FACULTY
OF MATHEMATICS
AND PHYSICS

Charles University

DOCTORAL THESIS

Mgr. Michal Brabec

Procedural code integration in
streaming environments

Department of Software Engineering

Supervisor of the doctoral thesis: David Bednarek, Ph.D.
Study programme: 412, Softwarové systémy
Study branch: Compilers

Prague 2017

I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright

Act.

In Prague date 12.12.2017 Mgr. Michal Brabec

Title: Procedural code integration in streaming environments
Author: Mgr. Michal Brabec

Department: Department of Software Engineering
Supervisor: David Bednarek, Ph.D.

Abstract: Streaming environments and similar parallel platforms are widely used
in image, signal, or general data processing as means of achieving high perfor-
mance. Unfortunately, they are often associated with domain specific program-
ming languages, and thus hardly accessible for non-experts. In this work, we
present a framework for transformation of a procedural code to a streaming ap-
plication. We selected a restricted version of the C# language as the interface for
our system, because it is widely taught and many programmers are familiar with
it. This approach will allow creating streaming applications or their parts using
a widely known imperative language instead of the intricate languages specific to
streaming.

The transformation process is based on the Hybrid Flow Graph — a novel inter-
mediate code which employs the streaming paradigm and can be further convert-
ed into streaming applications. The intermediate code shares the features and
limitations of the streaming environments, while representing the applications
without platform specific technical details, which allows us to use well known
graph algorithms to work with the code efficiently.

In this work, we present the entire transformation process from the C# code
the complete streaming application. This includes the management of the con-
trol flow, data flow, processing of arrays, method integration and optimizations
necessary to produce efficient applications. Control flow represents the main dif-
ference between procedural code, driven by control flow constructs, and streaming
environments, driven by data. We transform the code directly into the Hybrid
Flow Graph and then we optimize the graph to introduce a structure better suited
for the streaming environments. Finally we transform the graph into a streaming
application.

We use procedurally generated code to verify the framework’s correctness, where
we test methods containing all combinations of loops, branches and serial code
nested in each other. We also evaluate the performance of the produced applica-
tions and since the use of a streaming platform automatically enables parallelism
and vectorization, we were able to demonstrate that the streaming applications
generated by our method may outperform their original C# implementation.

Keywords: code transformation; intermediate code; parallel programming; vec-
torization; streaming systems;

I would like to give many thanks to all the people who helped me with this work
and all the research leading up to it. First of all, I would like to thank my advisor
David Bednarek, Ph.D. who helped me tremendously with my research, and his
advice was indispensable for all my publications. I would also like to thank all
my other colleagues from the university, who provided technical expertise and
support.

Next, I would like to thank my family for understanding and support. Special
thanks to my wife Klara, who believed in me all the way through.

Finally, I would like to thank my coworkers for creative environment, support
and important feedback.

Contents

(1.2 Objectives|
(L3 Contributionsl oo

Streaming Environments|

[2.1 Related Work — Streaming Environments|
[2.2 Configuration and Programming.

2.3 _Available Parallelisml

(3

Common Techniques|

[3.1 Graph Rewriting Systems|
[3.1.1 Associative Graph Rewriting Systems|.
[3.1.2 Graph Rewriting System Use Cases|

[3.3.1 Common Language Runtime|.
[3.3.2 Common Intermediate Language]

[3.4.2 SIMD Instructions Types|.
[3.4.3 Memory Organization|
.44 SIMDin C+H.

Hybrid Flow Graph|

4.1 Related Work — Hybrid Flow Graph|.
4.2 Basic Operation Semantics|
[4.3 Representation of Control Flow|
4.4 Hybrid Flow Graph Execution
[4.5 Layered Hybrid Flow Graph|

Compiler for Streaming Environments|

.1 Related Work — Intermediate Code and Parallelism|l
5.2 Compiler Architecturel
(.3 Input Language Restrictions|

Compiler Front-end|

6.1 Front-end Overviewl
[6.1.1 Transformation Example,

[6.2 Related Work — Compiler Front-end|.

6.3 Method Selectionlo

6.4 Method Integration|
[6.4.1 Integration overview|
[6.4.2 Variable Renaming| 0.

© 00 o 3 O

[6.4.4 Jump Extension|.o
[6.4.5 Code Integration|
0.4.6 Stack Limitl o
[6.5 Code Preprocessingl
[6.6 Data Flow Analysis|
[6.6.1 CIL Sequential Graph|
[6.6.2 Symbolic Semantics of the CIL Sequential Graph|
[6.6.3 Execution of the Symbolic CIL Sequential Graph|
[6.6.4 Construction of the CIL Sequential Graphl
Ifi‘(i|£i IIlEitiI ll(:t 1‘ (211 gzlzl:s:iifigill
[6.7 Control Flow Analysis|

[6.7.2 Loop Infrastructuref.
[6.7.3 Control-Flow Analysis Overview|.
[6.7.4 Hybrid Flow Graph Construction|
6.7.5 DBroadcast Introduction|.
[6.7.6 Source Code and HFG Equivalence]
6.8 Data types|.
[6.9 Array Support|.
6.10 Aliasing|

Optimization|

[7.1 Related Work — Transformations Improving Parallelism|
7.2 Component Extraction|
[7.3 Dead and Empty Nodes Elimination]
7.4 Range kExtraction| 0oL
[7.5 Array Extraction| Lo
(7.6 Token Extractionl
(7 Vectorization|

[7.8 Array Extraction and Vectorization Chaining|.

Compiler Back-end|

[8.1 Related Work — Compiler Back-end|
[8.2 Supported Environments|o
8.3 Bobox Transformationl

[8.6 Component Extractionl

9 Additional Eov |

(9.1 .NE'T Asynchronous Method|
O.1.1 Transformation Overviewl

(9.1.4 Loop Transtormation|
[9.2 Managed Bobox Integration|
[9.2.1 Graph Execution|,
[9.2.2 Graph Integration|.o

(10 Case Study: Matrix-based Dynamic Programming] 97

(10.1 Problem Detaalsf oo oo 98
[10.2 Related Work — Matrix-based Dynamic Programming Parallelization| 99
[10.3 Levenshtein Distance Blocked Algorithm| 99
(10.3.1 Parallelogram Blocks 100

[10.3.2 Blocked Algorithm| 101

(10.4 Matrix-based Dynamic Programming in Streaming Environments| 101
(10.4.1 Blocked Algorithm Implementation in C# 101

(10.4.2 Blocked Algorithm in ParallaX Compiler{ 104

(11 Experiments| 107
[(11.1 Correctness Experiments| 107
[(11.2 Levenshtein Distance Experiments|. 109
[11.3 Streaming Experiments| 113
(11.3.1 Convolution Experiment| 114

[11.3.2 Cryptography Experiment| 114

(11.3.3 Baseline Experiments| 116

(11.3.4 Single Filter| 117

11.3.5 Serial Filterl 118

(11.3.6 Multiple Filter| 119

(11.3.7 Experiment Conclusions| 120

(12 Conclusions| 121
2.1 Future Workl. 122
[Appendix A: Compiler Infrastructure| 123
[12.2 Compiler Work Flow| 123
[12.3 Application structure]o 124
(12.4 Compiler Configuration|. 125
[12.4.1 Configuration File| 125

12.4.2 Transtormation Filel. 126
[Appendix A: Compiler Library| 129
[Bibliography| 129
[Attachments: Digital Content| 139
Index] 141
(Bibliography of the Author| 142

1. Introduction

Streaming environments form an important niche of parallel computing, original-
ly designed for efficient implementation of image or digital signal processing. As
these application domains interacted with other areas, particularly with databas-
es, the idea of streaming environments developed from simple fixed-rate pipelines
towards systems allowing arbitrary networks of operators with variable data rates.
In addition, many parallel software systems resemble streaming environment, al-
though they are not categorized as streaming.

Gradually, streaming environments became almost universal parallel comput-
ing platforms; however, no widely accepted standard emerged yet. Thus, each
streaming platform often consists of a specialized language, its compiler, and
one or more run-time environments, targeted at special hardware (like FPGA),
GPUs, and/or general CPUs. An application is either constructed completely in
a stream-specific language or it incorporates parts (kernels) written in a general
language like C or VHDL.

With respect to performance, the specialized streaming languages may have
important advantages including enforcing a particular (i.e. streaming) program-
ming style and the absence of optimization disablers (like unrestricted memory
access and aliasing) known from general-purpose procedural languages. On the
other hand, programming streaming systems is a kind of rare expert knowledge.
Moreover, the interaction between streaming and traditional code is often diffi-
cult; therefore, it might be advantageous to introduce a compiler able to create
streaming applications from a procedural code.

Thus, allowing the use of a well-known general programming language for the
design of streaming applications would allow the participation of non-experts who
do not posses the knowledge of the required streaming language or the intricate
details of the system interfaces. It would also make existing code available for
the use in streaming systems.

In our research, we investigate whether modern general programming lan-
guages like C# may be used in streaming systems and, in particular, whether a
compiler may convert non-parallel C# code into a network of operators which
could be executed by a streaming runtime environment. Our research is target-
ed at streaming platforms implemented on general purpose CPUs and allowing
variable data rates using a dynamic scheduler.

We wanted a language widely known among current programmers and re-
searchers, which ruled out older languages like Fortran. We wanted a language
with a comprehensive intermediate code so we could avoid the necessity to imple-
ment parser of the input language and this narrowed the choice to either Java or
C#. We selected C#, because its intermediate language and entire environment
is standardized and C+# supports structures — object types with value semantics.
Another advantage is the Cecil library which provides great tools for work with
the C# intermediate code (CIL).

In shared-memory implementations of streaming systems, the overhead of
data communication may be as low as writing and reading memory or cache.
Thus, parallelism may be improved by decomposing an application into a large
number of very small components, each comprising of only a handful or few

C# Global N Plan
source code HFG generation
C# HFG Component Runtime
compiler extraction environment
Graph Layered | Code
CIL code [HFG M generation
front-end optimization back-end

Figure 1.1: Compilation and code generation

dozens of arithmetic operations. This arrangement also naturally supports the
use of vector operations.

Our target architecture is illustrated in Figure [I.I] In this case, a source
code in C# is compiled (by a standard C# compiler) into the CIL intermediate
code and then converted into the Hybrid Flow Graph(HFG) intermediate code
[3]. While the CIL code is a classical intermediate code based on sequences of
instructions, the HFG code assumes the form of a network of communicating
operators; thus, it corresponds to the architecture of the run-time system, albeit
in much finer granularity.

At this stage, the operators are equivalents of individual CIL instructions;
therefore they are typically too small to become an efficient streaming operator.
Consequently, in the next stage, the optimization technique called component
extraction rearranges the original operators into small groups, producing a layered
HFG containing a subgraph for each such group and a global HFG describing
the interaction between the groups. For each component HFG, executable code
corresponding to a streaming operator is generated. The global HFG is converted
to a plan which defines the run-time connections (i.e. streams) between the
operators.

In this work, we present theoretical basis of the Hybrid Flow Graph formal-
ism, followed by the description of the graph eztraction phase that converts a
sequential intermediate code into the HFG. Next, we present the graph optimiza-
tion — component extraction and its transformation into an application for the
Bobox streaming system. Since the HFG follows the data-flow paradigm of the
streaming systems, branches and loops must be converted from their sequential
form into flows of control data.

Note that function calls have to be eliminated from the converted C# pro-
gram by means of procedure integration. Of course, procedure integration is not
possible in the presence of non-tail recursion and it may lead to unacceptable code
expansion in some other cases; however, the same limitations typically apply also
in streaming languages. In this work, we use a restricted version of the C# lan-
guage, where we limit the use of referential data types (classes), assuming that
value types (including structures) and arrays are predominantly used in typical
streaming applications. The restrictions are described and explained in detail in
Section [5.3] Consequently, while our approach is obviously not applicable as a

6

method of converting arbitrary C# programs for execution by streaming systems,
it is applicable as a new interface for the streaming systems.

In order to implement a compiler capable of producing the HFG code, we had
to implement multiple algorithms similar to those used in standard compilers, but
modified for the HFG intermediate language. In most cases it was necessary to
slightly modify the algorithms so that they reflect the HFG structure. We point
out the algorithms in the sections focusing on related work, where we identify the
original algorithm and the changes necessary for it to work in our environment.

