain function
to each item of the list and return the new list of integers created this way.
The function applied is unknown to us beforehand, but we can still
implement the high-level ‘mapping’ function. We can do it in the following
way:

44

map :: (Int -> Int) -> [Int] -> [Int]
map _ [] = []
map ff (x:xs) = (ff x) : (map ff xs)

(Int -> Int) denotes the function argument. This represents a function
accepting a single integer argument and returning a new integer. We then
apply this function, bound to the variable ff upon a successful match, to
each item of the input list and return the new list.

2.3.6 Generic Type

An important aspect of type annotation is providing an interpreter with a
‘generic type’. Consider the example from Section 2.3.5. We may want to
implement the mapping function more generally, for all list types, not just the
list of integer numbers. Understandably, the implementation of the function is
completely equivalent to the map function from the mentioned section. What
has to be changed, is its type annotation:

map :: (a -> b) -> [a] -> [b]

What this says is that the function map accepts a function that takes an
argument of a certain type a, and returns an element of a possibly different
type b. Then map accepts as for its second argument the list of items of the
type a and returns a list of items of the type b.

2.4 Operators

Both Haskell and Frege provide a lot of flexibility, when it comes to infix
operators. There are several standard built-in operators, such as arithmetic
addition +, subtraction -, comparison operators ==, >=, and so on. It is,
however, possible to define almost any custom operators consisting of allowed
symbols. These include: # $ % & * + . / < = > ? @ \ \ ^ | ~ : -

For example, we can create a custom operator +++ for adding two integer
numbers, while also incrementing the result by 1. The implementation is as
follows:

(+++) :: Int -> Int -> Int
a +++ b = a + b + 1

The newly defined operator is simple to use in expressions. For instance,

the following is a definition of a constant function ff returning integer 6:

ff = 2 +++ 3

Since operators are basically binary functions, there are no major
differences between the two. The type annotation differs only in obligation to
wrap the operator inside the brackets.

45

A user may also specify the custom operator’s precedence and
associativity. By default, the custom operator is non-associative and has a
precedence of 16. There are 16 levels of precedence in Frege (numbered 1 to
16), the higher number denoting the more prioritized operator inside an
expression.

The precedence and associativity may be changed by writing the following
statement:

infixl 5 +++

The first part specifies the associativity. Three modes of associativity
exist:

 Left associativity: the statement begins with keyword infixl.

 Right-associativity: the statement begins with keyword infixr.

 Non-associative operator: the statement begins with keyword infix.
There must not be several non-associative operators used in a single
expression in a sequence, with exception of using brackets or changing
precedence of a sub-expression in another way.

It is important to note that a combination of several operators with both
types of associativity (left and right) with the same precedence in a single
expression is not possible and results in a compilation error.

Function application, constructors, and bracketed expressions have all
higher precedence, than any operator. For an operator to be used as a
function argument, it has to be enwrapped inside brackets. Compare the
following two statements:

ff = 1 +++ foo 2 3 +++ 7
ff = 1 +++ foo 2 3 (+++) 7

In the first statement, we apply the function foo with arguments 2 and 3.
In the second statement, we apply the function foo with arguments 2, 3,
operator +++ and 7.

2.5 Currying

Currying is the technique of translating the evaluation of a function that
takes multiple arguments, into evaluating a sequence of functions, each with a
single argument. In Frege, a function may use for its implementation another
function, while providing only some of its arguments. The technique may be
demonstrated by the following example:

multiplyThree :: Int -> Int -> Int -> Int
multiplyThree x y z = x * y * z
multiplyByEighteen = multiplyThree 2 9

In the example above, the function multiplyThree takes three arguments
and returns their product. multiplyByEighteen is then implemented by
applying the function multiplyThree on two out of three possible arguments.

46

It is interesting that we do not have to provide in the implementation of
multiplyByEighteen any arguments. This is the main idea behind the
technique, otherwise we would need to write the following piece of code:

multiplyByEighteen x = multiplyThree 2 9 x

Currying may be also used with operators, and also applies in cases of a
partial function application, as demonstrated by the following example:

max :: Int -> Int -> Int
…
six = (max 4) 6

Expression (max 4) applies the function max only partially, resulting in a
function with type annotation Int -> Int. This is then applied again for
argument 6, resulting in a constant integer.

2.6 Where

In Frege, it is possible to create local definitions with local scope inside a
function definition. Such definitions may be placed inside where code block.
The scoping rules prevent the functions created this way to pollute the
working namespace, which is useful for creating reusable modules.

The following piece of code shows the implementation of a function which
describes length of a given list using words:

describeListWhere xs = "The list is " ++ what xs
 where
 what [] = "empty."
 what [x] = "a singleton list."
 what ys = "a longer list."
…

frege> describeListWhere [1]
The list is a singleton list.

In the example above, in where block we define a new function called
what which accepts a single list argument. It cannot be used outside the
function describeListWhere where it is defined.

When working with where block, keeping a correct indentation is
important. In the block, each local definition should be aligned with the
where keyword, or have a greater indentation.

2.7 Guards

Guards are a mechanism in Frege which allow a user to return an
expression based on boolean conditions.

Let us consider a signum function, which is used to describe a sign of a
real number by an integer number. The function takes a single argument,

47

which is a real number, and then performs a check of its sign:

 If the given number is greater than 0, the function returns 1.

 If the given number is smaller than 0, the function returns -1.

 If the given number is equal to 0, the function returns 0.

The following example is an implementation of the function in Frege:

sign x
 | x < 0 = (- 1)
 | x > 0 = 1
 | otherwise = 0

The lines starting with vertical line symbol | are called guards. They
consist of a boolean expression and the resulting expression to return, if the
corresponding condition is evaluated to true. The special otherwise keyword
denotes a condition that always evaluates to true. Ordering of the guards is,
therefore, important and the conditions are evaluated in the top-down
manner.

2.8 Constant Definitions

In Frege, there is a special kind of the function definition where the user
can define several constant functions in a single statement. The following
example demonstrates definition of the three new constant functions a, b and
c:

(a, b, c) = (1, 2, 3)

The values of the corresponding constants a, b and c are 1, 2 and 3 in
their respective order.

Frege is a relatively flexible language in this manner and the following
expression is a valid one as well:

[2, f] = [2, 3]

In this case, the value of f is 3. Furthermore, from the grammatical point
of view, even the following statement is valid:

[1, f] = [2, 3]

A program with the example above would pass its compilation, however,
an exception would be thrown upon an attempt to evaluate the constant f in
any way. It still allows the user to specify constant functions in a flexible
manner. The compiler only checks that the expression on the right hand side
of the definition is of the same type as is the pattern on the left. For example,
the following is the alternative definition of the constants a, b and c from the
beginning of the current section:

(a, b, c) = (1, 1 + a, 1 + b)

48

2.9 Import and Export

To use functions, operators and data types from other modules, we must
first import them. An import declaration has the following form:

import frege.prelude.Math (**, log)

The fully qualified name of the module being imported
(frege.prelude.Math) has to be used. After that, the user may specify which
items will be imported into the current namespace of the current module. For
all other items the user has to use the qualified name of the item. The full
details of the import declaration are described further in this section.

Import declarations are processed in the order they occur in the program
text. However, their placement relative to other declarations is irrelevant.
Nevertheless, it is considered a good practice to write all import declarations
somewhere near the top of the program.

The user may or may not enumerate the items to import into the current
namespace. If he or she chooses not to do so, everything from the given
module is imported into the current namespace. The declaration in this case
has the following form:

import frege.prelude.Math

The imported module Math contains several functions and constants for
performing standard calculations. The constant pi may be referenced in this
use-case directly in the following way:

circumference r = 2 * pi * r

In the example at the beginning of this section, there are two explicitly
enumerated items: operator ** and function log. Everything else has to be
referenced using a qualified name. The constant pi in this scenario has to be
prepended by the Math namespace:

circumference r = 2 * Math.pi * r

A user also has an option to enumerate none of the items, but to use the
brackets symbols () anyway in the import declaration. This forces a
programmer to use the qualified name for every item from the imported
module.

When using the qualified name of the items, the imported module’s name
may be aliased by using as clause. The following example demonstrates the
usage scenario:

import frege.prelude.Math as MM ()
…

circumference r = 2 * MM.pi * r

Last, but not least, there is an option to use a reverse manner of

49

importing items into the namespace. Instead of enumerating items which we
do not have to use the qualified name for, we may specify the only items, we
will need to use the qualified names for. This is done by using hiding clause,
as demonstrated by the following example:

import frege.prelude.Math hiding (pi)
…

circumference r = 2 * Math.pi * r
rightTriangleC a b = sqrt (a ** 2 + b ** 2)

Among the items that can be imported into the module, constructors are

imported into the current namespace independently from the data types
where they are defined. Frege additionally supports a special syntax to treat
the import of data type constructors and ease their enumeration. Consider,
for example, the following data type declaration from Section 2.3.3:

data Days = Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |
Sunday

The data type Days can be imported together with its constructors

Monday and Tuesday into the current namespace using the following syntax:

import frege.example.DaysExample as DE (Days(Monday, Tuesday))

However, all of the remaining constructors belonging to the Days data

type need to be referenced using the qualified names (e.g.DE.Thursday). To
import all of data type’s Days constructors, a syntax with two dot symbols
.. can be used, as described below:

import frege.example.DaysExample as DE (Days(..))

Regarding the importing mechanism, all modules by default import the

built-in module Frege-Prelude. It contains standard arithmetic operators,
such as +, -, * and /, comparison operators, many data types, such as Maybe
and a lot of other definitions [8].

A similar approach to importing modules is also used to export items of
the current module. Not exported definitions may not be referenced at all.

To export all of the definitions of the current module, we can use:

module Hello where

Hello denotes the name of the current module. The declaration has to be
put at the beginning of the module.

To export only the functions greeting and getTop, we can write the
following piece of code:

module Hello (greeting, getTop) where

A reader should be aware that based on how the platform MPS works, it
is, unfortunately, not possible to work with the Frege modules and libraries

50

written in a plain text directly. These have to be rewritten in a specific MPS
project to make them usable. In this work we offer only a limited support of
the standard module Frege-Prelude.

2.10 Further Reading

Frege and Haskell include many other aspects that are not mentioned in
this work. While the current version of Frege-IDE supports all of the features
of the language used in our examples throughout the Chapter 2 (and much
more), due to the scale and complexity, a lot was still not implemented.
However, for an interested reader we recommend visiting the Frege language
specification and Frege Goodness book3.

3 Available from the WWW [12/07/2018]: <https://dierk.gitbooks.io/fregegoodness/>

51

3. Frege in MPS

Frege has rather too many syntactic and semantic constructs for us to
cover them all within the scope of this work. We have therefore focused our
attention only on the most important features worth implementing, such as
function definition and type annotation, operators and custom data types.
Our goal was to create an IDE that has a user-friendly editor that emulates
normal text editing and writing code in the way that most Frege and Haskell
developers are used to. This is accompanied by the context help, sometimes
referred to as a code completion, which allows for referencing already defined
functions, operators, variables, etc. Last, but not least, we strived for a type
checker, which would be able to find small mistakes in the code, such as
calling a function with invalid arguments, or check types of expressions.

This chapter assumes knowledge of the reader at least on the level
covered in Chapter 2, which describes Frege syntax and features of the
language we focused on.

3.1 Supported Subset of Frege

In this work, we focused our attention only on the most important parts
of the Frege language, which gained its popularity (or, rather, popularity of
Haskell). For the most part, so called ‘syntactic sugars’ are omitted, as well
as monads, which make Frege appear less of a functional and more of an
imperative programming language. To also include more advanced features,
such as context help and type checking, we had to keep the complexity of the
work within reasonable limits, and thus concepts, like type classes and type
instances, were omitted as well.

In this section, we review the features of the Frege language that we have
implemented from the high-level point of view.

Program structure. A program in Frege has to be properly structured.

We expect the Frege module to have a header, depicting its name. We have
also tried to emulate recommended practices of writing programs in Frege by,
for instance, forcing import declarations to be written at the top of the
program. Since a program is then just a series of definitions, we have left the
rest up to the user of the IDE.

Import and export. To demonstrate the capabilities of the MPS

platform regarding the scoping and code completion area, we decided to
implement importing and exporting features of Frege, as they are depicted in
Section 2.9, i.e. allowing users to reference functions, operators, custom
algebraic data types and their constructors. The imported module may or
may not be aliased and the corresponding import declarations occupy the top
of the program’s code layout.

Comments. Comments should be easily applicable where all of the

52

normal definitions are expected. There are two types of supported comments:

 A single-line comment beginning with two dashes symbols --

 A multi-line comment that can be nested, which is surrounded with
braces with dashes {- … -}

Function definition. The user must be able to define new functions. A
function may accept any number of arguments, it consists of the patterns (see
Section 2.2 for more details about the pattern matching) and the right-hand
side, which provides the implementation for each function pattern.

Type annotation. We allow the user to specify the type of a function.

This also plays a role during the type checking and evaluation, where we have
an easier job to infer the types of the given functions and their arguments.

Operator definition. Infix operators are functions that strictly accept

(at least) two arguments. The operator definition should be able to populate
the namespace with new operators, allow these new operators to be used in
new expressions and allow the operators to be annotated in the same way the
regular functions can be.

Operator precedence and associativity. The statements beginning

with the infix keyword (infixl, infixr, infix) specify and alter the
specified operator’s precedence together with its associativity. These have a
significant impact on the type checking of expressions consisting of the infix
operators.

Custom algebraic data types. The user should be able to declare new

algebraic data types, which can be later used in functions. The name of the
new data type becomes a new type, whereas the constructors become new
values of that type.

Type synonyms. Similar to the data types, these statements introduce

a new type inside the module, where they are defined. Unlike the data types,
type synonyms only wrap a more complex type and do not introduce any new
values.

Standard types and literals. Bool, Char, Int, and Double are types

that are all part of the standard Frege library. Even though the standard
library defines several additional types, such as Float, Decimal, and others,
these were selected due to their prevalence and representative status and are
therefore included in Frege-IDE. Additionally, type String is also supported
with the standard syntax of using quotation marks (e.g. "Hello, world!").

Tuples. Standard tuples are fully supported in Frege-IDE, including their

syntax and type checking.

Lists. In Frege there are three main ways of defining a list in an

expression:

53

 Enumeration: e.g. ['a', 'b', 'c']

 Range: e.g. ['a' .. 'z']

 List comprehension: e.g. [x | x <- ['a' .. 'z']]

We offer only a limited support in Frege-IDE for the list comprehension
due to its complexity. Additionally, we have to account for the usage of the
constructor operator for deconstructing lists denoted by colon symbol :. The
operator can be also used for attaching a single list element at the beginning
of another list. The following example demonstrates the usage of the operator
in an expression: ff = [1] : [[2, 2], [3, 3, 3], [4, 4, 4, 4]]

Function type. The function type is another standard type which covers
the type of the function. For instance, a function accepting two integer
arguments and outputting a string has the following type:

Int -> Int -> String

The type must be declarable inside the type annotations.

