
MASTER THESIS

Bc. Rastislav Kadleček

Converting HTML product data to
Linked Data

Department of Software Engineering

Supervisor of the master thesis: doc. Mgr. Martin Nečaský, Ph.D.
Study programme: Software Systems

Study branch: Software Engineering

Prague 2018

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

I would like to thank my supervisor, doc. Mgr. Martin Nečaský, Ph.D., and my
advisor, RNDr. Tomáš Knap, Ph.D., for their helpful and valuable advices and
remarks that helped me with writing of this thesis.

I would also like to thank my family and my girlfriend for all their support
during writing of this thesis.

ii

Title: Converting HTML product data to Linked Data

Author: Bc. Rastislav Kadleček

Department: Department of Software Engineering

Supervisor: doc. Mgr. Martin Nečaský, Ph.D., Department of Software Engi-
neering

Abstract: In order to make a step towards the idea of the Semantic Web it is
necessary to research ways how to retrieve semantic information from documents
published on the current Web 2.0. As an answer to growing amount of data pub-
lished in a form of relational tables, the Odalic system, based on the extended
TableMiner+ Semantic Table Interpretation algorithm was introduced to provide
a convenient way to semantize tabular data using knowledge base disambigua-
tion process. The goal of this thesis is to propose an extended algorithm for the
Odalic system, which would allow the system to gather semantic information for
tabular data describing products from e-shops, which have very limited presence
in the knowledge bases. This should be achieved by using a machine learning
technique called classification. This thesis consists of several parts - obtaining
and preprocessing of the product data from e-shops, evaluation of several clas-
sification algorithms in order to select the best-performing one, description of
design and implementation of the extended Odalic algorithm, description of its
integration into the Odalic system, evaluation of the improved algorithm using
the obtained product data and semantization of the product data using the new
Odalic algorithm. In the end, the results are concluded and possible directions
for the future works are suggested.

Keywords: linked data, knowledge bases, data quality

iii

Contents

Introduction 4

1 Web 2.0 vs the Semantic Web 6
1.1 Web 2.0 . 6

1.1.1 Web 2.0 - Technologies . 6
1.1.2 Problems of Web 2.0 . 9

1.2 Web 3.0: The Semantic Web and Linked Data 10
1.2.1 Linked Data . 10
1.2.2 Web 3.0 Technologies . 12

1.3 Web 2.0 Semantization - Annotations 17
1.3.1 Microformats . 17
1.3.2 RDF in Attributes (RDFa) 18
1.3.3 The OpenGraph Protocol 19
1.3.4 JSON-LD . 19

2 Semantic Table Interpretation & Related Work 21
2.1 Semantic Table Interpretation . 21
2.2 Existing Approaches . 22

3 TableMiner+ and Odalic 25
3.1 TableMiner+ Algorithm . 25

3.1.1 Algorithm Flow . 26
3.2 Odalic Project and Odalic Core 28

3.2.1 Odalic Project Components 29

4 Background of This Thesis 31
4.1 Motivation . 31
4.2 Goal . 32

5 Obtaining Product Data 34
5.1 Downloading HTML Product Details 34

5.1.1 Scraped HTML Documents 35
5.2 HTML to CSV Conversion . 35
5.3 Converted CSV files . 36

6 Evaluating Machine Learning Classifier Algorithms 40
6.1 Machine Learning & Classification 40
6.2 Evaluated Classification Algorithms 41
6.3 Classifier Evaluation . 44

6.3.1 The Ml-Experiments Framework 46
6.3.2 Experiments . 48
6.3.3 Experiments Conclusion 52

1

7 The New Odalic Algorithm 54
7.1 Algorithm Description . 54

7.1.1 The ML PreClassification Phase 54
7.1.2 Subject Column Detection 62
7.1.3 Column Classification & Entity Disambiguation 63
7.1.4 Relation Discovery . 64
7.1.5 Lookup of Predicate Between Subject and Object Entities 66
7.1.6 Adjustment of the thesis sub-goals 67

7.2 Odalic Integration . 67
7.3 Evaluation . 68

7.3.1 Original Odalic Algorithm Results 70
7.3.2 New Odalic Algorithm Results 71

7.4 Semantization of Obtained Product Data 73

Conclusion & Future Work 76
7.5 Future Work . 77

Bibliography 78

List of Figures 82

List of Tables 83

List of Abbreviations 85

A Attachment 1: CD Contents 86

B Attachment 2: HTML to CSV Conversion Application 88
B.1 Getting the application . 88
B.2 Compiling application JAR package 88
B.3 Launching the application . 88
B.4 Application Configuration . 88
B.5 Job Configuration . 89
B.6 Adding Support For a New Website Type 89

B.6.1 Parsers Package . 90
B.6.2 WebsiteType Enumeration 90

C Attachment 3: Feature Experiments 91
C.1 Experiment 1 . 91
C.2 Experiment 2 . 91
C.3 Experiment 3 . 92
C.4 Experiment 4 . 92
C.5 Experiment 5 . 93
C.6 Experiment 6 . 93
C.7 Experiment 7 . 93
C.8 Experiment 8 . 94
C.9 Experiment 9 . 94
C.10 Experiment 10 . 95
C.11 Experiment 11 . 95
C.12 Experiment 12 . 96

2

C.13 Experiment 13 . 96
C.14 Experiment 14 . 97
C.15 Experiment 15 . 98

D Attachment 4: Algorithm Configurations 101
D.1 Decision Tree . 101
D.2 Decision Stump . 102
D.3 Decision List . 102
D.4 Decision Table . 102
D.5 Naive Bayes . 104
D.6 Random Forest . 104
D.7 Support Vector Machine . 105
D.8 Multilayer Perceptron . 106
D.9 Best Algorithm Configuration Comparison 106

E Attachment 5: Proposed Algorithm Evaluation 108
E.1 Task 1 . 108
E.2 Task 2 . 109
E.3 Task 3 . 109
E.4 Task 4 . 110
E.5 Task 5 . 110
E.6 Task 6 . 111

3

Introduction
According to the statistics published by Live Internet Stats [2018], there has been
a total of 1.7 billion websites (unique host names) available on the Internet in the
end of the year 2017. This represents a growth of almost 700 million of websites
compared to the year 2016. Last available statistics published by StatisticBrain
[2015] state that, in the end of the year 2014, the Google1 search engine indexed
8 trillions of unique web pages. Even though many of those web pages con-
tain invalid, outdated, uninteresting or duplicate information, the amount of web
pages containing useful or interesting data is nevertheless still huge. It would be
certainly useful for many reasons if this huge amount of published data could be
easily automatically processed by machines and their algorithms. However, most
of these web pages are published in a “human-friendly” fashion, which makes
machine processing of data they contain difficult, or even impossible. To make
data published on web pages more “machine-friendly”, it would be necessary
to provide some context, also called semantic information, about the data in a
“machine-understandable” format. Even though there exist some techniques that
allow publishers of existing websites to add semantic information about published
data easily by adding additional markup2, publishers of websites present on the
current Web are adapting those techniques very slowly. Because of this slow
adaptation, some third-party efforts emerged, which aim to semantize — add
semantic information to — the data published on the Web using methods which
are independent on the website publishers. However, since the amount of data
published on the Web is so huge, it is impossible to add this semantic information
to the data manually. Therefore it is necessary to find a way, how to make the
semantization process more automatic.

Many of web pages also publish data in form of tables - either directly by
publishing (e.g.) CSV3 files with data, or by embedding a table into a web page
itself.

A field of research called Semantic Table Interpretation focuses on develop-
ment of methods, algorithms or whole systems for (semi-) automatic semantiza-
tion of tabular data. An example of such algorithm is the TableMiner+, developed
by Ziqi Zhang. This proof-of-concept algorithm was later extended into a com-
plete table semantization system by students of The Faculty of Mathematics and
Physics at Charles University in Prague in their software project called Odalic4.

The Odalic system, however, is not very effective in semantization of tables
which contain data about products from e-shops. This is caused by the fact that
the TableMiner+ algorithm, used by Odalic, performs classification of data just
by disambiguation of data entities using existing, already semantized, datasets
(Linked Data) present in databases, also called knowledge bases. Since there are
thousands and thousands of different products in existence, with new ones being
introduced every day, datasets stored in the knowledge bases are not comprehen-
sive enough and contain just a fraction of information related to product data.

1http://www.google.com
2Described in chapter 1, section 1.3.
3CSV: Comma-Separated Values.
4More information about the Odalic system can be found in Chapter 3 of this thesis or in

[Knap, 2017].

4

http://www.google.com

The goal of this thesis is to propose an improved version of a Semantic Table
Interpretation algorithm for the Odalic system which would allow the algorithm
to infer semantic information — such as classifications of columns of table to
entities, or discovering relations between table columns — even on the product
data. For this purpose, machine learning algorithms, namely algorithms related
to a machine learning technique called classification should be used. Several clas-
sification algorithms should be evaluated in order to determine which one has
the best results on the gathered product data. As a part of this thesis, the im-
proved algorithm should also be integrated into the Odalic system and evaluated
in comparison with the original Odalic algorithm. Finally, the algorithm should
be used to help with semantization of obtained HTML product data. The goal
of this thesis is in more detail described in the Chapter 4.

The thesis is organized as follows:

Chapter 1 summarizes basic differences between the Web 2.0 and the Semantic
Web, provides a brief summary of technologies used by these Web concepts and
introduces the concept of Linked Data.

Chapter 2 describes the motivation behind semantization of data represented
in tables and challenges of this process. Semantic Table Interpretation research
field is introduced and brief summary of already existing works on this topic is
given.

Chapter 3 introduces the TableMiner+ algorithm and the Odalic system,
built on top of it, in detail.

Chapter 4 takes advantage of information provided in Chapters 1 – 3 in
order to describe problems with semantization of data about products published
by e-shops, using the Odalic Semantic Table Interpretation system and based on
that, describes the goals of this thesis in detail.

Chapter 5 describes process of obtaining HTML documents containing data
about products from several chosen e-shops and some of the necessary pre-
processing of this data in order to allow the data to be used in classifier evaluation
process and also to allow the Odalic system to process the data.

Chapter 6 provides a brief introduction into machine learning, especially into
a set of machine learning algorithms called classifiers. As one of these classifier
algorithms will be used to improve efficiency of the Odalic algorithm on product
data, this chapter also provides experiments (and their evaluation) with several
chosen classification algorithms. These experiments were performed in order to
find out which one performs the best on the gathered input data.

Chapter 7 explains in detail the proposed improved Odalic algorithm de-
signed by the author of this thesis and also describes the process of integration of
the algorithm into the Odalic system. This chapter also contains an evaluation of
how the proposed algorithm improved the semantization of product data in com-
parison with the original Odalic algorithm. In the end, a process of semantization
of the gathered product data using the new Odalic algorithm is described.

5

1. Web 2.0 vs the Semantic Web
The aim of this chapter is to introduce two different approaches towards the Web
implementation – the older Web 2.0 and the newer Web 3.0 (the Semantic Web).
This chapter does not only explain key concepts of both of these approaches,
but also explains key differences between them. It also introduces terms “the
Semantic Web”, “Linked Data” and explains their practical benefits. This chapter
also aims to provide the reader with necessary theoretical information about Web
technologies which are required to fully understand this thesis. The author tries
to provide the information in a comprehensive way, however some additional
knowledge about the Information Technologies field may be required from the
reader. These additional information can be found in books or online resources.

1.1 Web 2.0
Web 2.0 — also nicknamed as people-centric Web — is the version of the Web
mostly used at present [Aghaei et al., 2012]. It was designed with needs of a
human user in mind. Websites focus on the clarity of the user interface (UI) and
want to provide the best possible user expirience1 (UX). Layouts of web pages
and information structure is formatted in a way that allows simple orientation
and information retrieval for human users.

Compared to the — so called — Web 1.0, which allowed users only to consume
the content of static websites, the Web 2.0 offers also the possibility of human
interaction [Aghaei et al., 2012]. Users are often allowed, or even encouraged,
to add new content. For example, users can discuss with each other by adding
new posts in discussion boards, write their own blog posts or product reviews,
or share multi-media content on social networks. However, user interaction does
not necessarily mean adding new content. User is also capable to use various
controls2 to send additional requests to a website controller, based on which a
website can perform additional custom action, such as returning more specific
content or booking a plane ticket. This feature allowed complex websites, such as
e-shops, to be developed.

1.1.1 Web 2.0 - Technologies
As the Web evolved from the “read-only” to the “interactive” mode, it became
apparent that websites can no longer consist of just a group of single static doc-
uments which are linked together. A typical Web 2.0 web page consists of two
parts: so called front-end part which provides an user interface for the user and
the server part which is responsible for returning relevant responses for the users
requests, and is also called back-end.

The back-end side of the web pages are mostly created using programming
1https://www.usability.gov/what-and-why/user-experience.html
2UI controls, such as hyperlinks, forms, buttons, sliders, etc.

6

https://www.usability.gov/what-and-why/user-experience.html

languages such as PHP3, Asp.net4 or Java5, however this master thesis does not
cover them in more detail, as the reader does not necessarily need to understand
these in order to understand this thesis. Additional information about these
topics can be found in relevant books or Internet resources.

On the other hand, selected front-end technologies will be briefly introduced
in following sections.

(X)HTML

(X)HTML or (Extensible) HyperText Markup Language is — as its name suggests
— a family of markup languages used for creating user interface components of
websites. The fact that it is a markup — and not a programming — language
means that it does not specify a behaviour of a website, nor the way how a website
reacts to the user interaction6. Instead, it describes a basic structure, or layout
of the content of a website. Following text will briefly introduce the most recent
7 version of HTML, the HTML 5.2 which was released as W3C8 recommendation
in December 2017 [W3C, 2017].

The structure of web pages in the HTML language is written using HTML ele-
ments, also called tags. Each element gives the web browser an information how to
render the specific part of the web page. The element is written using angle brack-
ets “<” and “>”, with element name stated between them: <ElementName>.
Most of the elements do contain closing tag which has the element name prefixed
with “/” character: </ElementName>. The content between opening and
closing tag is called element body.

(X)HTML elements can contain attributes. Attributes can be optional for
some elements and required for other elements. They are stated inside the element
definition tag, after the element name between the angle brackets, and they can
narrow down the meaning of the element.

The general structure of a HTML 5 document, as described by [W3C, 2017],
can be seen in the Code 1.1.

<!DOCTYPE html>
<html>

<head>
<title>Sample page</title>

</head>
<body>

<h1>Sample page</h1>
<p>This is a simple sample.</p>
<!-- this is a comment -->

3http://php.net
4http://www.asp.net
5http://www.oracle.com/technetwork/java/javaee/overview/index.html
6The additional functionalities of the website, such as modal dialogs or event handling, can

be implemented using additional scripting language, such as JavaScript.
7At the time of writing of this thesis.
8Consortium which looks after the development of the World Wide Web standards. The

standard which is approved as “W3C recommendation” is considered as finalized and ready for
implementation by the general public [W3C, 2005]

7

http://php.net
http://www.asp.net
http://www.oracle.com/technetwork/java/javaee/overview/index.html

</body>
</html>

Code 1.1: General structure of a HTML 5 document. Source: [W3C, 2017].

The complete specification of the HTML 5.2 markup language and the com-
prehensive list of all elements, together with their description, can be found in
W3C [2017].

In order to make parsing of HTML markup easier, a separate markup language
— based on older HTML 4 — has been released as W3C recommendation in
January 2000. This language is called XHTML 1.0 and modifies HTML in a way
so that its XML9 compliantW3C [2002]. The development of XHTML language
was, however, discontinued in 2009 in favor of HTML 5 W3C [2009].

CSS And CSS Selectors

Previous sub-section introduced the family of (X)HTML languages which are
used for markup of the structure of web pages. This (X)HTML structure is
however very rough, formatted by styles default for each web browser and does
not contain any graphics more complex than images. Typically, each element of
a page is rendered on separate line. This can be sufficient for very simple pages,
especially ones that contain only well structured text, however, more complex
pages require more complex means to provide custom graphic styles.

This requirement led to the creation of CSS. CSS, Cascading Style Sheets,
is defined by its specification W3C [2011] as “style sheet language that allows
authors and users to attach style (e.g. fonts and spacing) to structured docu-
ments”. The possibilities of CSS are much more complex - it allows the creator
of the document (web page) to redefine the styles of each element. That means,
for example, changing the layout and background colors of table rows, styling
the hypertext links10 to look like buttons, or even changing the position of the
elements within the document.

The most recent version of CSS is the CSS 2 11. There already exists a newer
version, the CSS 3, but it does not have an official W3C recommendation status
yet W3C [2014a].

CSS selectors are identifiers which are used to determine which style should
be used for which (X)HTML element.

Styles of each element can be defined by more than one, possibly even self-
contradicting, rules. In order to determine which styles should be applied, a
priority is assigned to each rule, based on the level of specificness of the selector.
That means, the selector “table tr td” will have higher priority than selector
“tr td” (hence the name cascading styles). Styles with highest priority are used
by the web browser to render components of a web page.

Selected examples of 12 CSS selectors are described in the Table 1.1.
9Extensible Markup Language: https://www.w3.org/XML/

10Together with reaction to the change of link state (link, visited, hover, active)
11At the time of writing of this thesis
12Complete list of selectors can be found at https://www.w3.org/TR/CSS2/selector.html

8

https://www.w3.org/XML/
https://www.w3.org/TR/CSS2/selector.html

An example of simple CSS selectors, together with style definitions, can be
found in Code 1.2. CSS selectors are located in front of property blocks which
are encapsulated in brackets.

body {
font-family: Arial;
font-size: 16px;

}
body div {

background-color:red;
}

Code 1.2: Sample CSS rules.

1.1.2 Problems of Web 2.0
Introduction of the current Web in the section 1.1 may suggest that web pages
at present time are very user friendly and easy to use. This is in fact true for
many of them. However, is it easy to use enough? Following definition of Task 1
describes example of the common tasks performed by a visitor of a travel agency
website.

Definition 1 (Task 1). The visitor of a specific travel agency website would like
to book a summer holiday in the Dubrovnik region, Croatia. The holiday should
take place between August 8, 2018 and August 21, 2018.

The majority of todays Internet users would, without any doubts, manage to
accomplish this task without bigger problems, using for example following steps:

1. Set the vacation search filter on the website of travel agency to search only
Croatia, Dubrovnik area and given date range.

2. Read through the list of all available hotels and select the most suitable
one, together with desired type of diet and way of transport.

3. Submit the reservation form.

Selector Pattern Description

* Matches any element.
E Matches any E element (i.e., an element of type E).
E F Matches any F element that is a descendant of an E

element.
E > F Matches any F element that is a child of an element E.
E[foo=warning] Matches any E element whose ”foo” attribute value is

exactly equal to ”warning”.
E:hover Matches E when the user hovers the mouse over this

element.

Table 1.1: Selected CSS selectors. Source: https://www.w3.org/TR/CSS2/
selector.html

9

https://www.w3.org/TR/CSS2/selector.html
https://www.w3.org/TR/CSS2/selector.html

Definition of Task 2 describes similar task, but a little bit more complex.

Definition 2 (Task 2). The Internet user would like to book a summer holiday,
but in contrast with the user in the Task 1, he does not have the exact idea of the
location where he would like to go, neither does he have the idea of specific date
range. He however does have some criteria: The vacation should take place during
the August 2018, be between 11 and 14 days long and he wants to book at least
3-star hotel, not more than 500 meters far from the sea in some South-European
country. The vacation should also cost at most 800 EUR per person.

Finding a vacation of dreams of the user from Task 2 would be a very time
consuming task - it would require him to manually go through catalogs of many
travel agencies and hotel offerings, with very limited help of the search filters on
their web pages.

It would be logical to try to make this process automated. After all, if all
data about all vacations and hotels were stored in single database, finding the
optimal vacation would be as simple as running single SELECT SQL query13!

The problem is that in reality data is stored by various travel agencies on
various servers using various formats and they can be accessed from outside world
only using web presentations of these travel agencies. These web presentations of
course do vary - each presentation has its own layout, shows the data in different
formats and styles and even shows different subset of available information.

This variety of formats and data decentralization does make the automation
of tasks similar to the task described in Task 2 very problematic, if not totally
impossible.

1.2 Web 3.0: The Semantic Web and Linked
Data

The Semantic Web — also known as the Web of Linked Data or Web 3.0 [Cam-
bridgeSemantics] — is the response of the W3C consortium to address issues of
similar type as the issue defined in Task 2 in Section 1.1.2. According to the W3C
[2015b] standard, the main goal of Semantic Web is “to do more useful work and
to develop systems that can support trusted interactions over the network”.

As the name Web of Linked Data suggests, the main building stone of Semantic
Web is data, specifically Linked Data.

1.2.1 Linked Data
As already stated in previous sub-section, the basis of the Semantic Web are
data. These data are structured representation of objects (more commonly called
resources) within some domain and their properties. A resource can be almost
anything - a real world object (such as car), an abstract object (such as electronic
document), an abstract concept (such as number) and others. As more complex
example, a resource can be a description of a chemical element and its properties,
such as its atomic number, half-life, boiling point, and so on.

13SELECT query in the PostgreSQL database: http://www.postgresql.org/docs/9.1/
static/sql-select.html

10

http://www.postgresql.org/docs/9.1/static/sql-select.html
http://www.postgresql.org/docs/9.1/static/sql-select.html

Relations between data, e.g. that the resource Rudyard Kipling is an author
of the resource The Jungle Book, can be described as well.

Data that share some common properties or relations can be linked together
to form a collection. This collection is called a Dataset14. Datasets that belong to
different data sources can be further connected together to create larger and larger
datasets. In order to allow data from different sources to connect, a common
publication method needed to be developed. This publication method is called
Linked Data and is defined by Bizer et al. [2009] as a “set of best practices for
publishing and connecting structured data on the Web”. These best practices,
often called Linked Data principles, guarantee that data published in compliance
with these practices can be linked together with another data based on their
properties or relations between them.

Linked Data Principles

Author of the idea of the Semantic Web, Tim Berners-Lee, defined four basic
principles that have to be respected if the data should be considered as Linked
Data [Berners-Lee, 2006]. Those principles are:

1. “Use URIs as names for things.” Every resource in a dataset should have
a unique name. This name should be unique not only within the given
dataset, but it should be unique globally, so it is easy to identify resources
in the case of connection with other datasets. To avoid possible issues
caused by different naming conventions in different datasets, this principle
suggests the common naming convention - usage of URI (later replaced by
IRI)15 identifiers. To achieve uniqueness of its identifiers, it is recommended
for the publication authority to use a domain name it holds in URIs of
its resources. This should guarantee that nobody else will use the same
identifier.

2. “Use HTTP16 URIs so that people can look up those names.” Previous
principle suggests that an URI (IRI) identifier should be used for resource
identification. In general, URI (IRI) does support different schemas (e.g.
ftp, file, mailto, ...). This principle specifies that URI (IRI) resource
identifiers must use the http (or https17) schema which allows to retrieve
more information about the resource using HTTP18 request to its URI (IRI).
If an HTTP request is sent by human user, he should be redirected to a
document describing the resource in “human-readable” way. If an HTTP
request is sent by a machine, it should be redirected to “machine-readable”
representation of the information about that resource.

3. “When someone looks up an URI, provide useful information using the stan-
dards (RDF, SPARQL).” This principle narrows down the previous princi-
ple in a way that user (human or machine), which issues HTTP request to
the URI (IRI) of a resource in order to gather more information about it,

14One of the most known and largest datasets is DBpedia, http://wiki.dbpedia.org/
15See section 1.2.2.
16Hypertext Transfer Protocol
17Hypertext Transfer Protocol Secure
18Hypertext Transfer Protocol, https://www.w3.org/Protocols/

11

http://wiki.dbpedia.org/
https://www.w3.org/Protocols/

should get the most relevant information possible which should be repre-
sented using one of the well known standard formats (such as RDF), so the
requestor can easily understand and process them.

4. “Include links to other URIs, so that they can discover more things.” The
last principle requires the publisher to provide external links pointing to
URIs (IRIs) of as much different resources as possible in the dataset. This
ensures that the data from different datasets are properly connected, be-
come Linked Data and form a Semantic Web.

1.2.2 Web 3.0 Technologies
This subsection will introduce the most important technologies used in the field
of Linked Data and Semantic Web.