To estimate the performance of the applications produced by our compiler,
we measured the performance of several algorithms, including the Levenshtein
distance, in their original C# implementation as well as when converted into
streaming applications. Our measurements show that even the current proto-
type implementation of our compiler is able to generate streaming code, which
is significantly faster than the original C# code. Additional optimizations might
further improve the performance of the produced applications.

1.1 Motivation

Many streaming environments are well suited for execution of database-like queries.
However; creating applications by mixing declarative languages, like SQL, and
procedural components, like user-defined functions, is not easy in such environ-
ments. The following example shows where our proposed system could improve
the situation:

select x from T1, T2 where Tl.region = T2.region and
DISTANCE(T1.name, T2.name) < 10

Listing 1.1: Sql query with a user-defined function

When implemented in a traditional database system, the query in Figure [1.1
contains a custom (user-defined) function DISTANCE, usually programmed in
a platform-specific procedural language, like PL/SQL in Oracle or PL/pgSQL in
PostgreSQL. In the database systems, the SQL part of the query is transformed
into a highly optimized plan, where the 7'1 and T2 are initially joined based on
their values and then the system applies the DISTANC'E function.

The SQL plan is usually executed in a specialized environment provided by
the database engine, which contains optimized operators for all the standard SQL
constructs. However; the execution of the custom functions requires a different
environment, because they are implemented in a language with vastly differ-
ent properties, which brings significant communication overhead. The matter is
further complicated when the system tries to parallelize the custom functions,
because they behave differently from the SQL operators and both can compete
for resource.

One solution would be to transform the custom DISTANCE function into
an execution plan similar to that produced from SQL, connect both the plans
together and execute them in the same environment. This solution would not be
ideal, because both parts may have significantly different granularity. Therefore;
parallelism will not be optimal due to different complexity and performance of
components, but this approach eliminates communication overhead.

7

More advanced solution must incorporate decomposition of both the custom
functions and the SQL operators and then it has to provide a mechanism to group
smaller components into bigger blocks. This way the decomposed operators and
functions can be grouped according to the structure of the entire query, thus
reducing the communication overhead and providing more efficient parallelism.
This approach can improve the overall structure of the query, because it bypasses
the strict separation of custom functions and SQL operators and processes them
all together.

The following two cases illustrate further benefits of the proposed solution:

1. The custom function can call other SQL commands. In this case, the ad-
vanced solution might be able to merge both the SQL plans and the custom
function into a single query and optimize all its components together.

2. The custom function can be used to generate data. This might severely
change the behavior of the query, because the custom functions are treated
differently. However; the proposed approach decomposes custom functions
and SQL operators and treats them the same, thus eliminating this problem.

It is important to note that in most cases, the custom functions are relatively
small, without advanced constructs, like objects or exceptions. This allows us to
restrict the input language while still providing sufficient tools for design of these
functions.

This work provides the basis for the advanced solution presented in this sec-
tion. The ParallaX compiler produced as the main part of this work is able
to transform custom functions written in restricted C# to an intermediate lan-
guage similar to the execution plans. Further work will be necessary to efficiently
merge and optimize the produced plans, but the difficult transformation from the
procedural code to the execution plan is solved in this work.

1.2 Objectives

Our main objective is to design an intermediate representation with properties
similar to the streaming environments, which would allow us to work with the
applications efficiently but without platform-specific limitations. This representa-
tion would also allow us to transform the applications for multiple environments
using the same input language. To achieve this objective, we designed the Hybrid
Flow Graph that is the main representation of the code in the compiler.

Our second objective is to facilitate the design of streaming applications to
programmers without the domain specific knowledge of the streaming environ-
ment or its associated languages. To achieve this objective, we designed a com-
piler that transforms C# code, compiled to CIL, into applications for the Bobox
streaming system [2].

1.3 Contributions

e We have designed the Hybrid Flow Graph, which can be used to represent
applications in a way that they can be executed in streaming environments

or on other similar platforms. The Hybrid Flow Graph could be used as
a common representation of applications for multiple different streaming
environments.

e We have designed the compiler front-end capable of transforming a C#
code, compiled to CIL, into the Hybrid Flow Graph. The compiler is able to
transform code between two different programming paradigms and produce
a representation suitable for streaming environments.

e We have designed a series of optimizations for the Hybrid Flow Graph, that
improve its structure and behavior during execution.

e We have designed a compiler that transforms the Hybrid Flow Graph into
an application for the Bobox system. The HFG structure is transformed
into the domain-specific language Bobolang, while the separate kernels are
transformed into C++. The entire application is then compiled with the
Bobox runtime.

e We have modified algorithms and analyses, used in traditional compilers, for
the HFG intermediate language. The algorithms rely on the same theoret-
ical basis, but reflect the structural specifics of a graph-based intermediate
language.

1.4 Text Structure

The rest of this work is organized as follows: After reviewing the general concepts
of the streaming environments in Chapter [2, we present the well-known techniques
and algorithms that form the basis of our work in Chapter [, Next we define the
structure of the Hybrid Flow Graphs in Section [especially their components
related to control flow handling.

The next chapters define parts of the compiler for streaming environment that
is the main contribution of this work. Chapter [5| sums the compiler’s general
concepts and structure, Chapter [f] explains the transformation of the C# source
to the intermediate language — the Hybrid Flow Graph, Chapter [7] defines the
HFG optimizations and Chapter [8| focuses on the HFG transformation into the
application for the Bobox streaming system.

After all the compiler details are explained, we present alternative target
environments supported by the compiler in Chapter [9] Chapter [I0] presents our
main case studies used to evaluate the performance of the applications produced
by the compiler — the Levenshtein edit distance. Finally, section illustrates
the performance reachable using the complete compilation chain.

10

2. Streaming Environments

Stream processing is a programming paradigm that simplifies parallelization of
some applications by restricting their structureE]. Limiting the application archi-
tecture leads to better defined and more predictable behavior, which significantly
enhances available parallelism and can help with scheduling, distribution and
load balancing. This also means that the application can automatically use mul-
tiple CPUs and even heterogeneous processing units, such as graphical processors
(GPUs) or field-programmable gate arrays (FPGAs), without explicitly managing
memory or synchronization.

Streaming processing paradigm defines the application general architecture.
An application designed according to this paradigm is constructed from the fol-
lowing components:

e Stream — a sequence of data.

o K ernelﬂ — a series of operations (a function) applied to each element of its
input streams.

e PlanP| - an oriented graph, with nodes representing kernels and streams
passed along edges.

The most important aspect of the streaming processing architecture is the
fact that the kernels are able to communicate only by passing data to the streams
connecting them. Kernels cannot communicate through the memory, network or
external storage. This principle is crucial to exposing the available parallelism.
It is possible to allow some kernels to read or write data to external storage to
provide data for the application, but the locations should be independent, so the
kernels do not influence one another.

Kernels can be either stateless or stateful depending on their semantics. The
stateless kernels do not store any state information and their output always de-
pends solely on the actual inputs. Stateful kernels maintain internal state, which
can influence their output.

Figure 2.1 shows a plan of a simple join that merges two sets of values read
from a data source (database) by the kernels sourcel and source2. The join
condition is implemented in the merge kernel. The plan declares kernels and
their connections via streams, but it does not define the kernel implementation.
Kernels are implemented separately as functions or objects, usually in a standard
procedural language, and together with the plan they comprise the application.

The start kernel in Figure[2.T]initiates the application execution, since it is the
only kernel without input. We use the start kernel to simplify the plan structure.
The source kernels read the input from a data source (database or file), while
the print kernel prints the result to the output (console).

!This chapter does not provide the analysis of all the systems that can be possibly cate-
gorized as streaming environments. Instead, we focus only on the systems best suited for the
implementation of data-intensive application, like database queries.

2 Alternatively called Operator or Box

3 Alternatively called Ezecution plan

11

sourcel

[start Hbroadcast merge H print]

Figure 2.1: Simple join programmed for the Bobox streaming environment

source2

it

A streaming environment is a system which is able to execute applications
designed according to the streaming processing paradigm, also called streaming
applications. The environment defines supported languages for programming the
separate parts of the application. This usually means that the kernels are created
in some general programming language, while the plan is defined in some special
declarative language or constructed during runtime by explicit system calls.

Our selected target platform is the Bobox [2] streaming environment. It sup-
ports kernels implemented as C++ classes and for the execution plan, Bobox uses
a special declarative language called Bobolang [3].

The rest of this chapter will discuss important aspects of streaming environ-
ments, with main focus on the Bobox system. We will explain how compatible
applications are designed in Section In Section [2.3 we will examine how
these systems expose and exploit available parallelism and in Section [2.4] we will
focus on factors that influence performance.

2.1 Related Work — Streaming Environments

This section presents other research related to the general concepts of this work,
while the works related to the specific parts of our research are presented in later
sections alongside the appropriate technique or algorithm. This approach means
that the related works are discussed when relevant instead of being collected at
the beginning without connection to the actual algorithm or concept.

The definition of a streaming environment or system is not strict, the label
has been applied to a broad range of systems. The lower tier is occupied with
systems designed for tight integration with hardware, often accompanied with
circuit synthesis or specialized hardware.

The Brook system adds simple parallelization constructs to the C language,
allowing the programmers to use the GPU as a streaming co-processor [4]. The
Brook system provides extensions for the C language and a special runtime library.
The applications are designed in the extended C, transformed into a code for the
target environment (originally designed for DirectX and OpenGL) and compiled
along with the runtime library.

Esterel is a language for programming synchronous parallel reactive systems
[5]. A system designed in the Esterel language consists of multiple components
(modules), which communicate through signals broadcast through the entire sys-
tem. Each component defines the signals it recognizes and actions it can perform.
The components can react to the signals by initiating or terminating actions or
producing other signals. The language is the main programming environment for
the experimental Kiel Esterel Processor [6].

The StreaMIT language was designed as a tool for efficient development of
streaming applications [7]. The language adds streaming constructs to a restricted

12

version of the Java language and the programmers use the constructs to define
the structure of the streaming applications (their plan, kernels and streams).
The StreaMIT code is then compiled by a specialized compiler to a code for the
target environment. The compiler is designed as an extension of the Kopi Java
Compiler.

All these streaming systems rely on their own platform-specific languages,
which contain special constructs necessary to define the structure of the stream-
ing applications. This approach requires that the programmers construct the
application structure by hand, which means that they have to know the proper-
ties of the constructs and target platform.

The field-programmable gate array (FPGA) can be considered a special case
of low-level streaming hardware, where the separate programmable gates repre-
sent kernels. The FPGAs are traditionally programmed in a low-level hardware
description language (HDL), but there are purely streaming technologies devel-
oped over it, like the Folding Streams algorithm [8], which generates the HDL
code from a declarative implementation.

The upper tier of streaming systems consists of environments typically im-
plemented using traditional CPUs which allow dynamic scheduling and variable
data rates. The need for variable data rates often stems from their use related
to databases, as in the case of Aurora [9], a system designed for data processing
in monitoring applications. Aurora defines its own query algebra called SQuAI,
where the structure of the query is declarative, while the operators are imple-
mented in a procedural language similar to the Oracle PL/SQL.

STREAM [I0] is a general streaming system with extensions focusing on data
processing and databases. The STREAM system is programmed using a superset
of the SQL language called CQL. This language provides additional constructs
for the design of more efficient streaming applications, but it is heavily focused
on database environment, with limited general application.

Streaming environments also involve wide-spread systems for big data process-
ing, including application real-time database management [I1] or image recogni-
tion [I2]. The most influential technology of this field are MapReduce [13] and
Apache Hadoop [14].

MapReduce is a distributed streaming system. The applications are construct-
ed from the map and reduce operators, implemented in a well-known procedural
or object-oriented language, like Java or C++ [I5]. The applications must define
how the data is allocated between the map and reduce operators, this is done by
the partition and compare functions that assign and deliver the data from the
map to the reduce operator.

Hadoop is a system for distributed scalable data processing and in essence
it is a coarse-grained streaming system [16]. Hadoop applications are typically
programmed in the Java language and the system supports multiple programming
techniques, like MapReduce. Aside from Java programming, there is also the Pig
Latin high-level programming language designed as an extension of the Appache
Hadoop that provides more flexible tools for data processing [17].