Where. where clause allows to provide additional local definitions with

local scope inside a function definition. These are then visible only to the
closest outer definition, as demonstrated by the following example:

five = 1 + four
 where
 four = 1 + three
 where
 three = 3

In the example above, the constant function three is not visible in the
right-hand side of the function five.

Similarly to the export and import feature of the Frege language, we aim
to demonstrate the scoping capabilities of our IDE.

Guards. Guards provide an alternative way of the function definition

with respect to the standard ‘assignment definition’ (e.g. f = "value"), where
each guard contains a boolean condition for whether its branch should
execute. This is an analogy to a series of if-else statements.

Additional concepts. From the Frege language we should also include

the if statement, case expression, let statement and definition of lambda
functions (anonymous functions defined within another definition). These
together with the above should cover most of the standard usage of the Frege
language, excluding classes and instances.

Type checking and evaluation. A separate aspect of the IDE is a type

checker. We have implemented a simple type checking capability into our
IDE, which is able to infer types of certain expressions and compare types of
function definitions to their type annotations.

Providing a user with a complete type-checking capabilities is not feasible

54

within the scope of this work, and thus we only intended to implement a
rather restricted type evaluation, capable of handling only certain scenarios.
However, the system should be easily extensible and robust enough to
demonstrate the potential of the MPS platform.

3.2 Structure Aspect

Defining the structure aspect in MPS for each language concept is one of
the most important part of this work. The concepts are ‘building bricks’
when it comes to working with AST. Every other aspect of Frege-IDE
depends on this part, therefore a careful analysis is required to be done here.

Working with structure aspect in MPS to a certain extent resembles
defining a grammar of the language for the compiler parser. To implement it
correctly, we should understand the Frege grammar and how its different
parts relate to the actual features of the language.

In this section, we are going to describe certain parts of the Frege
grammar, show what actual features they correspond to and how we
transformed them into the MPS concepts. A complete analysis would far
exceed the scope of this text, so we will focus only on the most important or
otherwise interesting parts we had to deal with.

The section focuses mainly on Frege grammar rules and how they are
reflected on structure aspect of the IDE. Nonterminal symbols usually
correlate to individual concepts in MPS, but it is not the one-to-one
relationship. On the other hand, terminal symbols only rarely need to be
represented by individual MPS concepts and are mostly only a part of the
editor aspect. This section takes a look at certain Frege grammar rules,
describes their high-level meaning and shows implementation of the related
concepts from their structure aspect in MPS.

During the analysis, we used materials from Frege official website, namely
Frege grammar used in the official Frege compiler and the language reference.
The resources are also provided in the attachments.

The grammar uses mainly the EBNF (extended Backus-Naur form)
notation, which we often refer to in this work. Explanation of the notation is
provided below.

3.2.1 Notation Description

Throughout the Section 3.2, we often use EBNF notation to describe the
grammar of certain features of the Frege language. In this section, we briefly
describe the notation and explain certain parts.

Grammar of most programming languages is described with rules by
which can one replace a nonterminal symbol for a sequence of terminal and
nonterminal symbols. For instance, a program in many languages consists of
series of statements separated by a semicolon. A rule describing this is
provided below:

statements ::= statement ';' statements | statement

55

The example above states, that the nonterminal symbol statements may

be replaced for any number of nonterminal symbols statement separated by
the terminal symbol semicolon ;, but at least one statement has to be
present.

We use a convention that terminal symbols are surrounded with
apostrophes, such as the semicolon symbol ';' in the example above. If there
are several options on how to replace a nonterminal symbol, the options are
separated with the vertical line symbol |. Additionally, we use these regular
expression symbols to express certain rules:

 token*: symbol token repeats in a sequence any number of times

 token+: symbol token repeats in a sequence at least once

 token?: symbol token may or may not be present

 (…): symbols inside the brackets are treated as one

It should be noted that in many cases we try to simplify the grammar
and omit the irrelevant parts not included in the final project. This is done
for clarity and better readability of the corresponding grammar rules. If a
major part is omitted, it is mentioned explicitly.

3.2.2 Program Structure

We start defining MPS concepts from the root level. A root concept
represents a single document in MPS - a module in Frege.

A high level view of the module definition is described by the following
rule:

module ::= moduleclause (';' definitions | 'where' '{' definitions '}')

In Frege code, the places where a proper indentation is required may be
replaced by usage of curly brackets { and } and a semicolon ;. Consider the
following example:

describeListWhere xs = "The list is " ++ what xs
 where
 what [] = "empty."
 what [x] = "a singleton list."
 what ys = "a longer list."

The example may be rewritten in the following way:

describeListWhere xs = "The list is " ++ what xs where { what [] =
"empty."; what [x] = "a singleton list."; what ys = "a longer list." }

In most of the compiler implementations, the parser works with the
second variant, while most of the Haskell and Frege programmers use the
style with indentation, which we have actually stuck to in this work. The
process of converting the first variant to the second is normally done during
the lexical analysis.

56

Knowing this, we will demonstrate the module grammar rule on the
example from Section 2.1. After we define the module and its qualified name,
we may or may not use the keyword where, which only visually denotes the
separation from the rest of the program. After that the module is just a series
of definitions:

1. Part: moduleclause 'where'

(We decided to use the variant with the where keyword in Frege-IDE.
moduleclause symbol is usually translated to string module followed by the
user-entered qualified name, and so on.)

module Hello where

2. Part: '{' definitions '}'

definitions ::= definition (';' definition)* ';'?

(The rule above states that definitions are a series of definition
symbols separated by the colon symbol, which is translated from separation
of the definitions by creating new lines during the lexical analysis. There has
to be at least one definition in a module.)

greeting friend = "Hello, " ++ friend ++ "!"

main args = do
 println (greeting "World")

The implementation of the concept representing the single module in
Frege is described in the later subsections, as it is important to look on the
symbol definition first.

3.2.3 Definitions

A definition in the Frege grammar is a substitute for one of the following
language concepts:

 Import declaration: states, what is to be imported into the current
module.

 Fixity: specifies associativity and precedence of an infix operator.

 Type declaration: declares a new type synonym.

 Data declaration: allows to create a new custom data type.

 Class declaration: omitted in this work.

 Instance declaration: omitted in this work.

 Local definition: covers function definitions and type annotations.

We have mentioned that it is a good practice to include the import

57

statements in the top of a module definition before any other statements. We
can enforce this by not following the exact Frege grammar, but rather
implement our own version of the module grammar rule. It will have to be a
root concept responsible for the overall program structure with the following
children:

 module: corresponds to the moduleclause symbol from the previous
section. Represents a name of the module together with additional
specifications that usually go onto the first line of a Frege program.

 import: corresponds to the import statements, which are part of the
definition rule. They have to be separated from the rest of the
definitions to enforce their placement at the top of the program. Import
statements are described in more detail in the following section.

 definitions: represents the rest of the statements that are part of the
definition rule.

A possible implementation of the concept from the structure aspect view
is depicted on Figure 3.1. The corresponding root concept is named Skeleton.

Figure 3.1: Structure aspect for the Skeleton concept in Frege-IDE

3.2.4 Import Statements

According to the Frege reference, the following rules are associated with
the import statements:

import ::= 'import' packagename ('as'? namespace)? 'public'? importlist?

importlist ::= 'hiding'? '(' (importitem (', ' importitem)*)? ')'

58

The import rule represents the import statement as it was described in
Section 2.9. For instance, the relations between the different parts of the rule
are described on the following example:

import mps.frege.ExampleTree as ET (Tree(Nil), ->>, traverse)
…

import ~ 'import'

mps.frege.ExampleTree ~ packagename

as ET ~ ('as'? namespace)?

(Tree(Nil), ->>, traverse) ~ importlist?

Unlike in the official Frege compiler implementation, we did not include
the visibility (public keyword) and aliasing of the imported items in the final
work (however, aliasing of the imported module was included).

The importitem symbol represents a function, operator, type or a data
type, which is to be imported into the current namespace. The rule from the
official reference is as follows:

importitem ::= VARID
 | OPERATOR
 | CONID ('(' (member (',' member)*)? ')')?

The nonterminal symbols from the rule above are referenced in this work
several times. The distinction is as follows:

 VARID: represents identifiers beginning with the lowercase symbol (a-z) or
with the underscore symbol. It is used to describe names of functions,
variables, type variables, etc.

 CONID: represents identifiers beginning with the uppercase symbol (A-Z).
Describes names of types, data types, constructors, etc.

 OPERATOR: it is used to describe the sequence of symbols an infix operator
can consist of. The available symbols are mentioned in Section 2.4.

The member enumeration described by the third variant in the
importitem rule above also allows to enumerate constructors associated with
a specific data type. Only the constructors enumerated are to be imported
into the current namespace. An example of such an import declaration is as
follows:

import frege.example.DaysExample as DE (Days(Monday, Tuesday))

The example above is from Section 2.9 and imports the data type Days

into the current namespace together with its constructors Monday and
Tuesday. Rest of the constructors from the data type need to be referenced
using their qualified names.

To implement the import statements in Frege-IDE, we can mostly follow
the official grammar. We create the concept Import with the three main
parts:

 Name, which references an existing module’s name.

59

 Optional aliasing part of the import statement (clause as).

 Optional list of imported items into the current namespace.

An example of such implementation is captured in Figure 3.2. Note that
terminal symbol import is not a part of the structure aspect of the
corresponding Import concept, but rather of its editor. The terminal symbols
usually do not affect the structure of the AST in any way and only affect its
visual representation.

Additionally, we set the concept’s alias to import. This tells MPS to
create an instance of the concept whenever the user types the string import
(the set alias) in the correct places of the code.

Figure 3.2: Structure aspect of the Import concept in Frege-IDE

In Figure 3.2., the implementation of the Import concept consists of the

children concepts ImportAs and ImportItems. The concept ImportAs wraps
the ('as'? namespace)? part of the import rule, whereas ImportItems relates
to the importlist symbol.

The reference to Module concept correlates to the packagename symbol of
the import rule. This tells MPS that we will allow only importing of such
modules that exist and are visible to the current module in Frege-IDE
(however, this means we will not be able to import modules and libraries
from external sources made outside the Frege-IDE).

As we have mentioned, the concept ImportItems correlates to the
importlist nonterminal symbol. In the Frege-IDE implementation, the
concept simply contains an optional child of the concept ImportHiding, which
represents the optional hiding keyword, and [0..n] children of the concept
ImportItem.

ImportItem represents one of the three main types of identifiers. In MPS,
however, we want to take the advantage of the references to allow the import
only of the existing items from the corresponding module that is being
imported. From the high-level point of view, we may import only one of the
following types of items:

 Functions

 Operators

60

 Type synonyms

 Data types

 Data type constructors

The idea is to represent the import item with an abstract concept and
then to create concrete concepts for each type of the import items. The
corresponding abstract concept in Frege-IDE is the already mentioned
ImportItem. The concrete concepts are as follows:

 IIFunction for importing functions

 IIOperator for importing operators

 IIType for importing type synonyms and data types

 IIConstructor for importing constructors

Why is it enough to create only one concept as a substitute for importing
both type synonyms and data types? The reason is the grammar - there is
basically no syntactical difference between the two since they both define a
type. Thus, where there is the former, there can also be the latter.

Each of the four concepts needs to contain a reference to the language
construct it represents. Since the language constructs are referred from
multiple places in the Frege grammar, the implementation is best solved by
using smart references. As a reminder, the smart reference is a concept that
contains only a single reference. In the case of the Frege language, the four
mentioned language constructs have to be separated - for each one we need to
create a new smart reference.

Let us take for example the import item IIType. It may represent a data
type and for this reason, it must contain an optional member enumeration list
we named IITConstructorList. The type name it references is enwrapped
inside a new smart reference concept called TypeReference. The
implementation of the IIType concept in the structure aspect is depicted on
Figure 3.3.

Figure 3.3: Structure aspect of the concept IIType in Frege-IDE

The implementation of IITConstructorList concept is to a greater extent

61

similar to the implementation of the ImportItems concept, since they both
represent a sequence of members enclosed within brackets, hence we will not
describe it.

TypeReference concept is a smart reference to a type name. Both type
synonym and data type declaration are named by the CONID variant of the
identifier in Frege, which means their names need to begin with an uppercase
letter. The two concepts representing the declarations then need to contain
the same type of child to represent their name to be referenceable from the
TypeReference concept. Figure 3.4 shows the structure aspect of the smart
reference concept TypeReference.

Figure 3.4: Structure aspect of the concept TypeReference in Frege-IDE

Concepts Data representing the data type declaration and concept Type

representing the type synonym declaration are depicted from their structure
aspect in Frege-IDE on Figures 3.5 and 3.6. Their name is represented by a
child of the same concept TypeName, which is used in the smart reference
TypeReference.

Figure 3.5: Structure aspect of the concept Data representing the data type
declaration in Frege-IDE

62

We have not yet explained how to allow referencing only the import items

actually corresponding to the Frege module being imported. The feature is
more advanced and cannot be solved simply by defining the structure of
possible ASTs. It is related to the scopes in constraints aspect in MPS and we
describe it in Section 3.4.

Figure 3.6: Structure aspect of the concept Type representing a type synonym
declaration in Frege-IDE

3.2.5 Function Definition

Function definition covers the area of defining new functions, operators
and certain special expressions for defining constants.

On its highest level, we could divide the function definition into two
parts: left and right hand side. When the user is providing a definition, he or
she always specifies a pattern and an expression corresponding to that
pattern. To demonstrate, let us consider the following example:

getTop (x:xs) = x

Here, the single statement defines a new function getTop, which returns
the first item of a non-empty list. In this case, the left hand side consists of
the string getTop (x:xs), which describes the name of the function and its
arguments. The part (x:xs) is usually referred to as pattern. On the right
hand side, we have the simple expression x referencing the argument from the
pattern.

A slightly different example is the definition of the signum function as
provided below:

sign x
 | x < 0 = (- 1)
 | x > 0 = 1
 | otherwise = 0

63

Similarly to the previous case, the string sign x is considered to be the
left hand side of the function sign, whereas the rest of the definition is the
right hand side. This corresponds to the actual Frege grammar, where the
high-level function pattern binding is defined as follows:

binding ::= lhs rhs

rhs ::= '=' expression ('where' declarations)?
 | guardedExpressions ('where' declarations)?