URI and IRI

Berners-Lee et al. [2005] defines Uniform Resource Identifier as an identifier which
provides simple and extensible way of identifying resources. Every resource that
should be accessible for connections (e.g. web server endpoint) or every resource
that can be described needs to be identified by its own URI.

The scope of URIs is global - in order to exactly distinguish between all of
possible resources, the identifier of an objects needs to be globally unique. A
situation when two different objects share the same URI is called a collision.
Collisions are undesirable and may cause problems. On the other hand, a situa-
tion when one object is identified by more than one URIs is correct. Such URIs
are called URI aliases.

Fundamentally, URI is a string of characters with fixed structure. There are
many different types of URIs. Although each of the types (also called schemas),
can have different structure, they all share the first part of URI - the schema
identifier which determines what type of URI it is and what structure follows.
As stated in the section 1.2.1 covering Linked Data principles, its required to use
HTTP URI for the data published using Linked Data model. This section will
therefore focus on this URI type.

HTTP URI Syntax As described by Fielding and Reschke [2014], the HTTP
URI has strictly defined syntax which consists of multiple components:

http : // < authority >< path > [? < query >][# < fragment >]

• authority - this URI component contains domain name
(e.g. “www.example.com”) or IP address (e.g. “192.168.1.1”) of the
target resource. The number of TCP port which should receive the re-
quest may be included as well. If a port number is present, it is sep-
arated from the domain name/IP address by colon (“:”) character (e.g.
“www.example.com:81”). If a port number is not explicitly stated, port
80 is used by default for HTTP URIs. This URI component can also contain
login credentials for the HTTP Basic Authentication. They are stated in
the beginning of the component in form username:password and they are

12

separated by the “@” character from the rest of the component contents
(e.g. “johndoe:mysecretpassword@www.example.com”).

• path - absolute path to the desired resource within the target host.

• query - optional component, this component is prefixed by the question
mark (“?”) character and allows to specify additional parameters in the
form param1=value1. Multiple parameters are separated with the amper-
sand (“&”) character (param1=value1¶m2=value2). These parameters
are passed to the requested resource (e.g. website controller).

• fragment - optional component, prefixed by the hash (“#”) character. This
part of URI is stripped from the URI and is not sent to the remote resource.
It is useful for identification of relevant part of the document - whole doc-
ument is returned in the HTTP response, but the clients browser displays
only the relevant part according to the given fragment identifier.

For better understanding the Code 1.3 shows several examples of valid HTTP
URIs.
Domain name only:
http://www.example.com

Domain name and path:
http://www.example.com/users/johndoe

Domain name including TCP port, path and query components:
http://www.example.com:81/users/johndoe/files?showHiddenFiles=false

Domain name with login credentials, path, query and fragment
components:
http://john:password@www.example.com/photos?limit=5&offset=5#photo-1

Code 1.3: Valid HTTP URI examples.

Internationalized Resource Identifier (IRI) There is one large drawback
of URIs - they can contain only characters from the ASCII charset [Duerst and
Suignard, 2005]. Because of this, it has only limited support for representation of
names and characters of different national alphabets and character sets. Cyrillic
characters, for example, need to be “transliterated” into latin before they can
be used in URI. In recent years, however, new technologies that allow the usage
of different national character sets on the Web were introduced. One of them is
the Internationalized Resource Identifier (IRI) which extends URI and adds the
support of national character sets.

Resource Description Framework (RDF)

Resource Description Framework is a framework developed in order to allow peo-
ple to create the machine-understandable description (model) of the real world
[W3C, 2014c]. Data is modeled by listing (RDF) statements (also called (RDF)
triples). Each triple describes a single property of the resource being modeled, or
relation between two resources. A triple consists of following three components:

13

• Subject - resource which is being described. The resource can be identified
by its URI (IRI), or the resource can be anonymous19.

• Predicate - a property of the subject or relation between the subject and object
which is described by the triple. Predicate has to be represented by URI
(IRI). Blank predicates are not allowed.

• Object - an object can be one of following:

– If a triple describes a property of subject resource, the object deter-
mines the value of this property. The type of such object is a literal
(e.g. a number or a string of characters). The data type of the property
value can be optionally specified. If the value is a string of characters,
the language of the text can also be specified.

– If the triple describes a relation between 2 resources, the object deter-
mines the second resource which shares this relationship with subject.
This resource can be either represented by its IRI, or it can possibly
be a blank node.

A set of triples is internally represented as directed graph, in which every
triple represents one edge that is connecting two vertices. This edge is named by
the IRI of predicate, starts in the vertex representing the subject and ends in the
vertex that represents the object of the statement.

As can be seen from the description of the components, each RDF triple can
be interpreted as a “sentence”.

The following Definition 3 provides an example of a “human friendly” descrip-
tion of a cell phone. The RDF graph representing this example can be found in
Figure 1.1. RDF triples describing the example will be shown in next section,
after selected RDF notations are introduced.

Definition 3 (Example Cell Phone Description). Samsung Galaxy S6 edge+ is a
smartphone made by the South Korean company Samsung. It has 8-core processor
Samsung Exynos 7420 Octa Core, 4 GB of RAM and 5.7-inch display.

RDF Triple Notations

There are several different standarized ways of notation of RDF triples. The most
common ones are RDF/XML20, N-Triples21, Turtle22 will be introduced in this
section.

The Code 1.4 shows the representation of infomation contained in the Defini-
ton 3 serialized using the N-Triples notation, where the RDF subject, predicate,
object triples are clearly visible:

19Anonymous resource is a resource that has no URI (IRI) assigned. Its commonly called as
Blank node.

20https://www.w3.org/TR/rdf-syntax-grammar/
21https://www.w3.org/TR/n-triples/
22https://www.w3.org/TR/turtle/

14

https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/turtle/

Figure 1.1: RDF graph representation of the information from Example 3.

<http://example.org/countries/SouthKorea>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://example.org/types/Country> .

<http://example.org/countries/SouthKorea>
<http://example.org/predicates/hasName>

"South Korea"@en .

<http://example.org/companies/Samsung>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://example.org/types/Company> .

<http://example.org/companies/Samsung>
<http://example.org/predicates/hasName>

"Samsung"@en .

<http://example.org/companies/Samsung>
<http://example.org/predicates/hasCountryOfOrigin>

<http://example.org/countries/SouthKorea> .

<http://example.org/products/SamsungGalaxyS6EdgePlus>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://example.org/types/SmartPhone> .

<http://example.org/products/SamsungGalaxyS6EdgePlus>
<http://example.org/predicates/hasName>

"Samsung Galaxy S6 edge+"@en .

<http://example.org/products/SamsungGalaxyS6EdgePlus>
<http://example.org/predicates/hasProcessor>

<http://example.org/products/SamsungExynos7420> .

<http://example.org/products/SamsungGalaxyS6EdgePlus>
<http://example.org/predicates/hasRAMMemoryInGB>

15

"4"ˆˆ<http://www.w3.org/2001/XMLSchema#int> .

<http://example.org/products/SamsungGalaxyS6EdgePlus>
<http://example.org/predicates/hasDisplaySizeInInches>

"5.7"ˆˆ<http://www.w3.org/2001/XMLSchema#decimal> .

<http://example.org/products/SamsungGalaxyS6EdgePlus>
<http://example.org/predicates/hasManufacturer>

<http://example.org/companies/Samsung> .

<http://example.org/products/SamsungExynos7420>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://example.org/types/Processor> .

<http://example.org/products/SamsungExynos7420>
<http://example.org/predicates/hasName>

"Samsung Exynos 7420 Octa Core"@en .

<http://example.org/products/SamsungExynos7420>
<http://example.org/predicates/hasNumberOfCores>

"8"ˆˆ<http://www.w3.org/2001/XMLSchema#int> .

<http://example.org/products/SamsungExynos7420>
<http://example.org/predicates/hasManufacturer>

<http://example.org/companies/Samsung> .

Code 1.4: Information contained in Definition 3 serialized using N-Triples
notation.

Ontologies

In order for data to be correctly connected between multiple datasets and to allow
data to be processed by anyone, its necessary to find a way how to capture the
correct semantics of the descriptions in a universal way.

An answer for this requirement is an ontology. An ontology, in the context of
the Semantic Web, expresses a formal and generally recognized specification of
concepts and relations, used for description and presentation of specific domain
[W3C, 2015a]. That means, an ontology for a domain defines a dictionary of
properties which can be used to describe the objects (resources) of given domain,
their properties and relations with other objects.

Ontology consists of classes, which describe resources, and of predicates which
describe the properties of resources and/or relations between resources.

The RDF framework can be used to map the information about resources
to exactly defined ontological properties - and to assign well defined semantic
informations to the data.

It is possible to use various ontologies when describing a single resource. That
means, a new ontologies do not have to duplicate the properties of already existing
ontologies which makes the whole system more transparent.

There are two main languages used for ontology description: RDF Schema

16

(RDFS) 23 and Web Ontology Language(OWL)24.
Some of the most commonly used ontologies are vCard25, Friend of a Friend26,

GoodRelations27 or DBpedia Ontology28.

1.3 Web 2.0 Semantization - Annotations
The Web 2.0 semantization is a process of converting “human-readable” informa-
tion represented in the Web 2.0 websites to the “machine-readable” representation
(RDF) that can be then joined into the Linked Data datasets and became a part
of the Semantic Web.

Several new techniques appeared to help the publishers of web pages to make
their websites more semantical by adding additional markup, called annotations
to already existing web pages. They are adopted by many of the modern web
sites. This section will briefly describe the most common annotation techniques.

1.3.1 Microformats
Microformats represent one of the first approaches to attach machine readable in-
fomation inside of conventional Web sites. Current version29 is the Microformats
2. As the website of the project presents Microformats Wiki [2015], Microformats
are “the simplest way to markup structured information in HTML”. Microformats
are basically a set of predefined classes and their properties which can be used
to describe various information - information about people, contact information,
information about articles, events, products and so on. The names of classes and
properties are prefixed according to their meaning, e.g. class names are prefixed
with “h-*” (e.g. “h-card”), the names of textual properties with “p-*” (e.g.
“p-name”), URL properties by “u-*” (e.g. “u-photo”) and similar. The names
that represent Microformats are included into the class attribute of (X)HTML
elements. An example HTML snippet which uses microformats, can be found in
Code 1.5.

<div class="h-event">

IndieWebCamp 2012
 from <time class="dt-start">2012-06-30</time>
to <time class="dt-end">2012-07-01</time> at

Geoloqi

,
920 SW 3rd Ave. Suite 400,
Portland,

23https://www.w3.org/TR/rdf-schema/
24https://www.w3.org/2001/sw/wiki/OWL
25https://www.w3.org/TR/vcard-rdf/
26http://xmlns.com/foaf/spec/
27http://www.heppnetz.de/ontologies/goodrelations/v1.html
28http://wiki.dbpedia.org/services-resources/ontology
29At the time of writing of this thesis.

17

https://www.w3.org/TR/rdf-schema/
https://www.w3.org/2001/sw/wiki/OWL
https://www.w3.org/TR/vcard-rdf/
http://xmlns.com/foaf/spec/
http://www.heppnetz.de/ontologies/goodrelations/v1.html
http://wiki.dbpedia.org/services-resources/ontology

<abbr class="p-region" title="Oregon">OR</abbr>

</div>

Code 1.5: An example of IndieWebCamp 2012 event description using
Microformats. Source: Microformats Wiki [2015].

1.3.2 RDF in Attributes (RDFa)
RDFa is a technique which allows creators of the web sites to include the struc-
tured, RDF formatted [Herman et al., 2015], machine readable data in their pages
together with the human readable content. As the name suggests, this machine
readable information is located inside of the various attributes of (X)HTML ele-
ments. RDFa uses some of the already existing attributes (such as href, src), but
also introduces its own new attributes (such as resource, property, vocab). In
the property attribute one can provide the IRI of the predicate whose value is
described in the content of the element body. If there exists href or src attribute
in the element, the value of one of this attributes in preferred. The vocab at-
tribute can be used to set the IRI prefix of the default ontology. The attribute
property, which refers to the property of default ontology, does not need to in-
clude the IRI of the ontology afterwards. Single Web page can describe multiple
resources. In this case, the IRI of currently described resource can be stated in
the resource attribute. All properties described in the succeeding elements of
element with the resource attribute will then be assigned to this resource. IRI
of the RDF type of the resource can be specified using the typeof predicate.
RDFa 1.0 version could be used only in the XHTML-based documents, versions
RDFa 1.1 and later supports the HTML5-based documents as well. The Code
1.6 shows an example HTML snippet which uses RDFa annotations.

<body vocab="http://purl.org/dc/terms/">
...
<div resource="/alice/posts/trouble_with_bob">

<h2 property="title">The trouble with Bob</h2>
<p>Date: 2011-09-10</p>
<h3 property="creator">Alice</h3>
...

</div>
...
<div resource="/alice/posts/jos_barbecue">

<h2 property="title">Jo’s Barbecue</h2>
<p>Date: 2011-09-14</p>
<h3 property="creator">Eve</h3>
...

</div>
...

</body>

Code 1.6: An example of RDFa usage. Source: Herman et al. [2015].

18

1.3.3 The OpenGraph Protocol
The OpenGraph protocol was created by engineers working for the Facebook30

social network to achieve easier sharing of information contained within the web-
pages shared accross the social network. Currently, it offers wide-spread way to
publish structured information, typically about articles on web pages or informa-
tion about multimedia content. All information published using the OpenGraph
protocol are connected into one large “social” graph [The Open Graph protocol,
2015]. OpenGraph protocol uses the methods of RDFa, semantic information are
recorded inside of <meta> (X)HTML elements in the document header. An
example of usage of OpenGraph annotations inside HTML document can be seen
in Code 1.7.

<html prefix="og: http://ogp.me/ns#">
<head>

<title>The Rock (1996)</title>
<meta property="og:title" content="The Rock" />
<meta property="og:type" content="video.movie" />
<meta property="og:url"

content="http://www.imdb.com/title/tt0117500/" />
<meta property="og:image"

content="http://ia.media-imdb.com/images/rock.jpg" />
...

</head>
...
</html>

Code 1.7: An example of OpenGraph description about the “The Rock” movie.
Source: The Open Graph protocol [2015].

1.3.4 JSON-LD
According to its specification in W3C [2014b], JSON-LD is a W3C recommen-
dation, which provides a way to serialize Linked Data using lightweight JSON
format31. This allows the creators of web pages to embed a “machine-readable”
copy of the data in the HTML document next to the “human-readable” data.
Since the JSON-LD notation is actually a JSON, it can be processed using all ex-
isting JSON manipulation libraries. The semantic information is stored in special
JSON attributes, called syntax tokens (e.g. “@id”). An example of JSON-LD
data description can be seen in Code 1.8. The most recent version of the JSON-
LD specification is 32 JSON-LD 1.0.

{
"@context": "https://json-ld.org/contexts/person.jsonld",
"@id": "http://dbpedia.org/resource/John_Lennon",
"name": "John Lennon",
"born": "1940-10-09",

30Facebook: https://www.facebook.com
31https://www.json.org/
32At the time of writing of this thesis.

19

https://www.facebook.com
https://www.json.org/

"spouse": "http://dbpedia.org/resource/Cynthia_Lennon"
}

Code 1.8: An example of JSON-LD description about John Lennon. Source:
https://json-ld.org/.

20

https://json-ld.org/

2. Semantic Table Interpretation
& Related Work
The Chapter 1 described the differences between the Web 2.0 and the Semantic
Web and provided an overview of technologies and challenges related to those
Web concepts. This chapter will introduce the background of Semantic Table
Interpretation and will also provide an overview of selected related works and
approaches aiming towards tabular data semantization.

2.1 Semantic Table Interpretation
According to [Zhang, 2014], one of challenges towards creation of the Semantic
Web is semantization of data published in form of structured tables which tend to
contain relational data. [Zhang, 2014] also states, that the number of published
tables is rapidly growing, it is getting more and more important to find ways how
to recover semantics of these tabular data in order to connect the data to the
Linked Data cloud which would allow the data to be more easily processable by
machines.

[Zhang, 2014] also introduces Semantic Table Interpretation as a field of re-
search which is focused on the problem of retrieval of semantic information from
the tabular data — the Table Semantization. Author describes following three
main tasks which the Semantic Table Interpretation addresses:

• Disambiguation of cells of the table

• Classification of table columns

• Identification of relations between table columns

Before the actual explanation of particular tasks, it is necessary to state, that
each column of given table can be of one of two types – either NE-Column (Named
Entity Column) or Literal Column. These two column types are introduced in
Definitions 4 and 5. All definitions are based on Zhang [2016].

Definition 4 (NE-Column (Named Entity Column)). A table column which ref-
erences a semantic entity.

Definition 5 (Literal Column). A table column which does not reference an
entity, but contains the literal value (number, text string, etc.) instead.

The Semantic Table Interpretation tasks are defined in Definitions 7, 6 and 8.

Definition 6 (Entity Disambiguation). A process of association of a single NE-
cell of a table with a single canonical entity (resource).

Definition 7 (Column Classification). A process of annotating the columns with
determined best-fit concept (class) — for NE-columns — or — for literal columns
— a single property of a concept.

21

Definition 8 (Relation Identification). A process of identification of semantic
relations (predicates) between the table columns.

The result of the Semantic Table Interpretation process is tabular data en-
riched with semantic annotations which can be used to efficiently search the data,
but can also be converted to RDF triples and then connected to the Linked Data
cloud.

2.2 Existing Approaches
This section aims to introduce some of already existing relevant approaches to-
wards solving of the Semantic Table Interpretation problem described in the be-
ginning of this chapter. It shows that a huge effort has been given by various
research groups in order to improve automatic table semantization over the last
years.

Finin et al. [2010] in their approach use the help of Wikitology1 in their
Wikipedia2-based web tables semantization methods. Wikitology is an index
of concepts (Wikipedia articles represent concepts) which is extended with the
fields from different knowledge bases (such as DBpedia, Freebase3, Yago4). It
contains for example fields: Title, Redirects, First Sentence in Article, Wikipedia
categories, Types (DBpedia, FreeBase, Yago types), and others. Wikitology ac-
cepts two types of queries - text queries5 or structured constraints6. The method
described by authors at first detects the concepts of the columns by performing
queries with the column header and its values to the Wikitology index by mul-
tiple properties, such as title, types, first sentence, and so on. Each of returned
concept candidates is scored, and the one with highest score is elected as the
column concept.

Limaye et al. [2010] experiment with completely different method. This ap-
proach represents tables using a probabilistic graphical model. For querying for
the entities and relations, authors use Yago knowledge base. This algorithm
performs the cell disambiguation, column classification and relation enumeration
tasks simultaneously which according the authors claim has “accuracy benefits
compared to the local decisions”. Table components (called variables) are repre-
sented as variable nodes of the graph. The relation between variables and their
candidate concepts are represented as factor nodes which can represent coupling
of multiple variables. The inference is then determined as finding values of vari-
ables which will lead to a maximum probability to create joints.

Venetis et al. [2011] experimented with annotation of column types and bi-
nary relations between the pairs of columns in the tables on a large testing set
consisting of about 12 million tables. Instead of using existing knowledgebases,
the authors constructed 2 databases: the first one, called isA, contained tuples
of (Class, Instance); second one, relations table, contained triples (a, Predicate,

1http://ebiquity.umbc.edu/project/html/id/83/Wikitology
2Wikipedia, the free encyclopedia: https://en.wikipedia.org/wiki/Main_Page
3https://developers.google.com/freebase/
4http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/

research/yago-naga/yago
5Text queries are for example words in a document.
6An example of structured constraint is e.g. rdfs:type == yago:Person

22

http://ebiquity.umbc.edu/project/html/id/83/Wikitology
https://en.wikipedia.org/wiki/Main_Page
https://developers.google.com/freebase/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago

b). These databases were filled from the data scaped from the Web using lexico-
graphical patterns. A maximum likelihood model is used to determine the best
match of column concepts and relations based on the co-occurence statistics that
were gathered while filling-up the databases during the pattern extraction. To
enumerate the relations between the concepts, the algorithm queries DBpedia to
retrieve list of possible relations between two entities for each row (two entities
in different columns of the same row of the table). Any found relation is consid-
ered as candidate relation between the two columns. The relation with the most
occurences is considered as the relation between concepts.

Wang et al. [2012] used similar approach, but instead of building their own
database of facts, they use the Probase7 database. The authors performed the
experiments on a huge testing set of approximately 65 million web tables which
according to their research potentially contained valuable information. According
to the authors, the majority of the tables contain one entity (subject) column, and
other columns which describe the attributes of the entities. Their algorithm uses
this knowledge and at first tries to identify the subject column and its Probase
concept, and then uses Probase to identify the schema of the table.

Muñoz et al. [2013] focus on triplification of Web tables embedded in the
bodies of Wikipedia. articles. They are interested in the table cells which contain
internal links8. These URIs of these links are at first converted to the DBpedia
resource URIs9. The relation enumeration is done similarly to Venetis et al. [2011]
- by querying DBpedia for list of relations between entities. In Muñoz et al.
[2014], authors further improved this process by using several machine learning
approaches10 to filter out the incorrect tripples and thus improve the algorithm
precision.

Zwicklbauer et al. [2013] in their experiment used a simple algorithm which
does not take into account any relation between columns, and does not even use
the values of table column headers. For each column, the algorithm retrieves a
list of candidate entities for specified number11 table cell in given column. Each
of this entity candidates yields a set of types12. The type with most occurences
is then used as the type of the whole column. Even though the dataset authors
used for experiments was rather small, they proved that it is not necessary to
disambiguate all of the cells in the column to achieve similar precision.

Zhang [2014] introduces the TableMiner algorithm which consists of 2 phases:
forward-learning phase and backward-learning phase. In the forward-learning
phase, the Incremental inference with stopping (I-inf) algorithm13 is used which
iteratively searches for disambiguation candidates for the table cell values. Ac-
cording to the score of found concept candidates, the concept with highest score is
used as column classification. The backward-learning phase furtherly improves the
classifications and disambiguations found by the forwards learning phase. The

7https://www.microsoft.com/en-us/research/project/probase/
8Links leading to other Wikipedia pages.
9This is done by replacing the http://en.wikipedia.org/wiki/ prefix with

http://dbpedia.org/resource/ prefix.
10Such as: Naive Bayes, Bagging Decision Trees, Random Forest, and others.
11Authors were observing the precision based of number of actually used cells in a column.
12Authors determined the types by looking at the rdf:type and dcterms:subject RDF properties

of candidate entities.
13The algorithm is described in Chapter 3.

23

https://www.microsoft.com/en-us/research/project/probase/

author continued his work on further improving of the TableMiner algorithm
which resulted into creation of the TableMiner+ algorithm described in Zhang
[2016]. As this thesis is directly related to the algorithm, it is necessary to com-
pletely understand how the algorithm works. For this reason, the TableMiner+

algorithm will be described in detail in the following Chapter 3.

24

3. TableMiner+ and Odalic
The Chapter 2 introduced the motivations behind table semantization challenges
and defined Semantic Table Interpretation as approach to solve this challenge.
It also described existing works focused on semantization of tabular data. The
chapter finished with introduction of Ziqi Zhang and his TableMiner+ algorithm.
This algorithm — and its extension called Odalic — will be introduced in more
details in this chapter, since the rest of this thesis is directly related to these
algorithms.

3.1 TableMiner+ Algorithm
TableMiner+1 algorithm was originaly developed by Ziqi Zhang while working at
the Department of Computer Science at University of Sheffield.

In Zhang [2016], the author himself describes the algorithm as “a Semantic
Table Interpretation method that annotates Web tables in a both effective and
efficient way”.

The autor mentions some of the key advantages of the algorithm, compared
to other Semantic Table Interpretation algorithms:

• Taking advantage of out-table contexts: Whereas the other semantic ta-
ble interpretation algorithms are capable of deriving the semantic informa-
tion only from the (so called) in-table context - table components, such as
table heading row, as author says, the TableMiner+ algorithm does use also
the (so called) out-table context, such as the other textual information in
the text of the HTML file outside of the scope of the table. For example,
having a table containing a column called “genre”. Genre is pretty gen-
eral term and can have a different meanings - e.g. movie genre, or music
genre, etc. However, the algorithm is able to find multiple occurences of
the word “book” in the document, outside the scope of a table. From this
information, the algorithm can infer that the column contains a collection
of literary genres.