For our experiments, we have chosen the Bobox system [2] which is well suited
for database applications, but it is not limited to them. Bobox stream layouts
(denoted execution plans) are defined using the Bobolang language [18], while
the underlying operators are programmed in C++. The low-level details of the

13

operator main()—>() {
bobox :: broadcast () —>()[to_odd] ,()[to_even] broadcast;
Source()—>(int) odd(odd=true, length=100);
Source()—>(int) even(odd=false, length=100);
Merge (int) ,(int)—>(int) merge;
Filter (int)—>(int) filter ;
Print (int)—>() print;

input —> broadcast;

broadcast [to_odd]| —> odd;

broadcast [to_even| —> even;

odd —> [left |merge;

even —> [right] merge;

merge —> filter —> print —> output;

}

Listing 2.1: Boboland representation of the application introduced in Figure [2.1

system are hidden by our system and the restricted version of the C# language
without any special streaming constructs.

2.2 Configuration and Programming

Bobox applications follow the architecture defined by the Streaming processing
paradigm, they are constructed from kernels connected by streams. The structure
is defined as an execution plan in Bobolang and separate kernels are implemented
in C++. We will explain the basic principles on an application that joins values
read from an external data source (database).

A Bobox application requires three main parts:

e Plan — an execution plan written in Bobolang.
e Kernels — an implementation of all kernels in C++.

e Fnvironment — an object connecting the plan and the kernels.

The application plan defines its structure and available parallelism. The plan
is defined in a special declarative language Bobolang, which is described in much
detail in the following works [3], [I9]. Bobolang has many advanced features,
but its basic structure is intuitive and we will explain it on the example. A
graphical representation of our example plan is in Figure and its Bobolang
representation is in Listing [2.1]

The Bobolang code defines the application as an operator called main. All
the used kernels are declared in the first section, where each kernel is identified
by a type, parameters and a name with parameters. For example, the merge
kernel is of type Merge, it has two integer inputs and a single integer output
and it is called merge in the rest of the code. The streams are defined in the
second section, where each stream is represented by an arrow between the kernels
it connects, along with a parameter name is connects. For example the stream

14

class merge_box : public basic_box {
public:
typedef generic_model<merge_box> model;

BOBOX_BOX_INPUTS_LIST(left , 0, right, 1);
BOBOX_BOX_OUTPUTS_LIST (main, 0);

merge_box (const box_parameters_pack &box_params)
: basic_box (box_params)
{}

virtual void sync_body () override

{
input_stream<int> left (this, inputs::left ());
input_stream<int> right (this, inputs::right());
output_stream<int> output(this, outputs::main());

while (!left.eof() && !right.eof()) {
int 1 = left.current()—>get <0>();
int v = right.current()—>get <0>();
if (1 <=1) {
output.next()—>get <0>() = 1;
left .move_next ();
} else {
output.next()—>get <0>() = r;
right . move_next ();

Listing 2.2: Merge kernel implemented in C++

between the odd and merge kernels is connected to the left input of the merge
kernel.

Aside from the execution plan, we have to implement the necessary ker-
nels. Some common kernels are already provided by the Bobox system, like
the bobox::broadcast kernel that copies every single input value into all its inputs.
Bobox kernels, also called bozes, are implemented as a C+-+ class that inherits
the basic_box class provided by the Bobox system.

Listing contains the implementation of the Merge kernel that sorts and
merges the values from two input streams. The class first declares its inputs
and outputs, constructor and model (a type used to reference the kernel from
Bobolang). The main functionality is in method sync_body, that first links the
inputs and outputs to objects and then iterates while the inputs contain data,
merging the values to its output.

Last part of the application the environment object based on the class runtime
provided again by the Bobox system. This environment links the plan with
the kernels via a register, where all the kernel classes and data types must be

15

virtual void init_impl() override
{
register_box <source_box :: model>(box_tid_type (” Source”));
register_box <print_box :: model>(box_tid_type(” Print”))
register _box <merge_box :: model>(box_tid_type (" Merge”))
register _box<filter_box ::model>(box_tid_type(” Filter”

7));

register_type<int>(type_-tid_type(”int”));

Listing 2.3: Kernel regisrtation section for the application

registered. The register is then used to execute the plan. The registration is done
in the method wnit_tmpl, which is called prior to the application execution. The
initialization for our join sort example is in Listing [2.3] where kernels and data
types are registered with the name used in the Bobolang code.

2.3 Available Parallelism

The streaming processing paradigm exposes available parallelism by limiting the
application structure to a graph of kernels able to communicate only through
streams of data. All the kernels are therefore completely independent and can be
executed in parallel with the streams as the only points of synchronization.

There are two sources of parallelism in streaming environments: multiple
kernels executed in parallel and vectorization of the kernel code. Both approaches
can be combined.

Kernels can be executed completely independently, because they communicate
only through streams and their execution has no side effects. This parallelism
is limited only by stream connections which represent synchronization and also
introduce communication overhead.

Figure 2.2: Kernel parallelism

Figure shows a simple plan, where we can exploit two kinds of kernel
parallelism. First, we can always execute kernels mul and inc in parallel, because
they are not connected by a stream. Second, we can execute all kernels in parallel
for different values in the input stream. Figure [2.3] shows the kernels executed in
parallel for different values of the stream - 1, 2, 3,

Kernel code can be vectorized, because a single kernel is executed on a single
processing unit, which is usually equipped with a vector unit (or co-processor),
for example SSE or AVX in Intel processors. This unit can be used to parallelize
code inside a single kernel further improving the application performance. It
might be important to account for the actual number of vector units and their
distribution between processors, but that is dependent on target platform.

16

Figure 2.3: Kernels executed in parallel for the stream - 1, 2, 3, ...

Bobox prohibits the use of multi-threading inside a kernel, because the pro-
duced threads can compete for resources with the Bobox runtime and hinder the
overall performance.

2.4 Performance Concerns

The most important factors that influence the efficiency of a streaming environ-
ment are: communication overhead and granularity. Both effects are connected,
because the more kernels we have, the more available parallelism we can exploit,
but the overhead is growing as well.

The communication overhead is caused by the data passing between kernels
through streams. This overhead depends on the type of stream we are using. It
is bigger for streams connecting kernels on different servers, but it is present even
for kernels on a single multiprocessor, with memory streams. Granularity on the
other hand directly influences available kernel parallelism, the more kernels we
have, the more we can execute the application in parallel.

The overhead is always present and it is necessary to find the right balance
between parallelism and communication. To maximize parallelism, we can make
every instruction into a kernel, but then the overhead would overwhelm the ben-
efits of the parallelism. Or we can eliminate the overhead by packing the entire
application into a single kernel, which eliminates all kernel parallelism as well.

The right balance is usually different for each application and platform and it
has to be individually assessed. This is one of the areas for our future work, be-
cause the ParallaX compiler currently supports only static platform-independent
optimizations.

17

18

3. Common Techniques

In this chapter we provide context on the more complex well known techniques
and systems used in this work. We provide basic description, with small exam-
ples, and links to other works that offer more detailed information. The chapter
describes four important concepts necessary to understand our ParallaX compiler
and the examples used in this work: graph rewriting systems in Section [3.1, Kahn
process networks in Section [3.2] basics of the Common intermediate language code
in Section 3.3l and an introduction to the SIMD instructions in Section [3.4

3.1 Graph Rewriting Systems

A graph rewriting system is a grammar designed to transform graphs [20]. Similar
to formal text grammars, the system consists of rules of the form r : L — R, where
L is the pattern graph and R is the replacement graph [21]. Rewriting systems
can be defined for any type of graph, but in this work, we focus only on oriented
annotated graphs, where the annotation is a string.

The semantics and application of the rewriting rules are defined algebraical-
ly using either the double-pushout or single-pushout approach. In the double-
pushout approach [22], each rule is a pair of graph morphisms, where the first
the defines nodes and edges to be deleted and the other defines nodes and edges
to be added. In contrast, each rule in the single-pushout approach [23] is repre-
sented by a single morphism that applies the transformation in a single pushout
operation. We use the single-pushout approach, because its rules are simpler and
their application is more intuitive.

In the case of single-pushout approach, a rule is defined as a morphism r :
L — R, where all the nodes and edges affected by the replacement graph R must
be matched by the pattern graph L [24]. The pattern graph can contain empty
nodes, which do not have specified annotation and can match any node. To make
the semantics and examples more readable, we use a simplified notation, where
we omit the empty nodes.

. SN
a—p [S

—

Figure 3.1: Simple graph rewriting rules.

Figure |3.1| shows two rewriting rules, the one on the left is a standard graph
rewriting rule and the right one is simplified. The nodes without annotation are
the empty nodes that can match a node with any annotation. In the simplified
rule, we remove the empty nodes and leave only the edges connecting them to
signify where the empty nodes are.

The rules are applied to an input graph one at a time while there is at least
one that matches. The application can be nondeterministic when multiple rules

19

are applicable at the same time. The rewriting system must specify what rule
should be selected in case nondeterminism, usually according to their order or
priority.

The rule application itself is very intuitive, the matched subgraph is replaced
by the replacement. The full theoretical basis of this process is described in detail
in the following works [22] 20, 24], but an intuitive understanding is sufficient to
follow the examples.

3.1.1 Associative Graph Rewriting Systems

The original rewriting systems support empty nodes in their pattern graph (L
in rules r : L — R), which can match any node [2I]. We had to extend the
basic behavior, because our optimization component requires more control over
the matching process. The associative graph rewriting systems provide enough
control to implement optimizations used in our compiler.

An associative graph rewriting system is a graph rewriting system, where
the pattern graph can contain group nodes, repeat nodes and chain nodes with
behavior similar to regular expressions.

A group node is defined by a list of allowed annotations, similar to the regular
expression ”[abc]”, where the empty node is basically a special version of the
group node, equivalent to the expression ”.”.

A repeat node, declared with a + symbol, defines a set of nodes that share
the same connections but they do not have to be directly connected among them-
selves, this construct does not have any regular expression equivalent.

A chain node is defined as ”a*”, where we require that the repeated nodes
are connected as a single string matching the annotation without any outgoing
or incoming edges besides the first and last. The rewriting system also allows the
use of special nodes $N in the product graphs, which represent the subgraphs

matched by the group or chain nodes. The behavior is best shown on an example.

[$2] [] [Idct] [cast*H] [Idc 5][Idc 8][cast](— cast
¥ A
M SAUSs P\F mul] icast:
)

Y A

[ret] Idc 1

Figure 3.2: Regex pattern graph match

Figure shows a pattern graph matching an annotated directed graph.
The pattern graph contains a group node [add|mul], which matches any node
with either the add or mul annotation. The empty nodes match a node with
any annotation and the chain node cast* matches any number od cast nodes
connected one after another. The chain node would not match the graph, if there
was another node connected between the casts. The group and repeat nodes can
be combined, like [add|mul]*. The repeat node matches any number of Idc nodes
connected to the central group node.

Besides matching the pattern, an associative graph rewriting system must also
produces an associative collection connecting the matched and pattern nodes.

20

With it, it is possible to match the pattern and then modify the nodes based on
how they were matched.

3.1.2 Graph Rewriting System Use Cases

We use the graph rewriting systems for multiple different purposes that are not
necessarily connected, besides their graph-based data structures. The work con-
tains the following use cases:

Intermediate Language Semantics

We use a graph rewriting system to define the semantics of our intermediate
language. The system defines all the operations available in the language and it
is part of the language definition.

Source Code Emulation

We developed a graph rewriting system that is able to emulate the calculation of
the source code (C# code compiled to CIL code) and it is an instrumental part
of our data flow analysis. The system is used solely for CIL emulation and has
no relation to the intermediate language.

Optimizations

The optimization component of our compiler is implemented as an associative
graph rewriting system, where each optimization is represented by a single rule.
Although the rewriting system modifies the intermediate code, the optimization
component does not change the semantics of the code.

Component Extraction

The component extraction is a special optimization step that groups parts of the
intermediate code into bigger, more efficient components. The behavior of each
new component is defined by the subgraph it represents, we do not add new rules
to the graph rewriting system defining the intermediate language behavior.

3.2 Kahn Process Networks

The Kahn process networks is a distributed model of computation, where inde-
pendent serial processes communicate through unlimited serial queues (FIFO)
[25]. The processes read and write atomic data elements (tokens) from and to
the queues and they cannot communicate with one another outside of the queues.
The entire modeled system is deterministic, despite synchronization and paral-
lel execution of the processes. Figure shows a small part of a Kahn process
network, where the arrows represent queues transferring data and the circles rep-
resent processes.

The Kahn process networks were originally designed as a model of compu-
tation for distributed systems [26], but they are also used to model embedded

21

Figure 3.3: Part of a Kahn process network

system [27], signal processing [28] and they can be even used to replace streaming
environments for some applications [29].