(Symbol lhs stands for the ‘left hand side’ and rhs for the ‘right hand

side’.)

3.2.5.1 Left Hand Side

There are three main ways of defining a function:

 Standard definition, e.g. multiply x y = x * y

 Operator definition, e.g. x :-: y = x + y + 1

 Any pattern definition, e.g.: (a, b, c) = (1, 2, 3)

The grammar for the left hand side is associated with the following
grammar rules:

lhs ::= VARID patternTerm*
 | patternTerm OPERATOR patternTerm
 | pattern

pattern ::= listPattern
 | patternTerm

listPattern ::= patternTerm ':' listPattern
 | patternTerm

patternTerm ::= VARID (1)
 | '_' (2)
 | literal (3)
 | '[' (pattern (',' pattern)*)? ']' (4)
 | '(' (pattern (',' pattern)*)? ')' (5)
 | CONID pattern* (6)

The grammar rules above are simplified due to the Frege-IDE not
supporting certain features, such as word-like operators (e.g. x `plus` y = x
+ y) or argument capture, while other changes were made for clarity.

From the rules above it is clear that the lhs symbol corresponds to the
three ways of the function definition mentioned earlier. patternTerm symbol
allows us to do one of the following:

(1) Define a new variable: factorial n = n * factorial (n - 1)

(2) Use the wildcard symbol _: charToName _ = "No Name"

(3) Use a literal: factorial 0 = 1

64

(4) Use a list: getTop [] = "No elements"

(5) Use a tuple or surround a single pattern inside the brackets:
second (_, x, _) = x

(6) Apply a data type constructor: surface (Circle _ r) = pi * sqr r

Additionally, a list may be matched also by creating a pattern by using
the grammar rule for listPattern symbol. The example is as follows:

getTop (x:xs) = x

The part representing the list (x:xs) can be created by using the
corresponding rule. Additionally, any number of items at the beginning of the
list may be specified. The following example demonstrates the usage on a
function, which returns a first item of a given list. The given list, however,
must contain at least three items, otherwise it will not be matched:

getTop (item1 : item2 : item3 : tail) = item1

In the final work we made several simplifications to ease us the
implementation of the typesystem and editor aspect. First, we require each
AST node corresponding to the listPattern symbol to be enclosed within
brackets. This bears no semantic restrictions and is an actually recommended
practice, because it makes the code easier to read. Second, pattern consisting
of empty brackets makes no sense in the restricted set of features we provide,
therefore it was not included either.

3.2.5.2 Right Hand Side

The right hand side of the function definition can be either a single
expression optionally followed by the where block, or a series of guards
optionally followed by the where block. This can be seen on the grammar rule
for the symbol rhs.

where block consists of the function definitions and type annotations.
These are described later in Section 3.2.6.

Guards, in contrast to the single expression variant of the function
definition, consist of at least two expressions and in their most simple form a
grammar for them looks like this:

guardedExpressions ::= ('{' guard '}')+

guard ::= '|' expression '=' expression

3.2.5.3 Expressions

The expression symbol consists of a series of binary expressions (infix
operators with operands) and an optional type, or the forall construct. The
rule defining the expression is as follows:

expression ::= binex ('::' (forall | type))?

65

Even though the forall construct is linked to type declaration, it is
a part of a more advanced feature in Frege and we have not included it. The
type symbol, on the other hand, is described later in Section 3.2.6.

binex symbol represents a series of operands separated by operators. In
Frege-IDE, the concept representing the operands is named TopExpression,
which corresponds to the symbol topex from the official Frege grammar.
A single operand may take one of the following forms:

 Case expression

 Let expression

 Conditional expression (if)

 Lambda

 A series of primary expressions separated by a whitespace

Primary expressions are a subset of expressions that include terms,
monads (omitted in this work) and a usage of (qualified) names, for instance
application of imported functions or operators [9]. In Frege grammar, terms
are literals, lists and tuples, or in other words, values. Additionally, bracketed
expression is also a part of the primary expressions.

The last point of the topex grammar rule also includes a usage only of a
single primary expression. A single primary expression can act as an operand:

six = 3 + 3

However, for a series of primary expressions separated by a whitespace to

be meaningful, it must be some kind of an application - an application of a
function, operator, or the data type constructor. Let us consider the following
function:

six = max 4 (3 + 3)

In the example above, max is part of the primary expressions. It is a name
of a function that is visible in the current namespace. The number 4 is a
literal, which is part of the terms. (3 + 3)is a bracketed expression.
Together they form the application of the function max with the arguments 4
and (3 + 3).

A special case of the application is the application of the bracketed
expression. In the following example, we enclose the expression max 4 with
brackets, which is the currying technique described in Section 2.5. What
remains is the function accepting a single argument, to which we provide the
literal 6:

six = (max 4) 6

Not every sequence of primary expressions is an application. For instance,
a sequence of literals makes no sense when standing alone:

invalid = 1 2 3 4 5 6 7

66

We have modified the grammar in Frege-IDE to better distinguish
between the different forms of the applications and to allow only the valid
applications to occur in the program. As such, the expression from the
example above is impossible to type in Frege-IDE. This additionally helped
us in the typesystem aspect, where the corresponding type-checking
algorithms were easier to implement.

Figure 3.7 shows a hierarchy of concepts in Frege-IDE, starting from the
TopExpression concept in the corresponding ‘inheritance tree’. As we have
already described, the TopExpressionmay take several different forms, such
as the case expression (conceptCase) or the conditional expression (concept
IfThenElse). There is no direct variant corresponding to the series of primary
expressions part of the topex grammar rule. Instead we introduce two custom
concepts, ApplicationEntity and GenericApplication.

GenericApplication represents any kind of application, for instance,
application of a function, operator, data type constructor and so on. From a
certain point of view, the concept does correspond to the series of primary
expressions, but only partially. For cases when we have a single literal in an
expression, an instance of the Literal concept is used in the corresponding
AST instead.

ApplicationEntity represents the entity we are applying in the
GenericApplication concept. It may be a function, operator, but also a
bracketed expression.

Figure 3.7: Hierarchy of concepts starting from the TopExpression concept in
Frege-IDE

In Section 2.4, we have already mentioned that the applications have
higher precedence, than any operator. Now, as we have described the
grammar of the expressions in Frege, it is clear they are syntactically bound
to act that way.

67

3.2.5.4 Grouped Representation

A problem with the pattern matching in Frege is that it may seem like we
are providing several definitions for the same function. Consider the example:

getTop [] = "No elements"
getTop (x:xs) = x

In the example above, for different versions of input arguments we are
specifying different bodies of the same function. However, in Frege-IDE, we
need to reference the existing function name from multiple places, such as
import declarations, or the function application. We need to reference an
existing node in the corresponding AST representing the current program. If
we were to reference the getTop function, for instance, from a different
function, which one of the two AST nodes would we have to point to?
Understandably, the answer should be ‘all of them’, as they all define the
same function. This can be achieved in MPS by creating a new concept,
which wraps all of the function definitions that define the same entity.

The ‘grouping’ concept should contain a single child, which represents the
function’s name, and [1..n] children representing different variants of the
function’s implementation for its different patterns. The patterns also need to
be adjusted so they do not introduce their custom function names, but rather
reference the single child of the ‘grouping’ concept representing the function
name. In Frege-IDE, the concept representing the grouped definition is called
FDGrouped.

Additionally, the grouped representation has to be created also for the
operator definitions. However, in the third case of the grammar rule for the
lhs symbol, there is no grouping necessary – only constant functions can be
defined this way and providing different pattern matchers for the constant
functions makes little to no sense.

There was also a different way of dealing with the problem, which
involved the type annotation to be the AST node which is referenced, instead
of the grouped function definition. While this is definitely also an option, in
Frege we can have a function without the type annotation whereas the other
way around we would get an error during the compilation. We believe the
approach we took and described in this section is more appropriate and
actually conforms to the Frege specification, which would not be the case in
the latter way.

3.2.6 Types

Types are a vital part of the Frege grammar. They play a role in the
definition of the type annotation, or when declaring custom data types.

There are several ‘native’ types, which translate directly to the types from
the JVM. These include:

 Bool

 Char

68

 String

 Numeric types (in this work, only Int and Double are supported)

These types are part of the Frege-Prelude library and are implicitly
imported to all Frege modules.

Additional types we included are:

 Tuple

 List

 Custom algebraic data types

 Function types

Types connected to the monads, exceptions, and the data types that are
part of the Frege-Prelude library were not included in this work.

Before we describe the Frege types and how we implemented them in
Frege-IDE, it is important to note that by omitting classes and instances, we
lose an important aspect of the Frege language, which is called parametric
polymorphism. This feature allows to apply certain functions and operators
on a selected class of types, but not all of them. Consider, for instance, a
built-in operator +. It allows to add any numeric values together. Its type
annotation would look like this:

(+) :: a -> a -> a

The problem is to specify that the type variable a represents a numeric
type. This is, unfortunately, not possible without Frege classes and instances.
We omitted the feature due to the size and scope of the work and leave it as
a possible future extension of Frege-IDE.

Without the type classes, the grammar describing the Frege types is as
follows:

type ::= (typeApplication '->')* typeApplication

typeApplication ::= simpleType+

simpleType ::= VARID (1)
 | CONID (2)
 | '(' type ')' (3)
 | '(' type (',' type)+ ')' (4)
 | '[' type ']' (5)

On the highest level, we specify the function type, which corresponds to
the symbol type. Each part of the function type, representing either an
argument or the return type, consists of one or more simpleType symbols,
which is denoted by the typeApplication grammar rule. As the name
suggests, this rule is responsible for the application of the type on a type
variable. Consider, for example, the data type Maybe, which consists of a
single type variable. A type of the function getTopIntList from Section 2.3.3
looks as follows:

69

data Maybe a = Just a | Nothing
…

getTopIntList :: [Int] -> Maybe Int

In the example above, the part Maybe Int is made possible by the
application of the typeApplication grammar rule.

The simpleType symbol denotes one of the following options:

(1) Usage of a type variable: (+) :: a -> a -> a

(2) Usage of a type name: data type names, together with the built-in
types, such as Int, or String, are part of the grammar rule.
getTopIntList :: [Int] -> Maybe Int

(3) Type inside brackets: semantically the type of the expression is the
same, as the type inside the brackets. This allows, for instance, to
specify a function type argument of a function, as depicted in Section
2.3.5: map :: (Int -> Int) -> [Int] -> [Int]

(4) Tuple type: second :: (a, b, c) -> b

(5) List type: getTop :: [a] -> a

Types are used in several places throughout the Frege grammar, but we
will mention just two main representatives: type annotation and declaration
of new data types.

In type annotation, we provide a name of the function or an operator we
want to specify the type for. It is even possible to specify the type for several
items at once, as demonstrated by the following example:

(+), (-), (*) :: Double -> Double -> Double

The right hand side of the type annotation Double -> Double -> Double
corresponds to the grammar described in this section. It is important here to
note the possibility to declare new type variables:

map :: (a -> b) -> [a] -> [b]

This is an important distinction from the data type declaration, where on
the right hand side, only the type variables declared on the left hand side can
be used. Consider the following example:

data Tree a = Nil | Node a (Tree a) (Tree a)

The left hand side of the data type declaration declares a new type
variable a. This variable then can be used on the right hand side, where
constructors Nil and Node are defined.

We want to incorporate the mentioned behavior by using references. On
the right hand side of the data type declaration, an instance of the concept
containing a reference to an existing type variable has to be used. In the type
annotation’s right hand side, an instance of the concept containing a property
has to be used instead. The property, in this case, represents the new type
variable’s name.

70

To implement the types for data type declarations and type annotations,
we can take one of these two main approaches:

 We can create two sets of concepts for types, each with a different
implementation of type variable usage. In the first set, only the
declaration of the new type variables would be possible. In the second,
type variables could be only referenced.

 We can implement two different concepts that inherit from the concept
corresponding to the simpleType symbol: one for creating type variables
and one for referencing them. Using the constraints aspect in MPS, we
are able to allow or restrict the concepts instances in specific places of the
AST.

We have chosen the second approach, because it is less time-consuming to
implement and poses fewer problems. First, it is syntactically more
appropriate as the two different sets of concepts would mean there is a
different grammar for the types in the data type declaration and in the type
annotation. This is not true as the type variables are simply checked during
semantic analysis. Additionally, this solution is easier to maintain if certain
changes are to be incorporated.

The remaining part of the types are the built-in native types. In this case,
there are also two main implementation approaches:

 We can ‘hard-code’ the native types into the Frege-IDE, creating a
concept inheriting from simpleType for each of the native types
mentioned at the beginning of this section.

 We can define the types using the data type declaration statements inside
a new module. This module will be implicitly imported to all of the other
modules a user will create, as in the case of Frege-Prelude library.

While the second option may seem easier to maintain, there are actual
benefits to the first approach, which have to do with the typesystem aspect of
MPS. Specifically, it would be especially difficult to link the type names to
the types of the corresponding literals in case of the latter option. Hence, we
opted for the first approach.

3.3 Editor Aspect

The process of creating the editor for Frege-IDE involves defining visual
appearance for each AST node and providing the user with a way to
manipulate the AST in a user-friendly manner.

As mentioned before, MPS is a projectional editor and thus it is not
possible for the user to work with the code in the text form directly. Every
function, name, variable, type etc. is in some way associated with a specific
AST node which has to be presented to the user in some way.

In this section, we show how the editor aspect in MPS allows us to tackle
many different challenges we came across when implementing the user
interface part of our IDE. We also present a couple of non-trivial problems we
had to deal with, and what approach we took to solve them.

71

3.3.1 Visual Appearance of AST Nodes

Appearance of the most of the concepts is rather straightforward to
implement. We have already analyzed and implemented the structure aspect
in the previous section, so it is clearly visible which concept is connected to
what language feature. Frege is the text-based programming language, thus
creating concept editors involves only specifying the correct set of strings for
constant editor cells and the right set of other types of cells mentioned in
Section 1.3.

We will demonstrate the implementation of the concept editors on the
example for the concept associated with the data type declarations. The
corresponding concept Data inherits from the Definition concept, which was
introduced in Section 3.2.3. The structure aspect of the Data concept is
depicted on Figures 3.5 and 3.8. Its concept editor is depicted on Figure 3.9.