• Efficiency: Instead of processing of all of the items in the table, the al-
gorithm processes only a limited amount of them. This allows it to cut
down the number of requests to the knowledge bases. This approach does
not only improve the overal performance, but can also reduce the financial
costs of knowledgebase requests.

• Completeness: The algorithm tries to identify as much information as pos-
sible. This is achieved using the “start small, build complete” principle.
The algorithm starts with a preliminary annotation-based model created
from partial table data which is likely to error-proof. This model is then
iteratively optimized by enforcing the relations between its components.

1Source codes of the TableMiner+ algorithm can be found on GitHub: https://github.
com/ziqizhang/sti.

25

https://github.com/ziqizhang/sti
https://github.com/ziqizhang/sti

As described in the first advantage in the list above, the input data for the
algorithm do not have to be just plain tables (e.g. CSV), but can also be HTML
files containing data in the table representation, together with other contextual
information.

As an example, an IMDb2. dataset is provided which consists of a collection of
HTML files containing details about movies, one movie per file. Each of this files
contain (among other things) the table of actors and their roles in given movie.

3.1.1 Algorithm Flow
This section provides brief description of the individual steps in the TableMiner+

algorithm flow, based on the algorithm description in Zhang [2016], to help with
better understanding of the process. The algorithm depends heavily on the usage
of the Incremental inference (I-Inf) algorithm. This is an iterative algorithm
which in each iteration processes the entries of given dataset to find new, more ac-
curate, key-value description of the entries. The algorithm ends, if a convergence
is found.

The detailed diagram of the algorithm flow can be seen in the Figure 3.1. The
individual algorithm steps are described below.

Figure 3.1: TableMiner+ Algorithm Flow. Source: Zhang [2016]

The comprehensive description of both, the TableMiner+ and the I-Inf algo-
rithms can be found in Zhang [2016].

Subject Column Detection

In this phase, the algorithm tries to detect a subject column. This phase consists
of several steps:

2International Movie Database: http://www.imdb.com/.

26

http://www.imdb.com/

1. Detect the data type for each columns - the algorithm assigns a data type
to each of the table columns. The data type of a column is determined as
most common data type from all of the column values.

2. Ignore not important columns - the columns that clearly are not subject
columns (if a column header is a preposition word) are removed from the
list of subject column candidates.

3. Feature computation - several features, such as empty cell fraction or cells
with unique content ratio (a comprehensive list of these features together
with their description can be found in Table 2 of Zhang [2016]) are computed
for every candidate column.

4. Detection - based on the features computed in previous step, a final subject
column score is calculated for each candidate column. Candidate column
with a highest score is marked as subject column.

NE-Column Interpretation - Learning phase

In this phase, the algorithm processes independently each NE-column in the table,
except the subject column chosen in previous step, in order to create a preliminary
classification of columns and preliminary disambiguation of cells. Thus, following
sequence of steps is taken for each column in the table:

• Sample Ranking - Each cell in the column receives a preference score, and
rows containing these cells are reordered in descending order, based on this
score. A hypothesis called one-sense-per-discourse is used. This hypothesis
determines that if a column contains multiple cells with the same polyse-
mous value, all of these cells are considered to represent the same entity.
This allows the algorithm to “combine” information from all of these rows
to create an enhanced feature representation of the entity. The number of
all features in this enhanced representation determines the preference score
of given entity.

• Preliminary Column Classification - In this step, the TableMiner+ algo-
rithm uses the I-Inf algorithm to find candidate entities for the cells in
ordered table from previous step. For each of the cells, a set of concepts is
retrieved from the knowledge base(s). If any of the concepts of the current
cell is new, it is added to the list of concepts for the column. If the concept
has already been defined for the column by any of the previous nodes, the
score of the concept is updated. This process is repeated by the I-Inf algo-
rithm until the convergence is reached. The concept with best score is then
used to annotate given column.

• Preliminary Cell Disambiguation - For each column, the algorithm disam-
biguates cells by assigning the knowledge base entities that represent the
instance of winning column concept. If there are more concepts assigned
to the instance, the column concepts are further updated, and after this
phase, the concept of the column can even change.

27

NE-Column Interpretation - Update phase

In this phase, the algorithm takes the preliminary column classification and cell
disambiguations of the NE-columns created in the learning phase, and performs
further column and cell annotation updating based on the found relations not
only between the column clasifications and cell disambiguations, but also based
on the inter-column relations. This process is repeated until the annotations
reach their final state - and they dont update anymore.

Relation Enumeration and Literal-Columns Annotation

This phase consists of two steps:

• Relation Enumeration - In this step, at first the relations between the sub-
ject column and every other columns are enumerated separately. A set of
candidate relations between two columns are retrieved from the knowledge
base for every row in the table and they are assigned a confidence score,
and a winning candidate for each row is selected. A set of candidates for
the entire relation is constructed as an union of all row-relation candidates.
For each of the candidates, a relation context score is computed and the
winning candidate is selected as the relation between the subject column
an the given second column.

• Literal-columns annotation - As the literal columns are supposed to contain
the attribute values, and are not NE-columns, they cannot be processed by
the phases described in previous subsections. In the TableMiner+ algorithm,
the column header of the literal column is used as the annotation label of
the values in the column cells.

3.2 Odalic Project and Odalic Core
Whereas the original TableMiner+ algorithm implementation was indeed working
properly, it is more of a proof of concept than a production system which would
allow its users to comfortably process their data and display the outputs in user-
friendly form.

Odalic project3, a software project developed by the students of The Faculty
of Mathematics and Physics at Charles University in Prague, tries to address this
disadvantage and aims to be a production-grade table semantization system. The
project also introduces further enhancements to the main TableMiner+ algorithm.
Precisely, Knap [2016] defines the goals of the project as following:
Remark (Odalic Core (STI)). The Odalic project consists of several components.
The main component which is built atop of the TableMiner+ algorithm is refered
to as Odalic Core (STI4).

• Improve the classification, disambiguation and relation discovery parts of
TableMiner+ algorithm.

3Source codes of the Odalic project can be found on GitHub: https://github.com/odalic.
4Semantic Table Interpretation

28

https://github.com/odalic

• Implement user interface for interaction with Odalic Core

• Provide API to allow applications to use Odalic Core algorithm easily

• Provide executor for the automated tabular data to RDF conversions

• Provide support for additional knowledge bases

Knap [2017] furtherly describes that the Odalic system consists of a server
application which provides an API server and User Interface (Odalic UI). This
user interface allows the users to provide their data (in form of CSV files), pro-
cesses the data and displays the output in user-friendly user interface, together
with export in several formats, such as RDF (Turtle notation) or CSV on the
Web5.

Apart from the server application, the Odalic project also introduces several
improvements to the original TableMiner+ algorithm [Knap, 2017]:

• Replaced deprecated Freebase6 knowledge base with DBpedia7.

• Added support for general SPARQL-based knowledge bases.

• Support for querying multiple knowledge-bases for a single job.

• Eliminating obviously wrong results using data-type constranining.

Apart from that, the Odalic system allows the user to provide a manual feed-
back in order to help the algorithm with column classification and/or cell dis-
ambiguation. This provides an (quite) simple way of semantization of massive
amounts of data.

3.2.1 Odalic Project Components
The Odalic project consists of three main components:

• Odalic-STI - Semantic Table Interpretation server component which pro-
vides an API for task management. Also provides runtime for task process-
ing which extends the original TableMiner+ implementation.

• Odalic-UI - Provides Web-based user interface for the server component
which allows users to create, configure and submit tasks and review their
results. The UI can be also extended with a customized LodLive8 component
which allows it to browse the known knowledge bases.

• Odalic-UV-Plugin - Odalic plugin for RDF ETL9 tool UnifiedViews10.
5https://www.w3.org/TR/tabular-data-primer/
6https://developers.google.com/freebase/
7http://wiki.dbpedia.org/
8http://lodlive.it
9Extract, Transform, Load

10https://github.com/UnifiedViews

29

https://www.w3.org/TR/tabular-data-primer/
https://developers.google.com/freebase/
http://wiki.dbpedia.org/
http://lodlive.it
https://github.com/UnifiedViews

Odalic-STI is a java application, compiled to a war archive which needs to
be launched by an external application server, such as Apache Tomcat11.

Odalic-UI is a JavaScript (AngularJs framework12) web application which
needs a HTTP server to serve its files to the end-user. It can run either on the
same host together with the Odalic-STI component (and being served by the same
application server), or can be running on completely different host. The preview
of results of column classification and entity disambiguation tasks in Odalic UI
can be seen in Figure 3.2.

More details about the project, including installation and usage manual can
be found in ODALIC [2017].

Figure 3.2: Odalic UI - Feedback screen.

11http://tomcat.apache.org/
12https://angularjs.org/

30

http://tomcat.apache.org/
https://angularjs.org/

4. Background of This Thesis
Chapters 1 - 3 described differences between concepts of the “human-centric” Web
2.0 and the “machine-centric” Semantic Web, motivation behind the task of se-
mantization of tabular data, and introduced some of already existing approaches,
with a deeper focus to the TableMiner+ algorithm and the Odalic system. This
chapter will continue by explaining of the motivation behind this thesis, outlining
the goal of this thesis, and will introduce the approach taken by the author of
this thesis in order to reach this goal.

4.1 Motivation
Nowadays, a very popular and convenient form of buying stuff is shopping on the
Internet using e-shops and various Internet marketplaces. Each larger e-shop and
especially a marketplace, usually sells thousands of various products. For each of
these products, e-shops and marketplaces do have a separate web page, a product
detail page. This page contains a description of a given product, photos of the
product, price, and more or less detailed information about the specification of
given product. An example of such product page can be seen on the Figure 4.1.

A section of the product detail page which contain product specifications (an
example can be found in the bottom right part of Figure 4.1) usually contains a
table of listed product properties and values of those properties.

These product specifications are certainly very useful for the customer, while
comparing multiple products in order to decide which one he should buy. How-
ever, if a website of an e-shop does not support any semantic annotations1, it is
not possible to easily semantize the contained data and connect them into the
Linked Data cloud to allow them to be processed by machines.

With the knowledge from Chapters 1 - 3 a straightforward approach towards
semantization of such product data would be to scrape (download) product detail
pages from a website of e-shop, extract important information, such as title, price
and specification of the products into a table(s) (e.g. CSV file(s)) and semantize
these files using the Odalic system.

There is however a problem with this approach. The semantization algorithm
of the Odalic system, while performing its semantic table interpretation tasks,
such as classification of table columns and disambiguation of table cell, depends
heavily on the data already present in selected knowledge bases. Since there are
thousands and thousand of different products, many of which also have relations
to other products and entities (e.g. key property of a cell phone is the type of its
CPU2 which can be also sold as a product), and new products are being intro-
duced every day, there just is not enough information about all of the products in
the knowledge bases, and thus Odalic would not be able to infer much semantic
information in order to correctly find semantic information for the data.

1Introduced in Chapter 1, section 1.3.
2Central Processing Unit

31

4.2 Goal
The main goal of this thesis is to propose an improved (extended) version of
a Semantic Table Interpretation algorithm for the Odalic system which would
allow the system to semi-automatically infer semantic information on product
data obtained from e-shops. The general guidelines of improvements which this
algorithm should take into consideration are:

• Detection of predicates (attributes) of a product.

• Detection of classes of products based on the detected predicates.

• Disambiguation of values of attributes against generic Linked Open Data
knowledge bases.

• Detection of predicates for the rest of attributes. If the algorithm detects
that that certain product is a laptop, then try to match rest of the predicates
according to properties which are usually assigned to laptops.

• Output the converted data as Linked Data.

For the detection of classes and predicates of individual columns, which rep-
resent properties and features of a product, the algorithm should use machine
learning technique which will allow the algorithm to detect these classes and
predicates based on the similarity3 with example values in the training dataset.

An additional goal of this thesis is to obtain data about products from HTML
pages of several e-shops which then will be used to train the algorithm and will be
semantized by the algorithm in order to perform an evaluation of the algorithm.

The thesis focuses on the following types of products: cell phones, tablets,
laptops, desktop computers.

3Value feature-wise similarity. The topic of machine learning and value features is discussed
in the Chapter 6.

32

Figure 4.1: Example of product detail page of DebenhamsPlus.com e-shop
(cropped).

33

5. Obtaining Product Data
As mentioned in the Chapter 4, the goal of this thesis is to propose an improved
version of Odalic semantization algorithm which will be more effective in seman-
tization of product data from e-shops. In order to achieve this, it is necessary to
at first gather such data. Since this improved algorithm will take the advantage
of machine learning classification technique, it is necessary to have some data
for the purposes of evaluation of various classification algorithms. This evalua-
tion is required in order to determine the algorithm with best performance. This
chapter describes the process of downloading, or scraping, of HTML documents
representing product data from several e-shops. Since — as described in chapter
3 — the Odalic system supports only input data in form of CSV files, downloaded
HTML documents need to be converted to the CSV format before they can be
actually passed as input to the semantization algorithm. The process of HTML
to CSV conversion is also described in this chapter.

5.1 Downloading HTML Product Details
The HTML files of product details were scraped from e-shop websites using a
tool called ItSucks1. This is an open-source — created in Java2 programming
language, and therefore running on a wide variety of platforms — simple-to-use
application for downloading the web pages as HTML documents. It has many
useful features, such as proxy support or variety of filters which tells the applica-
tion what criteria the URL of the page must meet in order to be downloaded.

In order to scrape data (HTML documents) from a website, it is necessary
to create a configuration file tailored specifically to the website whose data are
going to be scraped. This can be done easily using the GUI3 of the application.

After several attempts to scrape the product data from multiple e-shops. Var-
ious issues with the scraping were discovered in this phase, mostly because chosen
e-shops took use of JavaScript code to asynchronously fetch and insert the data
into HTML template. In some cases, portions of the data were even loaded only
after user action, such as clicking on “more details” button. These e-shops could
not be scraped because of the JavaScript usage.

Product detail pages of following e-shops were successfully scraped for pur-
poses of this thesis:

• Debenhams Plus UK (https://www.DebenhamsPlus.com/)

• GearBest (https://www.GearBest.com/)

• MobileShop EU (https://www.MobilEshop.eu/)

Configuration files used to scrape product data from these e-shops — their
product detail pages — can be found in the folder “/files/itSucksEshopTemplates”
on the attached CD.

1http://itsucks.sourceforge.net, source codes of the application can be found at:
https://sourceforge.net/projects/itsucks/files/itsucks/

2https://www.java.com/en/
3Graphical User Interface

34

https://www.DebenhamsPlus.com/
https://www.GearBest.com/
https://www.MobilEshop.eu/
http://itsucks.sourceforge.net
https://sourceforge.net/projects/itsucks/files/itsucks/
https://www.java.com/en/

5.1.1 Scraped HTML Documents
The scraping tool introduced in Section 5.1 crawles websites and downloads the
content of pages that meet the configured constraints in form of HTML docu-
ments. These HTML documents contain only the raw HTML structure of the
page. No additional linked resources, such as images, styles or script files are
downloaded. These are actually not needed, as all information important for
conversion to the machine-readable format are contained in the HTML structure
itself, and the role of these resources is just to make the web page look more
“human” friendly.

As an example, an original product detail page of DebenhamsPlus.com e-shop
can be seen on the Figure 4.1 in Chapter 4.

The same product detail page without additional resources can be seen in
Figure 5.1.

As seen in the given examples, its clear that all of the important information
(such as product name, features, etc.) are contained in scraped HTML docu-
ments.

After the scraping tool finished, following number of HTML documents were
scraped by the scraping tool for each e-shop of interest:

• Debenhams Plus UK - 1111 HTML documents.

• GearBest - 598 HTML documents.

• MobileShop EU - 264 HTML documents.

HTML files downloaded from all e-shops can be found in the folder
“/files/inputData/raw” on the attached CD.

5.2 HTML to CSV Conversion
The Odalic system does4 only accept input files in the form of CSV files. There-
fore, in order to be able to process the scraped data using the Odalic system, it
is necessary to convert these data from HTML to CSV format first.

For the purpose of the conversion, the author of this thesis designed and
implemented a custom application which takes the HTML files as its input and
produces CSV files containing important information retrieved fetched from the
input files, as its output.

The conversion process takes the advantage of the fact that all of the HTML
documents represent the “same” type of page - a detail of a product in the e-shops
catalog. These pages do have more or less similar structure even among different
e-shops: They all contain the name of the product as one of the page headings,
the price of the product, and some sort or enumeration of important properties
and features of the product. These properties / features are typically represented
in HTML as e.g. a table, or an unsorted list elements. Figure 5.2 shows the
sample of scraped HTML feature list of Apple MacBook Pro laptop (represented
by a HTML table), as published by DebenhamsPlus.com. Other e-shops feature
lists (tables) are usually similar.

4At the time of writing of this thesis.

35

The conversion application is called HtmlToCsvTool. It is implemented in Java
programming language and is designed as modular. The conversion logic of each
site is encapsulated in one simple parser class. The advantage of this approach
is, that even though there needs to be separate parser provided for each type of
website whose HTML data need to be converted, it is relatively easy to extend
the application to support new types of websites (e.g. for different e-shops) by
providing a new implementation of the “parser” Java class5 for the new page type
which then can be used by the application.

The application also takes advantage of the current situation on the hardware
field, especially the fact that multi-core processors are very common these days.
The conversion process of this application is able to utilize these multiple proces-
sor cores in a way that the input HTML documents are split to multiple sets of
independent documents. Each of the sets is then assigned to one of the multiple
threads and can be processed in parallel to other document sets. The number of
maximum parallel threads is configurable. This results in better performance of
the application.

The HTML to CSV file conversion focuses on the important parts of the page
(such as product title and specifications of product properties/features) which are
extracted by the parser implementation for given website using the CSS selectors
of corresponding HTML elements (such as elements containing the product title,
or elements which represent a table of product specifications). All other unnec-
essary content (e.g. advertisements, page header, footer, recommended similar
products, etc.) is discarded.

Many of the e-shops use the multiple tables for the description of product prop-
erties/features on a single page (for a single product), e.g. separate table for CPU
properties, Display properties, and so on. The HtmlToCsvTool respect this, and
it keeps a list of properties for each of found categories. All features/properties of
all categories that are found, are then exported into a CSV file, with the headings
in the form of “category.feature”. The category with no heading assigned (usually
the one containing general information, is called root.

Each CSV document contains all product information retrieved from the
HTML documents of one e-shop.

A quick start guide on how to get the sources of the application, compile,
configure and run the application can be found in Attachment A.

Job configuration files for the e-shops mentioned earlier in this chapter can
be found in the
“/html-to-csv-tool/conf/jobs/” folder on the attached CD.

5.3 Converted CSV files
The result of HTML to CSV conversion using the HtmlToCsvTool tool described
in Section 5.2 is a set of output documents in CSV format. For simplicity reason,
the pipe (“—”) symbol was used as a separator for these CSV files. These docu-
ments represent the important properties and features of the products contained
in the scraped HTML data, one file per e-shop. After the conversion, these CSV
files also contain a first column with URIs of the product HTML pages. Since

5For more information about adding new parser see section B.6 in the Attachment B.

36

these URIs were not be needed in the rest of this thesis, this column was removed
from all CSV files. The e-shop based files were also manually split into several
files, according to the product category (“phones”, “laptops”, etc). After this
preprocessing, the files are now in a form which is valid to be given to the Odalic
Core system. Figure 5.3 shows an example (cropped, as it is too large to fit on
the page) of a converted and preprocessed CSV file.

37

Figure 5.1: Example of scraped product detail page of DebenhamsPlus.com e-
shop (cropped).

38

Figure 5.2: Example of product feature list of DebenhamsPlus.com e-shop
(cropped).

Figure 5.3: Example of converted and preprocessed CSV file (cropped).

39

6. Evaluating Machine Learning
Classifier Algorithms
This chapter has several main aims. At first, it introduces the reader to the field
of supervised machine learning algorithms - especially the group of classification
algorithms. Then, it gives an overview of algorithm chosen for evaluation by the
Author of this thesis. After chosen algorithms are introduced, actual process of
experiments and evaluation of these classifier algorithms is described, together
with the ml-experiments application implemented by the author of this thesis.
The chapter is concluded with the determination of the classification algorithm
and its configuration which proved to have the best results during evaluation.

6.1 Machine Learning & Classification
Machine learning is a technique of programming which allows computers to solve
certain problem, however, instead of providing the computer with an explicit
algorithm with exact step by step guide which the program follows, the machine
learning program should infer what to do based on either training data or past
experience [Alpaydin, 2010].

Machine learning techniques are distributed into several categories, such as -
supervised learning, unsupervised learning and reinforcement learning [Kotsiantis,
2007]. For the purposes of this thesis, it is necessary to at least briefly introduce
the supervised learning category.

According to Kotsiantis [2007], machine learning is called supervised when
the algorithm at first receives a sample (usually called training set of data) of
data with already known results. This way, the algorithm can analyze the train-
ing samples and learn to predict the results for unknown values based on their
features.

A typical group of supervised learning algorithms is a group of algorithms
which are able to determine the class (or a type) of — to classify — an entity
represented using its features. These algorithms are called classifiers.

Mentioned features are defined by Kotsiantis [2007] as values which can be
continuous, categorical or binary. When any object instance from a dataset is
going to be used by a machine learning algorithm, it needs to be at first converted
into a representation of a set of features. Each instance needs to be represented
using the same set of features as others. The Definition 9 explains the intuitive
difference between binary and multi-class classifiers.

As an example of classifier and set of features Kotsiantis [2007] introduces
an algorithm for classification of images containing hand-written digits to actual
numbers 0 – 9 (ten classes) which are understandable for computers. An (object)
instance is a single grey-scale image file, its features are the numeric values of the
individual pixels (e.g. value 0-255 of the shade of grey of the pixel) of the image.

Definition 9 (Binary Classifier and Multi-Class Classifier). Binary classifier is
a classifier which determines whether the input instance belongs to one of two
classes, usually TRUE or FALSE.

40

Multi-Class classifier is a classifier which allows to classify the instance into
more than two classes.

6.2 Evaluated Classification Algorithms
For the classification algorithm evaluation phase, the Weka 3 1 framework was
used. This framework contains a bunch of already pre-implemented machine
learning algorithms, and techniques for their evaluation. For the purpose of this
thesis, following classifier algorithms have been evaluated:

• Decision Tree (J48)2 - Wekas J48 algorithm is an implementation of decision
tree building C4.5 algorithm3, developed by Ross Quinlan. The algorithm
was listed as one of Top 10 data mining algorithms by Wu et al. [2008].
From the given training set of data, the algorithm infers a decision tree
according to the values of the instance features. The unknown instance is
then classified by traversing the decision tree and selecting the next node
according to the rules for the features. The list of a tree contains the
predicted class for the instance. An example of decision tree can be found
in Figure 6.1.

Figure 6.1: Example of a decision tree. Source: Amde and Bradley [2014]
.

• Decision Stump4 - This is a classifier implementation which generates the
rules in form of decision stump-s. Iba and Langley [1992] defines Decision
Stump as One-Level Decision Tree — a decision tree having just a root

1http://www.cs.waikato.ac.nz/ml/weka/index.html
2http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html
3C4.5 is an improved version of Quinlan’s ID3 (Iterative Dichotomiser 3) algorithm.
4http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/DecisionStump.

html

41

http://www.cs.waikato.ac.nz/ml/weka/index.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/DecisionStump.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/DecisionStump.html

node representing a rule on single instance feature, and leaves representing
classes according to the rule evaluations. That means, a decision stump
decides on the class just by evaluating a single feature of the instances.

• PART Decision List (PART)5 - This algorithm, described in Frank and
Witten [1998], uses the separate-and-conquer paradigm for recursive build-
ing of decision list of rules for the training dataset instances. Decision list,
as defined by Rivest [1987], can be viewed as a sequence of evaluation of
rules in form described in Code 7.1. Once the instance fulfills a rule, it is
classified with a defined class. The algorithm builds a partial decision tree
(using C4.5 algorithm) in each iteration, and makes a new rule from the
“strongest” leaf.

if (RULE1) then
return CLASS1

else if (RULE2) then
return CLASS2

...
else

return CLASSX

Code 7.1: Pseudo-code of PART Decision List rules. Source: Rivest [1987].

• Decision Table6 - This is an implementation of classifier which builds a set of
rules represented as rule-mappings to a majority class. This representation
is called Decision Table Majority (DTM) and — as Kohavi [1995] states —
contains two components: a table schema, which represents set of features,
and table body, which contains labeled instances from training set of data,
represented by the features described in the table schema. For a given
unknown instance, the classifier algorithm searches the table for the exact
match of features. If there is a match (or matches), the majority class of
the matched instances is used as the class of the instance. Otherwise, if no
instance matches, the majority class of the table is used.