The Kahn process networks are similar to the streaming environments, pre-
sented in Chapter [2 where processes are an analogy to the kernels and queues
to the streams. Kahn process networks, though purely theoretical, can be con-
sidered a subset of streaming environments, because they have similar semantics.
The main difference is that the Kahn process networks require processes with
deterministic behavioi|, which is not necessary, in the streaming environments.

We do not use the Kahn process networks directly in this work, but the inter-
mediate language we designed as part of our compiler satisfies the requirements
and can be considered a KPN. This means that its calculation is deterministic
and it does not produce any unpredictable results.

3.3 CIL Basics

We selected the C# programming language as the interface for our ParallaX
compiler, because it is widely known, the language and its entire ecosystem (the
Common language runtime) is standardized [30, B1] and there are advanced utili-
ties available for it. Our system processes C# applications compiled to CIL code,
which is the intermediate language of the Common language runtime, the process
is shown in Figure [3.4 Therefore, a basic understanding of the CIL instructions
and inner workings is useful, because most of the examples used in this work use
the CIL notation or rely on its structure or invariants.

C# ParallaX streaming
C# code %[compiler]_’ CIL code ﬁ[compiler]_’application

Figure 3.4: ParallaX compiler interface overview

3.3.1 Common Language Runtime

The Common language runtime, or CLR for short, is and application ecosystem,
which allows multiple high level programming languages to be used interchange-
ably and platform independently. The infrastructure is standardized under ISO
and ECMA [31] and specifies the execution environment, libraries and struc-
ture necessary for applications to work. Figure shows the CLR architecture
overview.

'The process always produces the same results in the same order for the same inputs.

22

.NET Framewerk Commaen Language Runtime

Other NET Languzges
\ /

R\

Compile —
Time

(Common Intermediate Language (CIL))

Common Language Runtime

Just-In-Time Compiler

Run
Time

Machine Code

01100000000
12131

Figure 3.5: Common language runtime architecture

The Common language runtime defines a single intermediate language called
the Common intermediate language, or CIL for short, along with a virtual ma-
chine able to execute it. CLR also specifies multiple higher level languages, like
C#, F#, Visual Basic and others, which are all compiled into the Common inter-
mediate language and can therefore be combined. The CLR standard is platform
independent and there are already multiple systems compliant with it, like the
Microsoft .NET [32], Mono [33] and the newly released .NET Core.

3.3.2 Common Intermediate Language

The Common intermediate language (CIL) is a stack-based, object-oriented as-
sembly language. FEach statement in the language is a single instruction and
the instructions communicate only through a common stack, instead of registers
used in other assembly languages. The CIL stack can store only numbers and
references, and the instructions must interpret the values according to their se-
mantics. Besides the stack, the CIL machine has access to local variables and
method arguments, which can be changed and read repeatedly. Figure 3.6 shows
a schema of the CIL virtual machine, which reads code and stores the values to
the variables and stack.

To understand the examples, it is important to explain the basic mnemonics
of the CIL instructions. The following list contains the most commonly used
instruction codes and their explanations, where the code is basically an abbrevi-
ation of the instruction function. Each instruction takes its parameters from the
top of the stack puts its results back on the top of the stack.

23

Local variables Parameters

a 324 P 10
Code
Idc O
Idl a / Stack
CIL
add virtual 324
machine
stl a 5

Figure 3.6: CIL virtual machine

ldc — load constant written directly in the code

ldarg, starg — load argument, store arqument

e [dloc, stloc — load local variable, store local variable

e mul, add, div, ... — arithmetical operations (multiply, add, divide, ...)

e Dlt, bge, ... — conditional jumps (brunch less than, branch grater than, ...)
e ret — return method result

The CIL instruction set contains specialized instruction versions defined by
suffixes. For example [dc.24 0 is an instruction that loads zero to the stack as a
four-byte integral number. There is also ldc.i8 0 and [dc.r8 0, for an eight-byte
integer and a double precision floating point number. We usually omit these
specialized versions, because they specify data types and we store data types
separately.

Aside from the data type specialization, there are also short version of instruc-
tions that access first few parameters and local variables. These instructions have
the suffix identifying the index of the variable or argument, like stloc.0 that stores
a value into the first local variable and is the short version of the stloc C' instruc-
tion for the code in Listing [3.1] The most commonly used short instructions are
ldloc.N, stloc.N, ldarg.N, starg.N and ldc.N, where N represents the constant
value.

Listing shows a minimum function implemented in C# as a static method
and Listing|3.2[shows the same method compiled into CIL. The CIL code contains
only the instructions listed above and we added comments that help separate
parts of the code to better match it to the original C# code.

24

public static int minimum(int A, int B)
{
int C;
if (A< B)
C=A;
else
C = B;
return C;

}

Listing 3.1: Minimum method implemented in C#

3.4 SIMD Instructions

The principles of the vector instructions are important for the algorithm structure
and in this section, we revise the instructions and memory model fundamentals
with particular emphasis on the aspects important for the studied problem. We
will explain vectorization on the Intel / AMD SIMD extensions, mainly SSE.

3.4.1 Vectorization

The Streaming SIMD FEztensions (SSE) is a vector instruction set extension to
the x86 and x64 architecture, designed by Intel and introduced in 1999 as a suc-
cessor to the older MMX extension. SSE provides new instructions that perform
vector calculations on 128 bit vectors, stored in newly added registers. SIMD
instructions can increase performance for algorithms that can keep the data in
the special registers and perform multiple instructions before moving then back
into the memory. The SSE instructions follow the Single Instruction Multiple
Data or SIMD model, where a single operation is applied to all elements of a
vector at once.

The original SSE was updated to SSE2 and SSE3, with each adding new
instructions, and introducing new data types available in the 128 bit vectors.
The original SSE supported mostly single precision floating point numbers and
the later versions added double precision and integral numbers of differing sizes (8,
16 and 32 bits). The SSE extension was further expanded by the AVX and AVX2
expansions adding 256 bit vectors and new instruction and AVX-512 introducing
512 bit vectors.

The vector instructions have similar requirements as the GPU, which was
the original target platform for the blocked Levenshtein distance algorithm. The
similarities allow us to adapt the algorithm for our compiler without fundamental
changes.

3.4.2 SIMD Instructions Types

SSE and its updates provide vector instructions similar to the arithmetic in-
structions available in CIL, but instead of a single number the instructions vork
with a whole vector of values. The SIMD instructions are divided into multiple
categories:

e Arithmetic operations — instructions that perform the vector calculations.

25

.method public hidebysig static int32 minimum (
int32 A, int32 B) cil managed

{
.maxstack 2
.locals init ([0] int32 C)

// initialization of C to 0
IL_0000: 1dc.i4.0
IL_0001: stloc.0

// if condition (A< B)
IL_0002: ldarg.0
IL_0003: ldarg.1
IL_0004: bge.s IL_000a
// true branch (C = A;)
IL_0006: ldarg.0
IL_0007: stloc.0
IL_0008: br.s IL_000c
// false branch (C = B;)
IL_000a: ldarg.1
IL_000b: stloc.0

// return C
IL_000c: 1ldloc.0
IL_000d: ret

Y // end of method FlowGraphTest :: minimum

Listing 3.2: Minimum method defined in Listing compiled to CIL

26

e Logic operations — instructions that perform logical operations on the vector
values.

e Memory management — instructions that transfer the data from or to the
memory.

e Shuffle operations — instructions that efficiently exchange data in the vector
registers.

e Miscellaneous — additional instructions for initialization and configuration
of the SIMD unit.

The arithmetic operations are further categorized based on the data type they
support. Each instruction interprets the registers as a vector of different values
and using incompatible instructions can lead to invalid values.

3.4.3 Memory Organization

The original SSE supported eight new 128 bit registers which was extended to
sixteen with the introduction of the 64-bit architecture. The AVX extension
added sixteen new 256 bit registers. These registers are dedicated to the vector
extensions and they are not available to the CPU for standard instructions.

The vectors must be filled by special SSE or AVX instructions, which either
move data from memory or fill the vector with a constant. Moving data to the
registers can be costly operation, especially when performed frequently. The
applications should reuse the data in registers as much as possible, which means
that any compiler producing the SIMD instructions must keep the live variables
[4] in the registers while they are needed.

The memory transfers to the SSE registers are limited to the data aligned to
16 bytes] The unaligned data can be transfered as well, since SSE2, but the
transfer is much slower than for the aligned data. To mitigate this effect, the
ParallaX compiler produces code that automatically allocates all the vector data
aligned to 16 using a custom memory manager.

3.4.4 SIMD in C++

The SIMD instructions are accessed via intrinsic functions provided by the C++
compiler or its library. The intrinsics are provided as simple functions, where each
internally represents a single SSE or AVX instruction, and each call is replaced by
the instruction (inlined). The ParallaX compiler produces C++ code containing
the intrinsic functions and the C++ compiler produces the final code with the
SIMD instructions.

The special registers are represented by special data types, like the __m128:
type representing four 32 bit integers. The registers are used by declaring a
variable of the data type.

2 Address is divisible by 16

27

28

4. Hybrid Flow Graph

The Hybrid Flow Graph, or HFG for short, is a compact format designed for
representation of procedural code with operational semantics similar to the be-
havior of streaming systems. All the data types, control flow and data flow are
represented by a single graph, unlike the control-flow graphs [35] and data-flow
graphs [36] constructed by the traditional compilers, where each graph represents
a single aspect of the processed code. The HFG definition is platform specific;
nevertheless, the construction of the graph is a general algorithm that can be
adapted for many platforms (intermediate codes).

A Hybrid flow graph is an annotated directed graph, where nodes togeth-
er with their labels represent operations and edges define data transfers. The
orientation of the edge indicates the direction of data flow and the edge annota-
tion defines the data type transported along the edge. The complete list of all
supported operations and data types is part of the HFG definition.

The HFG defines two sets of operations necessary to represent both the CIL
semantics and control flow structure. The first set of operations is borrowed from
the underlying environment, the CIL standard [30]. These operations are derived
directly from the CIL instructions and we call them the basic operations. The
second set contains the special operations that model the control flow structure,
their semantics are defined in detail in Section [4.3

The data types supported by the HFG edges are taken from CIL standard
[30] and we add a single new data type called Token, which represents elements
without value used to initialize the HFG nodes.

Figure [4.1] shows an example Hybrid flow graph implementing the factorial
function defined in Listing 4.1} The graphical notation introduced in this sample
is carried over to the other examples. The graph nodes represent:

int factorial (int a) {
int b = 1;
do {
b =a % b;
a=a— 1;
} while (a > 1);
return b;

}

Listing 4.1: Method containing a single loop

29

e basic operations — rounded rectangles inscribed with instruction codes

e start special operation — squares inscribed with

e return special operation — squares inscribed with R

e parameter special operation — squares inscribed with P and parameter name
e merge special operations — squares inscribed with M

e split special operations — squares inscribed with S

e Joop primer special operations — squares inscribed with L

e broadcast special operations — filled squares without inscription

e input special operations — circles inscribed with number

The special operations represent control flow and data distribution, they are
defined later, in Section [4.3] The input operations represent specific input for
other operations, especially for those with more than one, we omit them for
operations with a single input to make the examples more compact. The data
types of the edges are defined by their graphics as follows:

e integer — solid lines
e boolean — dashed lines

e Token — dotted lines

Figure 4.1: The HFG representation of the factorial function

30

4.1 Related Work — Hybrid Flow Graph

We designed the Hybrid Flow Graph (HFG for shot) as an intermediate language
capable of representing procedural applications across various streaming environ-
ments in a form similar to the structure of their native applications. The HFG
is a graph-based declarative language that uses operators defined according to
the CIL instructions and it is defined along with a compiler able transform C#
code into the HFG. The final structure of the Hybrid flow graph was presented
in our work [I], where we defined the graph structure, semantics and construc-
tion. The original theoretical basis was formulated in our previous work [5], but
the graph was further refined to accommodate all the features necessary for code
representation and efficient execution.

The Hybrid Flow Graph described in this work is similar but not identical to
other modeling languages, like Petri nets [39] or Kahn process networks [40]. The
main difference is that the HFG was designed for automatic generation from the
source code, where the other languages are generally used to model the application
prior to implementation [41] or to verify a finished system [42].

The Hybrid Flow Graph is not only a compiler data representation, it is a pro-
cessing model as well, similar to KPN graphs [43]. It can be used as a source code
for specialized processing environments, where frameworks for pipeline parallelism
are the best target, since these frameworks use similar models for applications
[44]. One such a system is the Bobox framework [2], where the flow graph can be
used to generate the execution plan similarly to the way Bobox is used to execute
SPARQL queries [45].