Figure 3.8: Structure aspect of the Data concept in Frege-IDE

Figure 3.9: Visual representation of the AST for the data type declaration
(top) together with the Data concept editor (bottom)

In Frege, the data type declaration has to begin with the keyword data.
In our editor, it is a constant editor cell with the string data. We have
additionally applied editor styles to denote the keyword by changing its color
and making the text bold. The keyword is then followed by the data type’s
name. As mentioned in the previous section, the name must not be a
property, but rather a child node due to the implementation of the reference
concept TypeReference. In the editor, we simply use the child editor cell
pointing to the concept editor of the TypeName concept. Type variable
declarations and the set of constructors are both lists of child nodes. For
these we had to use the (horizontal) child collection editor cell. They again,

72

as in the case of the data type’s name, refer to their corresponding concept
editors, which are used when editing their values. The delimiter for the set of
constructors is set to the vertical bar symbol |, which is added between the
child editor cells automatically.

 The editor implementation for the concept representing the data type
constructor is depicted on Figure 3.10. The data type constructor concept
DataConstructor consists of the name and an arbitrary amount of type nodes
to depict the type of values the constructor accepts. On the example for the
Tree data type, the constructor Node accepts the first argument of type a set
by the corresponding type variable a from the left hand side of the data type
declaration. The subsequent two arguments are of types Tree a, therefore
recursively pointing to the type Tree with the same type variable a. The
editor therefore consists of the child editor cells for the constructor’s name
and for the collection of type nodes.

Figure 3.10: Visual representation of the AST for the data type constructor
(top) together with the DataConstructor concept editor (bottom)

3.3.2 Side Transformation Menus

Side transformations allow the language designer to change the concrete
AST in a specific manner when the user of that language writes a certain text
either right or left of the given editor cell.

Let us take for example the list expression in the right hand side of the
function definition. We have mentioned there are three main ways to define
the list:

 By enumerating elements: ['a', 'b', 'c']

 By specifying a range of elements: ['a', 'c' .. 'z']

 Using the list comprehension: [x * y | x <- [1..5], y <- [3..7]]

For each of the three methods there is a specific concept associated with
the list definition. Now we want to enable a seamless transformation from the
first to the second method when the user enters .. right of the last element
in the list. To do that, we need to know how both of the concepts are
implemented.

Enumeration list concept is a simple term that contains arbitrary amount
of children of the Expression concept. Its editor consists of two constant
editor cells representing square brackets [and], and the horizontal collection
cell representing the children items of the list.

The range list concept is based on the enumeration list, but it has to have
at least one child left of the .. symbol. Additionally it may or may not
contain a child of the Expression concept for specifying the upper bound of
the range. Figure 3.11 represents the editor implementation for the range list

73

concept. The upper bound child cell upTo is preceded by the question mark
symbol to denote that the editor cell is to be displayed only if the upper
bound is actually specified.

Figure 3.11: Editor for the concept representing the range list expression

The implementation of the transformation is rather straightforward and
follows a similar pattern as in the example described in Section 1.3.2. We set
the default transformation menu for the concept associated with the list item
(Expression concept), as the only editor cells that can trigger an action are
constant, property and referent cells (list item is the child editor cell). We set
the action’s properties as follows:

 Text triggering the transformation should be set to ..

 The Can execute part should be left to <always> to prevent the other
text patterns from triggering the current transformation menu.

 In the Execute part we specify that the new instance of the range list
concept should copy all of the items from the former instance of the
enumeration list concept. Then it should replace the former instance
completely. The items that are copied are the ones that will go before the
.. symbol. In most cases the user actually wants to specify the upper
bound of the range list as well, which is why we then create a new
instance of the Expression concept and set the focus on the new node.

Figure 3.12: Default transformation menu for the Expression concept

The problem with the current approach is that the concept that triggers

the transformation is Expression, which is a child of several different

74

concepts, not all of which are list enumeration concepts. We need to include
an additional condition where we check that the current Expression node is
indeed a child of the list enumeration concept and only then allow the action
to be executed. Figure 3.12 shows the implementation of the default
transformation menu for the Expression concept. The described action is
enwrapped inside the action group which checks whether the parent of the
current Expression node is an instance of the list enumeration concept. In
the Execute part, we replace the parent AST node, which is the actual list
enumeration, for the new instance of the range list concept.

3.3.3 Transformation Menu Inclusion Pattern

As described in the previous section, the child editor cells cannot trigger
editor actions and therefore the actions are defined on the corresponding
child concepts instead. However, certain concepts, such as the Expression,
are children of several different concepts. The individual actions have to be
restricted so that they are applicable only for the relevant parents.

There is, however, another problem with the editor related to the parent-
child relationship. In the previous section we described how to transform the
list enumeration to the list range upon entering the .. symbol right of the
Expression concept. For the sake of simplicity, let us assume the
transformation menu was actually defined for the TopExpression concept. We
want the transformation to also work for the concept GenericApplication
which is associated with the function application and inherits from the
TopExpression concept. Consider the following example:

ff = [1, 2, getTop [3 .. 100]]

The expression getTop [3 .. 100] is a text representation of an instance
of the GenericApplication concept. Upon entering the .. symbol right of
the [1 .. 100] expression, the user might expect the list would be
transformed to the list range, as demonstrated by the following example:

ff = [1, 2, getTop [3 .. 100] .. 7]

Unfortunately, this is not the implicit behavior. First, the
GenericApplication has to have its own default transformation menu
defined where it includes the transformation menu for the TopExpression
concept. The implementation is illustrated on Figure 3.13.

Figure 3.13: Default transformation menu for the GenericApplication
concept

The GenericApplication concept contains the following children:

75

 A single child of the ApplicationEntity concept, which specifies what is
to be applied (e.g. a function, operator or a bracketed expression).

 Arbitrary amount of children of the PrimaryExpression concept, which
represent the arguments passed to the application entity.

The GenericApplication editor consists solely of the child editor cells, as
depicted in Figure 3.14. As explained in the Section 1.3.2, the transformation
therefore cannot be triggered by the GenericApplication, since its editor
does not contain the necessary type of editor cells. Instead the transformation
menu has to be defined also for all of its children ApplicationEntity and
PrimaryExpression concepts.

Figure 3.14: Concept editor for the GenericApplication concept

The default transformation menu for the GenericApplication concept
should be triggered only if the specific text pattern is written right of the
whole node. An instance of the GenericApplication concept may contain
none, single, or several children of the PrimaryExpression concept, which
means either the transformation menu should be triggered by the last
PrimaryExpression child node, or by the single ApplicationEntity child
node if the application happens not to contain any arguments at all (i.e. there
are no PrimaryExpression children nodes inside the corresponding
GenericApplication node).

We, therefore, create the default transformation menu for both of the
concepts ApplicationEntity and PrimaryExpression. We enwrap the editor
action inside the group, where we check for the following conditions:

 The parent of the current AST node has to be an instance of the
GenericApplication concept.

 For the ApplicationEntity default transformation menu, the parent AST
node must not contain any children of the PrimaryExpression concept.

 For the PrimaryExpression default transformation menu, the parent AST
node’s last child of the PrimaryExpression concept must be the current
AST node.

The editor action is a simple include action, where we specify that the
transformation menu to be included is the default transformation menu from
the GenericApplication concept and that it applies to the parent AST node.

The implementation for the PrimaryExpression concept is depicted in
Figure 3.15 (a similar approach would be used also for the
ApplicationEntity concept). Since the PrimaryExpression concept also
inherits from the TopExpression concept, it should include its default menu
as well.

76

Figure 3.15: Default transformation menu for the PrimaryExpression concept

Understandably, there are also several concepts that inherit from the
PrimaryExpression, hence they need to include the default transformation
menu for the PrimaryExpression concept too. The concepts which editors
additionally contain the child editor cells also need to follow the similar
approach we described in this section.

The main idea behind the pattern is therefore not to define the
transformation menus on the concepts which can actually trigger the action
(such as IntegerValue representing an integer literal which has the necessary
type of editor cell), but rather on the higher-level, possibly abstract, concepts
(such as TopExpression) and to include whatever transformation menus they
might have in their child concepts and descendants (descendant in terms of
the concept inheritance). We used this pattern throughout most of the
implementation of the transformation menus, since a direct implementation
would be very difficult to maintain and prone to many mistakes.

3.3.4 Substitute Menu Actions

We use substitute actions whenever we need to allow the user to
substitute certain AST nodes for another nodes. In the most cases we need to
allow a seamless substitution of an abstract concept instance to a concrete
one.

We will now take a look on how literals work in Frege-IDE and
demonstrate the substitute menu actions on them.

Literal is an abstract concept which inherits from the Term concept that
represents literals, lists and tuples. Literal has the following sub-concepts:

 StringValue: contains a single property of the string type. The value is
enclosed with quotes.

 CharValue: represents a single character. The property is of the custom
constrained type which allows only a single character to be typed,

77

otherwise the node will not be validated correctly. Similarly to the
StringValue concept, in the editor the value is enclosed with apostrophes.

 BooleanValue: it is an abstract concept. The editor consists of the single
cell pointing to the content of the concept’s alias. The two concrete
concepts TrueValue and FalseValue have then aliases set to true and
false that represents their actual value.

 IntegerValue: it is a concept with a single property. Its editor contains
the single property editor cell.

 DoubleValue: similar to the IntegerValue, the concept contains only a
single property. However, the property is of a different type to allow the
floating-point numeric values to be typed instead of only the integer ones.

Let us assume a situation where there is a focus on an abstract
Expression AST node. The node should be replaced by an instance of a
‘more concrete’ Literal sub-concept based on the value a user enters. We can
think of the following scenarios:

 If a user is about to enter a string value or a character, he or she would
most likely enter the corresponding apostrophe or the quote symbol
before entering the inner content in the plain text editor. This means that
quotation mark can serve as a trigger for entering string values while the
apostrophe symbol for entering character literals. This is done by
declaring alias of the StringValue concept to the " symbol and ' for the
CharValue concept.

 Boolean values are entered by typing either true of false. The similar
approach with the concept alias works therefore here as well, i.e. we set
the alias of the TrueValue concept to true and the alias of the
FalseValue concept to false.

 When an integer value is entered, the node should be substituted for an
instance of the IntegerValue concept. To cover all possible integer values,
a single value in the concept’s alias is not enough and thus the default
substitute menu has to be created to handle the cases. We describe the
process in Section 1.3.3 where we create the substitute menu for the
Literal concept. We test the user-entered text for being an integer and if
true, the abstract AST node is replaced by a new instance of the
IntegerValue concept.

 Double values are handled in a similar manner as the integer values. We
create a new substitute menu action for the Literal concept and check
whether the user-entered text is a double value (but not an integer value
since an ambiguity would arise). If true, we replace the current node with
the new instance of the DoubleValue concept.

Figure 3.16 shows the implementation of the default substitute menu for
the Literal concept. We only need to handle the two cases related to the
concepts IntegerValue and DoubleValue.

78

Figure 3.16: Default substitute menu for the Literal concept

3.3.5 Wrap Substitute Menu

Wrap substitute menu is a special type of the substitution menu to be
used when we need to populate the completion menu by instances of a
different concept, than we will actually substitute the current AST node for.

Section 1.3.3 demonstrates a usage of the wrap substitute menu on the
concept PLiteral which is replaced in the corresponding completion menu by
the relevant entries related to the Literal concept. PLiteral concept inherits
from the PatternArgument concept, which is used in the representation of the
left hand side of the function definition (corresponds to the patternTerm
symbol which is described in Section 3.2.5.1).

The Frege grammar tells us that the symbol literal may be created
either by replacing the patternTerm symbol (part of the patterns of the
function definition) or by replacing the term symbol (part of the expressions
of the function definition). Since MPS does not allow the language designer
to create a concept inheriting from multiple concepts at once, a workaround
was used in the implementation of Frege-IDE. We created the concept
PLiteral containing a single child - an instance of the Literal concept - and
created a wrap substitute menu so that the PLiteral behaves similarly to the
Literal concept.

Figure 3.17 depicts the code completion menu for substituting a function
argument in Frege-IDE which is an instance of the PatternArgument concept.

79

Figure 3.17: Completion menu for substituting a function argument in Frege-
IDE

The completion menu on the example is, among others, now populated by

the items discussed in Section 3.3.4 regarding the Literal concept (quote and
apostrophe symbol, true and false). The items for creating instances for
IntegerValue and DoubleValue concepts are not shown as they are
automatically created upon typing the corresponding literal. The created
instances are then automatically enwrapped inside the new instance of the
PLiteral concept as implemented in the corresponding wrap substitute menu
handler.

On a side note, the Literal concept can now be a child of the PLiteral
concept. According to the transformation menu inclusion pattern from
Section 3.3.3, the default transformation menu for the Literal concept
should now include the default menu intended for the PLiteral concept as
well, otherwise certain transformation actions would not be applicable.

3.3.6 Cell Action Map

Side transformation menus allow us to transform a certain AST node to
another when a specific text is written to the right or left of an editor cell.
However, in some cases we may also want to put an event handler on a
specific editor cell when it is selected, removed, or otherwise manipulated
with. For these cases we use the cell action maps.

In Frege-IDE, most of the scenarios, in which we have to use the cell
action maps, are simply connected to the editor cell deletion. In Section 3.3.2
we described side transformation menus in Frege-IDE and demonstrated, how
we could allow the user to easily transform a list defined by enumeration to
the ranged list. To allow the backwards transformation from the ranged list
to the enumeration, we have to use the cell action map.

The ranged list’s editor consists of constant cells representing the square
brackets [and], the child cells representing the enumerated items on the
left, the constant cell for the .. symbol and the child cell for the
representation of the upper bound of the range. The user might expect to
change the range list back to the enumeration upon removal of the .. editor
cell. While this is not the implicit behavior, we can create a handler for the
corresponding editor cell.

Figure 3.18 shows the implementation of the cell action map for the
aforementioned editor cell. The handler creates a new instance of the list
enumeration concept, copies all of the items from the current list range
(together with the upper bound if present) and replaces the current node

80

with the new instance.

Figure 3.18: Cell action map for the editor cell representing the .. symbol in
the list range concept

3.3.7 Seamless Definitions

Important aspect of Frege-IDE is a user-friendly editor. During the
implementation we wanted to emulate the standard process of writing code in
the plain text editor the most Frege users are used to. Since a program in
Frege consists of a series of definitions, we wanted to focus on this part of the
language and provide the best experience for typing new definitions in a
Frege module.