• Random Forest7 - Random forests are described by Breiman [2001] as a
classifier which relies on growing a large number of decision trees — a
forest. Each of the trees has a single vote, and they vote together for the
most popular class for a given unknown instance. The trees are grown with
an assistance of generated random vectors. The random vectors for all of
the trees should be independent identically distributed.

• Naive Bayes8 - John and Langley [1995] states that Naive Bayesian Clas-
sifier is a probabilistic classifier which is a simplified version of Bayesian

5http://weka.sourceforge.net/doc.dev/weka/classifiers/rules/PART.html
6http://weka.sourceforge.net/doc.dev/weka/classifiers/rules/DecisionTable.

html
7http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/RandomForest.

html
8http://weka.sourceforge.net/doc.dev/weka/classifiers/bayes/NaiveBayes.html

42

http://weka.sourceforge.net/doc.dev/weka/classifiers/rules/PART.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/rules/DecisionTable.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/rules/DecisionTable.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/RandomForest.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/RandomForest.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/bayes/NaiveBayes.html

Network. It assumes that attributes are independent — thus the name
naive — which uses the Bayes’s theorem9 to determine the probability of
the instance belonging to a given class based on the vector of observed val-
ues and then predict the most probable class. Naive Bayes algorithm was
also listed as one of Top 10 data mining algorithms by Wu et al. [2008].

• Support Vector Machine (SMO)10 - An implementation of Sequential Mini-
mal Optimization algorithm which can be used for training a Support Vector
Machine Classifier. A Support Vector Machine Classifier is, according to
Osuna et al. [1997], a classifier which tries to find the most optimal hy-
perplane which would split the points — called supported vectors (which
represent data features) — to discrete classes, with maximum margin be-
tween the separated classes. More information about the SMO algorithm
itself can be found in Platt [1998]. SVM was also listed as one of Top 10
data mining algorithms by Wu et al. [2008]

• FeedForward Neural Network (Multilayer Perceptron)11 This algorithm rep-
resents an implementation of Neural Network, namely FeedForward Neural
Network. A Neural Network is a network of interconnected neurons, also
called Perceptrons (Kotsiantis [2007]). A perceptron is a representation of
a step or sigmoid function which takes n inputs and produces one output.
Each input of a perceptron has a weight assigned. This weight determines
which inputs are more “important” for given perceptrons. The network
forms a graph, where perceptrons are represented as nodes, and edges be-
tween nodes represent the connection between the output of first perceptron
and input of the second perceptron. An example of a neural network struc-
ture can be seen in Figure 6.2. The network can consist of single or multiple
layers of perceptrons. For a classifier network, the input layer contains one
perceptron for each instance feature, and output layer contains one per-
ceptron for each possible class. A layer which is not input or output is
called hidden layer. Zell [1997] defines that neural network is considered as
FeedForward, when there is no cycle within connections between neurons.

6.3 Classifier Evaluation
In order to proceed with actual evaluation of the classification algorithms, it
is necessary to at first define some concepts and evaluation metrics, knowledge
about whose is required to understand the evaluation methodology. The actual
methodology follows after these definitions.

An important concepts in classification algorithm evaluation are True Posi-
tive, False Positive, True Negative and False Negative. These concepts are used
by the evaluation metrics. Definition of those concepts can be found in Definition
10. Definitions are based on the definitions in Witten and Eibe [2005].

9Bayes’s Theorem: https://www.britannica.com/topic/Bayess-theorem
10Sequential Minimal Optimization: http://weka.sourceforge.net/doc.dev/weka/

classifiers/functions/SMO.html
11http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/

MultilayerPerceptron.html

43

https://www.britannica.com/topic/Bayess-theorem
http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/SMO.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/SMO.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/MultilayerPerceptron.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/MultilayerPerceptron.html

Figure 6.2: Example schema of a neural network. Source: http://cs231n.
github.io/neural-networks-1/

.

Definition 10 (True/False Positive/Negative). For binary classifier define:

• True Positive (TP) - When instance actually belongs to class TRUE, and
was correctly classified as TRUE.

• True Negative (TN) - When instance actually belongs to class FALSE, and
was correctly classified as FALSE.

• False Positive (FP) - When instance actually belongs to class FALSE, but
was incorrectly classified as TRUE.

• False Negative (FN) - When instance actually belongs to class TRUE, but
was incorrectly classified as FALSE.

For multi-class classifier define:

• True Positive for class A (TPA) - When instance actually belongs to class
A, and was correctly classified as A.

• True Negative for class A (TNA) - When instance actually does not belong
to class A, and was correctly classified as not belonging to A.

• False Positive for class A (FPA) - When instance actually belongs to different
class than A, but was incorrectly classified as A.

• False Negative for class A (FNA) - When instance actually belongs to class
A, but was incorrectly classified as belonging to different class.

These True/False Positive/Negative concepts are used to express important
metrics used for the classifier algorithm evaluation - such as (weighted) precision,
(weighted) recall. These metrics are defined in Definitions 11 and 12. Definitions
are based on the definitions in Witten and Eibe [2005].

44

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/

Definition 11 (Precision and Weighted Precision). For the binary classifier,
define precision as:

Precision = TP

TP + FP

Thus, precision determines the ratio of correctly classified instances, among
all classified instances.

For multi-class classifiers, it is possible to either calculate precision for each
class separately (Pi for i-th class), or to calculate the Weighted (average) Pre-
cision (Pw) across all of the classes. Assume there is a total of n classes, Ci is
the number of instances of i-th class and T is the total number of instances in
dataset, then:

Pw =

n∑
i=1

(Pi · Ci)

T

Definition 12 (Recall And Weighted Recall). For the binary classifier, define
recall as:

Recall = TP

TP + FN

Thus, recall determines the ratio of actually correctly classified instances,
from all instances that should have been classified with given class.

For multi-class classifiers, it is possible to either calculate recall for each class
separately (Ri for i-th class), or to calculate the Weighted (average) Recall (Rw)
across all of the classes. Assume there is a total of n classes, Ci is the number of
instances of i-th class and T is the total number of instances in dataset, then:

Rw =

n∑
i=1

(Ri · Ci)

T

Using precision and recall it is possible to introduce more complicated met-
ric, called (weighted) F-measure which — as can be seen in Definition 13 — is
dependant on them.

Definition 13 (F-measure and Weighted F-measure). For binary classifiers de-
fine F-measure as a harmonic mean of precision and recall:

F = 2 · precision · recall

precision + recall

For multi-class classifiers, it is possible to either calculate the F-measure for
each class separately (Fi for i-th class), or to calculate the Weighted (average)
F-measure (Fw) accross all of the classes. Assume there is a total of n classes,
Ci is the number of instances of i-th class and T is the total number of instances
in dataset, then:

Fw =

n∑
i=1

(Fi · Ci)

T

45

Witten and Eibe [2005] also introduces a metric, called Error Rate which, as
they claim, is a natural way to express the performance of a classifier. Definition
of error rate can be found in Definition 14.

Definition 14 (Error Rate). Each result of classification is either success (True
Positive, True Negative) or error (False Positive, False Negative). The Error
Rate is represented as

er = #errors

#instances

6.3.1 The Ml-Experiments Framework
For the purpose of experiments with the classification algorithms, the author of
this thesis implemented a framework called ml-experiments. It is a set of proof-
of-concept Java applications which utilize implementation of classifier algorithms
from the Weka framework12 for the purposes of experiments and evaluations. The
application runs from command line, and has no graphical user interface. The
framework contains a set of applications, which are actually Java classes, that
were added gradually to the framework, as they were needed while doing the
actual algorithm evaluation by the author of this thesis:

• sk.kadlecek.mle.SingleDataset - An application which takes the dataset pro-
vided in its input and performs a 10-fold cross-validation13 of the specified
classifier (with its default settings).

• sk.kadlecek.mle.SeparateDatasets - An application which as an input takes
both tranining and testing datasets, and performs the evaluation of the
specified classifier (with its default settings). The N-fold cross-validation
Since the training and testing datasets are same

• sk.kadlecek.mle.Evaluation - An application which as an input takes both
tranining and testing datasets, and performs the evaluation (using same
method as the Separate Datasets application) of the specified classifier with
various configurations of the algorithm. The aim of this application is to
find the best algorithm configuration for given input data. The parameter
combinations are hard-coded into the application.

• sk.kadlecek.mle.CrossValidationEvaluation - An application which is very
similar to the Evaluation application, however instead of taking both train-
ing and testing datasets on its input, only one dataset is expected as input.
This dataset is then used to perform N-fold cross-validation evaluation of
the specified algorithm.

• sk.kadlecek.mle.Prediction - An application which trains the specified clas-
sification algorithm using training set given as input, and then classifies
the instances of the testing dataset from input. The results are stored in a
specified output file. However, just Weka index of classified class is assigned
to the result, it is not being translated to the actual class label.

12Introduced in Section 6.2 of this chapter.
13See the Definition 15 below.

46

• sk.kadlecek.mle.InteractivePrediction - An application which is similar to
the Prediction application, but after training the classification algorithm
using training set given as input, it then exposes its shell to the user. The
user can interactively type in phrases (one per line), which then will be
classified and the resulting class label is printed back to the user.

The main application, which was used to perform all experiments described
in this chapter, is the CrossValidationEvaluation application.

Descriptions of several applications from the framework used the term ”N-
fold Cross-Validation”. This term is explained in detail in the Definition 15. The
definition is based on the definition in [Witten and Eibe, 2005].

Definition 15 ((N-fold) Cross Validation). A method of evaluation of the classifi-
cation algorithm, where the dataset is split into two: training and testing dataset.
The classifier is then built by learning instances from the training dataset. After
the classifier has learned all instances from training dataset, instances from the
testing dataset are used to evaluate the classifier.

In the N-fold Cross Validation, the validation is run N times. The dataset is
also randomly split into training/testing datasets N times, so in each “fold” the
training/testing datasets are different, and the results are averaged.

For the most accurate results, it is recommended to use 10-fold cross valida-
tion, and run the cross validation 10 times (that means 100 algorithm evaluations
in total).

Each of the applications introduced above is expecting one or two dataset files
on input. These dataset files are expected to be in the ARFF 14 format supported
by Weka. The framework contains a preprocessing application
“sk.kadlecek.mle.preprocessing.Preprocessor” which can be used for conversion
of CSV files to ARFF format. However, the application is more like a proof-of-
concept, as there are lots of things hardwired in the code, including input/output
file paths and features to be detected, and was used by the author of this the-
sis from the IDE with manual adjustments of the parameters according to the
experiment needs.

The conversion process consists of following steps:

1. Class Extraction - As the input file is in CSV format, names of all classes
are present in the columns in the header row. The conversion algorithm
collects them into a set.

2. Feature Calculation - In this phase, all cell values (except the ones in header
row) in the input file were processed, and for each value, set of features was
determined. During this phase, all redundant cell values are detected and
removed (so they are not propagated to the resulting dataset). Empty cells
are removed as well.

3. Dataset File Creation - In this phase, all of the features collected for non-
redundant cell values were printed into ARFF file in the form:

F1, F2, ..., Fn, CLZ

14Attribute-Relation File Format: https://www.cs.waikato.ac.nz/ml/weka/arff.html

47

https://www.cs.waikato.ac.nz/ml/weka/arff.html

Where Fi denotes a value of i-th feature and CLZ denotes a label of a class
the instance belongs to.

The resulting dataset file clearly contains a classification for each of the input
instance represented by features. This is required in order to use the dataset with
Weka framework.

Exhaustive documentation of the application, together with guide on how to
compile the application from source codes, can be found in the
“/ml-experiments/documentation/ml-experiments-doc.pdf” file on the attached
CD.

Source codes of the ml-experiments application can be found in the GitHub
repository 15 of the author of this thesis or in the “/ml-experiments/src” folder
on the attached CD. Pre-built jar package can be found in the
“/ml-experiments/target/ml-experiments.jar” file on the attached CD.

6.3.2 Experiments
Using the ml-experiments framework described in the beginning of this this sec-
tion, the author of this thesis performed several experiments with the classifica-
tion algorithms. These experiments can be grouped into two groups: evaluation
of features, which should represent the input data in order to achieve the best
results, and, evaluation of algorithm configurations in order to find the best per-
forming algorithm configuration.

The classification works as follows: the framework receives input data in form
of ARFF files, where each instance represents the value of a single table cell,
represented by the features calculated from that value, and a class which is the
value of the header column, to which the cell belongs in the table. The dataset file
given at the input of the application is split into the training and testing datasets.
The training contains a known class for each of its instances, the classes of the
instances from the testing dataset are considered as unknown.

The algorithm at first build its classification model based on the already known
instances from the training dataset, and then it “guesses” (estimates) the class
for the instances in the training dataset based on this trained model.

Since the application knows the correct classes of the instances from the testing
dataset (as they were provided in input, and were removed from the dataset at
the moment of creating testing dataset from a part of input dataset), it can,
based on the original and classified values then compute evaluation metrics for
the algorithm.

Results of these experiments were evaluated based on following metrics:

• Average Error Rate

• Average F-Measure

• Average Precision

• Average Recall
15https://github.com/rkadlecek/ml-experiments

48

https://github.com/rkadlecek/ml-experiments

Input Data Preparation

In order to perform the experiments, some preprocessing of the input data was
required. The main issue with the data was that in some of the e-shops the
structure of the properties is not same across all of the products, and in some
cases, also some typos were present in the column headers. That means, in the
CSV files there were multiple columns representing the same property with each
of them having a portion of the values. In these cases, the author of this thesis
merged the columns together manually.

The author of this thesis also altered the headers of the columns of input
CSV files to simplify them. This means that instead of a column header such as
“TechnicalSpecifications.OperatingSystem”, simplier “OPERATING SYSTEM”
header was used.

Also, all input files were simplified in a way that they contained the same
columns (properties) — if available. Columns with just a small amount of non-
empty cells were removed.

For the purpose of classifier algorithm evaluation, the updated CSV docu-
ments were merged into one dataset file containing information about all products
from all e-shops. This complete dataset was then used as an input for experi-
ments.

The input data for can be found in the
“/ml-experiments/resources/experimentX/input” folders (where X is the number
of the experiment) on the attached CD.

The output data from experiments can be found in the
“/ml-experiments/resources/experimentX/output” folders (where X is the num-
ber of the experiment) on the attached CD.

Features

Since the author of this thesis was not able to find any existing feature sets
relevant to the problem of classification of string values as specific as properties
of the products during the research of existing works, a customer set of features
was proposed. These features can be found in Table 6.1.

Numeric Features Boolean Features

Total Number of Words Is the String Numeric Value
Total Number of Characters Is the String Integral Numeric Value
Total Number of Letters Is the String Decimal Numeric Value
Total Number of Digits Is the String Prefixed Number (e.g.

“$100”)
Total Number of Whitespace Char-
acters

Is the String Postfixed Number (e.g.
“2 GB”)

Total Number of Other Characters

Table 6.1: Proposed Feature Set.

In order to evaluate, if this set of properties behaves well on the given input
data, experiments 1 - 15 were performed. All of these experiments run all of the
classifiers on the the same input dataset, with different combinations of extracted

49

features. Experiment 1 starts with single numeric feature (Total Number of Words
in String), and Experiments 2 - 11 then add more features — one at a time —
until the full feature set described in Table 6.1 is reached. Experiments 12 - 15
then remove several chosen features from the full feature set in order to evaluate
that the features are not redundant.

Each feature set was evaluated using the 10-fold cross validation method which
was run 10 times for each algorithm except the MultilayerPerceptron algorithm.
For this algorithm, the 10-fold cross validation method was run just once, because
of the time complexity of the algorithm. This complexity is illustrated in the
Table 6.2 which shows the average times of a single 10-fold cross validation run
for all algorithms in the Experiment 13 on the same PC. It is clearly visible that
the MultilayerPerceptron has by the order of magnitude higher time complexity
compared to other algorithms.

Average
Algorithm Time

(ms)

Decision Tree 758,10
Decision Stump 99,70
Decision List 2693,60
Decision Table 7953,50
Naive Bayes 630,10
Random Forrest 8324,20
Support Vector Machine 15801,40
Multilayer Perceptron 498092,00

Table 6.2: Average times of single 10-fold cross validation (= 10 validations) run
of classification algorithms in Experiment 13 on the same PC.

The experiments were performed using the CrossValidationEvaluation appli-
cation from the ml-experiments framework. The Code 6.1 shows and example of
the command to run the Experiment 13 with the NaiveBayes algorithm:

$ java -jar "target/ml-experiments.jar" \
"sk.kadlecek.mle.CrossValidationEvaluation" \
-a NaiveBayes -e -f 10 -r 10 \
-d "resources/experiment13/input.arff"

Code 6.1: Example shell command to start the Feature experiment 13.

In almost all experiments, the RandomForest classifier proved as the best
performing one, except the Experiment 2, where the J48 Decision Tree performed
slightly (by 0.8%) better.

The evaluation of experiments also shown that the best performing feature
set is the feature set evaluated in Experiment 13, features contained in which are
shown in Table 6.3. That means, the Is the String Integral Numeric Value feature
from the originally proposed feature set is redundant for classifiers Decision Tree,
Decision Stump, Decision Table and Random Forest which achieved the same

50

results as in Experiment 11 with the complete proposed feature set. The property
also made the score slightly worse for Decision List, Support Vector Machine and
Multilayer Perceptron classifiers. However, the score Naive Bayes classifier was
slightly improved (by 0.08%).

The results of the evaluation of the feature set 13 dataset can be found in
Table 6.4.

Numeric Features Boolean Features

Total Number of Words Is the String Numeric Value
Total Number of Characters Is the String Decimal Numeric Value
Total Number of Letters Is the String Prefixed Number
Total Number of Digits Is the String Postfixed Number
Total Number of Whitespace Char-
acters
Total Number of Other Characters

Table 6.3: Experiment 13: Used Feature Set.

Since for most of the classifiers the feature set 13 behaved better, or at least
the same as the full proposed feature set, the author of this thesis decided to
use the feature set 13 as the feature set for the next set of algorithm evaluation
experiments.

Average Average Average Average
Algorithm Error Rate Precision Recall F-measure

(%) (%) (%)

Decision Tree 11,76 87,65 88,24 87,78
Decision Stump 50,32 25,42 49,68 33,40
Decision List 11,67 87,80 88,33 87,93
Decision Table 19,57 84,14 80,43 80,45
Naive Bayes 34,12 68,25 65,88 65,90
Random Forrest 9,45 90,06 90,55 90,18
Support Vector Machine 39,05 51,19 60,95 52,96
Multilayer Perceptron 18,88 79,91 81,12 79,88

Table 6.4: Experiment 13: Results.

The detailed description of features used in particular experiments, together
with the results of the Experiments 1 - 15 can be found in the Attachment C.

Evaluation of Algorithm Configurations

After the data features were defined, various algorithm configuration needed to
be evaluated. The purpose of this configuration evaluation is to detect the best
behaving configuration of each algorithm on given input data, in order to be able
to select the best algorithm to be used in the proposed Odalic algorithm.

All of the algorithm configurations were evaluated using the 10-fold cross val-
idation method which was run 10 times for each algorithm, except the Multilay-

51

erPerceptron algorithm. For this algorithm, the 10-fold cross validation method
was run just once, because of the time complexity of the algorithm.

The experiments were performed using the CrossValidationEvaluation appli-
cation from the ml-experiments framework. The Code 6.2 shows and example of
the command to run the evaluation of the NaiveBayes algorithm configuraitons
(the actual configuration options to evaluate are hard-coded in the application):

$ java -jar "target/ml-experiments.jar" \
"sk.kadlecek.mle.CrossValidationEvaluation" \
-a NaiveBayes -f 10 -r 10 \
-d "resources/experiment16/input.arff"

Code 6.2: Example shell command to start the CrpssValidation evaluation of
the Naive Bayes algorithm.

The detailed description of evaluated algorithm properties and all of their con-
figurations that were subjected to the evaluation can be found in the Attachment
D, together with the best performing configuration of each algorithm.

The detailed results of this experiment for each classification algorithm can
be found in form of CSV files in the
“/ml-experiments/resources/experimentX/output” folder on the attached CD.
The files are sorted using following expressions:

• Average Error Rate - Descending

• Average F-Measure - Ascending

• Average Precision - Descending

• Average Recall - Descending

Table 6.5 shows the actual metrics comparison result for the best algorithm
configurations.

Average Average Average Average
Algorithm Error Rate Precision Recall F-measure

(%) (%) (%)

Decision Tree 10,73 88,90 89,27 88,99
Decision Stump 50,32 25,42 49,68 33,40
Decision List 10,92 88,78 89,08 88,84
Decision Table 17,56 84,51 82,44 82,78
Naive Bayes 23,81 77,08 76,19 75,94
Random Forrest 9,39 90,07 90,61 90,21
Support Vector Machine 19,42 79,49 80,58 78,37
Multilayer Perceptron 14,57 84,52 85,43 84,75

Table 6.5: Comparision of best configurations of all evaluated algorithms

52

6.3.3 Experiments Conclusion
According to the evaluation of performed experiments described in this chapter,
the best classification algorithm on the product input data is the RandomForest
classification algorithm with configuration mentioned in Table 6.6. Thus, this
algorithm was chosen to be used by the proposed improved Odalic algorithm
which will be described in the Chapter 7.

Parameter Value

Batch Size 80
Max Depth 15
Number of Features 3
Number of Bagging Iterations 90
Break Ties Randomly true

Table 6.6: Random Forest - configuration parameters with best results.

53

7. The New Odalic Algorithm
The Chapter 6 described the process of evaluation of selected machine learning
classification algorithms and their various configurations, and features used by
these algorithms. The best performing feature set, algorithm and its configuration
were concluded at the end of the chapter. This chapter describes the improved
Odalic algorithm proposed by the author of this thesis which takes the advantage
of the chosen classification algorithm in order to classify the columns of the input
tables and discover relations between them even in cases when the amount of
existing knowledge base data is very limited, for example for product data. This
chapter also describes the integration of the algorithm into the Odalic system
and evaluation of the new algorithm vs the original Odalic algorithm. In the end
of this chapter, a process of semantization of the product data into RDF format,
using the new Odalic algorithm, is described.

7.1 Algorithm Description
The updated algorithm flow which now depicts also the ML PreClassification
phase and all the other algorithm phases that are affected by the results of this
new phase can be seen in Figure 7.1. Added parts are highlighted with blue color.

Figure 7.1: The proposed algorithm flow.

7.1.1 The ML PreClassification Phase
Before proceeding with actual description of the ML PreClassification phase, it
is necessary to introduce terms Ontological Class and ML Class so its possible to
distinguish between these two different class concepts. These terms are defined
in Definitions 16 and 17.

54

Definition 16 (Ontological Class). A class defined as a part of an ontology. E.g.
class with URI “http: // dbpedia. org/ ontology/ Software ”.

Definition 17 (ML Class). A class which is returned as a result of classification
of an instance by the classifier algorithm. A ML class is, in context of this thesis,
represented by the header value of a column. The section 6.3.2 of chapter 6
mentions that the headers of input data files were simplified to a strings such as
TITLE, CPU, MODEL and others. These simplified strings are considered as
ML classes for the purposes of this thesis.

From the high level point of view, the newly added ML PreClassification
Phase uses the classification algorithm chosen as the best performing one based
on the results of experiments in the Chapter 6 in order to classify columns of a
table into an ontological class or predicate, based on the classification of values
in the table cells present in given column.

The classification algorithm is trained on the training dataset1. The training
is performed just once, during the component initialization, even before the actual
semantization algorithm starts.

The ML PreClassification algorithm (or ML PreClassifier) iterates over each
of table columns, except the columns for which the user provided manual feed-
back2. The algorithm classifies all of table cells in given non-feedback columns
into their ML classes. For each column the algorithm determines a list of can-
didate ML classes — a list of classes which were returned by the ML classifier
at least for one cell value in given column — together with their score. The
score of a ML class is a number of cell values in a column classified as given ML
class. Retrieved ML class candidates for a column are then sorted according to
the score. If there is a classification manual feedback for a column, following two
situations are possible:

1. A ML class mapping exists for feedback classification - In this case, the
given ML class is assigned to the column with highest score possible (Dou-
ble.MAX VALUE). This allows the algorithm to do further manipulations
with this column, such as list it in the list of suggested subject columns, or
perform relation discovery for this column.