The Hybrid Flow Graph is closely related to the program dependence graph
(PDG), which can be also used to represent procedural code [46]. The program
dependence graph was designed for traditional procedural languages, like For-
tran, where the graph construction relies on the source code statements. Modern
languages, like C#, provide far more complex source code syntax and their direct
transformation into a graph is impractical, since it means replicating the C#
compiler to parse the code. To offset the complexity, we transform the CIL code,
which is more simple. The main cost of this approach is increased granularity of
HFG compare to the PDG, which we reduce lated using optimizations.

The flow graph has similar traits to frameworks that allow applications to be
generated from graphs, like UML diagrams [47] [48], but we concentrate on graph
extraction from procedural code, which is more convenient for the design of data
processing application.

The flow graph semantics is defined using the graph rewriting system [49],
which can be used to design and analyze applications, but it is not convenient for
execution. The graph rewriting systems continuously modify the graph structure,
which severely limits optimization. There are other frameworks that generate
graphs rewriting systems from procedural code like Java [50], but the produced
systems are inconvenient for efficient execution and we use them solely to define
the graph semantics.

Since the global determinism of our flow graphs is ensured by the generator,
the Hybrid Flow Graph has more relaxed local constraints than a KPN, but
still more stringent than a Petri net. There are frameworks which are able to
construct KPN graphs from simple programs [51], but the flow graph contains

31

more information about the source code and it is designed for data processing
applications.

The Hybrid Flow Graph is closely related to graphs used in compilers, mainly
the dependence and control flow graphs [36], where the HFG merges the infor-
mation from both. The construction of a HFG and its subsequent optimization
is related to well-known compiler techniques, like points-to analysis [52], depen-
dence testing [35] and control-flow analysis [53]. In compilers, graphs resulting
from these techniques are typically used as additional annotation over intermedi-
ate code. On the contrary, our Hybrid Flow Graph contains complete information
and, thus, it is an intermediate code representation in itself.

The close relationship to the data-flow (dependence) [36] and control-flow
graphs [54] is natural, because together they represent the two most important
aspects of the procedural code. However; it is not possible to use either of the
graphs alone to fully represent an application, because each lacks some informa-
tion about the code. The control-flow graph does not define data connections
and the data-flow graph is not deterministic. One approach would be to combine
both graphs into one, but that generally leads to a graph with an exponential
number of nodes relative to the size of the original code.

4.2 Basic Operation Semantics

We use graph rewriting systems [48] to define the semantics of operations, which
is the approach we used in formal definition of the HFG semantics [6]. We use
the graph rewriting systems only as a theoretical tool, because the real imple-
mentations work as streaming systems rather than graph rewriting systems.

To properly define the semantics of the Hybrid flow graph we add a third
set of operations, the data operations. Nodes annotated with these operations
represent values processed by the HFG during execution and they do not perform
any actual work. We show the data operations as elliptic nodes in the examples.

The data operations are introduced, because the edges represent streams in the
streaming systems, but the pure graph representation provides no mechanism to
implement this behavior. Instead we chain data as nodes where otherwise would
be a stream. These operations are used only to define the semantics and they
are not used in the actual implementation, because there, the edges represent
streams that store the processed value.

First, we define the semantics of the basic operations based on the CIL in-
structions. The semantics are defined according to the CIL standard [30], where
the consumed and produced values are taken from the input and output streams
instead of the common stack or variable memory. It is the responsibility of the
compiler to construct the graph so that the edges represent the connections that
the stack provides in the original CIL.

Figure defines the semantics of a few select CIL instructions, where the
elliptic nodes represent the data operations and the % represents an empty token.
We do not show the definition of all the instructions, because it is straight forward,
the instruction consumes data and produces the results from and to the edges.

The only special case are the branch instructions (like bgt in F igure which
normally move the program counter. In our semantics they just produce a boolean

32

Figure 4.2: Semantics of load constant, add and compare (<)

value that says whether the jump should happen or not and the actual control flow
management is handled by the special operations described in the next section.

4.3 Representation of Control Flow

Control flow operations are transformed into special operations which interact
with the data-flow carried through the basic operations. The special control-flow
operations are guided by streams of boolean values associated with condition-
al branches (marked using the dashed edges). The following figures define the
semantics and visual notation of all the special operations, where the ellipses
represent the data values carried through the edges.

Figure 4.3: The semantics of the start, input, broadcast and cast operations

Start

The start operation (represented by a square inscribed with 1) is used to initialize
the graph execution, it primes all the nodes that do not consume any data pro-
duced in the graph (like load constant) and it is the only node without input in
the HFG. Each graph contains only a single start, which is executed immediately
upon start and produces a single token that initiates other operations.

Input

The input operation (represented bu a circle inscribed with a number) is an
empty operation that identifies specific inputs for operations with multiple. The
operation passes its input to its output without any change. We omit the input
operation for operations with a single input in the examples.

33

Broadcast

The broadcast operation (represented by a black square) has a single input and a
variable number of outputs and it creates a copy of each input value for each out-
put. This operation is used whenever an operation must pass its result to multiple
consumers and their number defines the number of outputs of the broadcast.

Cast

The cast operation (represented by a black triangle) is a special version of the
broadcast operation that does not copy the input value, but outputs a single
token for each consumed value. The cast basically converts a value to a token for
all outputs.

b b

Figure 4.4: The semantics of the split, parameter and return operations

Parameter

The parameter operation (represented by a square inscribed with P*) represents
a parameter of the original method and provide the graph with its input value.
The parameter has internally stored the input value and it returns it gets input
token straight from the start operation. Section explains in grater detail the
execution semantics of the hybrid flow graph.

Return

The return operation (represented by a square inscribed with R?) is basically the
reverse of the parameter operation, it internally stores the input value, which
represents the return value of the hybrid flow graph execution. See Section
for more details.

Split

The split operation (represented by a square with S) separates values from a
single stream into two independent streams based on its boolean condition input.
The operation inspects the condition and passes the input to the appropriate
output. The split operation is used with the merge to separate branches and loop
iterations (see Section [6.7] for details).

34

<>
©

®
©)
(=

ezw

)

(true)
® @
—>

HaS
Ha®

Figure 4.5: The semantics of the merge operation

Merge

The merge operation (represented by a square with M) combines two input
streams into a single output stream according to a boolean condition input stream.
The operations first inspects the condition value and then passes the appropriate
value from one of the input streams to the output stream, one input contains the
values for the true condition and the other for false.

o ae e
0) @

5 d 3d D dd & & o

1 U—T D

-

Y @ \ Y \

Y Y

Figure 4.6: The semantics of the loop primer operation

Loop Primer

The loop primer operation (represented by a square with L) it the only operation
with two states. The operations first reads its first input and returns false, then
it reads its second input while it is true and returns true. When the second
input is false, the loop primer returns to the initial state (reads first input). This
operation is used with split and merge to control loop iterations, because the loop
body must first consume data produced prior to the loop and than it consumes
data produced in the previous iterations.

4.4 Hybrid Flow Graph Execution

The hybrid flow graph is an intermediate language that is not meant to be ex-
ecuted by itself, it is further transformed into a streaming system application,
but it is still beneficial to fully define its execution semantics. The hybrid flow
graph operational semantics is defined by the graph rewriting system presented

35

in the previous sections, but an actual execution (even if theoretical) still requires
simple preparation.

The HFG is defined and constructed so that there is a single node without
input that initialized the entire graph. This means that the parameters must
be filled into the graph before it is executed, we call this step the instantiation
and it requires that all parameters are annotated with their actual values. Next
we apply the rules of the graph rewriting system, while there is at least one
applicable, we named this phase evaluation. And finally we extract the result in
an operation we call reduction, where we get the value from the return operation.
The process is defined in Algorithm [I}

evaluate

SRy,

Figure 4.7: Hybrid flow graph execution example

The actual execution can be illustrated on a small example. Figure 4.7|shows
a graph that adds the value of two parameters and returns the result. The
figure shows all three steps of the HFG execution — instantiation (with parameter
values), evaluation and reduction (producing the result).

Algorithm 1 Hybrid flow graph execution
Require: G — hybrid flow graph
GRS — graph rewriting system defining HFG semantics
P — set of all the parameter values
Ensure: X — return value
G' .= instantiate(G, P)
R:=r € GRS : applicable(r, G")
while R # () do

r:= first(R)

G = r(G")

R :=1r € GRS : applicable(r, GT)
end while

X = reduce(G?)

4.5 Layered Hybrid Flow Graph

The hybrid flow graph definition is based on the CIL instructions, which means
that the graph is generally large and granulated, which can cause inefficiency in

36

the final streaming application. We designed a transformation called component
extraction to offset this effect.

The component extraction takes select parts of the graph and combines them
into a single operation with equivalent semantics. In practice, this would require
adding new operations and their semantics into the hybrid flow graph language
definition, which would be impractical.

We define a extended version of HFG to allow the components to be defined
directly by their original subgraph. A layered hybrid flow graph is a hybrid flow
graph which can contain custom operations that have semantics defined by an-
other hybrid flow graph.

custom

Figure 4.8: Layered hybrid flow graph example
Figure 4.8 shows a small hybrid flow graph with a custom operation defined

by another graph that adds and multiplies its two inputs and returns a single
value.

37

38

5. Compiler for Streaming
Environments

The design of applications for streaming environments can be complicated and
requires specific knowledge of the environment and sometimes even the underlying
hardware. We discussed the specifics in Section [2.2]

The goal of this project is to make the design of applications for streaming
environments simpler and more efficient. To accomplish this, we have designed
the ParallaX compiler that allows developers to design entire applications or
their parts in a common procedural language, we selected C# for its wide spread
knowledge and well documented intermediate code. Developers simply create
an application in C# and our compiler transforms it for a supported streaming
environment. We currently support multiple parallel environments, but we mainly
focus on a native implementation of the Bobox [2] streaming environment. The
other supported environments are specified in Section [8.2]

5.1 Related Work — Intermediate Code and
Parallelism

The ParallaX compiler was designed to simplify the development of applications
for the Bobox streaming system, its structure is based on our work [1I], where we
defined the compiler architecture and the compilation process. The theoretical
basis of the entire system is based on our previous work [7], where we presented
the basic concepts of the Hybrid Flow Graph and its construction.

Compilers of procedural programming languages traditionally use interme-
diate code separated into two layers — the control flow and the data flow, the
former being a graph of basic blocks while the latter assigns either a sequence of
instructions or a data-flow graph to each basic block. This textbook approach
[57] has become standard whenever the target machine is a CPU which posses
direct representation of the control-flow instructions. Data-flow graphs in com-
pilers are usually limited to individual basic blocks — this limitation guarantees
acyclic structure of the data-flow graphs (named dags therefore) which in turn
allows simpler semantics and easier handling.

Attempts to integrate the control-flow and data-flow levels of intermediate
code occurred throughout the decades of development of compilers, the most
successful being probably the Program Dependence Graph (PDG) [46] used re-
cently in compilers for GPU architectures [58]. Nevertheless, the PDG is only an
annotation over the underlying sequential code and modern compiler ecosystems
like LLVM still rely on intermediate codes based on instruction sequences.

Different representations are used in hardware synthesis where the result of
compilation is not a code but an electronic circuit [59]; however, the source lan-
guage SystemC, although originated from C, was significantly changed towards
the hardware definition domain; consequently, the language as well as the prin-
ciples of compilation are not easily applicable to general programming.

Synthesis of electronic circuits has been the main motivation for data-flow

39

representations of procedural code; nevertheless, intermediate codes and conver-
sion algorithms targeted at general computing appeared both in the history [60]
and present times [61], sometimes suggesting a new hardware architecture as the
target platform [62]. Since conversion of low-level languages like C++ is difficult
due to aliasing problems, some conversion algorithms require hints in the form of
annotations added to the procedural source code [63], 64].

Although none of the suggested approaches reached wide recognition yet, the
current success of high-level data-flow architectures like TensorFlow suggests that
data-flow orientation may be a viable alternative to von-Neumann architectures.

In the environment of modern languages like C# or Java, there already were
several alternate intermediate codes introduced. Of particular importance to our
approach are systems similar to graph-rewriting systems, like the one described for
Java [50]. Java was also subject of numerous approaches to vectorization [65, [66]
or parallelization |67, [68]. Parallelization often makes use of additional user-input
through the use attributes or other ways of annotation [69,70]. Another technique
which shares some similarity with stream-based processing was described in [71].