In Section 3.2.3 we have discussed what kind of definitions there are and
which are supported in Frege-IDE. The subset includes the following:

 Import declaration

 Fixity

 Type declaration

 Data declaration

 Local definition (function definition and type annotation)

Except the type annotation and function definition, all of the above
definitions begin with a certain keyword that makes them easily
distinguishable, such as infix, type or data. Defining an alias inside those
concepts’ structure aspect is enough to provide the user with a relatively
user-friendly interface - for instance, upon typing data, MPS creates the
instance of the corresponding data type declaration concept. However, type
annotations and function definitions cannot be represented by a single
keyword and require a careful analysis. We have made several observations,
which will help us:

 When the user begins the definition with the left square bracket symbol
[, or a constructor’s name, or a literal, then it is clear he or she is

81

providing a function or an operator definition. Consider the following
examples:

◦ [a, b, c] = [1, 2, 3]

◦ Just _ *** Nothing = Nothing

◦ 1 +-+ x = x

 When the user begins the definition with the left bracket symbol (, then
the step is ambiguous and has two valid outcomes:

◦ The user may be trying to annotate an operator. Upon typing any
operator symbol right of the bracket symbol, a transformation
menu action can transform the corresponding AST node to a type
annotation instance. Example: (+-+) :: Int -> Int -> Int

◦ Upon typing anything else from what is allowed to be inside the
patterns, the definition is a function definition as demonstrated by
the following examples:

▪ (a, b) = (1, 2)

▪ (1, c) = (1, 2)

▪ ([a, b], c) = ([1, 2], 3)

 When the user types a new identifier (excluding the keywords associated
with other definitions), it is not yet clear whether the definition will be a
type annotation, or a function definition. There must be an ambiguous
step in the process represented by a special concept. The outcome is
determined by one of the following cases:

◦ If the identifier is followed by :: symbol, it is a type annotation.
Example: idf :: Int -> Int -> Char

◦ If the identifier is followed by a comma symbol, it is a type
annotation, as the user is probably adding new items to collectively
annotate. Example: idf1, idf2 :: Int -> Int -> Char

◦ If the identifier is followed by an operator symbol, it is an operator
definition. Example: idf1 -+- idf2 = idf1 * idf2

◦ If the identifier is followed by the = symbol, it is either a constant
function definition, or an operator definition. For example:

▪ idf = "Hello, world!" (constant function definition)

▪ idf1 =+= idf2 = 0 (=+= operator definition)

◦ Upon typing anything else from the set of allowed symbols for the
patterns, the user is most probably providing arguments to the
function definition. Example: idf (a, b) [0] = [a .. b]

The described observations form a rather complex decision tree, therefore
we will describe the implementation only briefly. All definitions are concepts
that inherit from the abstract Definition concept. We created the concept

82

FunctionDefinition which represents the step from the first observation (i.e.
what we get upon typing either [symbol, or a constructor’s name, or a
literal). It is not the real function definition that also has to consist of the
right hand side which is missing in this concept. Instead it is an ‘incomplete
definition’, considered invalid until properly finished. The
FunctionDefinition concept is composed of a single child representing the
pattern, which has its own editor actions that allow the node to be
transformed to the final definition form.

To allow the seamless substitution of the Definition node to the
FunctionDefinition, we defined a wrap substitute menu for all of the three
mentioned cases:

 List pattern: the menu handler wraps the list pattern concept. Upon
typing the input symbol [which is normally a trigger for creating a list
pattern instance, the handler creates a new instance of the
FunctionDefinition concept instead and puts the new list pattern as its
child.

 PConstructor: the menu handler wraps the concept representing a
constructor application in a pattern

 PLiteral: the menu handler wraps the concept representing a literal in a
pattern

By creating the wrap substitute menus, whenever an instance of the
Definition concept is expected, a user may instead use one of the three
options mentioned above and the handler will automatically wrap the
corresponding AST node into a new instance of the FunctionDefinition
concept. Thus, typing, for example, the literal 7 on an empty line would
result in creation of the instance of the FunctionDefinition concept.

The case for the left bracket symbol (was handled in a similar manner.
We created a new concept representing the brackets, which are empty at first
and are considered to be an ‘incomplete definition’. The right-side
transformation menus associated with the left bracket then handle both of
the possible outcomes mentioned in the second observation. The
implementation is as follows:

 We created two transformation menu actions associated with the editor
cell representing the left bracket symbol.

 The first action is triggered by typing any character from the set of
allowed characters for custom operators (see Section 2.4). The menu
handler transforms the current node into an instance of the type
annotation concept.

 Upon typing anything else, the node is to be transformed to an instance
of the FunctionDefinition concept.

The last observation is solved by creating a new concept and defining an
appropriate substitute menu for the Definition concept to the new concept.
The substitute action has to check the user-entered text for whether it
actually can act as an identifier and that it does not equate to one of the
reserved words (such as true, false, type or infix). After that it is

83

necessary to implement all of the cases from that observation by creating the
necessary side transformation menus. The approach is no different from the
ones described in this section, so we will not go through it.

An interesting problem is to correctly transform the identifier to a
reference in case the identifier is followed by :: symbol, thus transforming
the whole AST node to an instance of the type annotation concept. While
this problem is related to scoping, if we have the list of available nodes
representing the function names, it is sufficient to find the one that is the
best match for the user-entered identifier. We pick one and create the new
node referencing the picked node.

It is important to mention that the approach described in this section
regarding the Frege-IDE editor is just one of many, since there is no exact set
of rules for how the IDE should behave. We took this path to closely emulate
the common plain text editors and as an experiment which we refer to later
in Chapter 4. On the one hand we allow the user to type the Frege code as he
or she may be used to, but now we offer only a limited assistance in
referencing existing functions and operators when defining type annotations.
There are advantages and disadvantages to both approaches.

3.3.8 Expression Operators

Frege language allows users to define custom infix operators with an
almost arbitrary precedence. However, the precedence may be changed at any
time and handling such an event properly would be complicated to
implement. Instead we opted for keeping expressions in linear structures in
contrast to a tree that would need to be recomputed and reshaped each time
a precedence of an operator is changed. Evaluating type of an expression is
therefore left to the typesystem aspect, where a special algorithm must be
used to handle various scenarios.

To allow adding operators inside the expressions, we need to obtain a set
of available operators first. This topic is described in Section 3.4 that deals
with code completion feature and scopes. Once the set is obtained, we can
define right-side transformation menu for the operands.

What we want to achieve is to add a new operator and then set focus to
the new operand node upon typing an operator the user wants to use.
However, there may be a case when the typed operator is a prefix of another.
Consider, for instance, the operators + and ++. When the user types an
expression x+, it is not clear, whether he or she will continue by typing
another + symbol, or the entered operator is finished. Fortunately, MPS
simplifies the scenario by automatically handling ambiguous transformation
menu actions once the user-entered text does not conform to any of the
triggering text parts of the transformation menu anymore. For instance, this
means that once a user types x+y, it is clear that the text that should have
triggered one of the two aforementioned actions was + only. Thus, the
corresponding action is activated and the operator + is added to the
expression together with the new operand y.

Somewhat unpleasant feature of MPS is that we cannot specify a list of
strings in the text part of the side transformation menu action, but rather

84

only a single string that can trigger the action. Therefore we have to return
the closest operator that begins with the user-entered string. For instance, let
us assume that the only operators visible in the given Frege module are +-+
and :-:. When the user types the symbol +, we need to return the +-+ string
as that is the closest operator beginning with the +. However, if the user tries
to type a non-existent operator, such as +:, we must return a completely
irrelevant string to prevent the action from triggering. This approach is
necessary as the number of operators is dynamically changed by the user and
thus cannot be each represented by a separate transformation menu action.

However, the described approach does not account for the case where one
operator is a prefix of another, such as operators + and ++. If the
transformation menu action returned the string + as the closest operator for
the user-entered text +, the action would be immediately triggered as there is
no ambiguity. We can force the ambiguity by creating a second
transformation menu action with the similar handler, as the first one. In the
text part, however, we return the second-closest operator beginning with the
user-entered text. For instance, given the operators +, ++ and +-+, the
corresponding two menu actions would return the following strings based on
the user-entered text:

 If the user types +, the first action returns + and the second returns ++.

 If the user types ++, the first action returns ++ and the second returns an
irrelevant string, such as ‘illegal pattern’.

 If the user types +-, the first action returns +-+ and the second returns an
irrelevant string, such as ‘illegal pattern’.

To implement the feature, we have used a custom trie-like data structure.
We give the trie the user-entered text and find out if there is a leaf node with
the same prefix as the given input. If true, we return the operator, if not, we
return ‘Illegal pattern’.

3.3.9 Final Remarks

While the editor aspect of MPS provides powerful options to allow the
creation of a user-friendly IDE, it takes a considerable effort and resources.
Rather than analyzing different usage scenarios of the language, it may be
sometimes easier to define a set of executable actions (intentions) which the
user may choose from to create the required AST nodes. As it has been
mentioned, since the MPS does not rely on lexers and parsers to process the
code, we have to take a reverse approach and that is costly.

85

3.4 Code Completion

An important feature of many great IDEs is the context-aware code
completion. This feature speeds up the development process by putting less
pressure on the programmer’s memorization of the identifiers, members and
other language constructs. It usually has a form of a list (see Figure 1.5)
which is invoked either automatically or manually from which the user may
select the necessary item. A lot of simplified implementations only include a
list of members whose name starts with the given prefix or all possible words
that were written in the corresponding code. Context-aware code completion
differs from such implementations by providing the list of only those
constructs that are actually ‘visible’ in the given context. Consider the
following piece of code in Frege:

length (y:ys) = 1 + length ys
getTop (x:xs) = x

The example introduces two new functions into the given Frege module:
length and getTop. On the left hand side of the function getTop we have
declared variables x and xs whereas on the left hand side of the function
length we introduced the variables y and ys. Their corresponding right hand
sides must contain only their own declared variables from their left hand
sides. For example, the user should not be able to pick the variable y from
the context-aware code completion menu in the getTop function’s expression
(we assume there are not any visible functions named x or y in the given
Frege module).

MPS provides tools to implement the context-aware code completion
menu by taking advantage of the constraints aspect. As described in Section
1.6, the constraints aspect allows the language designer to restrict the set of
referenceable targets for given concepts by specifying the custom scope
object. In this section, we analyze the overall problem with the code
completion, discuss possible solutions and provide several examples.

3.4.1 Scope

Scope is an object in MPS which defines a list of targets that can be
referenced. The language designer can specify a concrete scope for the
concepts that contain a reference in their structure aspect. This can be done
by defining a new referent constraint in the constraints aspect of the given
concept.

Let us look at the data type and type synonym declarations in Frege-IDE.
In Section 3.2.4 we discuss the structure aspect of the corresponding Data
and Type concepts. The type name these language constructs introduce into
the given Frege module is represented by the TypeName concept. The name is
also enwrapped in the smart reference concept called TypeReference, which is
used, for example, as a child in the concept representing the usage of the type
name in the static type declaration. Without specifying any scope for the
concept TypeReference, the user is able to pick the type name from any of

86

the Frege modules defined in the current MPS model. To restrict the set only
to the type names from the current or actually imported modules, we can
create a new scope instance where we specify the list of type names that are
actually referenceable.

However, specifying the list of referenceable nodes for each relevant
concept would be tedious and difficult to maintain. Instead we can take a
different approach and proclaim certain concepts to be scope providers. What
we mean by this is that they contain certain children which are referenced by
other concepts. In the example above, both Data and Type concepts are,
according to our definition, scope providers, because they contain the child
concept TypeName, which is further referenced, for example, by the
TypeReference concept. Upon request, these concepts should provide a list of
AST nodes that are available to them.

Figure 3.19 shows a simplified version of the method that provides the
scope of the Data concept. The method is defined in the concept’s behavior
aspect. The Data concept consists of the type name, data constructors and
type variables. Each of its parts may be referenced, as the data type
declaration creates a new type name used in the static type declarations,
defines constructors used in the function definitions and optionally specifies
type variables which are referenced by its constructors, as in the example of
the data type Maybe.

Figure 3.19: Method getPublicScope for returning the requested scope in the
Data concept behavior aspect

In the implementation above, we use custom classes for creating new

instances of the scope. We differentiate between the kinds of the scope
requested - if the scope for the concept TypeName is requested, then that is
what the method returns. If the scope for the completely unrelated concept is
requested, the method returns an empty scope containing no nodes at all.

The approach with scope providers then forms a hierarchy. The Data and
Type concepts both inherit from the Definition and are therefore children of
the root Skeleton concept. Skeleton represents a single Frege module. Upon
request for the scope it delegates the call to all of its children. If its child
contains another children, it delegates the call to them recursively. In the end,

87

the scopes are merged and returned. This way, in its most simplified form,
the TypeReference concept can request the scope from the root concept
Skeleton. The returned scope then contains the list of available type names
the TypeReference concept can reference.

3.4.2 Scope Hierarchy Pattern

In the previous section we described the notion of scope providers. The
concepts in Frege-IDE form a tree and delegate the requests for the scope
creation to their child concepts recursively. If a certain concept on the path
contains children of the requested type, it is called the scope provider. Upon
request it creates the new scope with the list containing the relevant child
nodes and returns it to the parent. The concepts that do not provide
anything return the empty scope. These scopes are eventually merged on the
root level and returned to the requesting node.

However, this hierarchy only gathers all of the nodes of the requested
type and returns it in the form of the scope object. To also restrict the nodes
based on the requester context, we used a custom pattern.

Let us take for example the function definition. The function definition
consists of its left and right hand side. The left hand side specifies the
function’s name together with the arguments it accepts. As described at the
beginning of Section 3.4, the function’s name should be visible to all of the
sibling definitions whereas the declared variables inside its arguments should
be referenceable only from its own right hand side.

We will illustrate the pattern on the following example:

f x y = x + y
g = f 1 7

Figure 3.20 shows a visualization of the AST for the given two function
definitions. Function f declares two variables x and y which are referenced
from its right hand side. On the other hand, function g references from its
right hand side the function f. This is valid as the function f is its sibling.
However, the g function’s right hand side cannot contain references to the
variables x and y as they are defined in the other function definition.

From the MPS perspective, the concept related to the function definition
is the scope provider. It provides the scope either for the function’s name or
for its declared variables. Based on the grammar, the function’s name is
indistinguishable from the variables and thus the problem cannot be solved
simply by requesting the scope for a different type of the concept. Instead the
decision to either include or exclude the declared variables from the returned
scope has to be made on the function definition’s level. The corresponding
concept has to know where the request for the scope comes from. If the
request comes from its right hand side, it returns all of its variables together
with the function’s name. If the request for the scope comes from the
‘outside’ (e.g. the call to the function definition f was made by its sibling
function g), it returns only the function’s name.

88

Figure 3.20: A visualization of the AST for a single Frege module with two
function definitions

However, this is not enough as the function f in the example above is

referenced from the function’s g right hand side which is the actual requester
of the scope. The request for the scope therefore gets to the node associated
with the g function definition and returns the function’s g name and its
variables (which in this particular case there are not any). The function
definition for the g then has to include its parent scope as well to also cover
the reference to its sibling f.