2. A ML class mapping does not exist for feedback classification - In this case,
the column is ignored - as the classification is given in the feedback, and
the ML PreClassifier does not support manipulations with this class.

The pseudo code of this operation can be found in Code 7.1.

Map[Integer, String] feedbackMLClasses =
feedback.classifications mapped to ML class

Set[Integer] feedbackNoMLClass =
feedback.classifications not mapped to ML class

column[] columnsToClassify =

1Traning Dataset is described in more detail in the Training Dataset sub-section further in
this section.

2Either set the automatic classification as invalid, or configured that the whole column
should be ignored by the algorithm.

55

http://dbpedia.org/ontology/Software

allColumns - feedback.ignoreColumns - feedbackNoMLClass

List[ColumnWithSortedClasses] colsWithSortedClasses

// get list of candidate ML classes for column
for (columnToClassify in columnsToClassify):

if (feedbackMLClasses contains columnToClassify):
// use manually provided class
mlClass = feedbackMLClasses.get(columnToClassify)
colsWithSortedClasses.add(

ColumnWithSortedClasses(
columnToClassify,

List(MlClassWithScore(mlClass, Double.MAX_VALUE))
)

)
else:

Map[String, MlClassWithScore] classesWithOccurences = Map.empty

for (cell in columnToClassify.cells):
String mlClass = classifier.classify(cell)
if (classesWithOccurences contains mlClass):

increase score of mlClass in map
else

add new mlClass to map with score 1
end if

end for
colsWithSortedClasses.add(

ColumnWithSortedClasses(
columnToClassify,

sortColumnClassesByScore(classesWithOccurences)
)

)
end if

end for

// select winning classes for columns
Map[Integer, MLClassificationWithScore] columnClassifications =

getColumnClassifications(colsWithSortedClasses);

Code 7.1: Pseudo code of the column ML classification in the ML
PreClassification phase.

After candidate ML classes of each column are resolved, the algorithm assigns
the winning class for each column iteratively, until all columns are either assigned
with a class, or they “run out” of available classes. The process works in a
following steps:

1. Building the ML class map. In each iteration, a current top ML class is
retrieved for each of the columns which are being processed. The current

56

top class is selected from the list of scored candidate classes of given column,
from the classes with highest score to the classes with lowest score. If a
column “runs out” of available classes, no class is assigned to it. If the
column contains a valid class, the class is added to the map of type (Class,
[(ColumnIndex, Score)]) which keeps the columns, to which the class can
be assigned, and scores of the class in given columns.

2. Selecting winning columns of the ML classes. For each ML class stored
in map which was built in previous step a winning column — the column
where the class achieved highest score — is selected. The mapping of the
ML class to the winning column is then saved to the result map.

3. Updating columns to be processed. All columns which still have no class
assigned — but still have a top class available — will be processed again in
next iteration of the algorithm.

The algorithm converges when either all of the columns are exhausted - they
are either assigned with a class, or they run out of candidate classes. Each class
is assigned just to (at most) one of the columns.

The pseudo code of assigning winning ML classes for columns can be found
in Code 7.2.

List[ColumnWithSortedClasses] columnsToProcess = colsWithSortedClasses
Set[Integer] columnsToIgnore = Set.empty
Set[String] alreadyAssignedClasses = Set.empty

Map[Integer, MLClassificationWithScore] result = Map.empty;

while (columnsToProcess is not empty):

Map[String, (ColumnIndex, Score)] classOccurences = Map.empty

for (columnToProcess : columnsToProcess):
// in each iteration retrieves "next" class
// in order from best score to worst score

classWithScore = columnToProcess.getNextTopClass
if (classWithScore != null)
if (!alreadyAssignedClasses contains classWithScore):

add class occurence to the classOccurencesMap
else

column will not be processed this iteration
end if

else
// ignore column for the rest of the algorithm run
columnsToIgnore.add(columnToProcess.columnIndex)

end if
end for

List[ColumnWithSortedClasses] newColumnsToProcess = List.empty
for (classOccurencesEntry: classOccurences):

winningColumn = from the classOccurences map select column

57

with highest score of given class

add the ML class mapping of winning column to the result

newColumnsToProcess =
classOccurencesEntry.candidateColumns - winningColumn

end for

columnsToProcess = newColumnsToProcess - columnsToIgnore
end while

return result

Code 7.2: The process of assigning winning ML classes to columns.

The actual classification algorithm is wrapped inside the
“uk.ac.shef.dcs.sti.core.algorithm.tmp.ml.classifier.RandomForestMLClassifier”
class and its parent “MLClassifier” class located in the same package. The al-
gorithm at first converts the given cell value into the Wekas input instance (this
includes detecting the features of the value) and retrieves the list of candidate
ML classes together with their probability scores. The algorithm then iterates
over these candidate ML classes, find the one with highest score, and if the score
is higher3 than configured treshold4, returns that ML class. The pseudo code of
this operation can be found in Code 7.3.

instance = detectFeaturesAndConvertToInstance(cellValue)
mlClassesWithScores = mlClassifier.distributionForInstance(instance)
mostProbableClass = findClassWithHighestScore(mlClassesWithScores)

if (mostProbableClass.score > threshold):
return mostProbableClass.mlClass

else
return null

end if

Code 7.3: Pseudo code of the ML classification of a cell value.

After each of the columns is classified with a ML class, the process of transla-
tion of ML class into ontological entity — class or predicate —takes place. This
process uses the Ontology Mapping entity in order to retrieve ontological entities
which are mapped to ML classes selected for the table columns. For each col-
umn, the algorithm consults the ontology mapping entity to determine if given
ML class represents an ontological class or predicate:

• It is a class - The algorithm loads required class details, especially label,
from the Ontology Definition model, and adds a new TColumnHeaderAn-
notation5 entity to the ML PreClassification result.

3The score is a double value in range 0 – 1.
4Threshold is configured in “sti.tmp.ml.confidence.threshold” configuration option of the

Odalic system which is by default located in the “ml.properties“ file in the configuration folder.
5Instance of “uk.ac.shef.dcs.sti.core.model.TColumnHeaderAnnotation” class, used by

Odalic to represent column classes.

58

• It is a predicate - The algorithm loads required predicate details, such as
predicate domain6, from the Ontology Definition model, and adds a new
MLPredicate7 entity to the ML PreClassification result.

All identified TColumnHeaderAnnotation and MLPredicate entities are en-
capsulated into the instance of MLPreClassification8 class which represents the
result of ML PreClassification phase of the algorithm.

The Ontology Mapping and Ontology Definition entities mentioned above are
described in following sub sections.

The pseudo code representation of the ML PreClassification phase of the
algorithm can be found in Code 7.4.

column[] columnsToClassify = allColumns - ignoreColumns
MLPreClassification result = new MLPreclassification

for (columnToClassify in columnsToClassify):
String mlClass = columnToClassify.mlClass
columnToClassify.mlClass = mlClass

if (ontologyMapping.containsClassMapping(mlClass)):
OntoEntityURI classUri = ontologyMapping.getClass(mlClass)

Clazz clazz = ontologyDefinition.loadClass(classUri)
result.addClassHeaderAnnotation(

new TColumnHeaderAnnotation(clazz)
)

else if (ontologyMapping.containsPredicateMapping(mlClass)):
OntoEntityURI predicateUri =

ontologyMapping.getPredicate(mlClass)
Set predicateDomainUris =

ontologyDefinition.loadPredicateDomain(predicateUri)

result.addPredicate(
new MLPredicate(predicateUri, predicateDomainUris)

)

else
log "Mapping not found for ml class"

end if
end for

return result

Code 7.4: High-level pseudo code of the ML PreClassification algorithm phase.
6Domain of a predicate is basically a set of class URIs, to which this predicate can be

assigned.
7Instance of “uk.ac.shef.dcs.sti.core.algorithm.tmp.ml.MLPredicate” class, used to represent

the identified predicate.
8“uk.ac.shef.dcs.sti.core.algorithm.tmp.ml.config.MLPreClassification”

59

Odalic system extends the TableMiner+ algorithm in a way that its possible
to query multiple knowledge bases. Or, more precisely, the system runs the
TableMiner+ algorithm separately for each knowledge base configured for the
task and gathers the best results from these runs. Since the ML PreClassification
phase is not dependant on any of the knowledge bases, it runs just once, before
the actual TableMiner+ phases are executed.

The source code of the ML PreClassification phase of the algorithm can be
found in the
“uk.ac.shef.dcs.sti.core.algorithm.tmp.ml.DefaultMLPreClassifier” class in the
“odalic/sti“ source codes on attached CD.

Training Dataset

The training dataset is a set of instances that is used to give the classification
algorithm some kind of insight on how the feature values affect the class. The
traninig dataset is loaded from a training dataset file which is provided by the
user of the Odalic system at the time of creating a new task. The expected
format of the traning dataset is a CSV file (so the training dataset can have
similar format as the actual unknown input data which will be classified. Since
the Weka classifier accepts the datasets only in the ARFF format, the CSV file
needs to be at first converted to ARFF in a pre-processing stage. This is done
automatically by the new Odalic algorithm. The principle of this conversion is
described in the Section 6.3.1 of Chapter 6.

Ontology Mapping

The ontology mapping entity — implemented by the
“uk.ac.shef.dcs.sti.core.algorithm.tmp.ml.config.MLOntologyMapping” class — is
responsible for “translation” of ML classes, assigned to table columns by the
classification algorithm to the actual entities (classes, predicates) defined in an
ontology.

The ontology mapping is loaded from a JSON file configured in the
“sti.tmp.ml.ontology.mapping.file.path” configuration property of the Odalic sys-
tem which is by default located in the “ml.properties“ file in the configuration
folder, and contains 2 groups of ML CLASS to Entity URI mappings: class map-
pings and predicate mappings. The exact structure of the file is described in the
Code 7.5.

{
"classMappings": [

{
"mlClass": "TITLE",
"uri": "http://dbpedia.org/ontology/Device"

},
{

"mlClass": "OS",
"uri": "http://dbpedia.org/ontology/Software"

},
...

],

60

"predicateMappings": [
{

"mlClass": "CPU",
"uri": "http://dbpedia.org/ontology/distanceLaps"

},
{

"mlClass": "BRAND",
"uri": "http://dbpedia.org/property/manufacturer"

},
...

]
}

Code 7.5: Example of the Ontology Mapping file which illustrates its format.

An example of complete ontology mapping file can be found in the
“odalic/sti/resources/ml/mapping.json” location on the attached CD.

Ontology Definition Model

The Ontology Definition Model — implemented by the
“uk.ac.shef.dcs.sti.core.algorithm.tmp.ml.config.MLOntologyDefinition” class —
is a RDF model which contains RDF triples representing the definition of chosen
ontologies. It is important, because it contains more detailed information about
the ontological entities mapped to the ML classes, e.g. domains or ranges9 of
predicates.

The ontology definition model supports multiple ontologies and is loaded from
RDF files stored in a folder, path to which is configured in the
“sti.tmp.ml.ontology.definition.folder” configuration property of the Odalic sys-
tem which is by default located in the “ml.properties“ file in the Odalic configu-
ration folder. The brief example of ontology definition taken from the DBpedia
ontology definition file in the N-Triples format can be found in the Code 7.6.

So far, RDF/XML, Turtle and N-Triples formats are supported for the Ontol-
ogy Definition files. The file reader determines the format of the file using the file
extension: .rdf, .xml, .owl for RDF/XML, .ttl for Turtle and .nt for N-Triples.

Since the heart of the Ontology Definition Model entity is a model consisting of
RDF triples10, the entity also contains implementation of methods for querying of
the model which are used in ML PreClassfication and Relation Discovery phases.

<http://dbpedia.org/ontology/>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.w3.org/2002/07/owl#Ontology> .

<http://dbpedia.org/ontology/>
<http://purl.org/vocab/vann/preferredNamespacePrefix>

"dbo" .

9Range of a predicate defines “legal” values which this predicate can obtain.
10Implementation is using the rdf4j library: http://rdf4j.org/.

61

http://rdf4j.org/

<http://dbpedia.org/ontology/Software>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.w3.org/2002/07/owl#Class> .

<http://dbpedia.org/ontology/Software>
<http://www.w3.org/2000/01/rdf-schema#label>

"software"@en .

<http://dbpedia.org/ontology/operatingSystem>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.w3.org/2002/07/owl#ObjectProperty> .

<http://dbpedia.org/ontology/operatingSystem>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#Property> .

<http://dbpedia.org/ontology/operatingSystem>
<http://www.w3.org/2000/01/rdf-schema#label>

"operating system"@en .

<http://dbpedia.org/ontology/operatingSystem>
<http://www.w3.org/2000/01/rdf-schema#domain>

<http://dbpedia.org/ontology/Software> .

Code 7.6: An example extract of the Ontology Definition file. Source:
DBpedia11

In order for the algorithm to run properly, it is recommended to provide
definitions of ontologies with defined domains and ranges of the predicates.

The complete ontology definition file of DBpedia ontology can be found in the
“odalic/sti/resources/ml/ontology/dbpedia 2016-10.nt” location on the attached
CD.

7.1.2 Subject Column Detection
The original Odalic algorithm contains the Subject Column Detection method
as introduced by the TableMiner+ algorithm, but adds the option to specify (or
override) the subject columns manually by the user - In this case, the subject
columns provided by user are used instead of the one detected by the algorithm.
If there are no subject columns specified by the user, the TableMiner+ subject
column detection routine is used to retrieve subject column candidate. In time of
writing of this thesis the algorithm proposes just one subject column candidate.

The new algorithm proposed by this thesis improves the Subject Column
Detection in following way:

1. In case the subject columns are provided by the user, these provided subject
columns are used.

11http://downloads.dbpedia.org/2016-10/dbpedia_2016-10.nt

62

http://downloads.dbpedia.org/2016-10/dbpedia_2016-10.nt

2. If there are no subject columns provided by the user, the result of the
ML PreClassification phase of the algorithm is queried in order to retrieve
subject column candidates. The chosen subject columns are passed to the
algorithm in the same way as user-provided subject columns would be -
using the Constraints instance.

3. If no subject column is provided by the user or no candidate proposed by
ML PreClassification, the standard TableMiner+ subject column detection
algorithm is used.

ML PreClassification - Choosing Subject Columns

The detection of subject columns on the result of ML PreClassification iterates
through all columns that were classified as ontological class columns and for each
of these columns the algorithm tries to find a predicate column whose predicate
can be used with given ontological class (the predicate contains given class in its
domain). If at least one of such predicate columns is found, the class column is
considered as one of subject columns.

The pseudo code of the Subject Column Detection algorithm within the result
of ML PreClassification can be found in Code 7.7.

Set[Column] subjectColumns = Set.empty

for (identifiedClassColumn in identifiedClassColumns):

const clazz = identifiedClassColumn.class
if (exists identifiedPredicate which has clazz in its domain):

subjectColumns += identifiedClassColumn
end if

end for

return subjectColumns

Code 7.7: Pseudo code of the ML PreClassification Subject Column Detection.

7.1.3 Column Classification & Entity Disambiguation
The column classification using the ML classification algorithm is performed in
the ML PreClassification phase of the algorithm. Since the motivation behind this
algorithm improvements is that the presence of product data in knowledge bases
is limited, the standard knowledge-base-based classification is not performed.
The ML classification of columns is provided to the algorithm in the form of
Constraints (as if it was a manual feedback from the user).

Since the column classification can be also provided manually by the user in
form of Constraints, the classification made by the ML system needs to be merged
with these user constraints properly. The pseudo code of this merging process
can be found in Code 7.8. The manual classification constraints have preference
over the classifications made by the ML PreClassification phase of the algorithm.

63

Set mergedClassifications = Set.empty

for (column in tableColumns):
if (userClassifications.exists(column)):

mergedClassifications.add(userClassifications.get(column)
else if (mlClassifications.exists(column)):

mergedClassifications.add(mlClassifications.get(column)
end if

end for

return mergedClassifications

Code 7.8: Pseudo code of the User and ML PreClassification column
classifications merge process.

Even though the standard knowledge-base-based column classification is not
taken into account in case of successful ML classification, the Entity Disambigua-
tion runs as usual, in order to try to identify at least a minimum of entities from
the table cell values which could possibly be in the knowledge base.

7.1.4 Relation Discovery
The Relation Discovery phase has been modified in a way that it at first tries to
utilize the information discovered in the ML PreClassification phase in order to to
discover relations between subject column(s) and other table columns. However,
this can be done only if the subject column, which is being processed, contains
a valid class header annotation (information about the Ontological class of the
column). If this condition is satisfied, the relation discovery uses following steps
to try discover relations between subject column and each object column:

1. Object column is an ontological class - Try to find a predicate which has the
class of subject column in its domain, and the class of the object column in
its range12, and which also was not assigned to any other (subjectColumn,
objectColumn) pair. If such predicate is found, relation annotation between
columns is created. If not, the column is added to the list of columns, on
which the classic relation discovery will be performed later.

2. Object column was classified by ML classifier as an ontological predicate -
The algorithm checks, if the class of the subject column complies to the
domain of the object column predicate. Also, a check whether the given
predicate was not yet assigned by the ML Relation Discovery to a different
(subjectColumn, objectColumn) pair is performed. If these conditions are
satisfied, relation annotation between columns is created. If not, the column
is added to the list of columns, on which the classic relation discovery will
be performed later.

12This process is described in the “Finding Predicate Between Subject and Object Entities”
subsection below

64

In case that the object column is neither an ontological class, nor a predicate,
it is added to the list of columns, on which the classic relation discovery will be
performed.

The algorithm tries to prevent discovering invalid duplicate relations by check-
ing if the discovered property is not yet assigned to different (subjectColum, ob-
jectColumn) pair. These invalid duplicate relations are discovered often in case,
when there are multiple subjectColumns in the table, and the domain of the
predicate is defined too loosely, or not restricted at all. In this case, the relation
would be made between the object column, which represents the value of given
predicate, and multiple (or even all) subject columns. This is most cases — if
not in all cases — not correct.

After all of the object columns are processed (or in case that the subject
column does not contain a header annotation), the classic relation discovery is
performed between the subject column and all object columns, for whose no
relation has been found.

The pseudo code of the proposed Relation Discovery phase can be found in
the Code 7.9.

otherColumns = columns for whose the relation between
them and the subjectColumn need to be discovered

for (subjectColumn in subjectColumns)
if (subjectColumn has ML classification)

for (objectColumn in otherColumns)
if (objectColumn.hasClassHeaderAnnotation):

predicates = ontologyDefinition.findPredicateForSubjectObject(
subjectColumn.class.uri, objectColumn.class.uri

)
unAssignedPredicate = predicates.filter(

predicate not yet assigned to any
(subjectColumn, objectColumn) pair

)
if (unAssignedPredicate is found):

add relation annotation between columns
end if

else if (objectColumn.hasPredicateAnnotation):
if (objectColumn.predicateDomain contains subjectColumn.class

and objectColumn.predicate not yet assigned to any
(subjectColumn, objectColumn) pair):

add relation annotation between columns
end if

end if
end for

end if
run classic relation discovery on columns with no relation found

end for

Code 7.9: Pseudo code of the proposed Relation Discovery phase of the
algorithm.

65

The Relation Discovery Phase is implemented in the “uk.ac.shef.dcs.sti.core.
algorithm.tmp.TMLColumnColumnRelationEnumerator” class.

7.1.5 Lookup of Predicate Between Subject and Object
Entities

In order to describe the process of looking up of predicate between given subject
and object classes, it is necessary to introduce the direct domain (range) of a
predicate terms. Definition of these terms can be found in Definition 18.

Definition 18 (Direct Domain (Range) of a Predicate). Direct domain of a
predicate is a set of URIs of classes, to which the predicate can be assigned, and
this domain is defined for the predicate directly (the domain is not inherited from
super property).

Direct range of a predicate is a set of ranges / values which can be assigned
as the value of this predicate, and which is defined directly for given predicate -
is not inherited from a super property.

The lookup tries to find predicates of two types:

1. Look up predicates that have defined direct domain and range, their direct
domain contains the class of the subject column, and their range contains
the class of the object column. These predicates are added to ordered list
of retrieved predicates.

2. Look up predicates that have defined domain — the constraint on the direct
domain is dropped in this step, the domain can be also inherited from super
properties — and direct range, their inherited domain contains the class of
the subject column, and their range contains the class of the object column.
These predicates are added to ordered list of retrieved predicates.

The ordered list (based on the score of the predicates) of predicates is then
provided to the relation discovery algorithm. This algorithm selects the pred-
icate with highest score which has not been assigned to any (subjectColumn,
objectColumn) pair yet.

If no predicate is found during the two steps above, the algorithm will give
up and no additional lookup for given subject / object column pair is performed.

A predicate needs to have a range defined in order to allow this lookup to find
it. Predicate with no defined range will not be found.

The pseudo code of this lookup process can be found in Code 7.10.

subjectClass = subjectColumn.class
objectClass = objectColumn.class

directPredicates = predicates, for which:
(p.directDomain contains subjectClass) and
(p.range contains objectClass)

inheritedPredicates = predicates, for which:
// in this case, domain can be also inherited

66

// from super properties
(p.domain contains subjectClass) and
(p.range contains objectClass)

foundPredicates = directPredicates ++ inheritedPredicates
return foundPredicates

Code 7.10: Pseudo code of the process of predicate between given subject and
object entities lookup.

7.1.6 Adjustment of the thesis sub-goals
Because of the presented algorithm design and the way the algorithm works fol-
lowing sub-goals of this thesis could not completely satisfied by the algorithm:

• Detection of classes of the products based on the detected predicates.

• Detection of predicates for the rest of the attributes. If the algorithm de-
tects that that certain product is a laptop, then try to match the rest of the
predicates according to properties which are usually assigned to laptops.

Both the class of the product and the predicates of the attributes are resolved
by the ML classifier during the ML PreClassification phase of the algorithm, when
the columns of the input file are classified to their corresponding ML classes. The
resulting ontology class of the product / attributes are then determined based on
the provided ontology mapping file.

7.2 Odalic Integration
The proposed algorithm has been integrated into the Odalic system as an optional
extension of the existing Odalic algorithm. That means, the user of the system
can decide, whether he / she wants to use the new algorithm, or use the original
Odalic algorithm at the time of creation (or modification) of the Odalic task.
The API of the Odalic Core component, responsible for creating new or updating
existing tasks has been extended in order to allow to pass the algorithm choice,
and additional parameters for the new algorithm (in case its selected). Because
of this change, the Odalic UI needed to be extended as well, to allow the user to
provide these new options to the API - especially the Add new task and Modify
task forms. The modified Add new task form can be seen in Figure 7.2, the added
section of the form is highlighted in red color. The Training Dataset component
of the form is very similar to the Input file configuration component, and it is
able to upload a new file, if needed, and also to configure some properties of the
file, such as field separator.

The screenshots of the example results screen of an Odalic task which was
configured to use the new algorithm can be seen in following Figures 7.3 (detected
column classifications), 7.4 (detected subject columns) and 7.5 (detected relations
between columns). In the screenshots, the actual ordering of the columns in the
table was changed in order to allow better projection on the cropped screenshots.

67

Figure 7.2: Odalic UI: Add New Task form with added Machine Learning section
highlighted.

7.3 Evaluation
For an evaluation of the actual benefits of the improved Odalic algorithm de-
scribed in the beginning of this section, a couple of tasks based on the input data
obtained for this thesis13 have been proposed.

The input data files were, for the purpose of evaluation, combined into three
categories according to the product type:

• Phone data

• Tablet data

• Computer data
13Input data retrieval and manipulation is described in Chapters 5 and 6.

68

Figure 7.3: Odalic: Example of suggested classifications.

A result of this operation are three files, representing data from all scraped
e-shops for given product category. These three files represent the input data
for the “legacy” Odalic algorithm, however, for the new algorithm, additional
pre-processing was required.

In order to create appropriate input data for the new Odalic algorithm, all
records in each of the files described above were randomly shuffled and the result-
ing shuffled files were then split into two files - the training and testing dataset
(Odalic input) files. The datasets were split using following ratio:

• Training Dataset: 20%

• Testing Dataset: 80%

In order to make the structure of the testing dataset files different to the
training dataset files, in all of the testing dataset files the columns were randomly
shuffled, and the column headings were re-named (by appending the “ 2” suffix
to the column header).