There are also works focusing on the parallelization of dynamic languages,
mainly used for web content production or scripting, like JavaScript, PHP and
Python. JavaScript can efficiently take advantage of the parallel capabilities of
HTMLS5 [72], or there is the possibility to employ even more powerful technologies
like OpenCL [73]. The parallelization of PHP is one potential goal of the Peachpie
compiler [74]. All the previous works focus mostly on loop parallelization or
vectorization and cannot be directly adapted for streaming systems, but they
show that the dynamic languages can be adapted as an interface for parallel
systems.

5.2 Compiler Architecture

We have designed a compiler that takes a C# application compiled to CIL and
transforms it to an application for a streaming environment. We call it the
ParallaX compiler. The compiler mostly follows the standard architecture shown
in Figure [5.1} where we omit only the platform specific optimizations as they are
performed by the streaming environment and the C++ compiler associated with
it.

The architecture in Figure is designed for a direct transformation, source
code to a machine / binary / byte code, but streaming environments require plan
and operations, not just a single code. Therefore; our compiler requires some non-
standard parts and a special intermediate language better suited for streaming
environments. The structure of our compiler is shown in Figure 5.2l We have
designed a special intermediate language with platform independent structure
and semantics well suited for streaming environments. We named this language
Hybrid flow graph, or HFG for short, and it allowed us to adapt our compiler for
multiple target platforms besides just native Bobox. The language was described
in detail in Chapter [4]

Figurel|5.2|shows the architecture of the ParallaX compiler with its components
grouped into the three main parts — front-end, optimization and back-end. The
compilation process is explained in the following chapters, but the basic idea is
straight-forward: the CIL instructions are transformed into the graph nodes and

40

(Charaster Straam)

Source Pragram l

Flow Graph (Tuples grouped
inte basic blacks)
Iy i 4 Diobs buth local fwithin a basie block) and
. glabal (across black) impravements, hit
Machine Independent ally stays within i
Foken Siream Caode Improver and
v
Modified Flow Graph
Parser v
(Syntax Analyzer)
Strings basic blocks together into
Target Code Generatar straight line cade with fall-throughs
Absiraci Spniax Tree
AL Assembly language with virtual
Resalves semantic information registars (prabably ingfficiant)
Semantic Analyzer Checks the tres nades for errors v
Machine Dependent g‘;;i;i%;f;g;ﬁ;ﬂw and
Semantic Graph {Absiract Syniax Tree Code Improver <
with addifional properties and rerolved.
references) Y
Real assembly language (with
Intermediate Code good use of pipelings)
Generatar

Figure 5.1: Standard compiler architecture overview taken from the book Com-
pilers: principles, techniques, tools [57]

C# Global N Plan
source code HFG generation
C# HEG Component Runtime
compiler extraction environment
Graph Layered Code
CIL code R construction HFG T_generation
front-end optimization back-end

Figure 5.2: Compilation and code generation

connected by edges, representing data transfers, created according to the data and
control flow. The instructions are then grouped based on the graph structure to
create kernels (basically complex instructions) for the streaming environment.
The data transfers between the operations from the execution plan, because they
define how the operations are executed and how they interact.

The first part of our compiler is the front-end, where the code of a single
procedure, usually the main method, is transformed into a hybrid flow graph.
The input of our compiler is a C# code compiled into a CIL code by a C#
compiler. Chapter [0] describes all the steps necessary to create a HFG equivalent
to the input code.

Next, the graph is transformed into a layered hybrid flow graph, defined in Sec-
tion [4.5] This step is called optimization, because it reduce the graph granularity
and improves the efficiency of the final application. The process is explained in
detail in Chapter [7]

Last part of the compiler is the back-end, where we take the layered graph and
transform the top layer to the execution plan for the streaming environment and
the rest we transform into C++ code implementing the custom operations. The

41

back-end is platform specific, depending on the target environment, we discuss
the available versions in Chapter |8l The produced application is then processed
by the runtime environment and executed.

5.3 Input Language Restrictions

A compiler must always produce a valid code, which means that it has to be
very conservative when it encounters constructs that do not follow a pattern
that allows for optimization. This is especially important for a compiler that
transforms the code between two very different platforms, like the object-oriented
C# and streaming environments.

The structure of the streaming environments is significantly different from
the object-oriented environment of the CLR and C# and we impose restrictions
on the applications the ParallaX compiler is able to process. Without the re-
strictions, the produced code would be too inefficient or the application might
be impossible to compile. The ParallaX compiler does not currently support the
following constructs:

e objects — the compiler supports only static methods, which can call other
static methods.

e multi-dimensional arrays — we support one-dimensional arrays, but it is
possible to represent multi-dimensional arrays in one-dimensional arrays.

e cxceptions — exceptions and guarded blocks are not allowed, errors can be
reported by returning invalid values.

e [ibraries — library methods and classes are not supported, because we do
not have access to their code (in case of native implementation) and they
do not have equivalent in streaming environments. In the future, we will
provide special library compatible with the streaming environments.

e switch — the compiler supports only if-else, but switch support will be added
in the future.

e break, continue and goto — we do not allow these constructs, because they
can abruptly interrupt the control flow in a way that is not possible in
streaming environments.

This work is a proof-of-concept and the purpose of the ParallaX compiler is
not to parallelize arbitrary C# applications, but to provide another interface for
the streaming environments to developers without specific domain knowledge of
the systems. However; the compiler can be further improved to incorporate some
of the restricted concepts.

Switch can be added with slight modifications to the compiler, because it can
be represented by a series of if-else branches already supported by the compil-
er. Custom libraries must be implemented, but there is already a small library
integrated with the compiler that can be used as an example.

Break, continue and goto cannot be simple introduced, because the streaming
environment lack the means to replicate their behavior. It might be possible to

42

add break and continue by restructuring the respective loops, but a general goto
cannot be added as it can change the control-flow too significantly.

Multi-dimensional arrays can be added as well, but they would introduce com-
plex aliasing and their efficient handling would require advanced optimizations,
which are currently not implemented.

Value object types (structs) can be added with proper handling. They do not
introduce aliasing, because they do not have reference semantics. Their integra-
tion could be achieved in a similar way as single-dimensional arrays, described in
Section [6.91

Objects and exceptions cannot be fully supported, because they do not have
any equivalents in the streaming environments. Exceptions can unpredictably
change the execution order and modify the application state and there is no way
to do that in a streaming system, which is driven by data. Objects along with
the garbage collector can be also very unpredictable and they introduce aliasing,
which could severely limit available parallelism.

43

44

6. Compiler Front-end

Figure [6.1] shows the overview of the HFG construction process. Our input is
a CIL assembly compiled from a C# code. The original C# code is compiled
using Microsoft c¢s to CIL and packed to an assembly (library or executable) by
MSBuild. The resulting CIL assembly is analyzed and directly transformed by
our compiler to the final Hybrid flow graph.

6.1 Front-end Overview

The compiler transforms a single procedure to a streaming application, which
usually means the main method of the C# application. Aside from the compiler
itself, we provide also a small library of attributes that allow users to specify other
procedures for transformation and they can also modify the way it is carried out,
used optimizations and generated outputs.

The basic idea of the HFG construction is to transform all the CIL instruc-
tions to graph nodes and connect them according to data and control flow. We
create a set of basic nodes, each representing a CIL instructions. Then we add
special nodes based on control flow analysis completing the HFG, which repre-
sents the entire input code (procedure or application). A complete HFG is later
transformed to plan for a streaming environment or another parallel system. Fi-
nally, we optimize the complete HFG to better balance overhead and available
parallelism.

General parallelization approach is to analyze the source code and locate cer-
tain patterns or dependences to find opportunities for parallelism. We use a
reverse approach, we transform the application to the HFG directly and then we
optimize the resulting graph by merging instruction nodes wherever it is benefi-

cial.
C# Procedure CIL procedure Instruction _An?otatt_ed
source code integration (without calls) classifier mzt:zgrfn

CIL
procedure

Procedure
selection

Figure 6.1: Overview of the ParallaX compiler front-end component

> HFG

C#
compiler

CIL code —3

CIL Control-flow
preprocessor analysis
CIL Data-flow Reaching
instructions analysis definitions

front-end

Figure [6.1] shows the front-end structure with the two main parts being: the
data-flow and control-flow analyses. The data flow analysis is similar to the
reaching definitions analysis [75], but we calculate it using a graph rewriting
system emulating the CIL code behavior. The control flow analysis is based on a
context-free grammar and parser generator commonly used in standard compilers.

45

The compilation starts with three preparation steps that produce a single
CIL instruction list that is then transformed into a HFG by the data-flow and
control-flow analyses. The preparation steps are: the procedure selection, the
procedure integration and the CIL preprocessor. The algorithms are described in
Section Section [6.4] and Section [6.5] respectively.

We use the data-flow analysis to locate all producers and consumers for each
instruction, we describe the process in Section [6.6f The data-flow analysis pro-
duces a set for each instruction that contains all the instructions that consume
a value produced by the instruction, basically a set of all consumer. The output
is similar to the result of the reaching definitions analysis, which locates all the
values able to reach each statement [75].

The instruction classifier categorizes the instructions according to their con-
trol flow behavior: conditional and fixed jumps, jump targets and standard in-
structions. The process is described in Section [6.6.5]

The control-flow analysis takes the output of both the data-flow analysis and
the instruction classifier and constructs the final hybrid flow graph. The control-
flow analysis locates the control flow constructs (loops and branches) and for
each construct, the analysis produces its body and connects it to the entire graph
using special operations. The non-jump instructions are transformed to basic
operations and connected to the graph.

CIL code represents control flow as a set of conditional jumps. However, we
analyze the CIL code produced by the Microsoft C# compiler, which transforms
control flow into a well defined structure of jumps. We reconstruct the control
flow based on that structure. This approach does not support general CIL code,
but it is sufficient for a CIL generated from a C+# source code, which is our target
platform.

6.1.1 Transformation Example

We will illustrate the entire transformation process on a single example to provide
a more coherent insight into each step. Listing 4.1} from the previous chapter,
contains a C# source code of the factorial method and Listing contains the
CIL code produced by compiling the C# source. Figure [4.1] shows the com-
plete HFG created from the CIL code using the algorithms described in the next
sections and throughout this chapter, we will construct the graph step-by-step.

6.2 Related Work — Compiler Front-end

The compiler front-end is responsible for the transformation of a source code into
a more manageable intermediate language, which is either simpler, more efficient
or similar to the target environment. The textbook solution contains a series
of analyses that explore the aspects of the source code and provide information
about its structure for the intermediate code construction or further optimizations
[51].

The front-end of our compiler follows the standard solution — we construct
the Hybrid Flow Graph (intermediate code) from a C# code, compiled into CIL
code by a standard C# compiler (source code). To properly construct the HFG,

46

Listing 6.1: CIL code created from C# code in Listing

.method private static int32 factorial (int32 a)
{

.maxstack 2

.locals init ([0] int32 b)

IL_0000: ldc.i4.1

IL_0001: stloc.0

// loop start (head: IL_0002)
IL_0002: ldarg.0
I[L_0003: 1ldloc.0
IL_0004: mul
IL_0005: stloc.0
IL_.0006: ldarg.0
IL_.0007: ldc.i4.1
IL_0008: sub
IL_.0009: starg.s a
IL_000b: ldarg.0
IL_000c: ldc.i4.1
IL_000d: bgt.s IL_0002

// end loop
IL_000f: 1dloc.0
IL_0010: ret

Y // end of method Program:: Factorial

47

we require three main analyses: the data-flow analysis, the data type analysis and
the control-flow analysis.

Before we apply the aforementioned analyses, we must address the procedure
calls present in the source code. The procedure calls limit our ability to safely
construct the Hybrid Flow Graph structure and this is especially problematic
with procedures where we do not have access to their source code. To eliminate
this problem, we limit the use of C# standard library, instead; we provide our
own library that contains procedures known to the compiler. We use procedure
integration (also known as inlining) [76], which reduces the source code into a
single procedure without any additional calls [I]. The integration is commonly
performed by the CIL runtime to produce more efficient code [77], but we have
to perform the integration ourselves since we work with the CIL code directly.

The data-flow analysis is responsible for mapping producers and consumers
for all potential variables. The analysis creates a set of producers and consumer
for each CIL instruction, so we can properly connect the graph nodes based on
them. The concept is very similar to the reaching definitions analysis [75], where
we use a more dynamic solution to gather additional information about the code
behavior. We statically emulate the source code to analyze the data-flow, data
types of values and most commonly used control-flow paths. The concept is
similar to the optimizations based on runtime behavior of the application or a
profiler [78].