Thus, the pattern to implement the scope for referencing concepts is as
follows:

 The concept containing a reference requests the scope from its closest
ancestor that is a scope provider (provided the given concept is not the
scope provider itself). The root concept Skeleton is a scope provider and
thus such an AST node always exists.

 The scope provider creates the requested scope based on the AST node
the request came from.

◦ If the request came from its parent, it creates its own scope as
necessary and optionally delegates the call to its children (function
definition does not delegate the call to the children nodes). It
merges its own scope with the scopes from its children and returns
it to the parent.

◦ If the request for the scope came from one of its children, it creates
its own scope as necessary, delegates the call to its parent (which
delegates the call recursively up to the root node) and optionally
delegates the call to the other children as well. Then the scopes are
merged into the single one and returned to the requesting node.

89

 The root concept Skeleton always delegates the call to all of its relevant
children and returns the merged scope.

To help us implement the pattern, we have created the interface
DCScopeProvider which extends the built-in interface ScopeProvider. It
contains two main methods: one called by the child nodes and one called by
parent scope providers. The default implementation, which may be overridden
using behavior MPS aspect, is to always include only the parent scope upon a
request from children. The scope creation is then delegated recursively up to
the root node, which then calls the second method (for calling by parents) on
all of its relevant children. The default implementation of that is to, similarly,
call the same method recursively on all of the relevant children of the given
concept implementing the DCScopeProvider interface.

3.4.3 Import and Export

Section 3.2.4 describes the concepts related to the import and export
declarations. Import declaration is represented by the Import concept, which
is a child of the root Skeleton concept. The Import contains a reference to an
existing Frege module represented by the Module concept which is also a child
of the Skeleton. The export declaration is a part of the Frege module
definition at the top of the Frege program, thus it is included in the
aforementioned Module concept.

According to the scope hierarchy pattern mentioned earlier, the concept
Skeleton delegates the requests for the scope creation to all of its relevant
children. Thus the responsibility to create the scope for the imported modules
is left to the Import concept.

Consider the following example of two Frege modules:

ExportExample module:

module mps.frege.ExportExample (ff, gg) where

ff = 0
gg = 1
hh = 2

ImportExample module:

module mps.frege.ImportExample where
import mps.frege.ExportExample as EP (ff)

ii = ff + EP.gg

Upon the request for the scope, the Import concept looks into the
referenced Module node. In our example, the import declaration import

mps.frege.ExportExample references the AST node from the ExportExample

90

module corresponding to the statement module mps.frege.ExportExample

(ff, gg) where. Then it asks for the scope. There are two possible outcomes
for the given request:

 The module declaration exports all of the definitions from the current
Frege module (i.e. no brackets are specified in the corresponding
declaration). The Module node therefore delegates the request to its
parent node Skeleton which then creates the scope based on the scope
hierarchy pattern. However, in this special case it is important not to
include the items from the imported modules if there are any, since those
are omitted by default.

 The module declaration exports only some of the items from the current
Frege module (see the example above). The Module node has to iterate
through the specified exported items and create the scope containing all
of them.

However, the import declaration does not always import all of the items
from the referenced Frege module into the current namespace. As in the
example above, the module ImportExample imports only the function ff from
the ExportExample module while the function gg has to be accessed using the
qualified name EP.gg. This means that the Import concept has to be able to
provide two different scopes: one for all of the items from the referenced
module which are accessed by their qualified names, and the second one for
the items that are specified in the corresponding brackets (if the hidden
clause is used in the import declaration, then the items not specified within
the brackets have to be included in the second scope).

The second type of the scope is created simply by filtering the scope from
the referenced Module node by the items specified within the corresponding
brackets in the import declaration. It is the default scope the Import concept
provides and the items it contains are easily referenceable by concepts such as
VariableReference used for applying existing functions and variables inside
the expressions.

The first type of the scope is provided by the Import concept upon the
specific direct request. In Frege-IDE, we created special concepts to denote
the usage of qualified names. For instance, in Section 3.2.5.3 we described the
ApplicationEntity concept of which there is also the sub-concept
ImportedEntityApplication. Figure 3.21 depicts its structure aspect. The
concept ImportedEntityApplication contains a reference to the import
declaration. It also contains the ApplicationEntity concept as the child
node, which references a node from the imported module.
ImportedEntityApplication is a special type of scope provider which
delegates the scope creation solely to the referenced import declaration. It
requests from the Import node its first type of the scope that contains all of
the exported definitions from the corresponding module and nothing else.

91

Figure 3.21: Structure aspect of the ImportedEntityApplication concept in
Frege-IDE

On the example at the beginning of the current section, the function ii

contains in its right hand side the expression EP.gg. In Frege-IDE this is
represented by the AST node of the concept ImportedEntityApplication. EP
consists of the editor cell that points to the corresponding Import concept’s
presentation (in this case the import’s alias EP). The child entity
(ApplicationEntity concept) is restricted by the scope returned from the
corresponding Import node, which contains the function definitions ff and gg
and thus these are the only functions or entities that can be applied in the
given context. Figure 3.22 depicts the ImportExample module in Frege-IDE.
The corresponding code completion menu contains only the aforementioned
items ff and gg when using the qualified name starting with EP.

Figure 3.22: ImportExample module in Frege-IDE

Additionally, the Import concept has to provide a very specific scope for
its children as well. First, it should allow to import only the other modules
and not the one currently being defined. Then, we have to provide the scope
for the items to be specified inside the brackets, which will describe, what
items will be actually imported into the current namespace. The scope must
not include the items from the current Frege module and thus the request for
the scope creation from the Import concept’s children is not delegated to the
Import’s parent node. All in all, the scope hierarchy pattern does not fully
apply here as the current case is fairly specific.

92

3.4.4 Implicitly Imported Library

A library with several standard functions and operators has been created
to simulate the behavior of the implicit library Frege-Prelude. The module is
simply labeled as Default in Frege-IDE (mps.frege.Default).

Every new module imports the library implicitly upon its construction by
searching the visible modules and finding the one with the corresponding
name. The module is then imported with the hidden flag, which makes it
invisible in the editor.

The module contains basic arithmetic operators, such as +, -, *, /, % as
well as boolean comparison operators, for example <, >, <=, >= and ==. The
module is not a complete copy of the Frgee-Prelude library and serves only as
a demonstration of the capabilities of Frege-IDE. However, it can be easily
extended with the new functions, data types or operators.

3.5 Type Checking

To implement a simple type checking capability into Frege-IDE, we used
the typesystem aspect in MPS. The current feature has some limitations and
supports only type checking of the functions, where a type annotation is
provided. In this section, we will go through several examples, describe the
problems we encountered during the implementation and discuss the final
result.

3.5.1 Types

As discussed in Section 3.2.6, we wanted to include the following types in
Frege-IDE:

 Bool

 Char

 String

 Numeric types (Int, Double)

 Tuple

 List

 Function types

Custom algebraic data types were omitted due to the scope of this work.
Every other type mentioned, however, has to be modeled by a new concept,
as explained in Section 1.7. Additionally, we created a special concept
Unknown to denote the types of expressions we could not or did not want to
infer the types of.

Section 1.7 discusses the implementation of the concept representing the
list type. The similar approach is used for the remaining complex types,
which include tuple and function types.

93

The concept representing the tuple type in Frege-IDE is named
TupleTypeNode. It inherits from the Type concept from the MPS
BaseLanguage and contains an arbitrary amount of children based on the
concrete tuple it represents the type of. The children are also sub-concepts of
the Type concept.

Figure 3.23 shows the structure aspect of the TupleTypeNode concept in
Frege-IDE.

Figure 3.23: Structure aspect of the TupleTypeNode concept in Frege-IDE

From the structural point of view, the concept representing the function

type in Frege-IDE (named FunctionTypeNode) is the same as the
TupleTypeNode concept. It also contains an arbitrary amount of children
representing the types of the function’s arguments with the last child
representing the return type. The two are, however, not separated due to the
currying technique in Frege, which allows the function’s return type to be
also a function. Consider the following example:

multiplyThree :: Int -> Int -> Int -> Int
multiplyThree x y z = x * y * z
curriedMultiplyThree = multiplyThree 1

In the example above, the type annotation of the function
curriedMultiplyThree is Int -> Int -> Int which could be considered from
a certain point of view to be the return type of the function application
multiplyThree 1. To ease the implementation, we do not draw any lines
between the type of the function’s argument and its return type in the Frege-
IDE typesystem aspect.

The final implementation of the concept FunctionTypeNode in the
structure aspect is depicted in Figure 3.24.

94

Figure 3.24: Structure aspect of the FunctionTypeNode concept in Frege-IDE

3.5.2 Infix Expressions

In Frege, the user may define custom infix operators with different
associativity and precedence. From the semantic point of view, the operator is
simply a function accepting two arguments and returning a certain result.
A result of such a function may be again a function accepting additional
arguments.

Frege differs from most programming languages such as C# or C++ that
allow mostly only operator overloading. This means that in these languages a
developer may adjust the behavior of the operators for different input types,
but not define new operators or change the precedence or associativity of the
existing ones. Thus the syntax tree generated by the parser in these
languages always stays the same. However, that is not the case in Frege. In
Frege the user may create a completely new operator of an (almost) arbitrary
precedence, altering the syntax tree that is generated for the expressions in
which the new operator is used.

To ease the implementation of the editor in Frege-IDE, we have decided
to keep the expressions in linear data structures instead of keeping them in
the form of binary trees regarding the structure aspect of Frege-IDE. The
latter would require handling events related to the user changing precedence
or an associativity for all of the infix operators and non-trivial reconstruction
of the AST. Instead we decided to compute the expression binary tree only in
the typesystem aspect.

The user may change the precedence or associativity of a custom operator
by entering the following statement in the Frege module:

infixl 5 +++

The example above sets the custom operator +++ to be left-associative

with the precedence 5. According to the Frege specification, the statement
can be used only in the same module in which the custom operator +++ is
also defined.

In Frege-IDE the statement above corresponds to the concept Fixity

95

which inherits from the Definition concept. Thus, it is a child of the
Skeleton concept. Given the operator reference, we can get the Skeleton root
node in which the given operator is defined. Then we can iterate its children
and find the corresponding Fixity node that adjusts the precedence and the
associativity of the given operator. If no related Fixity node is found, then
the operator is by default non-associative and has the precedence 16.

To implement the type checking of infix expressions, we took the
following approach:

1. Infer the types of the sub-expressions recursively, such as expression
enclosed within brackets, or expressions inside the terms (e.g. tuples or
lists).

2. The result of the previous step is an array of operands with the operators
in between them. The type of the operands is known from the previous
step. The type of the infix operators is given by their corresponding type
annotations (if the type annotation for an operator is not provided, then
the type of the whole expression is set to Unknown).

3. Construct the binary expression tree for the current expression.

4. Check the types of the binary expression tree’s nodes. Set the type of the
whole expression according to the root node of the binary expression tree.

To demonstrate the approach, let us consider the following expression in
Frege:

ff = 4 * 5 * 6

First, the types of the sub-expressions need to be inferred. The operands
4, 5 and 6 are simple integer literals and thus their types is Int.

In the second step, we find out the type of the operator *. Due to the
absence of parametric polymorphism in Frege-IDE the type annotation of the
operator * is set to Double -> Double -> Double.

Next the binary expression tree is constructed. The operator * is a left-
associative operator, which means the expression can be rewritten in the
following manner:

ff = ((4 * 5) * 6)

The precedence does not play any role in the current expression as there

are no other operators than *. The constructed binary expression tree is
depicted in Figure 3.25.

Figure 3.25: Binary expression tree for the expression 4 * 5 * 6 in Frege-IDE

96

In the last step, the types of the nodes of the constructed expression tree
are checked. The types are checked in the bottom-to-top approach, i.e. first
the type of the subtree given by the expression 4 * 5 is checked. Both
children 4 and 5 are of the type Int which are acceptable arguments for the
function with the type annotation Double -> Double -> Double. The type of
the given subtree is therefore Double. Similarly the remaining part of the
expression tree is checked. The type of the whole expression is then set to
Double.

Assuming that we can easily infer the types of the sub-expressions and
find out the types of the operators used in the given expression we will now
describe how the binary expression tree is constructed. We used a derivation
of the standard algorithm for translating infix expressions to postfix which
uses a single stack. Our algorithm uses two stacks and iterates through the
elements of the expression three times in total. The pseudocode of the
corresponding algorithm is as follows:

function ConstructTree(Expression):

 create stack S
 lastPrecedence ← 0

 for each element e in Expression (taken left-to-right):
 if e is an operator:
 if precedence of e < lastPrecedence:
 item ← HandlePrioritized(S, precedence of e)
 push item into S

 lastPrecedence ← precedence of e

 push e into S

 return HandlePrioritized(S, MAX_VALUE)

function HandlePrioritized(Stack, Precedence):

 create stack S
 lastPrecedence ← 0
 lastAssociativity ← none

 for each element e in Stack (taken from top):
 if e is an operator:
 if precedence of e <= Precedence:
 return ConstructTreeFromStack(S)

 if precedence of e = lastPrecedence
 and (associativity of e <> lastAssociativity
 or associativity of e = none):
 error

 if precedence of e < lastPrecedence
 or associativity of e = right:
 item ← ConstructTreeFromStack(S)
 push item into S

97

 lastPrecedence ← precedence of e
 lastAssociativity ← associativity of e

 pop e from Stack
 push e into S

 return ConstructTreeFromStack(S)

function ConstructTreeFromStack(Stack):

 root ← top from Stack
 pop top from Stack

 for each two elements (operator, operand) in Stack (taken from top):
 create binary tree:
 tree.root ← operator
 tree.left ← root
 tree.right ← operand

 root ← tree
 pop operator and operand from Stack

 return root

The algorithm expects on the input a non-empty expression in the form

of an array of operands with operators in between them. The entry function
ConstructTree iterates the elements of the expression from left to right and
pushes them onto the first stack. It keeps the track of the precedence of the
last operator and if an operator with a lower precedence is encountered, it
lets the function HandlePrioritized construct the binary expression tree for
the items with the higher priority.

To illustrate the work of the algorithm, let us consider the following
expression:

x1 + x2 + x3 + x4 * x5 * x6 . x7 . x8 . x9

Let us assume the three operators used in the expression have the

following attributes:

 + is a left-associative operator with the precedence 1

 * is a left-associative operator with the precedence 3

 . is a right-associative operator with the precedence 2

In the example above we are not actually interested in the types of the
variables x1 - x9 or the type annotation of the operators as the constructed
binary expression tree depends only on the two mentioned properties
(associativity and precedence).