Three Odalic tasks were then created - one for each product category. These
tasks were then processed by both, legacy and new Odalic algorithms, and follow-
ing metrics were evaluated for each of the semantization tasks - column classifica-
tion, subject column detection, and discovery of relations between the columns:

• Percentage of True Positives - Percentage of columns (relations) which
should have been classified (discovered) and also were correctly classified
(discovered) by the algorithm.

• Percentage of True Negatives - Percentage of columns (relations) which
should have not been classified (discovered) and also were not classified
(discovered) by the algorithm.

69

Figure 7.4: Odalic: Example of detected subject columns.

• Percentage of False Positives - Percentage of columns (relations) which
should have not been classified (discovered), but were classified (discovered)
by the algorithm.

• Percentage of False Negatives - Percentage of columns (relations) which
should have been classified (discovered), but were not classified (discovered)
by the algorithm, or were classified (discovered) by the algorithm, but the
classification (discovery) was incorrect.

The results for each of the Odalic tasks were then averaged.
The actual classes of columns or relations between columns represented in

testing datasets (input files) are unknown to the algorithm. The algorithm relies
on the machine learning classifier in order to determine the actual classes of the
columns and relations between them. However, these classes and relations were
known to the author of this thesis, since the testing dataset is in fact a CSV file
which contains headers of columns. These headers, despite the fact that they are
different (renamed) than in the training dataset, uniquely represent certain class
or predicate, to which the column should be mapped. Because of this, it was
possible for the author of this thesis to objectively determine the correctness or
incorrectness of the classes / relations discovered by the algorithm.

7.3.1 Original Odalic Algorithm Results
Since the original Odalic algorithm does not take training / testing datasets into
account, the three files containing data for all products, split by category were
used to create three Odalic tasks (one task for each product category). These
tasks were run agains the DBpedia.org knowledge base.

A result of all of these tasks is very similar - no column was classified into any
ontological class and thus also no relations between columns were found. For one
task, one subject column was determined, however, also this subject column was
incorrect.

70

Figure 7.5: Odalic: Example of suggested relations.

7.3.2 New Odalic Algorithm Results
The averaged results of the tasks run by new Odalic algorithm can be found in
Table 7.1.

True True False False
Positive Negative Positive Negative

(%) (%) (%) (%)

Column Classification 86.67 97.1 2.9 13.33
Subject Columns Detection 72.23 97.38 2.62 27.77
Relation Discovery 83.26 99.46 0.54 16.74

Table 7.1: Average results of tasks performed by the new Odalic algorithm.

The main outcome from Table 7.1 is that 86.67% of the columns were classified
into correct ontology class, 72.23% of subject columns were correctly detected
and 83.26% of the relations were correctly discovered. However, based on the
description of the algorithm, its is clear that the subject column detection and
relation discovery phases depend heavily on results of the column classification
phase. Thus, for each of the tasks, where the column classification was not 100%
successful, the classifications were manually corrected, and all tasks were re-run
again.

Table 7.2 shows the average results of the tasks with manually corrected col-
umn classifications:

Results in Table 7.2 suggests that in case of completely correct column clas-
sification, the subject column detection phase achieves also 100% correct results,
and results of the relation discovery are also improved by almost 10%.

In order to determine, whether having a larger training dataset would improve
the algorithm results, additional three “inverse” tasks were performed. These

71

True True False False
Positive Negative Positive Negative

(%) (%) (%) (%)

Subject Columns Detection 100 100 0 0
Relation Discovery 92.18 99.66 0.34 7.82

Table 7.2: Average results of tasks with corrected column classifications, per-
formed by the new Odalic algorithm.

tasks used the 80% datasets as training datasets, and 20% datasets as testing
datasets. In order to make the 80% datasets work as a training dataset, its
column headers needed to be renamed back to their original values. The column
headers of the 20% datasets were also renamed, so they do not match the column
headers in the training datasets.

The averaged results of the “inverse” tasks run by new Odalic algorithm can
be found in Table 7.3.

True True False False
Positive Negative Positive Negative

(%) (%) (%) (%)

Column Classification 86.67 98.48 1.52 13.33
Subject Columns Detection 83.33 98.67 1.33 16.67
Relation Discovery 84.3 99.56 0.44 15.7

Table 7.3: Average results of “inverse” tasks performed by the new Odalic algo-
rithm.

The results of the “inverse” tasks, especially the subject column detection
phase, are improved in comparison with the results of the original tasks in Table
7.1. However, since there was hardly any improvement in the column classifica-
tion phase, the results are still not as good as in the experiment with corrected
classifications which can be seen in Table 7.2.

For the sake of completeness, Table 7.4 shows the average results of the “in-
verse” tasks with manually corrected column classifications:

True True False False
Positive Negative Positive Negative

(%) (%) (%) (%)

Subject Columns Detection 100 100 0 0
Relation Discovery 90.76 99.77 0.23 9.24

Table 7.4: Average results of “inverse” tasks with corrected column classifications,
performed by the new Odalic algorithm.

Table 7.4 confirms that having correct column classifications has significant
impact on the results of subject column detection and relation discovery phases.
It also shows that the relation discovery phase performed slightly worse in com-

72

parison with results in Table 7.2. This was caused by several false-positive relation
discoveries by a fallback to legacy relation discovery mechanism.

The exhaustive description of performed evaluation tasks and their results can
be found in the Attachment E.. All dataset files used in the tasks referenced in
this section can be found in the “/evaluation” folder and its subfolders on the
attached CD.

The ontology used by the ML PreClassification and Relation Discovery phases
of the algorithm was a combination of DBpedia ontology14 and a custom ontol-
ogy created by the author of this thesis — which focuses on the product data
attributes15.

Custom Ontology

For the purpose of describing the product data and improved algorithm evalu-
ation, the author of this thesis created a new ontology which is based on the
format of the input data tables, prepared within this thesis.

The prefix of this ontology is rkdto, with the “http: // www. kadlecek. sk/
dt/ ontology ” URI. The ontology is based on the DBpedia ontology whose pred-
icates it extends. The purpose of this extension is that the domain-s and range-s
of properties of the DBpedia ontology are not very well defined. This can decrease
the effectivness of the proposed algorithm. Also, some new properties — such as
rkdto:simCardType) — and classes — such as rkdto:CPU — are introduced in
this ontology.

The ontology also introduces a new object predicate,
“rkdto:isOperatingSystemOf ”. This predicate extends the “dbo:operatingSystem”
predicate from DBpedia ontology which has the dbo:Software class in its domain.
However, it is used across DBpedia as if the dbo:Software was in its range (invalid
associativness). The introduced “rkdto:isOperatingSystemOf ” predicate reflects
this “reversed” associativness in better way.

The ontology definition file, in Turtle format, can be found in the
“odalic/sti/resources/ml/ontology/kadlecek onto.ttl” file on the attached CD.

7.4 Semantization of Obtained Product Data
The Section 7.3 described the evaluation of the input data which were split into
the 80% and 20% datasets. Since the evaluation was based on the results of
Odalic tasks run on these datasets, during this evaluation the columns of the
datasets were classified, subject columns were detected and some of the relations
between the columns were discovered. Since these classifications were in case of
most tasks not 100% correct, the author of this thesis corrected manually these
wrong classifications / relations. These corrected task results served as a good
base for the data semantization.

However, one last piece of the puzzle was missing in order to semantize the
data properly - the disambiguation of the cells of table columns, which were clas-
sified as ontological classes, into knowledge base entities. Although the algorithm

14The ontology definition file can be found in the
“odalic/sti/resources/ml/ontology/dbpedia 2016-10.nt” file on the attached CD.

15More information about the custom ontology can be found in the Section 7.3.2

73

http://www.kadlecek.sk/dt/ontology
http://www.kadlecek.sk/dt/ontology

was even able to disambiguate several entities in the table cells to existing knowl-
edge base entities during the evaluation task runs, it was however only a small
amount of them, since the product data were mostly not present in the used
knowledge bases. Despite the fact that the columns are correctly classified and
subject columns are correctly detected, the most of the data from the input files
would not be semantized (exported) by the export functionality of the Odalic
system, because of the missing disambiguations of the cell values.

There is a solution of this issue in the Odalic system. The user can manually
propose a new knowledge base entities to the unknown cell values using the
Odalic UI. This needs to be done individually for each table cell, so it would take
significant amount of time and manual labor to do this for all of the unknown
entities.

For this purpose, the author of this thesis implemented a new functionality
into the Odalic system - the entity auto-proposer. This functionality adds a new
(’Auto Propose’) button to the results screen of the Odalic UI. The page footer,
containing the new button (highlighted) can be seen in the Figure 7.6.

Figure 7.6: Odalic UI: Added “Auto Propose” button (highlighted).

By clicking this button, a new API call will be performed which triggers the
auto-proposal functionality of the Odalic Core component. This functionality
inserts all unknown (non-disambiguated) cell values of column, which are clas-
sified as ontology class, into the knowledge base creating a new entity records.
The pseudo-code of the algorithm used by the auto-proposal functionality can be
found in Code 7.10.

List proposals = List.empty
List rows = inputTable.rows
uriSuffix = new resource uri suffix from Odalic configuration

for each row in rows:
for each column in row:

cell = rows[row][column]
if (column is classified as ontology class ||

column should be ignored):

continue
end if

if (cell not disambiguated && cell.value not yet proposed):
label = cell.value
uri = uriSuffix + UUID.randomUUID()

proposals.add(new ResourceProposal(label, uri)
end if

end for

74

end for

List batches = split proposal to batches
for batch in batches:

insert batch of proposals to knowledge base
end for

Code 7.10: Pseudo code of the entity auto-proposal feature.

The source code of the auto-proposal functionality can be found in the “cz.cuni.mff.xrg.odalic.tasks.DefaultAutoPropositionService”
class in the “odalic/sti” source directory on the attached CD.

After the auto-proposal is completed, it is required to re-execute the Odalic
task which will now match newly proposed entities during the disambiguation
phase of the algorithm.

An example result of a task after the auto-proposal was completed (and task
was re-executed) can be seen in Figure 7.7.

Figure 7.7: Odalic UI: Example of task results with entity auto-proposal.

However, even after the auto-proposal is completed, Odalic system was not
able to disambiguate some of the column cells into valid entities. These missing
entities were matched manually by the author of this thesis.

The tasks were then auto-proposed and re-executed one after another in order
to semantize the data. To prevent inserting the same entity into the knowledge
base multiple times, after the auto-propose feature was used on a task, all re-
maining tasks were re-executed before using the auto-proposal feature to propose
their undisambiguated cell values.

The semantized data from all tasks were then exported by the Odalic export
feature into RDF files in Turtle format. These exported files containing the
semantized product data can be found in the “semantized-data” folder on the
attached CD.

75

Conclusion & Future Work
The beginning of this thesis provided a necessary introduction into concepts of the
Web 2.0, the Semantic Web, and also provided necessary information about tech-
nologies used within those concepts. A problem of table semantization (semantic
table interpretation) was then introduced, together with an overview of existing
approaches towards solving of this problem - together with detailed explanation
of the TableMiner+ algorithm and the Odalic system.

After providing necessary theoretical background, input data — html docu-
ments representing product detail pages — were collected for four different prod-
uct categories — phones, tablets, desktop computers and laptops — from three
different e-shops. A custom application, html-to-csv-tool, was implemented in
order to extract the interesting parts (product specifications) of these HTML
documents into CSV files suitable as an input to the Odalic system.

Having the input data ready, the thesis continued with an introduction of
several machine learning classification algorithms which evaluation was then per-
formed. At first, various features of the input data were evaluated in order to
determine which features are the best ones for the final feature set used by ma-
chine learning algorithms. After the feature set was established, multiple different
parameter combinations of machine learning algorithms were evaluated in order
to determine which machine learning algorithm and with which parameter com-
bination works the best on the input data. Evaluation was done using a custom
evaluation framework, called ml-experiments, implemented for this purpose by
the author of this thesis. The RandomForest algorithm was evaluated as the best
performing one.

In the next part of the thesis a new, improved, Odalic algorithm, designed
by the author of this thesis, was presented. This algorithm was designed to
improve performance of the original Odalic algorithm in terms of performing
column classification, subject column detection and relation discovery tasks on
data with low or no presence in used knowledge bases, such as product data
retrieved from e-shops. This should have been achieved by leveraging machine
learning RandomForest classification algorithm. Based on the design of proposed
algorithm, some of the sub-goals of this thesis needed to be adjusted.

After the algorithm was presented, this thesis described an approach how the
algorithm was integrated into the Odalic API and Odalic UI and what steps are
necessary to be performed by the user in order to activate the new algorithm for
an Odalic task.

When the algorithm was integrated into the Odalic system, a set of tasks
was performed in order to evaluate the actual improvement of the new algorithm
in comparison with the original Odalic algorithm. For this purpose, input files
were combined in a way that data about products of each product category were
stored in a single file. A custom ontology, based on the DBpedia ontology was
used for semantization. Since the original Odalic algorithm did not actually
find any correct semantic information (column classes, correct subject columns
or relations between columns), the evaluation part was mostly about measuring
of performance of the new algorithm. For this purpose, input files were split
into two datasets: training dataset — containing 20% of data — and testing

76

dataset — containing 80% of data. Using these datasets, average percentage of
correct results for semantization tasks are: 86.67% for the column classification,
72.23% for the subject column detection and 83.26% for the relation discovery.
However, the subject column detection and relation discovery phases depend
heavily on the column classification phase. To demonstrate this, the algorithm
was manually hinted with correct column classifications and Odalic tasks were
re-executed. The results were as follows: 100% for the subject column detection
and 92.18% for the relation discovery phases. In another evaluation experiment,
the training and testing datasets were interchanged. The results were improved
in magnitude of percents, but since the column classification basically did not
change, improvements were not very significant.

The Odalic tasks used during evaluation of the algorithms covered data-wise
all of the collected product data. Thus, for semantization of the data, these
Odalic tasks were re-used. Some manual corrections of invalid classifications and
relations were required. After these corrections were performed, a new function-
ality for entity auto-proposal has been added to Odalic. This feature allows the
system to automatically propose new entities — for cell values which could not
be disambiguated in the used knowledge bases — into the knowledge base. After
proposing all entities which were unknown to the knowledge base and doing some
final manual corrections, the data were correctly semantized and exported into
RDF Turtle files. These files can be imported into some existing knowledge base
and connected into the Linked Data cloud.

7.5 Future Work
There are several directions of possible future work on topics covered by this
thesis. One of the directions can be focused on a part of actual HTML product
data retrieval, such as development of a scraping tool which can work with web
pages that use JavaScript to load the data. Popularity of these web pages is rising,
however JavaScript is preventing conventional scraping tools from successfully
scraping these web pages.

Another possible direction for future work would be to focus on improving the
training dataset. This can be achieved by, for example, including data from more
e-shops. With larger training dataset containing more variable data, the algo-
rithm could achieve better results in column classification which would improve
also results of other algorithm phases. Alternatively, a future work can focus on
creating additional training datasets for different product categories which were
not covered by this thesis.

And finally, another possible direction could be an effort to update the DB-
pedia ontology to make it more compatible with product data. This may include
adding more product related classes / predicates and also making definitions of
currently existing classes / predicates more precise by e.g. adding missing do-
mains and ranges for predicates. This would improve the semantic meaning of
the data and allow new uses of the date by data processing algorithms.

77

Bibliography
S. Aghaei, M. A. Nematbakhsh, and H. K. Farsani. Evolution of the World

Wide Web: From Web 1.0 to Web 4.0. International journal of Web & Se-
mantic Technology [online], 3(1):1–10, January 2012. doi: 10.5121/ijwest.2012.
3101. URL http://airccse.org/journal/ijwest/papers/3112ijwest01.
pdf. Visited on 2016-05-29.

E. Alpaydin. Introduction to machine learning. MIT Press, 2 edition, 2010. ISBN
978-0-262-01243-0.

M. Amde and J. Bradley. Scalable Decision Trees in MLlib, 2014. URL https://
databricks.com/blog/2014/09/29/scalable-decision-trees-in-mllib.
html. Visited on 2017-07-13.

T. Berners-Lee. Linked Data, January 2006. URL https://www.w3.org/
DesignIssues/LinkedData.html. Visited on 2016-03-20.

T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI):
Generic Syntax. Technical report, Network Working Group, January 2005.
URL https://greenbytes.de/tech/webdav/rfc3986.pdf. Visited on 2018-
04-15.

C. Bizer, T. Heath, and T Berners-Lee. Linked Data - The Story So Far.
International Journal on Semantic Web and Information Systems [online], 5
(3):1–22, 2009. ISSN 1552-6283. doi: 10.4018/jswis.2009081901. URL http://
tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.
pdf. Visited on 2016-03-20.

L. Breiman. Random Forests. Machine Learning [online], 45(1):5–32, 2001. ISSN
08856125. doi: 10.1023/A:1010933404324. URL http://link.springer.com/
10.1023/A:1010933404324. Visited on 2017-07-11.

CambridgeSemantics. Introduction to the Semantic Web. URL
http://www.cambridgesemantics.com/semantic-university/
introduction-semantic-web. Visited on 2016-03-20.

M. Duerst and M. Suignard. Internationalized Resource Identifiers (IRIs), 2005.
URL http://www.rfc-base.org/txt/rfc-3987.txt. Visited on 2018-04-15.

R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Mes-
sage Syntax and Routing, June 2014. URL http://tools.ietf.org/html/
rfc7230. Visited on 2018-04-15.

T. Finin, Z. Syed, V Mulwad, and A. Joshi. Exploiting a Web of Semantic Data
for Interpreting Tables. WebSci10: Extending the Frontiers of Society On-Line,
2010. URL http://journal.webscience.org/322/. Visited on 2017-07-07.

E. Frank and I. H. Witten. Generating Accurate Rule Sets Without Global Opti-
mization. ICML ’98 Proceedings of the Fifteenth International Conference on
Machine Learning, pages 144–151, 1998. URL http://dl.acm.org/citation.
cfm?id=657305. Visited on 2017-07-11.

78

http://airccse.org/journal/ijwest/papers/3112ijwest01.pdf
http://airccse.org/journal/ijwest/papers/3112ijwest01.pdf
https://databricks.com/blog/2014/09/29/scalable-decision-trees-in-mllib.html
https://databricks.com/blog/2014/09/29/scalable-decision-trees-in-mllib.html
https://databricks.com/blog/2014/09/29/scalable-decision-trees-in-mllib.html
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://greenbytes.de/tech/webdav/rfc3986.pdf
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
http://link.springer.com/10.1023/A:1010933404324
http://link.springer.com/10.1023/A:1010933404324
http://www.cambridgesemantics.com/semantic-university/introduction-semantic-web
http://www.cambridgesemantics.com/semantic-university/introduction-semantic-web
http://www.rfc-base.org/txt/rfc-3987.txt
http://tools.ietf.org/html/rfc7230
http://tools.ietf.org/html/rfc7230
http://journal.webscience.org/322/
http://dl.acm.org/citation.cfm?id=657305
http://dl.acm.org/citation.cfm?id=657305

I. Herman, B. Adida, M. Sporny, and M. Birbeck. RDFa 1.1 Primer - Third
Edition, 2015. URL https://www.w3.org/TR/rdfa-primer/. Visited on 2016-
05-01.

W. Iba and P. Langley. Induction of One-Level Decision Trees. ML ’92 Proceed-
ings of the Ninth International Workshop on Machine Learning, pages 233–240,
1992. URL http://dl.acm.org/citation.cfm?id=757759. Visited on 2017-
07-11.

G. H. John and P. Langley. Estimating Continuous Distributions in Bayesian
Classifiers. UAI’95 Proceedings of the Eleventh conference on Uncertainty
in artificial intelligence, pages 338–345, 1995. URL http://dl.acm.org/
citation.cfm?id=2074196. Visited on 2017-07-11.

T. Knap. Open Data Linker and Classifier - assigment, August 2016. URL
http://www.ksi.mff.cuni.cz/sw-projekty/zadani/odalic.pdf. Visited
on 2018-04-16.

T. Knap. Towards odalic, a semantic table interpretation tool in the adequate
project. In Anna Lisa Gentile, Andrea Giovanni Nuzzolese, and Ziqi Zhang,
editors, Proceedings of the 5th International Workshop on Linked Data for
Information Extraction co-located with the 16th International Semantic Web
Conference (ISWC 2017), Vienna, Austria, October 22, 2017., volume 1946
of CEUR Workshop Proceedings, pages 26–37. CEUR-WS.org, 2017. URL
http://ceur-ws.org/Vol-1946/paper-04.pdf.

R. Kohavi. The Power of Decision Tables. ECML ’95 Proceedings of the 8th
European Conference on Machine Learning, pages 174–189, 1995. URL http:
//dl.acm.org/citation.cfm?id=649649. Visited on 2017-07-11.

S. B. Kotsiantis. Supervised Machine Learning: A Review of Classification Tech-
niques. Proceedings of the 2007 conference on Emerging Artificial Intelligence
Applications in Computer Engineering: Real Word AI Systems with Applica-
tions in eHealth, HCI, Information Retrieval and Pervasive Technologies, pages
3–24, 2007. URL http://dl.acm.org/citation.cfm?id=1566770.1566773.
Visited on 2017-07-10.

G. Limaye, S. Sarawagi, and S. Chakrabarti. Annotating and Searching Web
Tables Using Entities, Types and Relationships. Proceedings of the VLDB
Endowment, 3(1–2):1338–1347, 2010. ISSN 21508097. doi: 10.14778/1920841.
1921005. URL http://dl.acm.org/citation.cfm?doid=1920841.1921005.
Visited on 2017-07-07.

Live Internet Stats. Total number of Websites, April 2018. URL http:
//www.internetlivestats.com/total-number-of-websites/#trend. Vis-
ited on 2018-04-20.

Microformats Wiki. microformats 2 - Microformats Wiki, 2015. URL http:
//microformats.org/wiki/microformats2. Visited on 2016-05-01.

79

https://www.w3.org/TR/rdfa-primer/
http://dl.acm.org/citation.cfm?id=757759
http://dl.acm.org/citation.cfm?id=2074196
http://dl.acm.org/citation.cfm?id=2074196
http://www.ksi.mff.cuni.cz/sw-projekty/zadani/odalic.pdf
http://ceur-ws.org/Vol-1946/paper-04.pdf
http://dl.acm.org/citation.cfm?id=649649
http://dl.acm.org/citation.cfm?id=649649
http://dl.acm.org/citation.cfm?id=1566770.1566773
http://dl.acm.org/citation.cfm?doid=1920841.1921005
http://www.internetlivestats.com/total-number-of-websites/#trend
http://www.internetlivestats.com/total-number-of-websites/#trend
http://microformats.org/wiki/microformats2
http://microformats.org/wiki/microformats2

E. Muñoz, A. Hogan, and A Mileo. Triplifying Wikipedia’s Tables. LD4IE’13
Proceedings of the First International Conference on Linked Data for Infor-
mation Extraction, 1057:26–37, 2013. URL http://ceur-ws.org/Vol-1057/
MunozEtAl_LD4IE2013.pdf. Visited on 2017-07-07.

E. Muñoz, A. Hogan, and A Mileo. Using Linked Data to Mine RDF from
Wikipedia’s Tables. Proceedings of the 7th ACM international conference on
Web search and data mining - WSDM ’14 [online], pages 533–542, 2014. doi:
10.1145/2556195.2556266. URL http://dl.acm.org/citation.cfm?doid=
2556195.2556266. Visited on 2017-07-07.

ODALIC. ADEQUATe, ODALIC Documentation, February 2017. URL https:
//odalic.github.io/download/ODALIC.Project.Documentation.pdf. Vis-
ited on 2018-04-16.

E. Osuna, R. Freund, and F. Girosi. Training Support Vector Machines: an
Application to Face Detection. Proceedings of IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition [online], pages 130–136,
1997. doi: 10.1109/CVPR.1997.609310. URL http://ieeexplore.ieee.org/
document/609310/. Visited on 2017-07-11.

J. Platt. Fast training of support vector machines using sequential minimal
optimization. In B. Schoelkopf, C. Burges, and A. Smola, editors, Ad-
vances in Kernel Methods - Support Vector Learning. MIT Press, 1998. URL
http://research.microsoft.com/˜jplatt/smo.html.