The compiler accepts CIL code as the input for the front-end, which is a
strongly typed language. Therefore; we are not subject to the undecidable da-
ta types commonly encountered in dynamic languages, like PHP [79]. The CIL
structure still allows for implicit and explicit conversion [31], which can seriously
limit the performance of the resulting applications, because it might lead to con-
stant vector conversions. We analyze the data types during the data-flow analysis
and assign a strict type constraint to each edge of the resulting HFG [I].

Another common problem of the object-oriented languages is aliasing, which
is usually addressed by the points-to analysis [80]. We do not have to address
complex aliasing, because we forbid the use of object types in the source code,
with the exception of the arrays. In the Hybrid Flow Graph produced by the front-
end, the nodes always exchange complete arrays and modify them locally before
passing them on. This inefficient behavior is later addressed by the optimizations,
which optimize only arrays that are not aliased in the relevant context, where we
use a process similar to the live variable analysis [4].

The control-flow analysis must determine the order in which the instructions
are processed in the source code and we use this information to properly merge
the HFG edges, representing data transfers. Our implementation follows the
pattern similar to the process of basic blocks extraction [54]. We use a pushdown
automaton, commonly used in syntax analysis [57], to analyze the control-flow
and we construct the Hybrid Flow Graph in the process (according to the results
of the previous analyses).

6.3 Method Selection

The first preparation step must select methods, which will be transformed into
streaming applications, and provide their CIL byte code. This step is important,

48

because the input for the ParallaX compiler is a CIL assembly, but the following
steps work with CIL instructions, which must be loaded from the assembly.

We use the Mono Cecil library [81] to load the input assembly into an object
representation, which allows us to manipulate the code more efficiently. The
library is part of the Mono implementation of the CLR standard, but it works
with the other implementation as well, including the Microsoft .NET.

Once the code is loaded, we select the methods that will be transformed, each
into a separate streaming application. This approach allows users to implement
multiple streaming applications in a single assembly and then compile them to-
gether. Fach application is started by a single method, just as it is in the CIL and
most other procedural languages, and the initial method calls the others when
they are needed.

The method selection process iterates all the methods of all the types in
the assembly and selects those that have the ParallaX.Interface.Transform
attribute attached. The attribute is provided with the compiler in tiny library. If
there are no methods with the attribute, we simply select the main method and
it becomes the only input for the rest of the compilation.

Once all the methods are located, the code of each is loaded and the methods
are passed one-by-one to the next compilation step.

6.4 Method Integration

Method integration, also known as inlining, takes the method selected in the
previous step and eliminates all the calls to other methods, by integrating their
code directly into the main method. This way we produce a single sequence of
CIL instructions that can be processed by the following steps without the need
to incorporate other code.

Another approach would be to analyze the called methods separately and
directly create a layered HF G, but that would mean that the code structure would
influence the granularity of the resulting graph. We might be able to balance the
graph structure by moving code between layers (representing procedures) , but
that is basically method integration implemented on the intermediate language
instead of directly in CIL.

Method calls may also be handled using a call operation embedded in the
graph; however, such operation is difficult to implement in streaming systems.
Therefore, procedure integration is the favored way to handle function calls in
our environment.

The main drawback of the integration is its inability to handle recursive calls,
with the notable exception of the tail-recursion [82], which can be replaced by
a loop. This is a disadvantage, but the data intensive applications rarely use
recursion, because it can severely limit their performance.

Another problem that we face is the fact that we cannot integrate library
methods, because they are usually implemented in native libraries and we do not
have access to their code. This includes methods for file or graphics management,
which cannot be used in the target application anyway, because the streaming
environments contain no equivalent to their functionality. For this reason, we
do not allow library methods at all. We provide our library that supplies the
necessary arithmetic functions and is integrated with the compiler.

49

Calling Jump Patched calling Code Integrated
method extension method integration method
Called Variable Patameter Patched called
method renaming patch method

Figure 6.2: Method integration process

We have implemented an explicit method integration algorithm, because we
have to eliminate method calls in the analyzed code. The CLR just-in-time
compiler, or JIT for short, integrates small methods, when the code is loaded for
execution, which is too late for us. We needed to be able to integrate methods
in the CIL so we can produce a code without any calls and transform it to HFG.
The following sections describe the process in detail.

6.4.1 Integration overview

The integration process is straightforward but requires many technical details
to be addressed for the code to be valid according to the standard [30]. The
integration always integrates a single called method into a calling method. 1If
a method calls multiple methods then they are integrated one after another.
Figure show the entire integration process for a single method. We use the
Cecil library, which allows us to change the code efficiently without complex
binary calculations.

The first step is to copy the code of the called method, because we do not want
to modify the original code, because that would make it invalid. On the other
hand, we can modify the calling method, because it will be fully valid at the end
of the integration. The further steps are described in the following sections in
detail.

6.4.2 Variable Renaming

We must rename all the local variables of the called method so that they do not
conflict with variables of the calling method. This requires that we also patch
the instructions accessing the variables by swapping the original name for the
new one. Algorithm [2] shows the renaming, where the Available Name method
generates a new variable name available in the calling method. For example:
VariableN : N € N A VariableN ¢ Var(calling).

6.4.3 Parameter Patch

Parameters of the called method must be renamed as well, but they also have to be
replaced by local variables and the instructions accessing them changed to reflect
this. The process is the same as for the local variables, with the exception, that
we also change the instruction operation code. Store argument (starg) is changed
to store local (stloc) instruction and load argument (Idarg) is changed to load
local (ldloc) instruction. The actual implementation is a bit more complicated,

20

Algorithm 2 Variable renaming
Require: [— instructions of the called method
V' — local variables of the called method
C' — local variables of the calling method
Ensure: M — patched called method
{Rename variables}
. REG := () // associative register mapping renamed and original variables
: for all v € V do
rv := Available Name(v, C')
C:=CU{r}
REG := REG U {(v,rv)}
end for
{Patch instructions}
7. for all i € I do
8: if i.Operand € V then
9: i.0Operand := REG([i.Operand)]
10: end if
11: end for
122 M := (C,I)

@ g Wy

because it has to properly transform all the specific versions of the instruction
to their appropriate counterparts, for example the transformation must preserve
the difference between integer and object versions of the instructions or the code
would be invalid.

6.4.4 Jump Extension

Before we integrate the code, we have to first ensure that all the jumps in the
calling method will remain valid. This means that we have to locate all the jumps
that traverse the integrated call instructions and extend them by the number of
instructions in the called method. Algorithm [3]shows the entire process, we assume
that the instructions can be compared according to their position in the code.
Jump instructions contain target offset (relative distance) as their operand.

6.4.5 Code Integration

The code can be copied to the calling method, once both the methods are pre-
pared. The call instruction is replaced by all the previously copied and patched
instructions of the called method.

6.4.6 Stack Limit

There is one last technical detail that has to be addressed for the code to be
valid. The .NET runtime require all methods to indicate the maximal size of the
stack they require, see Section for details. This information has to be updated
for the calling method, because the integrated code can change the require size.
We calculate the new size by adding the required size of the calling and called
methods:

51

Algorithm 3 Jump extension
Require: [— instructions of the calling method
C € I — the call instruction
JUM P — list of all jump instruction codes
N — number of instructions of the called method
Ensure: M — patched instructions
1: for allz € I do

2: if i.0pCode € JUMP then
3: if + < C' N1+ 1.0perand > C' then
4: 1.0Operand = i.Operand + N
5: else if i > C' AN i+ i.Operand < C then
6: 1.0perand = i.Operand — N
7: end if
8: end if
9: end for
10: M:=1
calling. MaxSize := calling.MaxSize + called. MazSize (6.1)

6.5 Code Preprocessing

Before we transform the CIL code to the hybrid flow graph, we have to prepare it
for the compiler. The preprocessor accepts a single sequence of CIL instructions
without calls, produced by the method integration, and produces another sequence
without calls.

The inherent structure of a procedural code has one important feature that
has to be addressed, before it can be transformed to a Hybrid flow graph. The
most important fact is that procedural application has a memory that is set once
but can be read multiple times. This is not possible in streaming environments,
because that would mean that such ”variable” would have to be connected to
all kernels that access its value, which would limit the available parallelism and
cause unnecessary synchronization.

There are two situations, where the lack of persistent storage can cause prob-
lems. The code in Listing[6.2] shows a situation, where the variable z is repeatedly
read in a loop without being assigned there and we have to repeatedly reproduce
the value in the resulting graph. The second situation is in Listing where the
variable y is updated in every other iteration of a loop and we have to preserve
the correct value through all the iterations.

Listing 6.2: Value recyclation

int x = 2
int y = 0;
for (int i

52

Listing 6.3: New value discarded

int y = 0;
for (int i
{

if(i %2 =0)

{

y =y + 1;

}

//else

//1

/)y =y
}//}

int x = y;

=0; 1 < 5; i++)

A variable is considered to be a live variable for a place in the source code, if
its actual value is read by a later instruction. We locate all the live variables for
the beginning of all loops and branches and we insert the statement x = x; into
respective constructs for every live variable. This means that all live variables are
updated in every iteration. We perform a simplified live variable analysis, where
we locate only variables read before assignment in loops and branches.

This change introduces instructions that do not change the behavior of the
application and help us simplify the HFG construction. Any unnecessary kernels
that just iterate the same value of a variable are eliminated by optimizations
described in detail in Section [7.

Algorithm [inserts the statement x = x; at the beginning of every loop and
branch for every variable live there.

6.6 Data Flow Analysis

The data-flow analysis accepts a single sequence of CIL instructions without calls
and produces a set of all consumers for each instruction. Each set contains all
the instructions that consume values produced by the respective instruction and
it is later used to construct the edges of the hybrid flow graph.

We implemented the analysis using a graph rewriting system statically emu-
lating the CIL behavior, because it is more flexible than the static analyses. The
static CIL emulator is more complex than a general static code analysis, but it
inspects only a fixed, limited number of control-flow paths and therefore; is not
a true emulator of CIL.

In the process, we use the emulator to gather additional information about
the code behavior, like the data types, the stack depth and most used control-
flow paths, which we use to design and apply more efficient optimizations. Our
data flow analysis is basically the reverse of the reaching definitions analysis [75],
which locates potential producers, where the goal of our analysis is to identify all
the consumers for each instruction.

The static CIL emulator accepts the code of a single CIL procedure as its
input and assigns unique values to all instructions inputs and outputs, which
we than use to match the consumers and producers. It uses CIL memory and

93

Algorithm 4 CIL code variable access patch
Require: I — sequence of instructions

L — sequence of all loops Vi€ L:1C 1
Ensure: C' — patched set of instructions

1. C:=1

2: for alll € L do

3 V=0

4: P = @

5 forallieldo

6: if i == [dl then

7 V :=V U {i.Operand}
8: end if

9: if + == ldarg then

10: P := P U {i.Operand}
11: end if

12 end for

13: for allv € V do

14: C = C[0 : L.start]|[ldl v]|[stl v]|C]l.start : C.length]
15: end for

16: for all p € P do

17: C = C[0: L.start]|[ldarg p||[starg p]|C|l.start : C.length]
18: end for
19: end for

execution model (variables, stack and program counter) transformed to a graph.
This emulator is not a hybrid flow graph, even though it uses graph rewriting to
define its semantics. The emulator uses CIL instruction behavior specified in the
ECMA standard [30] to properly model the CIL behavior.

Instead of emulating the actual calculation, we modify the instruction behav-
ior, the instructions then exchange unique identifiers instead of actual values and
we store all the identifiers consumed and produced for each instruction. This
way, we assign a unique identifier to each input and output and we can produce
the consumer sets that are the final output of the data-flow analysis. We emulate
only the minimal number of control-flow paths to limit the complexity of the
analysis. The initialization and emulation is explained in the next sections.

Listing shows identifiers assigned by our emulator to the CIL instructions
of the factorial method (original C# code is in Listing , where the identifiers
are shown as (inputs) — (outputs).