The first step of the algorithm pushes the items onto the first stack until
the operator . is encountered. Then it calls the function HandlePrioritized
to handle the items from the stack up to the operator + which has a smaller
precedence than the . operator. This ensures the subtree for the prioritized

98

part of the expression x4 * x5 * x6 is constructed first.
In the second step, the function HandlePrioritized iterates the items in

the stack which means it looks at the items in the reversed order as they
came first in the input expression. The function stops either when the first
stack is empty or when an operator with a small precedence is encountered,
thus handling only the prioritized part of the expression. As the function
iterates the items, it can perform the following two important checks:

 There must not be several operators with the same precedence but
different associativity in a sequence.

 There must not be several non-associative operators in a sequence.

At this point, the function decides how it creates the expression tree for
the given part of the input expression. If the right-associative operator is
encountered, the subtree can be created right away as the items of the
expression are visited in the right-to-left order. If the left-associative operator
is encountered, the function has to wait until the operator with a different
precedence is encountered. The algorithms puts the items onto the new stack
and when it hits the new operator, it lets the function
ConstructTreeFromStack construct the expression tree for the postponed
items from the new stack.

In the example above, at the time of the first call of the function
HandlePrioritized, the given stack contains the following items in order
from the top: x6 * x5 * x4 + x3 + x2 + x1. The function iterates the items
up to the operator +. The only operator encountered up to the + is operator *
which is the left-associative operator, therefore it pushes the items onto the
new second stack. Finally, it lets the function ConstructTreeFromStack create
the expression tree from the new stack with the following items: x4 * x5 *
x6 (ordered from the top).

The last function ConstructTreeFromStack takes the items from the given
stack and creates the binary expression tree for them. The function expects
the encountered operators to be left-associative with an exception of creating
the expression tree for only a single operator with two operands. Figure 3.26
illustrates the created binary expression tree for the input stack with the
items x4 * x5 * x6.

Figure 3.26: Binary expression tree for the expression x4 * x5 * x6

At this point, the algorithm continues with the function ConstructTree.
The first stack contains the following items: ((x4 * x5) * x6) + x3 + x2 +
x1 where ((x4 * x5) * x6) represents the single item in the form of the
binary expression tree as depicted above. The function continues to iterate
the items from the input expression until there is nothing left. The stack now

99

looks as follows: x9 . x8 . x7 . ((x4 * x5) * x6) + x3 + x2 + x1 and the
execution is passed to the HandlePrioritized function.

In the second step, the function HandlePrioritized stops only after all of
the items from the given stack are processed. It first encounters the
operator . which is the right-associative operator and thus the binary
expression tree is constructed immediately. Then it continues with the items
x3 + x2 + x1 on the input stack where the operator + is, again, left-
associative and thus the construction of the tree has to be postponed until a
different operator with a different precedence is encountered, or the first stack
does not contain any more items. The second stack with items x1 + x2 + x3
+ (((x4 * x5) * x6) . (x7 . (x8 . x9))) is passed to the
ConstructTreeFromStack function which constructs the final binary
expression tree as depicted in Figure 3.27.

Figure 3.27: Binary expression tree for the expression x1 + x2 + x3 + x4 *
x5 * x6 . x7 . x8 . x9

The last step of our approach is to check the types of the binary
expression tree’s nodes. As we have the tree constructed, this is done easily
by checking the type of both left and right subtrees recursively and
comparing them to the type of the operator for each operator node. The
return type of the operator application is also the type of the whole subtree
defined by the current node. This step, however, requires the implementation
of the function application, which is discussed in Section 3.5.3.

3.5.3 Function Application

In Section 3.5.1 we discussed the overall structure and implementation of
the concept related to the function type. The corresponding
FunctionTypeNode concept is structurally similar to the concept representing
the tuple type and contains at least one child of the Type concept to represent
the types of the function’s arguments or the function’s return type.

The function application is represented by the GenericApplication
concept. It contains the single child of the ApplicationEntity concept to
represent what is being applied (for instance, function, operator or a
bracketed expression). In this work, we completely omitted the type checking
for the user defined types which includes type synonym and data type

100

declarations. This means we will not be dealing with the constructor
application which is normally also part of the corresponding
GenericApplication concept.

The implementation of the type checking for function application is done
in the typesystem aspect of the GenericApplication concept. The Frege-IDE
first looks at the inferred type of the ApplicationEntity child of the
corresponding concept. Due to the type inspection the when concrete block
described in Section 1.7 has to be used.

 ApplicationEntity may or may not be of the function type. This
depends on the expression being applied. Consider the following two
examples:

six_1 = (max 4) 6
six_2 = (max 4 6)

In Frege-IDE, both constant functions six_1 and six_2 would contain an

instance of the GenericApplication concept in their respective right hand
sides. (max 4) 6 is an application of the bracketed expression max 4 with
argument 6. (max 4 6) is an application of the bracketed expression with no
arguments. The result of the expression surrounded within the brackets in the
former case is a function, whereas in the latter it is an integer value.

The resulting type of the function application has to be properly inferred
depending on the ApplicationEntity and the arguments provided. Let us
demonstrate the process on the following function:

multiplyThree :: Int -> Int -> Int -> Int
multiplyThree x y z = x * y * z

The function multiplyThree accepts up to three Int arguments. The
following examples of functions apply the multiplyThree in two different
ways:

ff = multiplyThree 1
gg = multiplyThree 1 2 3 + 7

The function ff depicts the currying technique and the type annotation
of the expression multiplyThree 1 is therefore Int -> Int -> Int (i.e. the
type of the expression is still a function). However, in the function gg the
expression multiplyThree 1 2 3 uses all three arguments, thus leaving us
with the resulting type Int instead of the function type. Therefore the result
of the function application may not be a constant function.

3.5.4 Function Definition Type Inference

There are two main, relatively independent, parts when it comes to the
type inference of a function or an operator definition. The return type of
either is given by its respective right hand side. On the other hand, types of
the arguments the function or an operator accepts are not always
unambiguously inferable. For example, consider the following function

101

definition:

ff x y = 0

While the function ff accepts arguments x and y, its result does not
depend on the two. Thus the function can be called with any type of
arguments.

However, in some cases it is possible to deduce the type of the function
arguments depending on their usage in the corresponding function’s right
hand side as demonstrated by the following example:

getTop :: [String] -> String
getTop [] = "No elements"
getTop (x:xs) = x
…

ff x y = getTop [x, y]

On the example above, the function getTop accepts only a list of the
String items. This means that for the expression getTop [x, y] on the right
hand side of the function ff to be valid, the x and y must be arguments of
the String type too. This approach to the type inference is relatively complex
to implement and we did not include it in the final work. Instead we opted
for a reasonable compromise:

 If the type annotation is provided for a function or an operator definition,
it is considered to be the actual type of that definition. The return type
from the type annotation is then checked against the type of the right
hand side of the corresponding function or the operator definition.

 If the type annotation is not provided, the types of the function
arguments are considered ambiguous and are never checked (the types are
set to Unknown). The return type of the function is then based on the type
of the expression in its right hand side.

Based on this, Frege-IDE infers the type for the example function ff at
the beginning of this section as follows: ff :: Unknown -> Unknown -> Int.
If we additionally specify the type annotation for the function ff, then the
arguments will have the specified types. Figure 3.28 shows an example of
incompatible type annotation for the function definition ff x y = getTop
[x, y] at the beginning of this section.

Figure 3.28: Example of an invalid function arguments usage in Frege-IDE

102

3.5.5 Arguments Type Decomposition

In the previous section we described that we want the types of function
arguments to be inferred from the corresponding type annotation, if it is
provided.

A certain challenge is posed by the fact that a variable, which we intend
to infer the type for, may be included deep within a subtree representing a
certain function argument. Let us consider the following example:

gg :: [[Char]] -> [Char]
gg [['a'], ['b', 'c'], [x]] = [x, x, x]

The type annotation of the function gg describes that the first argument
of the function gg is a list of a list of Char items. Thus the pattern [['a'],
['b', 'c'], [x]] in the function definition below is also a list of a list of
Char items, which makes the variable x to be of the type Char.

To implement the type inference for the pattern variables, Frege-IDE
needs to look at the related type annotation. It looks into the corresponding
argument’s type and tries to decompose it.

We will illustrate the approach on the example above. Frege-IDE knows
that the argument [['a'], ['b', 'c'], [x]] corresponds to the type
[[Char]] from the related type annotation. This means that each item of the
list has to correspond to the type [Char]:

 ['a'] should be [Char]

 ['b', 'c'] should be [Char]

 [x] should be [Char]

However, the items of the list are also more complex language constructs
created from the simpler ones. Frege-IDE therefore checks each list item
individually:

 ['a'] should be [Char], therefore 'a' should be Char

 ['b', 'c'] should be [Char], therefore 'b' and 'c' should be Char

 [x] should be [Char], therefore x should be Char

The type Char cannot be further decomposed and thus the Frege-IDE’s
work is over.

We have implemented the feature by properly setting up the typesystem
aspect in the concepts related to the pattern in the left hand side of the
function definition. Most pattern concepts can be associated with a certain
type. For instance, the concept representing the list pattern is associated with
the list type whereas the PLiteral concept for representing the literals inside
patterns is associated with the corresponding primitive type depending on the
literal used (e.g. Int, Bool). The concept representing a pattern variable
cannot be associated with a specific type. Instead the type of the
corresponding variable will be either Unknown or the type deduced from the
related type annotation.

103

The implementation follows the following scheme:

 The concept representing the whole left hand side of the function
definition looks into the related type annotation. It compares the amount
of declared arguments in the type annotation to the amount of arguments
defined in the current left hand side. If the numbers are equal, then the
current node assigns the type of each argument from the type annotation
to each its child.

 The concrete pattern concept compares the type assigned by its parent to
the type the current concept is normally associated with. For instance,
the list pattern concept checks that the type assigned by its parent is [t]
where t is the type of the corresponding list item. The pattern concept
then decomposes the type (if applicable) and assigns the inner types to
the corresponding children. In the example with the list pattern, the
concept assigns to each its child the type t.

 The type of the variable is the type assigned by the corresponding node’s
parent. If no type was assigned, the variable is of the Unknown type.

104

4. Evaluation

In this work, we have focused on creating a projectional IDE for the
functional language Frege. We wanted to see whether projectional IDEs offer
more convenience or any other advantage over the regular text-based IDEs in
assisting developers with creating programs in functional languages in
general. We have included support for code completion, simple error and type
checking and refactoring. This chapter looks into the convenience of the usage
of such an IDE, how it compares to the classic plain-text IDEs and what are
its advantages and disadvantages over the conventional plain-text IDEs.

4.1 Editing Programs in Frege-IDE

Frege-IDE is built on top of the MPS platform which is used for creating
projectional editors. This puts several restrictions on how a typical program
may be written or edited.

We have already mentioned in this work that projectional editors differ
significantly from the plain-text editors. The user is not editing the code in
the text form, but rather works with the corresponding AST directly, having
a great impact on how the code is further processed. This brings many
advantages, such as allowing for an easier extension of an existing language or
bringing non-conventional visual elements for representing and altering the
program’s code.

However, using a projectional editor for writing code brings certain
limitations, too. As the code is not actually a text, the user is limited in what
he or she can alter or type. In Frege-IDE, only certain editor cells are
modifiable. The rest is static, resulting in a removal of the whole subtree they
are part of when trying to change the text they represent. Additionally, only
certain modifications of the corresponding AST are allowed which have to be
included by the language designer himself or herself.

The editor is only as good as it is designed. The user of the language may
type only certain text in appropriate places in the code defined by the
language designer in advance. Every editing feature has to be implemented,
even a seemingly trivial functionality such as adding new operator with
operands to an existing expression. This puts a considerable amount of work
on the language designer, who has to think of multiple usage scenarios of the
IDE he or she is developing.

Even though the projectional IDE built on top of the MPS platform will
never be as flexible as the editing of the plain text, there are advantages to
this approach. They include, for instance, the possibility to force the users of
such an IDE to adhere to a specific coding style. The language designer can
limit the usage of unwanted features of the language or to prevent the
programmers from writing ‘unaesthetic’ code.

The language designer has several options for how to build the editor for
the IDE he or she is creating. Transformation and substitute menu actions
can be used to handle events related to writing particular text phrases. Cell

105

action maps are used to handle deletion, selection or other manipulation of
concrete editor cells. Last but not least, there is the notion of intentions
which are manually-invoked actions designed to be usable in specific places in
the code to handle various scenarios.

Side transformation menus are actions which are triggered when a certain
text pattern is written next to an editor cell. In this work, we used the
menus, for example, for adding a new operator to the right of an expression.
The usage scenario is depicted in Figure 4.1. First, the user positions the
caret to the right of the expression x. Then, he or she types the infix operator
which is visible in the current namespace, such as +. Upon finishing by
typing, for example, a literal, the action is immediately triggered,
transforming the current AST to include the additional operator with the
new operand. The action then positions the caret on the new operand.

Figure 4.1: Process of adding a new operator with an operand into an
existing expression in Frege-IDE

We used cell action maps throughout the work to handle deletion of
certain editor cells. As described in Section 3.3.6, an example usage scenario
is the range list AST node where we delete the .. symbol which corresponds
to a specific editor cell. The example is depicted in Figure 4.2 in which the
user first positions the caret to the beginning of the upper bound literal 10.
Then he or she presses the backspace key invoking the DELETE event handler
for the corresponding editor cell representing the .. symbol. The handler
transforms the node to the enumeration list node and places the former upper
bound literal as the enumeration list’s new item.

Figure 4.2: Process of deleting the range symbol .. in the range list in Frege-
IDE

Certain actions may seem ambiguous from the user’s perspective. Pressing
enter key in certain scenarios adds a different construct in Frege-IDE than he
or she might expect. Additionally the user may not know how to create a
certain AST or how to execute a specific AST transformation. For the
unintuitive cases like these, we used the MPS intentions. As described in
Section 1.5, they are special user-interface elements that allow the user to
execute predefined actions in certain places in the code. Figure 4.3 shows an
example usage in Frege-IDE. In the example, the user tries to add a new
guard to the definition of the function sign. However, adding the guard

106

requires the transformation of the corresponding AST representing the
function definition to include the new child. From the user’s perspective it is
not clear how to add the new guard. In the plain-text editor, the process
would require typing a vertical line symbol with an indentation on a new
empty line. Simulating such a sequence of operations is not an easy task in
MPS. Instead we defined several intentions to allow the user to execute the
necessary action as he or she sees fit.

Figure 4.3: Process of adding a new guard into the right hand side of the
sign function definition in Frege-IDE

In Figure 4.3 the user of Frege-IDE positions the caret into the right hand

side of the definition of the function sign. He or she then invokes the
intentions menu via key combination alt + enter and selects the appropriate
item. This invokes the corresponding handler which then transforms the
current AST and repositions the caret into the newly created guard.