R. L. Rivest. Learning Decision Lists. Machine Learning, 2(3):229–246, 1987.
ISSN 08856125. doi: 10.1023/A:1022607331053. URL http://dl.acm.org/
citation.cfm?id=637934. Visited on 2017-07-11.

StatisticBrain. Total Number of Pages Indexed by Google,
August 2015. URL http://www.statisticbrain.com/
total-number-of-pages-indexed-by-google/. Visited on 2018-04-20.

The Open Graph protocol. The Open Graph protocol, 2015. URL http://ogp.
me. Visited on 2016-05-01.

P. Venetis, A. Halevy, J. Madhavan, M. Pas, ca, W. Shen, F. Wu, and G. Wu. C.
Miao. Recovering Semantics of Tables on the Web. Proceedings of VLDB
Endowment, 4(9):528–538, 2011. ISSN 21508097. doi: 10.14778/2002938.
2002939. URL http://www.vldb.org/pvldb/vol4/p528-venetis.pdf. Vis-
ited on 2017-07-07.

W3C. XHTML 1.0: The Extensible HyperText Markup Language (Second Edi-
tion), August 2002. URL https://www.w3.org/TR/xhtml1/. Visited on 2018-
04-15.

W3C. W3C Technical Report Development Process, October 2005. URL https:
//www.w3.org/2005/10/Process-20051014/tr.html. Visited on 2018-04-15.

W3C. XHTML 2 Working Group Expected to Stop Work End of 2009, W3C to
Increase Resources on HTML 5, December 2009. URL https://www.w3.org/
News/2009#entry-6601. Visited on 2018-04-15.

80

http://ceur-ws.org/Vol-1057/MunozEtAl_LD4IE2013.pdf
http://ceur-ws.org/Vol-1057/MunozEtAl_LD4IE2013.pdf
http://dl.acm.org/citation.cfm?doid=2556195.2556266
http://dl.acm.org/citation.cfm?doid=2556195.2556266
https://odalic.github.io/download/ODALIC.Project.Documentation.pdf
https://odalic.github.io/download/ODALIC.Project.Documentation.pdf
http://ieeexplore.ieee.org/document/609310/
http://ieeexplore.ieee.org/document/609310/
http://research.microsoft.com/~jplatt/smo.html
http://dl.acm.org/citation.cfm?id=637934
http://dl.acm.org/citation.cfm?id=637934
http://www.statisticbrain.com/total-number-of-pages-indexed-by-google/
http://www.statisticbrain.com/total-number-of-pages-indexed-by-google/
http://ogp.me
http://ogp.me
http://www.vldb.org/pvldb/vol4/p528-venetis.pdf
https://www.w3.org/TR/xhtml1/
https://www.w3.org/2005/10/Process-20051014/tr.html
https://www.w3.org/2005/10/Process-20051014/tr.html
https://www.w3.org/News/2009#entry-6601
https://www.w3.org/News/2009#entry-6601

W3C. Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification, 2011.
URL https://www.w3.org/TR/CSS2/. Visited on 2018-04-15.

W3C. CSS Syntax Module Level 3, February 2014a. URL https://www.w3.org/
TR/css-syntax-3/. Visited on 2018-04-15.

W3C. JSON-LD 1.0, 2014b. URL https://www.w3.org/TR/json-ld/. Visited
on 2018-07-16.

W3C. RDF 1.1 Concepts and Abstract Syntax, February 2014c. URL https:
//www.w3.org/TR/2014/REC-rdf11-concepts-20140225/. Visited on 2018-
04-15.

W3C. Ontologies - W3C, 2015a. URL https://www.w3.org/standards/
semanticweb/ontology. Visited on 2018-04-15.

W3C. Semantic Web - W3C, 2015b. URL https://www.w3.org/standards/
semanticweb/. Visited on 2016-03-20.

W3C. HTML 5.2, December 2017. URL https://www.w3.org/TR/html52/.
Visited on 2018-04-15.

J. Wang, H. Wang, Z. Wang, and K.Q. Zhu. Understanding Tables on the
Web. Proceedings of the 31st international conference on Conceptual Model-
ing, pages 141–155, 2012. doi: 10.1007/978-3-642-34002-4 11. URL http:
//link.springer.com/10.1007/978-3-642-34002-4_11. Visited on 2017-
07-07.

I. H. Witten and F. Eibe. Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufman, Boston, MA, 2 edition, 2005. ISBN 0-12-088407-
0.

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Metoda, G. J. McLach-
lan, A. Ng, B. Liu, P. S. Yu, Zhou Z. H., Steinbach M., D. J. Hand, and D. Stein-
berg. Top 10 algorithms in data mining. Knowledge and Information Systems
[online], 14(1):1–37, 2008. ISSN 0219-1377. doi: 10.1007/s10115-007-0114-2.
URL http://dl.acm.org/citation.cfm?id=1566770.1566773. Visited on
2017-07-11.

A. Zell. Simulation neuronaler Netze. Addison-Wesley, 1997. ISBN 3893195548.

Z. Zhang. Towards Efficient and Effective Semantic Table Interpretation. ISWC
’14 Proceedings of the 13th International Semantic Web Conference - Part I,
2014. doi: 10.1007/978-3-319-11964-9 31. URL http://link.springer.com/
10.1007/978-3-319-11964-9_31. Visited on 2017-06-15.

Z. Zhang. Effective and Efficient Semantic Table Interpretation using TableM-
iner+. Semantic Web Journal (Accepted, Tracking: 1339-2551) [online], 2016.
URL http://semantic-web-journal.net/system/files/swj1339.pdf.

S. Zwicklbauer, C. Einsiedler, M. Granitzer, and C. Seifert. Towards Disam-
biguating Web Tables. CEUR Workshop Proceedings, 1035:205–208, 2013.
URL http://ceur-ws.org/Vol-1035/iswc2013_poster_7.pdf. Visited on
2017-07-06.

81

https://www.w3.org/TR/CSS2/
https://www.w3.org/TR/css-syntax-3/
https://www.w3.org/TR/css-syntax-3/
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/standards/semanticweb/ontology
https://www.w3.org/standards/semanticweb/ontology
https://www.w3.org/standards/semanticweb/
https://www.w3.org/standards/semanticweb/
https://www.w3.org/TR/html52/
http://link.springer.com/10.1007/978-3-642-34002-4_11
http://link.springer.com/10.1007/978-3-642-34002-4_11
http://dl.acm.org/citation.cfm?id=1566770.1566773
http://link.springer.com/10.1007/978-3-319-11964-9_31
http://link.springer.com/10.1007/978-3-319-11964-9_31
http://semantic-web-journal.net/system/files/swj1339.pdf
http://ceur-ws.org/Vol-1035/iswc2013_poster_7.pdf

List of Figures

1.1 RDF graph representation of the information from Example 3. . . 15

3.1 TableMiner+ Algorithm Flow. Source: Zhang [2016] 26
3.2 Odalic UI - Feedback screen. 30

4.1 Example of product detail page of DebenhamsPlus.com e-shop
(cropped). 33

5.1 Example of scraped product detail page of DebenhamsPlus.com
e-shop (cropped). 38

5.2 Example of product feature list of DebenhamsPlus.com e-shop
(cropped). 39

5.3 Example of converted and preprocessed CSV file (cropped). 39

6.1 Example of a decision tree. Source: Amde and Bradley [2014] . . 41
6.2 Example schema of a neural network. Source: http://cs231n.

github.io/neural-networks-1/ 43

7.1 The proposed algorithm flow. 54
7.2 Odalic UI: Add New Task form with added Machine Learning sec-

tion highlighted. 68
7.3 Odalic: Example of suggested classifications. 69
7.4 Odalic: Example of detected subject columns. 70
7.5 Odalic: Example of suggested relations. 71
7.6 Odalic UI: Added “Auto Propose” button (highlighted). 74
7.7 Odalic UI: Example of task results with entity auto-proposal. . . . 75

82

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/

List of Tables

1.1 Selected CSS selectors. Source: https://www.w3.org/TR/CSS2/
selector.html . 9

6.1 Proposed Feature Set. 49
6.2 Average times of single 10-fold cross validation (= 10 validations)

run of classification algorithms in Experiment 13 on the same PC. 50
6.3 Experiment 13: Used Feature Set. 51
6.4 Experiment 13: Results. 51
6.5 Comparision of best configurations of all evaluated algorithms . . 52
6.6 Random Forest - configuration parameters with best results. . . . 53

7.1 Average results of tasks performed by the new Odalic algorithm. . 71
7.2 Average results of tasks with corrected column classifications, per-

formed by the new Odalic algorithm. 72
7.3 Average results of “inverse” tasks performed by the new Odalic

algorithm. 72
7.4 Average results of “inverse” tasks with corrected column classifica-

tions, performed by the new Odalic algorithm. 72

C.1 Experiment 1: Used Feature Set. 91
C.2 Experiment 1: Results. 91
C.3 Experiment 2: Used Feature Set. 91
C.4 Experiment 2: Results. 92
C.5 Experiment 3: Used Feature Set. 92
C.6 Experiment 3: Results. 92
C.7 Experiment 4: Used Feature Set. 93
C.8 Experiment 4: Results. 93
C.9 Experiment 5: Used Feature Set. 93
C.10 Experiment 5: Results. 94
C.11 Experiment 6: Used Feature Set. 94
C.12 Experiment 6: Results. 94
C.13 Experiment 7: Used Feature Set. 95
C.14 Experiment 7: Results. 95
C.15 Experiment 8: Used Feature Set. 95
C.16 Experiment 8: Results. 96
C.17 Experiment 9: Used Feature Set. 96
C.18 Experiment 9: Results. 96
C.19 Experiment 10: Used Feature Set. 97
C.20 Experiment 10: Results. 97
C.21 Experiment 11: Used Feature Set. 97
C.22 Experiment 11: Results. 98
C.23 Experiment 12: Used Feature Set. 98
C.24 Experiment 12: Results. 98
C.25 Experiment 14: Used Feature Set. 99
C.26 Experiment 14: Results. 99
C.27 Experiment 15: Used Feature Set. 99

83

https://www.w3.org/TR/CSS2/selector.html
https://www.w3.org/TR/CSS2/selector.html

C.28 Experiment 15: Results. 100

D.1 List of evaluated configurations for Decision Tree classifier. 101
D.2 Decision Tree - configuration parameters with best results. 102
D.3 List of evaluated configurations for Decision List classifier. 103
D.4 Decision List - configuration parameters with best results. 103
D.5 List of evaluated configurations for Decision Table classifier. . . . 103
D.6 Decision Table - configuration parameters with best results. . . . 104
D.7 List of evaluated configurations for Naive Bayes classifier. 104
D.8 Naive Bayes - configuration parameters with best results. 104
D.9 List of evaluated configurations for Random Forest classifier. . . . 105
D.10 List of evaluated configurations for Support Vector Machine classifier.105
D.11 Support Vector Machine - configuration parameters with best results.106
D.12 List of evaluated configurations for Multilayer Perceptron classifier. 106
D.13 Multilayer Perceptron - configuration parameters with best results. 107

E.1 Task 1: Results. 108
E.2 Task 1: Results in case the column classification was correct for

all columns. 108
E.3 Task 2: Results. 109
E.4 Task 2: Results in case the column classification was correct for

all columns. 109
E.5 Task 3: Results. 110
E.6 Task 4: Results. 110
E.7 Task 4: Results in case the column classification was correct for

all columns. 110
E.8 Task 5: Results. 111
E.9 Task 5: Results in case the column classification was correct for

all columns. 111
E.10 Task 6: Results. 111

84

List of Abbreviations
CSV Comma-Separated Values
UI User Interface
UX User Experience
HTML Hypertext Markup Language
XHTML Extensible Hypertext Markup Language
XML Extensible Markup Language
URI Extensible Markup Language
IRI Extensible Markup Language
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
RDF Resource Description Framework
NE Named Entity
STI Semantic Table Interpretation
CPU Central Processing Unit
GUI Graphical User Interface
SMO Sequential Minimal Optimization
ARFF Attribute-Relation File Format

85

A. Attachment 1: CD Contents

CD Path Description
files
- inputData/raw Raw HTML files scraped from e-shops.
- inputData/csv CSV files converted from scraped HTML files.
- itSucksEshopTemplates Configuration templates used by the ItSucks

tool for e-shop product data scraping.
html-to-csv-tool
- conf/jobs Job configuration files for used e-shops.
- src Source code of the html-csv-tool application.
- target/html-csv-tool.jar Pre-compiled runnable .jar package of the html-

to-csv-tool application.
ml-experiments
- src Source code of the ml-experiments application.
- target/ml-experiments.jar Pre-compiled .jar package of the ml-

experiments application.
- documentation
- - ml-experiments-doc.pdf Ml-experiments documentation.
- resources Files related to the ML classification experi-

ments.
- - experimentX/input Input files for experiments, CSV & ARFF.
- - experimentX/output Output files of experiments.
odalic
- sti Base directory of Odalic STI component, in-

cluding source code of all of its modules.
- - odalic
- - - target
- - - - odalic.war Pre-compiled war package of Odalic STI com-

ponent with proposed algorithm included.
- - config Odalic STI configuration folder.
- - - ml.properties ML PreClassification configuration file.
- - resources
- - - ml
- - - - mapping.json Example of ML class to Ontology concepts map-

ping file.
- - - - ontology Ontology definition files.
- - - - - dbpedia 2016-10.nt DBpedia ontology definition file.
- - - - - kadlecek onto.ttl Definition file of custom product ontology.
- odalic-ui Odalic UI source files.
- documentation Odalic documentation.
evaluation Datasets for algorithm evaluation.
- legacy-algorithm Datasets for legacy algorithm evaluation.
- - input
- new-algorithm Datasets for new algorithm evaluation.
- - taskX Datasets for Task X of new algorithm evalua-

tion.

86

- - - training Training dataset
- - - testing Testing dataset (Odalic input).
semantized-data Semantized Product Data
thesis
- thesis.pdf PDF version of this Master Thesis.

87

B. Attachment 2: HTML to CSV
Conversion Application

B.1 Getting the application
Source codes, already pre-compiled “jar”package, sample application configuration
and job configurations for all e-shops described in the Chapter 5 can be found in
the “/html-to-csv-tool” folder on the attached CD.

B.2 Compiling application JAR package
HtmlToCsvTool application uses Apache Maven1 to take care of the build process.
The runnable jar package can be produced by running the command described
in Code B.1 in the root directory of application sources. This should produce a
runnable jar package “target/html-csv-tool-1.0-SNAPSHOT-full.jar”.

$ mvn clean package

Code B.1: Command for compilation of HtmlToCsvTool application jar
package.

B.3 Launching the application
The application does not have any graphical user interface, and can be thus
launched only from the command line. It accepts one additional mandatory
argument - the path to the configuration file describing the job which should
be launched. Example of running the conversion of HTML files scraped from
GearBest.com e-shop can be found in Code B.2. The application expects that
the configuration file with (relative) path “conf/application.properties” exists.

$ java -jar html-csv-tool-1.0-SNAPSHOT-full.jar \
"conf/jobs/gearbest_config.properties"

Code B.2: Example of launching HtmlToCsvTool application from the
command line.

B.4 Application Configuration
The application configuration is a java properties file which supports following
configuration options:

• threads.max.concurrent - Maximum number of concurrently running pro-
cessing threads. Value “-1” represents “number of all available processor
cores”.

1https://maven.apache.org/

88

https://maven.apache.org/

• thread.process.max.files - Maximum size of a chunk - number of files pro-
cessed by a single processing thread as a single task.

Example of application configuration file can be found in the
“/html-to-csv-tool/conf/application.properties” file on the attached CD.

B.5 Job Configuration
The configuration of a job is a Java properties file and consists of following prop-
erties:

• files.path - Absolute path to the folder containing the input HTML files.
All files present in given directory (and recursively its subdirectories) will
be processed by the application.

• output.path - Absolute path to the folder, where the output files should be
placed.

• uri.prefix - Each line in the output CSV file describes a single resource
(single product) described by HTML document. This property defines a
prefix which will be appended to the URI of the resource, such as
“http://example.org/”. The rest of the URI is determined by the HTML
file path on the filesystem, relative to the files.path folder.

• output.csv.lineSeparator - Separator to be used to separate lines in the
output CSV files.

• output.csv.columnSeparator - Separator to be used to separate columns in
the output CSV files.

• output.csv.encloseBy - Character which will be used to enclose the values
in the output CSV files.

• website.type - Type of the website. This setting determines which parser
should be used for the job. The application supports website types of all
e-shops described in the Section 5.1 of the Chapter 5. The enumeration of
values which can be used in the job configuration file are:

– GEARBEST
– MOBILESHOP
– DEBENHAMSPLUS

B.6 Adding Support For a New Website Type
There are two points in the application code which needs to be updated in order
to add a support of a new website type to the application. Both of these update
points will be described in following subsections.

89

B.6.1 Parsers Package
The “sk.kadlecek.htmltablefetcher.parser” package contains implementation of all
supported parsers. Every parser should extend the AbstractParser class which
provides couple of useful helper methods, as well as defines the basic structure
of a parser using abstract methods. These methods need to be implemented by
each parser. The default parsers use Jsoup2 library for querying of the HTML
using CSS selectors, but new parsers can use completely different approach.

B.6.2 WebsiteType Enumeration
Once the parser implementation is finished, the new WebsiteType can be added
to the enumeration of all supported WebsiteTypes. This is done by adding of
a new value to the “sk.kadlecek.htmltablefetcher.enumeration.WebsiteType” enu-
meration, together with the reference to a parser class which is able to process
files of the new WebsiteType.

2https://jsoup.org/

90

https://jsoup.org/

C. Attachment 3: Feature
Experiments
The input data used for experiments can be found in the
“/ml-experiments/resources/experimentX/input” folders (where X is the number
of the Experiment) on the attached CD.

Experiments in following sections were performed in order to discover the best
performing set of features on given input data.

C.1 Experiment 1
The feature set used in this experiment can be found in Table C.1.

Numeric Features

Total Number of Words

Table C.1: Experiment 1: Used Feature Set.

Results of the experiment can be found in Table C.2.

Average Average Average Average
Algorithm Error Rate Precision Recall F-measure

(%) (%) (%)

Decision Tree 38,80 45,41 61,20 51,31
Decision Stump 52,16 25,84 47,84 32,92
Decision List 38,79 45,45 61,21 51,36
Decision Table 38,84 45,27 61,16 51,22
Naive Bayes 48,31 32,14 51,69 38,36
Random Forrest 38,78 45,48 61,22 51,32
Support Vector Machine 50,76 28,03 49,24 35,29
Multilayer Perceptron 39,37 43,70 60,63 50,38

Table C.2: Experiment 1: Results.

C.2 Experiment 2
The feature set used in this experiment can be found in Table C.3.

Numeric Features

Total Number of Words
Total Number of Characters

Table C.3: Experiment 2: Used Feature Set.

Results of the experiment can be found in Table C.4.

91

Average Average Average Average
Algorithm Error Rate Precision Recall F-measure

(%) (%) (%)

Decision Tree 28,52 64,33 71,48 66,86
Decision Stump 51,23 24,67 48,77 32,63
Decision List 28,71 65,05 71,29 67,07
Decision Table 30,74 62,27 69,26 64,22
Naive Bayes 44,37 44,85 55,63 48,43
Random Forrest 29,31 65,18 70,69 67,00
Support Vector Machine 49,48 27,96 50,52 35,58
Multilayer Perceptron 32,29 57,09 67,71 61,08

Table C.4: Experiment 2: Results.

C.3 Experiment 3
The feature set used in this experiment can be found in Table C.5.

Numeric Features

Total Number of Words
Total Number of Characters
Total Number of Letters

Table C.5: Experiment 3: Used Feature Set.

Results of the experiment can be found in Table C.6.

Average Average Average Average
Algorithm Error Rate Precision Recall F-measure

(%) (%) (%)

Decision Tree 17,44 80,69 82,56 81,13
Decision Stump 50,32 25,42 49,68 33,40
Decision List 17,51 80,89 82,49 81,34
Decision Table 21,71 76,06 78,29 76,29
Naive Bayes 36,92 59,42 63,08 59,42
Random Forrest 15,91 82,97 84,09 83,29
Support Vector Machine 40,88 40,82 59,12 47,15
Multilayer Perceptron 24,52 72,77 75,48 72,90

Table C.6: Experiment 3: Results.

C.4 Experiment 4
The feature set used in this experiment can be found in Table C.7.

Results of the experiment can be found in Table C.8.

92

Numeric Features

Total Number of Words
Total Number of Characters
Total Number of Letters
Total Number of Digits

Table C.7: Experiment 4: Used Feature Set.

Average Average Average Average
Algorithm Error Rate Precision Recall F-measure

(%) (%) (%)

Decision Tree 14,91 83,93 85,09 84,23
Decision Stump 50,32 25,42 49,68 33,40
Decision List 15,05 84,06 84,95 84,33
Decision Table 20,56 80,31 79,44 78,65
Naive Bayes 37,07 62,93 62,93 61,71
Random Forrest 12,57 86,81 87,43 86,96
Support Vector Machine 40,44 41,14 59,56 47,75
Multilayer Perceptron 22,70 75,86 77,30 75,45

Table C.8: Experiment 4: Results.

C.5 Experiment 5
The feature set used in this experiment can be found in Table C.9.

Numeric Features

Total Number of Words
Total Number of Characters
Total Number of Letters
Total Number of Digits
Total Number of Whitespace Characters

Table C.9: Experiment 5: Used Feature Set.

Results of the experiment can be found in Table C.10.

C.6 Experiment 6
The feature set used in this experiment can be found in Table C.11.

Results of the experiment can be found in Table C.12.

C.7 Experiment 7
The feature set used in this experiment can be found in Table C.13.

Results of the experiment can be found in Table C.14.

93

Average Average Average Average
Algorithm Error Rate Precision Recall F-measure

(%) (%) (%)

Decision Tree 14,81 84,02 85,19 84,31
Decision Stump 50,32 25,42 49,68 33,40
Decision List 15,00 84,16 85,00 84,42
Decision Table 20,69 80,54 79,31 78,70
Naive Bayes 36,85 64,19 63,15 62,50
Random Forrest 12,34 87,06 87,66 87,20
Support Vector Machine 39,21 44,23 60,79 49,81
Multilayer Perceptron 21,47 76,88 78,53 76,38

Table C.10: Experiment 5: Results.

Numeric Features

Total Number of Words
Total Number of Characters
Total Number of Letters
Total Number of Digits
Total Number of Whitespace Characters
Total Number of Other Characters

Table C.11: Experiment 6: Used Feature Set.

Average Average Average Average
Algorithm Error Rate Precision Recall F-measure

(%) (%) (%)

Decision Tree 13,33 86,11 86,67 86,20
Decision Stump 50,32 25,42 49,68 33,40
Decision List 13,36 86,11 86,64 86,21
Decision Table 20,67 83,42 79,33 79,38
Naive Bayes 35,26 67,25 64,74 64,81
Random Forrest 11,41 88,08 88,59 88,21
Support Vector Machine 39,13 44,32 60,87 50,04
Multilayer Perceptron 21,02 77,78 78,98 77,32

Table C.12: Experiment 6: Results.

C.8 Experiment 8
The feature set used in this experiment can be found in Table C.15.

Results of the experiment can be found in Table C.16.

C.9 Experiment 9
The feature set used in this experiment can be found in Table C.17.

Results of the experiment can be found in Table C.18.

94

Numeric Features Boolean Features

Total Number of Words Is the String Numeric Value
Total Number of Characters
Total Number of Letters
Total Number of Digits
Total Number of Whitespace Char-
acters
Total Number of Other Characters

Table C.13: Experiment 7: Used Feature Set.

Average Average Average Average
Algorithm Error Rate Precision Recall F-measure

(%) (%) (%)

Decision Tree 13,22 86,29 86,78 86,33
Decision Stump 50,32 25,42 49,68 33,40
Decision List 13,22 86,31 86,78 86,34
Decision Table 20,57 83,59 79,43 79,51
Naive Bayes 35,23 67,31 64,77 64,84
Random Forrest 11,30 88,20 88,70 88,31
Support Vector Machine 39,03 44,75 60,97 50,31
Multilayer Perceptron 21,06 78,05 78,94 77,42

Table C.14: Experiment 7: Results.

Numeric Features Boolean Features

Total Number of Words Is the String Numeric Value
Total Number of Characters Is the String Integral Numeric Value
Total Number of Letters
Total Number of Digits
Total Number of Whitespace Char-
acters
Total Number of Other Characters

Table C.15: Experiment 8: Used Feature Set.

C.10 Experiment 10
The feature set used in this experiment can be found in Table C.19.

Results of the experiment can be found in Table C.20.

C.11 Experiment 11
The feature set used in this experiment can be found in Table C.21.

Results of the experiment can be found in Table C.22.

95

Average Average Average Average
Algorithm Error Rate Precision Recall F-measure

(%) (%) (%)

Decision Tree 13,22 86,29 86,78 86,33
Decision Stump 50,32 25,42 49,68 33,40
Decision List 13,27 86,23 86,73 86,29
Decision Table 20,55 83,58 79,45 79,51
Naive Bayes 35,22 67,08 64,78 64,73
Random Forrest 11,32 88,22 88,68 88,31
Support Vector Machine 39,01 45,17 60,99 50,37
Multilayer Perceptron 21,51 78,04 78,49 77,13

Table C.16: Experiment 8: Results.

Numeric Features Boolean Features

Total Number of Words Is the String Numeric Value
Total Number of Characters Is the String Integral Numeric Value
Total Number of Letters Is the String Decimal Numeric Value
Total Number of Digits
Total Number of Whitespace Char-
acters
Total Number of Other Characters

Table C.17: Experiment 9: Used Feature Set.

Average Average Average Average
Algorithm Error Rate Precision Recall F-measure

(%) (%) (%)

Decision Tree 13,22 86,29 86,78 86,33
Decision Stump 50,32 25,42 49,68 33,40
Decision List 13,28 86,19 86,72 86,28
Decision Table 20,55 83,58 79,45 79,51
Naive Bayes 35,17 67,19 64,83 64,80
Random Forrest 11,27 88,25 88,73 88,35
Support Vector Machine 39,01 45,14 60,99 50,36
Multilayer Perceptron 21,17 78,67 78,83 77,47

Table C.18: Experiment 9: Results.

C.12 Experiment 12
The feature set used in this experiment can be found in Table C.23.

Results of the experiment can be found in Table C.24.

C.13 Experiment 13
The feature set used in this experiment can be found in Table 6.3 in Chapter 6.

96

Numeric Features Boolean Features

Total Number of Words Is the String Numeric Value
Total Number of Characters Is the String Integral Numeric Value
Total Number of Letters Is the String Decimal Numeric Value
Total Number of Digits Is the String Prefixed Number (e.g.

“$100”)
Total Number of Whitespace Char-
acters
Total Number of Other Characters

Table C.19: Experiment 10: Used Feature Set.

Average Average Average Average
Algorithm Error Rate Precision Recall F-measure

(%) (%) (%)

Decision Tree 12,17 87,33 87,83 87,39
Decision Stump 50,32 25,42 49,68 33,40
Decision List 12,23 87,21 87,77 87,33
Decision Table 19,75 84,33 80,25 80,40
Naive Bayes 34,80 67,38 65,20 65,07
Random Forrest 10,14 89,32 89,86 89,47
Support Vector Machine 38,87 50,94 61,13 53,34
Multilayer Perceptron 19,94 78,72 80,06 78,62

Table C.20: Experiment 10: Results.

Numeric Features Boolean Features

Total Number of Words Is the String Numeric Value
Total Number of Characters Is the String Integral Numeric Value
Total Number of Letters Is the String Decimal Numeric Value
Total Number of Digits Is the String Prefixed Number (e.g.

“$100”)
Total Number of Whitespace Char-
acters

Is the String Postfixed Number (e.g.
“2 GB”)

Total Number of Other Characters

Table C.21: Experiment 11: Used Feature Set.

Results of the experiment can be found in Table 6.4 in Chapter 6.

C.14 Experiment 14
The feature set used in this experiment can be found in Table C.25.

Results of the experiment can be found in Table C.26.

97

Average Average Average Average
Algorithm Error Rate Precision Recall F-measure

(%) (%) (%)

Decision Tree 11,76 87,65 88,24 87,78
Decision Stump 50,32 25,42 49,68 33,40
Decision List 11,71 87,76 88,29 87,90
Decision Table 19,57 84,14 80,43 80,45
Naive Bayes 34,04 68,23 65,96 65,92
Random Forrest 9,45 90,02 90,55 90,16
Support Vector Machine 39,07 51,11 60,93 52,92
Multilayer Perceptron 18,90 79,90 81,10 79,95

Table C.22: Experiment 11: Results.

Numeric Features Boolean Features

Total Number of Words Is the String Numeric Value
Total Number of Characters Is the String Prefixed Number
Total Number of Letters Is the String Postfixed Number
Total Number of Digits
Total Number of Other Characters

Table C.23: Experiment 12: Used Feature Set.

Average Average Average Average
Algorithm Error Rate Precision Recall F-measure

(%) (%) (%)

Decision Tree 11,92 87,43 88,08 87,57
Decision Stump 50,32 25,42 49,68 33,40
Decision List 11,79 87,75 88,21 87,85
Decision Table 19,20 84,04 80,80 80,70
Naive Bayes 33,73 67,92 66,27 65,80
Random Forrest 9,67 89,89 90,33 90,01
Support Vector Machine 39,32 49,99 60,68 52,39
Multilayer Perceptron 18,79 80,17 81,21 80,13

Table C.24: Experiment 12: Results.

C.15 Experiment 15
The feature set used in this experiment can be found in Table C.27.

Results of the experiment can be found in Table C.28.

98

Numeric Features Boolean Features

Total Number of Words Is the String Prefixed Number
Total Number of Characters Is the String Postfixed Number
Total Number of Letters
Total Number of Digits
Total Number of Whitespace Char-
acters
Total Number of Other Characters

Table C.25: Experiment 14: Used Feature Set.

Average Average Average Average
Algorithm Error Rate Precision Recall F-measure

(%) (%) (%)

Decision Tree 11,76 87,65 88,24 87,78
Decision Stump 50,32 25,42 49,68 33,40
Decision List 11,71 87,81 88,29 87,90
Decision Table 19,56 84,10 80,44 80,46
Naive Bayes 34,24 68,13 65,76 65,77
Random Forrest 9,48 90,07 90,52 90,18
Support Vector Machine 39,20 50,29 60,80 52,68
Multilayer Perceptron 19,42 79,22 80,58 79,43

Table C.26: Experiment 14: Results.

Numeric Features Boolean Features

Total Number of Words Is the String Integral Numeric Value
Total Number of Characters Is the String Decimal Numeric Value
Total Number of Letters Is the String Prefixed Number
Total Number of Digits Is the String Postfixed Number
Total Number of Whitespace Char-
acters
Total Number of Other Characters

Table C.27: Experiment 15: Used Feature Set.

99

Average Average Average Average
Algorithm Error Rate Precision Recall F-measure

(%) (%) (%)

Decision Tree 11,76 87,65 88,24 87,78
Decision Stump 50,32 25,42 49,68 33,40
Decision List 11,71 87,79 88,29 87,91
Decision Table 19,57 84,14 80,43 80,45
Naive Bayes 34,14 68,08 65,86 65,80
Random Forrest 9,46 90,04 90,54 90,17
Support Vector Machine 39,05 51,16 60,95 52,95
Multilayer Perceptron 19,44 79,45 80,56 79,46

Table C.28: Experiment 15: Results.

100

D. Attachment 4: Algorithm
Configurations
This chapter contains the exhaustive descriptions of all configuration properties
and values which were tracked during the evaluation. For each algorithm, also
the best configuration is listed. At the end of this chapter, a comparison table of
results of best configurations of all algorithm is listed.

D.1 Decision Tree
Following list enumerates all of the tracked algorithm properties of the Decision
Tree algorithm. Summary of all evaluated configurations can be found in Table
D.1.

• Minimum Number of Objects per Leaf - Minimum Number of Objects that
needs to be stored in every leaf of the decision tree.

• Subtree Raising - Perform, or don’t perform, the subtree raising1 operation.

• Use Laplace Smoothing for Probabilities - Do, or don’t, apply the Laplace
Smoothing algorithm on the predicted probabilities.

• MLD Correction - Do, or don’t, use MDL correction operation on numeric
attributes.

• Tree Pruning - Sets whether the decision tree should be pruned or not2.

• Confidence Factor - The value of confidence threshold used for decision tree
pruning.

Property Type Values
Minimum Number of Objects per Leaf integer 0 – 10 (step 1)
Subtree Raising boolean true / false
Use Laplace Smoothing for Probabilities boolean true / false
MLD Correction boolean true / false
Tree Pruning boolean true / false
Confidence Factor float 0.1 – 0.4 (step 0.1)

Table D.1: List of evaluated configurations for Decision Tree classifier.

The algorithm configuration which, according to the results, performed the
best can be found in Table D.2.

1Replaces selected subtree with its child-subtree
2Replace selected node with a leaf and assign most common class in original node subtree

as the value of that leaf.

101

Parameter Value

Minimum Number of Objects per Leaf 1
Subtree Raising true
Use Laplace Smoothing for Probabilities false
MLD Correction true
Tree Pruning true
Confidence Factor 0.4

Table D.2: Decision Tree - configuration parameters with best results.

D.2 Decision Stump
Decision stump algorithm does not support any additional configuration.

D.3 Decision List
Following list enumerates all of the tracked algorithm properties of the Decision
List algorithm. Summary of all evaluated configurations can be found in Table
D.3.

• Confidence Factor - The value of confidence threshold used for decision tree
pruning.

• Minimum Number of Objects per Leaf - Minimum Number of Objects that
needs to be stored in every leaf of the decision tree.

• Use Binary Splits Only - Do, or don’t, use only binary splits.

• Make Split Point Actual Value - Do, or don’t, create an actual value out of
a split point.

• MLD Correction - Do, or don’t, use MDL correction operation on numeric
attributes.

• Tree Pruning - Sets whether the decision tree should be pruned or not3.

• Reduced Error Pruning - Do, or don’t, use Reduced Error Pruning4.

The algorithm configuration which, according to the results, performed the
best can be found in Table D.4.

D.4 Decision Table
Following list enumerates all of the tracked algorithm properties of the Decision
Table algorithm. Summary of all evaluated configurations can be found in Table
D.5.

3Replace selected node with a leaf and assign most common class in original node subtree
as the value of that leaf.

4Prune nodes which will increases the accuracy of the classifier the most

102

Property Type Values
Confidence Factor float 0.1 – 0.4 (step 0.1)
Minimum Number of Objects per Leaf integer 0 – 10 (step 1)
Use Binary Splits Only boolean true / false
Make Split Point Actual Value boolean true / false
MLD Correction boolean true / false
Tree Pruning boolean true / false
Reduced Error Pruning boolean true / false

Table D.3: List of evaluated configurations for Decision List classifier.

Parameter Value

Confidence Factor 0.1
Minimum Number of Objects per Leaf 0
Use Binary Splits Only false
Make Split Point Actual Value true
MLD Correction true
Tree Pruning false
Reduced Error Pruning false

Table D.4: Decision List - configuration parameters with best results.

• Search Method - Search Method to use within the Decision Table. Allowed
values:

– BestFirst5 - Can have one of following direction values: Forward,
Backward, Bidirectional.

– GreedyStepWise6 - Can have one of following direction values: For-
ward, Backward.

• Use Nearest Neighbour Instead Of Global Majority (bolean) - Do, or don’t,
use the Nearest Neighbour method to select the classifier result, instead of
Global Majority method.

Property Type Values
Search Method object BestFirst (Forward / Backward /

Bidirectional) / GreedyStepWise
(Forward / Backward)

Use Nearest Neighbour In-
stead Of Global Majority

boolean true / false

Table D.5: List of evaluated configurations for Decision Table classifier.

The algorithm configuration which, according to the results, performed the
best can be found in Table D.6.

5http://weka.sourceforge.net/doc.dev/weka/attributeSelection/BestFirst.html
6http://weka.sourceforge.net/doc.dev/weka/attributeSelection/GreedyStepwise.

html

103

http://weka.sourceforge.net/doc.dev/weka/attributeSelection/BestFirst.html
http://weka.sourceforge.net/doc.dev/weka/attributeSelection/GreedyStepwise.html
http://weka.sourceforge.net/doc.dev/weka/attributeSelection/GreedyStepwise.html

Parameter Value

Search Method GreedyStepWise
(Backward)

Use Nearest Neighbour Instead Of Global Majority true

Table D.6: Decision Table - configuration parameters with best results.

D.5 Naive Bayes
Following list enumerates all of the tracked algorithm properties of the Naive
Bayes algorithm. Summary of all evaluated configurations can be found in Table
D.7.

• Use Kernel Density Estimator - Do, or don’t, use kernel density operator
for numeric attributes, instead of normal distribution.

• Use Supervised Discretization Factor - Do, or don’t, process numeric at-
tributes using supervised discretization method.

Property Type Values
Use Kernel Density Estimator boolean true / false
Use Supervised Discretization Factor boolean true / false

Table D.7: List of evaluated configurations for Naive Bayes classifier.

The algorithm configuration which, according to the results, performed the
best can be found in Table D.8.

Parameter Value

Use Kernel Density Estimator false
Use Supervised Discretization Factor true

Table D.8: Naive Bayes - configuration parameters with best results.

D.6 Random Forest
Following list enumerates all of the tracked algorithm properties of the Random
Forest algorithm. Summary of all evaluated configurations can be found in Table
D.9.

• Batch Size - Batch Size for the batch prediction.

• Max Depth - Maximum depth of each random tree.

• Number of Features - Number of features to check (randomly).

104

• Number of Bagging Iterations - Number of iterations to use for the learning
process.

• Break Ties Randomly - Do, or don’t, randomly break ties7.

Property Type Values
Batch Size integer 80 – 120 (step 10)
Max Depth integer 1 – 16 (step 2)
Number of Features integer 1 – 10 (step 1)
Number of Bagging Iterations integer 80 – 120 (step 10)
Break Ties Randomly boolean true / false

Table D.9: List of evaluated configurations for Random Forest classifier.

The algorithm configuration which, according to the results, performed the
best can be found in Table 6.6 in the Chapter 6.

D.7 Support Vector Machine
Following list enumerates all of the tracked algorithm properties of the Support
Vector Machine algorithm. Summary of all evaluated configurations can be found
in Table D.10.

• Complexity Constant - Complexity parameter, used by SMO to build hy-
perplane between classes.

• Kernel - Kernel implementation to use. Possible values: PolyKernel8,
Puk9, RBFKernel10.

• Build Calibration Model - Do, or don’t, build calibration models to fit to
SVM output.

Property Type Values
Complexity Constant float 0.7 – 1.5 (step 0.1)
Kernel object PolyKernel / Puk / RBFKernel
Build Calibration Model boolean true / false

Table D.10: List of evaluated configurations for Support Vector Machine classifier.

The algorithm configuration which, according to the results, performed the
best can be found in Table D.11.

7Tie is a situation, when there is no best majority vote (multiple features appear to be
equally good)

8http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/
supportVector/PolyKernel.html

9http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/
supportVector/Puk.html

10http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/
supportVector/RBFKernel.html

105

http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/supportVector/PolyKernel.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/supportVector/PolyKernel.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/supportVector/Puk.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/supportVector/Puk.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/supportVector/RBFKernel.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/supportVector/RBFKernel.html

Parameter Value

Complexity Constant 1.4
Kernel Puk
Build Calibration Model true

Table D.11: Support Vector Machine - configuration parameters with best results.

D.8 Multilayer Perceptron
Following list enumerates all of the tracked algorithm properties of the Multilayer
Perceptron algorithm. Summary of all evaluated configurations can be found in
Table D.12.

• Hidden Layer Types - Hidden layer types to use11.

• Learning Rate - Learning rate for the backpropagation algorithm.

• Momentum - Momentum rate for the backpropagation algorithm.

• Training Epochs - Number of epochs to train through.

• Decay - Do, or don’t, perform learning rate decay.

• Normalize Attribute Values - Do, or don’t, normalize feature values.

Property Type Values
Hidden Layer Types string a, t, i, o, a,t
Learning Rate double 0.1 – 0.5 (step 0.2)
Momentum double 0.1 – 0.5 (step 0.2)
Training Epochs integer 200 – 800 (step 200)
Decay boolean true / false
Normalize Attribute Values boolean true / false

Table D.12: List of evaluated configurations for Multilayer Perceptron classifier.

The algorithm configuration which, according to the results, performed the
best can be found in Table D.13.

D.9 Best Algorithm Configuration Comparison
The actual comparison of the evaluation metrics achieved by the best configu-
rations of the classifier algorithms can be found in the Table 6.5 in the Chapter
6.

11Description of the types can be found in algorithm documentation: http://weka.
sourceforge.net/doc.dev/weka/classifiers/functions/MultilayerPerceptron.html

106

http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/MultilayerPerceptron.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/MultilayerPerceptron.html

Parameter Value

Hidden Layer Types a,t
Learning Rate 0.3
Momentum 0.5
Training Epochs 800
Decay false
Normalize Attribute Values true

Table D.13: Multilayer Perceptron - configuration parameters with best results.

107

E. Attachment 5: Proposed
Algorithm Evaluation
This chapter describes the Odalic Tasks used for the evaluation of the new Odalic
algorithm. The input data can be find in the
“evaluation/new-algorithm/taskX/testing” folder and the training datasets in the
“evaluation/new-algorithm/taskX/training” (X is the number of the Task) on the
attached CD.

The value of the “sti.tmp.ml.confidence.threshold” threshold which was used
for all described tasks was set to 0.5.

The number of possible relations between table columns was determined based
on the formula: [number of columns] * ([number of columns] - 1).

E.1 Task 1
• Input File: 80 tablets shuffled.csv

• Training Dataset File: 20 tablets.csv

• Number of columns in input file: 27.

Results of this task can be found in Table E.1.

True True False False
Positive Negative Positive Negative

(%) (%) (%) (%)

Column Classification 80 95.45 4.55 20
Subject Columns Detection 50 96 4 50
Relation Discovery 72 99.52 0.48 28

Table E.1: Task 1: Results.

Since the subject column detection and relation discovery phases of the al-
gorithm depend heavily on results of the column classification phase, table E.2
shows results of these algorithm phases in case that the column classification
phase was completely correct.

True True False False
Positive Negative Positive Negative

(%) (%) (%) (%)

Subject Columns Detection 100 100 0 0
Relation Discovery 84 99.68 0.32 16

Table E.2: Task 1: Results in case the column classification was correct for all
columns.

108

E.2 Task 2
• Input File: 80 computers shuffled.csv

• Training Dataset File: 20 computers.csv

• Number of columns in input file: 29

Results of this task can be found in Table E.3.

True True False False
Positive Negative Positive Negative

(%) (%) (%) (%)

Column Classification 80 95.83 4.17 20
Subject Columns Detection 66.67 96.15 3.85 33.33
Relation Discovery 77.78 98.96 1.04 22.22

Table E.3: Task 2: Results.

Note: There were four relations evaluated as a false positives which were dis-
covered using the legacy odalic relation discovery algorithm fallback mechanism.

Since the subject column detection and relation discovery phases of the al-
gorithm depend heavily on results of the column classification phase, table E.4
shows results of these algorithm phases in case that the column classification
phase was completely correct.

True True False False
Positive Negative Positive Negative

(%) (%) (%) (%)

Subject Columns Detection 100 100 0 0
Relation Discovery 92.59 99.41 0.59 7.41

Table E.4: Task 2: Results in case the column classification was correct for all
columns.

E.3 Task 3
• Input File: 80 phones shuffled.csv

• Training Dataset File: 20 phones.csv

• Number of columns in input file: 32

Results of this task can be found in Table E.5.
Note: There was one relation evaluated as a false positive which was discovered

using the legacy odalic relation discovery algorithm fallback mechanism.

109

True True False False
Positive Negative Positive Negative

(%) (%) (%) (%)

Column Classification 100 100 0 0
Subject Columns Detection 100 100 0 0
Relation Discovery 100 99.9 0.1 0

Table E.5: Task 3: Results.

E.4 Task 4
• Input File: 20 tablets renamed.csv

• Training Dataset File: 80 tablets shuffled renamed.csv

• Number of columns in input file: 26.

Results of this task can be found in Table E.6.

True True False False
Positive Negative Positive Negative

(%) (%) (%) (%)

Column Classification 80 95.45 4.55 20
Subject Columns Detection 50 96 4 50
Relation Discovery 64 99.36 0.64 36

Table E.6: Task 4: Results.

Since the subject column detection and relation discovery phases of the al-
gorithm depend heavily on results of the column classification phase, table E.7
shows results of these algorithm phases in case that the column classification
phase was completely correct.

True True False False
Positive Negative Positive Negative

(%) (%) (%) (%)

Subject Columns Detection 100 100 0 0
Relation Discovery 76 99.84 0.16 24

Table E.7: Task 4: Results in case the column classification was correct for all
columns.

E.5 Task 5
• Input File: 20 computers renamed.csv

• Training Dataset File: 80 computers shuffled renamed.csv

110

• Number of columns in input file: 27

Results of this task can be found in Table E.8.

True True False False
Positive Negative Positive Negative

(%) (%) (%) (%)

Column Classification 80 100 0 20
Subject Columns Detection 100 100 0 0
Relation Discovery 88.89 99.41 0.59 11.11

Table E.8: Task 5: Results.

Since the relation discovery phase of the algorithm depend heavily on results
of the column classification phase, table E.7 shows results of this algorithm phas
in case that the column classification phase was completely correct.

True True False False
Positive Negative Positive Negative

(%) (%) (%) (%)

Relation Discovery 96.3 99.56 0.44 3.7

Table E.9: Task 5: Results in case the column classification was correct for all
columns.

E.6 Task 6
• Input File: 20 phones renamed.csv

• Training Dataset File: 80 phones shuffled renamed.csv

• Number of columns in input file: 32

Results of this task can be found in Table E.10.

True True False False
Positive Negative Positive Negative

(%) (%) (%) (%)

Column Classification 100 100 0 0
Subject Columns Detection 100 100 0 0
Relation Discovery 100 99.9 0.1 0

Table E.10: Task 6: Results.

111

	Introduction
	Web 2.0 vs the Semantic Web
	Web 2.0
	Web 2.0 - Technologies
	Problems of Web 2.0

	Web 3.0: The Semantic Web and Linked Data
	Linked Data
	Web 3.0 Technologies

	Web 2.0 Semantization - Annotations
	Microformats
	RDF in Attributes (RDFa)
	The OpenGraph Protocol
	JSON-LD

	Semantic Table Interpretation & Related Work
	Semantic Table Interpretation
	Existing Approaches

	TableMiner+ and Odalic
	TableMiner+ Algorithm
	Algorithm Flow

	Odalic Project and Odalic Core
	Odalic Project Components

	Background of This Thesis
	Motivation
	Goal

	Obtaining Product Data
	Downloading HTML Product Details
	Scraped HTML Documents

	HTML to CSV Conversion
	Converted CSV files

	Evaluating Machine Learning Classifier Algorithms
	Machine Learning & Classification
	Evaluated Classification Algorithms
	Classifier Evaluation
	The Ml-Experiments Framework
	Experiments
	Experiments Conclusion

	The New Odalic Algorithm
	Algorithm Description
	The ML PreClassification Phase
	Subject Column Detection
	Column Classification & Entity Disambiguation
	Relation Discovery
	Lookup of Predicate Between Subject and Object Entities
	Adjustment of the thesis sub-goals

	Odalic Integration
	Evaluation
	Original Odalic Algorithm Results
	New Odalic Algorithm Results

	Semantization of Obtained Product Data

	Conclusion & Future Work
	Future Work

	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachment 1: CD Contents
	Attachment 2: HTML to CSV Conversion Application
	Getting the application
	Compiling application JAR package
	Launching the application
	Application Configuration
	Job Configuration
	Adding Support For a New Website Type
	Parsers Package
	WebsiteType Enumeration

	Attachment 3: Feature Experiments
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5
	Experiment 6
	Experiment 7
	Experiment 8
	Experiment 9
	Experiment 10
	Experiment 11
	Experiment 12
	Experiment 13
	Experiment 14
	Experiment 15

	Attachment 4: Algorithm Configurations
	Decision Tree
	Decision Stump
	Decision List
	Decision Table
	Naive Bayes
	Random Forest
	Support Vector Machine
	Multilayer Perceptron
	Best Algorithm Configuration Comparison

	Attachment 5: Proposed Algorithm Evaluation
	Task 1
	Task 2
	Task 3
	Task 4
	Task 5
	Task 6