Overall, while MPS has powerful tools that allow the language designer to
create great editors for IDEs, it is still not feasible to simulate the experience
of the plain-text editors completely. Editing the plain text provides a lot of
flexibility for what the user can do with the written code. On the other hand,
projectional editor is cognizant of the document’s underlying structure which
helps the user greatly in navigating him or her to what can be entered and
still considered valid. This allows the language designer to craft an editor
which is predictive and saves the user a lot of unnecessary keystrokes. The
potential drawback to this is, however, the necessity to learn working with
the designed editor as it may come unintuitive to a lot of unexperienced
users. We believe this is the case with Frege-IDE as well. While Frege-IDE
may seem restrictive at first, given time the user will develop Frege programs
in Frege-IDE faster than in the ordinary plain-text editor. The nature of the
IDE also limits the potential errors in the code the user can make.

107

4.2 Features and Limitations

Frege-IDE contains a lot of features to assist Frege developers with
writing code. We have already discussed the editor, its nature and high-level
design in the previous section. In this section we take a deeper look on the
editor, the features Frege-IDE provides and how they can help Frege
developers with writing programs.

 Most of the Frege language constructs are easily representable by the
MPS concepts. A simple reserved keyword or a symbol is usually enough to
comprehend what the user wanted to enter. Consider the following statement
in Frege:

data Maybe a = Just a | Nothing

The example above is mentioned throughout the work multiple times and

denotes the declaration of a new data type. In this case data keyword is
enough to comprehend the intention of the user to declare the new data type.
However, not all Frege language constructs are representable by a single
string.

In Section 3.3.7 we discussed the approach for allowing the user to define
new functions or provide type annotations. The most challenging part was to
understand from the user input, which one of the two is currently being
typed. However, there were several possibilities on how to approach the
matter. The one we took and discussed was mainly demonstrating the
capabilities of the MPS platform and showing how similar scenarios can be
generally handled. The additional considered approaches include the
following:

 Intentions aspect can be used to allow the user to choose, what kind of
definition he or she plans to create.

 Creating a wrap substitute menu over all defined functions and operators
would allow for creating a type annotation immediately once a name of
an existing function or an operator is typed. Anything else would be
considered to be the function definition.

Ability to invoke intentions menu on an empty line may improve the
overall experience with Frege-IDE, since the user would now have several
options on how to create the new definition. Choosing a specific item from
the intentions menu is also less confusing for the user than typing a text that
eventually gets transformed to either of the two aforementioned options. We
have implemented this feature in Frege-IDE due to the mentioned reasons as
well. However, it is questionable whether leaving only this option of providing
the function definition or type annotation would be sufficient. Different users
might have different opinions on the matter.

The second approach can be also useful as it is quite convenient to have
the code-completion menu populated with the defined functions and
operators. During our evaluation, we have encountered situations where we
tried creating a type annotation of a function and were unsuccessful due to a
small typographical error. The error meant that Frege-IDE was not able to

108

find the definition with the provided name and resulted in an unset function
reference. Figure 4.4 captures such a scenario.

Figure 4.4: An unsuccessful attempt of providing a type annotation for the
function ff in Frege-IDE

However, this approach has also a few downsides. Typing a new name for
a new function definition would not be resolvable until the name was not a
prefix of any other, already defined, function. This is due to Frege-IDE not
being able to tell whether the user is not trying to type in a name of an
existing function instead to provide the type annotation for the corresponding
function. This is not resolvable until the name is completely unambiguous.
For instance, if the current Frege module contained a definition for a function
named foo, the user would not be able to type fo and provide the definition
for the new function fo (however, the workaround with selecting an item for
creating a new function definition from the intentions menu would work). In
the end, we leave the answer to what is the best approach for the given
scenario rather unanswered and only speculate over several options, none of
which is perfect. The projectional editor while being powerful has a different
behavior than a conventional plain-text one and has some limitations.

Additional feature in Frege-IDE that can greatly ease the development
process is the context-aware code completion. The implementation of the
feature in Frege-IDE was allowed by utilizing the notion of MPS concept
references. Similarly to the plain-text IDEs, the completion menu can be
populated only by the exiting items in the code. However, consider the
following example:

five = 1 + four
 where
 four = 1 + 3

In the example above, functions four is defined within the where block of
the function definition five. Since the expression 1 + four references the
function four, it has to be defined after the definition of the function four in
Frege-IDE. In plain-text IDEs this does not play any significant role, since
the code completion menu would simply not contain the item four if the user
specified the expression 1 + four first. This limitation is posed due to how
references work in MPS. The user needs to keep the correct order of
providing definitions in Frege-IDE. Every language construct which references
another construct needs to be specified after that construct it references. On
the other hand, this provides a powerful refactoring tool where the change of
the original AST node is immediately reflected on all of the referencing
nodes. This was discussed in Section 1.3 and illustrated in Figure 1.10.

The last major feature we will mention from Frege-IDE is the type

109

checking. The feature infers the type of expressions, checks the correctness of
provided functions arguments and compares the return types of the function
definitions to their corresponding type annotations. Type checking is
restricted only to the built-in types mentioned in Section 3.5.1 and cannot
compare the usage of the custom data types or type synonyms. However, this
limitation is posed by the scope of this work rather than being somehow
related to MPS.

4.3 Comparison with Plain-Text IDE

fregIDE is a plugin for the Eclipse platform which adds, among other
things, a support for syntax highlighting, code completion and type checking
of Frege programs [10]. It works as an extension of the built-in plain-text
editor of the Eclipse platform.

We have tried the plugin to compare it to our Frege-IDE and see, what
advantages and disadvantages there are to a projectional IDE over a plain-
text based one. We have chosen this specific plugin due to its popularity and
extensive support.

fregIDE is a rather robust system and offers many features we could not
afford to implement in Frege-IDE. First, it provides a support for the whole
Frege language and not just its subset. Its type checking capabilities cover
almost all of the cases and do not pose the limitations on existence of the
function’s type annotation, as we had to make. The code completion feature
is similar to ours, however, fregIDE provides the full support for the
implicitly included Frege-Prelude library. It also has no problem referencing
the items imported from other Frege modules represented as text files. This is
a major disadvantage for our Frege-IDE which can work solely with the Frege
modules implemented in Frege-IDE itself. This is, unfortunately, given by the
fact that MPS cannot work with the text directly and has to keep the code
written by the user in tree-like data structures at all times. At present it is
not even possible to transfer the documents between different MPS language
projects as they are usually represented by completely different ASTs.

An example of fregIDE usage in Eclipse platform is depicted in Figure
4.5. Hovering mouse over a function displays its type annotation.

Figure 4.5: An example of a usage of fregIDE

When trying fregIDE plugin ourselves, we experienced some performance
issues with the plugin and difficulties with the code completion menu during
testing which was not the case with our Frege-IDE. Frege-IDE keeps the user-
written code already processed in the necessary data structures and as such
does not suffer from the lexical and syntactical analysis, which takes a certain
amount of time to process. However, the issues may have very likely been

110

related to the Eclipse platform rather than the plugin itself and the actual
performance of the plugin does not present any real downside when compared
to our Frege-IDE.

The fregIDE plugin is based on the plain-text code editing and as such
offers a great flexibility on how the user can write and edit the Frege code.
On the other hand, in our Frege-IDE, the designed editor takes care of the
visual appearance of the defined AST nodes and does not require its user to
spend much time pressing unnecessary keys or writing unnecessary symbols.
For instance, in Section 4.1 in Figure 4.1 we showed an example of adding
operators with operands to an expression. The relevant nodes are
automatically visually separated by whitespaces. The written code has a
unified structure dependent only on the underlying AST itself rather than
counting on users to write the clean code.

Overall, we consider the editor to be one of the most powerful features of
Frege-IDE. When used correctly, it saves its users a lot of time and troubles
of keeping the code clean. Its predictive abilities also mean the user does not
need to type everything - Frege-IDE puts the necessary keywords and
symbols based on the context where the new AST nodes are created. This
also helps the novice Frege programmers to better navigate in the code and
easily understand what language constructs are allowed in what context.

At the same time, for an experienced Frege developer used to
programming in a certain coding style, the editor in our Frege-IDE might
seem to be limiting. It does not allow for switching between coding styles
without changing the editor itself. The code is represented in AST and
cannot be arbitrarily changed as in the plain-text editor. Furthermore, only
certain editor cells may be copied into the clipboard and pasted elsewhere in
the code, which puts additional restrictions on the user. However, there are
situations in which these restrictions may be helpful, such as the
aforementioned limitation of unwanted features of the language or enforcing a
certain coding guideline in programming teams.

In the end, while fregIDE with its much larger support of Frege features
is a better pick for most of the serious Frege developers, we believe Frege-IDE
still has its place in the development community and in certain cases might
prove to be an even more efficient tool than the regular text-based IDE.

111

Conclusion

In this work, we have analyzed and implemented an IDE infrastructure on
top of the JetBrains MPS platform for a subset of the Frege language. The
final application, called Frege-IDE, can assist developers with writing,
editing, and testing programs in Frege. The IDE includes support for
refactoring, code completion and type checking.

Frege-IDE differs from most IDEs in regards that it is a projectional
editor, rather than being centered on a code written in a plain text. This
brings certain restrictions on how the user may work with the Frege code.

Since all of the source code is represented in the form of AST, the user
can enter only the allowed characters in the appropriate places in the code.
Certain textual patterns invoke transformations of the underlying AST,
others can substitute a specific AST node for another. However, the user is
limited by the designed editor in what he or she can do.

While seemingly not as flexible as plain-text based IDEs, it can enforce
recommended practices when writing code or restrict the programmers from
using undesirable language constructs. The projectional editor only shows
what the underlying AST looks like and thus also keeps the textual details of
the code, such as whitespaces or indentation, fully automatic and off the
developer’s mind, so he or she can focus on the development process itself.
Additionally, the editor is predictive when used correctly, saving the user
unnecessary keystrokes and making the process of writing code faster and
arguably more convenient. However, this requires a certain time investment
from the user to learn how to work with Frege-IDE in an effective way.

Frege-IDE additionally brings its users support for context-aware code
completion and simplified type checking. The features allow the developers to
detect the potential errors early in the implementation process thus allowing
them to be even more efficient. While during our evaluation the features
worked well, it has to be noted that they do not necessarily bring anything
new or different from the similar features in their text-based-IDE
counterparts.

This work also serves as a demonstration of the capabilities of JetBrains
MPS platform and to see, whether it can be used for development of
projectional IDEs for functional languages, such as Haskell or Frege. In our
experience, we found that the MPS platform is really robust and offers many
different ways how to solve typical problems a language designer may come
across in his or her work. However, we also lacked some features we needed
when developing Frege-IDE, especially the ones related to the editor aspect
and had to use a few workarounds. Additionally, the documentation found on
the JetBrains official website is rather short and could use more examples.
That being said, we were still able to create an IDE we wanted and which, in
our opinion, works well for the Frege language.

When speculating whether projectional editors offer more convenience for
editing purely functional languages compared to plain-text editors in general,
we cannot provide a definitive answer. We believe there are advantages to
both approaches. There are many restrictions a projectional editor puts on

112

the user used to work with a certain language in the plain-text editor, who
may then feel the environment to be limiting. We feel like the fewer features a
language has, the better projectional IDE for the language may be designed.
In complex languages, such as Java, or C++, the user has many options how
to structure his or her code. This inherently goes against the philosophy of
projectional editors, where each language construct should have its own
visual appearance and editor, usually not very customizable. All in all, in our
opinion, the convenience of a projectional editor is not related to a language
being functional or imperative, but rather to the cardinality of the set of the
features the language has and, possibly, to the coding style most users of that
language are used to.

Future Work

Project Frege-IDE is open for future extensions. These can include
extending the set of supported features of Frege language, improving the type
checking capabilities and user experience with the environment’s editor.
Additionally, the built-in Frege libraries were not implemented in this project
and could be included in the future work as well.

113

Bibliography

[1] CAMPAGNE, Fabien. 2015. The MPS Language Workbench, Volume I.
Second edition. CreateSpace Independent Publishing Platform. p. 19-21, 35-
44, 52-54, 130-132. ISBN 9781497378650

[2] WECHSUNG, Ingo. 2016. Frege Project on Github. Online; accessed 14
July 2018. URL: <https://github.com/Frege/frege>

[3] MAKARKIN, Aleksey. 2017. Basic Notions of JetBrains MPS. Online;
accessed 14 July 2018.
URL: <https://confluence.jetbrains.com/display/MPSD20173/Basic+notions>

[4] KOŠČEJEV, Sergej. 2017. Transformation Menu Language in JetBrains
MPS. Online; accessed 14 July 2018.
URL: <https://confluence.jetbrains.com/display/MPSD20173/Transformation+
Menu+Language>

[5] Haskell Wiki - Foreign Function Interface. Online; accessed 14 July 2018.
URL: <https://wiki.haskell.org/Foreign_Function_Interface>

[6] WECHSUNG - Ingo, LAUPA - Yorick. 2017. Differences between Frege
and Haskell. Online; accessed 14 July 2018.
URL: <https://github.com/Frege/frege/wiki/Differences-between-Frege-and-
Haskell>

[7] HUDAK - Paul, PETERSON - John, FASEL - Joseph. 2000. A Gentle
Introduction to Haskell - Pattern Matching. Online; accessed 14 July 2018.
URL: <https://www.haskell.org/tutorial/patterns.html>

[8] Frege-Prelude Public Interface. Online; accessed 14 July 2018.
URL: <http://www.frege-lang.org/doc/frege/Prelude.html>

[9] WECHSUNG, Ingo. 2014. The Frege Programming Language. Online;
accessed 14 July 2018. p. 29-31.
URL: <http://www.frege-lang.org/doc/Language.pdf>

[10] WECHSUNG, Ingo. 2018. fregIDE Tutorial. Online; accessed 14 July
2018. URL: <https://github.com/Frege/eclipse-plugin/wiki/fregIDE-Tutorial>

114

Attachments

The attached CD has the following content:

 MPS/

◦ Contains the JetBrains MPS (version 2018.1) installation file for
Microsoft Windows operating systems

◦ In case of using a different operating system, other variants of MPS
can be obtained at <https://www.jetbrains.com/mps/download/>

 Frege-IDE/

◦ The Frege-IDE project as described in this work for JetBrains MPS
2018.1

◦ Contains the defined language and a single solution with examples

 Grammar/

◦ The Frege grammar in EBNF as used in the official Frege compiler
implementation

 Reference/

◦ The Frege language reference in PDF format by Ingo Wechsung

 Text/

◦ Text of this thesis in PDF format