We take the identified values and produce the sets of consumers according ot
the Algorithm [5] which iterates over all the instructions and assigns each the set
of consumers based on the values the instruction produces. The final result of
the entire data-flow analysis for the factorial method is in Listing [6.5]

6.6.1 CIL Sequential Graph

A CIL sequential graph is an annotated directed graph, with semantics defined
by a graph rewriting system. It has a strict control flow that directly copies
that of the source code using a program counter and it has nodes representing

o4

IL_0000: ldc.id.1 ()—>(id1)
IL_0001: stloc.0 (id1)—>(id2)
// loop start (head: IL_0002)
IL_0002: ldarg.0 (pl,id10)—>(id3)
IL_0003: ldloc.0 (id2,1d6)—>(id4)
IL_0004: mul (id3,id4)—>(idb)
IL_0005: stloc.0 (id5)—>(id6)
IL_0006: ldarg.0 (pl,id10)—>(id7)
IL_0007: ldc.i4.1 ()—>(id8)
IL_0008: sub (id7 ,id8)—>(id9)
IL_0009: starg.s a (id9)—>(id10)
IL_000b: ldarg.0 (id10)—>(id11)
IL_000c: ldc.id.1 ()—>(id12)
IL_000d: bgt.s IL_0002 (id11,id12)—>()
// end loop
IL_000f: ldloc.0 (1d6)—>(id13)
IL_0010: ret (id13)—>()
Listing 6.4: Produced and consumed values
IL_0000: ldc.i4.1 {IL_0001}
IL_0001: stloc.0 {IL_0003}
// loop start (head: IL_0002)
IL_0002: ldarg.0 {IL_0004}
IL_0003: ldloc.0 {IL_0004}
IL_0004: mul {IL_0005}
IL_0005: stloc.0 {IL_0003, IL_000f}
IL_0006: ldarg.0 {IL_0008}
IL_0007: ldc.i4.1 {IL_0008}
IL_0008: sub {IL_0009}
IL_0009: starg.s a {IL_0002, IL_0006, IL_000b}
IL_000b: ldarg.0 {IL_000d}
IL_000c: ldc.i4.1 {IL_000d}
IL_000d: bgt.s IL_0002 0
// end loop
IL_000f: ldloc.0 {IL_0010}
IL_0010: ret {}

Listing 6.5: Data-flow analysis assigned consumer sets

95

Algorithm 5 Consumer set construction
Require: I — sequence of instructions
IN — array containing sets of all the values consumed by each instruction
OUT — array containing sets of all the values produced by each instruction
Ensure: C' — array containing sets of consumers for every instruction
1: for allv e I do

2: C[Z] = @

3: forall jeldo

4: if OUT[ilNIN[j] then
5: Cli] :==Cli]u{j}

6: end if

7. end for

8: end for

all variables, arguments and one for the stack, see Section for details of the
CIL language. Figure shows a sample CIL sequential graph representing the
factorial method, where the nodes annotated in upper case represent the special
operations implementing the execution stack (STACK), the variable a (VAR),
the argument p (ARG) and the program counter (P). The variables have an
initial value according to the CIL standard and the stack has an empty value so
we do not have to define separate semantics for an empty stack.

|E—>[Idc Hstloc]—»[ldarg]—»[ldloc]—»[mul HstlocHldarg]

[ret Hldl:oc];—[bgt]<—[Idc]<—[Idarg]<—[starg]<—[sub]

Figure 6.3: CIL sequential graph representing the factorial method

The CIL sequential graph is a parallel to the hybrid flow graph, but it is
not the same because it has a completely different semantics and its structure is
useless for streaming environments as it provides only a very limited parallelism.

The semantics of the CIL sequential graph are defined using a graph rewriting
system based on the CIL semantics defined in its standard [30]. Figure con-
tains the rules defining the behavior of the basic CIL instructions, we present only
the rules necessary for our examples, the rest are defined the same way according
to the behavior of the respective instructions. It is important to note that the
edges graphical design defines its annotation, which is most important for the
conditional jumps, where the thicker dashed edge represents the jump and the
regular edge is used when the condition is false.

The semantics directly copy the CIL standard, mainly the stack management.

o6

P STACK STACK STACK STACK

@@ @ ©

52:@ g:m .: — —» é
II
C)

Figure 6.4: Semantics of selected CIL sequential HFG operations

The control-flow is driven by the program counter (node P), which follows the
edges between instructions. The data management is handled by the stack and
variable operations, where each instruction consumes and produces the proper
number of stack levels or changes the variable values, based on its definition. The
construction of the CIL sequential graph is described later in Section

The CIL sequential graph execution follows the same principle as a graph
rewriting system, rules are applied as long as there is at least one applicable. The
execution copies the work of the CLR virtual machine, the control flow follows
the same path, variables and stack contain the same value after every evaluated
instruction and there is always at most one applicable rule, because there is only
one program counter (P).

6.6.2 Symbolic Semantics of the CIL Sequential Graph

To analyze the data flow, we must introduce a modified version of the CIL sequen-
tial graph. The symbolic semantics do not emulate the CIL calculation, instead
we collects the consumed values.

We define the symbolic semantics of the CIL sequential graph by another
graph rewriting system. The modified rules work with instruction identifiers
instead of actual values. This way, we can analyze which instructions consume
the values produced other instructions. The example symbolic rules are shown
in Figure [6.5] we modify other rules the same way.

We assign each instruction an identifier equal to its position in the sequence

o7

o] @-fors) [l G [
(#Hoec] e —pioifooc]

Figure 6.5: Symbolic semantics of selected Sequential HFG operations

(Vi € I :id(i) = i). Last modification is that the rules store identifiers of
consumed values, this is indicated by the bold dash-edged nodes in Figure [6.5]

The identifiers of branches decide how many times the branch is evaluated
as true and how many times it is false, we use this to drive the control flow
(explained in the next section). Branches do not require an identifier, because
hey do not produce any values, they just change the execution order.

6.6.3 Execution of the Symbolic CIL Sequential Graph

We use the symbolic semantics defined in the previous section to analyze the
values produced and consumed by instructions, we call this process a symbolic
CIL emulation. The symbolic semantics work with instruction identifiers instead
of actual values and conditional branches behavior is predefined. The result of
the symbolic emulation is a list of consumed values we than use to construct sets
of consumers for each instruction.

The symbolic emulation requires one extra step before the standard rule ap-
plication. The conditional branches have to be setup with information about the
way they should be executed. This means simply assigning a number to each
branch defining how many times it is evaluated as true and false. To cover all
the possible execution paths, we have to use all combinations of branches — each
jump must be at least twice true and false for every other nested jump, which
leads to the maximum of 477“™Ps execution paths. This is necessary to model
the loops, where the first iteration consumes values produced before the loop and
all the following iterations consume the values produced by the loop itself. The
number of passes may be high, but the emulator is very efficient, because it uses
only the instruction stack behavior, which is a constant number, to model the
data-flow. This process is not valid for loops with goto and break, but we do not
allow these constructions in the input code, Section contains details.

Algorithm [6] defines the symbolic CIL emulation process. [is a set of arrays
that define the setup information for each node (a positive number) — the number
of true and false evaluations for jumps and identifiers for the other instructions.
The applicable and apply functions check and apply the symbolic rules, they
implement the graph rewriting system functionality. The extract_ids function
obtains the values consumed by the node (dashed boxes in Figure[6.5)).

The conditional jumps are evaluated based on their identifier x according to
the formula x > 0, which means that the emulator jumps while the identifier is
positive. This way we change the number of loop iterations, because the loop

o8

Algorithm 6 Symbolic emulation
Require: GG — CIL sequential graph
R — symbolic rules
I — list of setup information
Ensure: ID — list of collected IDs
1: for allv e I do
2: G,:=G

3 for allv e V(G) do

4: V(Gs) :=V(Gs) U {i[v]}

5: E(Gy) = E(G,) U{(i[v],v)}

6: end for

7. while 3r € R : applicable(G,r) do
8: Gs = apply(Gs,r)

9: end while

10 ID:=1

11: for allv € V(G) do

12: ID[v] := (v, extract_ids(v), i[v]);
13: end for

14: end for

ends once the jumps identifier is x < 0.

Result of the algorithm is an aray of sets of consumed and produced values
for each node / instruction in the CIL sequential graph. The array is constructed
using the function extract_ids that extracts the identifiers of the nodes / instruc-
tions. The lists are used to construct the consumer sets that are the output of
the entire data-flow analysis.

6.6.4 Construction of the CIL Sequential Graph

The construction of the CIL sequential graph is straightforward and requires only
the code sequence and static information about instructions, we do not need any
additional analyses. The basic transformation of a CIL code to a CIL sequential
graph requires the following four steps:

99

1. Create nodes based on the instructions.
2. Connect the instruction nodes based on the control-flow sequence.

e Standard instructions follow one another.

e Conditional jumps have two outgoing edges, one to the jump target
(specified by its operand) and the other leading to the next instruction.

e Fixed jumps have only one edge going to the jump target.
3. Create special nodes for stack, program counter, variables and arguments.

4. Connect the instruction nodes to the special nodes based on their data-flow
behavior.

e Program counter node is connected to the first instruction in the code.
e All instructions are connected to the stack.

e Instructions that access a variable (based on their operand) are con-
nected to its node.

The entire transformation is in Algorithm[7] The instruction set I and variable
set M are extracted from the source code and the sets J and F' contain instruction
codes of all conditional and fixed jumps respectively, as defined in CIL standard
[30]. Each instruction contains information about its code and operand accessed
using the comma operator. The transformation can be illustrated on the example
of the factorial method, Listing contains the CIL source code and Figure
shows the resulting graph.

6.6.5 Instruction Classifier

The instruction classifier accepts a single sequence of CIL instructions as its
input and it produces a sequence of classification tokens. A classification token
is a tiny structure that contains a classification and the respective instruction, if
relevant. The classification defines the instruction type and it is a value from the
following list:

e INSTRUCTION - Basic instruction that does not change control-flow.
e FIXED — Instruction representing a fixed (non-conditional) jump.
e CONDITIONAL — Instruction representing a conditional jump.

e TARGET — Target place of a single jump. The token is not associated
with an instruction, because it represents a space between instructions.

We processes the code one instruction at a time and using a table we assign
each instruction a classification token. We create a sequence of the classification
tokens representing the instructions, classified as either the INSTRUCTION,
FIXED or CONDITIONAL. Then we locate all the jumps and for each jump,
we add a token with the TARGE'T classification just before the instruction that

60

Algorithm 7 Transformation of CIL to Sequential HFG

Require: I — sequence of instructions (source code)

M — set containing all variables and arguments
J — conditional jump instruction codes
F — fixed jump instruction codes

Ensure: G — CIL sequence graph

1:

10:
11:
12:
13:

14:
15:
16:
17:
18:

19

{Special nodes}
V :={P,STACK}U{V,,:m e M}
{Instruction nodes}
Vi=Vu{V,:iel}
{Control-flow edges}
E = {(P, Voer)}
for all i € I do
if 7.code € J then
E:=FU {(‘/za ‘/;.operandel)}
E:=EU{(Vi,Vi)}
else if i.code € F then
E=FU {(V;, ‘/i.operandel)}
else
E:=EU{(Vi,Vin)}
end if
end for
{Data-flow edges}
for all i € I do
if i.code € {stloc, ldloc, starg,ldarg} then
E:=FU {(‘/za Vti.operandGM)}
end if
end for
G:=(V,E)

61

Listing 6.6: Lexer tokens

IL_0000: ldc.i4.1 (INSTRUCTION, ldc)
IL_0001: stloc.0 (INSTRUCTION, stloc)
// loop start (head: IL_0002) (TARGET, null)
IL_0002: ldarg.0 (INSTRUCTION, ldarg)

IL_0003: ldloc.0
IL_0004: mul

IL_0005: stloc.0
IL_0006: ldarg.0
IL_0007: ldc.i4.1
IL_0008: sub

IL_.0009: starg.s a
IL_000b: ldarg.0
IL_000c: ldc.i4.1
IL_000d: bgt.s IL_0002

INSTRUCTION, ldloc)
INSTRUCTION, mul)
INSTRUCTION, stloc)
INSTRUCTION, ldarg)
INSTRUCTION, ldc)
INSTRUCTION, sub)
INSTRUCTION, starg)
INSTRUCTION, ldarg)
INSTRUCTION, ldc)
CONDITIONAL, bgt)

AN AN AN AN AN AN AN N N

// end loop
IL_000f: ldloc.0 (INSTRUCTION, ldloc)
IL_0010: ret (FIXED, ret)

is the operand of the jump (its target).

Listing shows the classification tokens for the factorial method defined in
Listing [£.1] The token TARGET is not assigned to an instruction, it is placed
between instructions because it represents the target of a jump.

6.7 Control Flow Analysis

In this section, we will explain in detail the final step of the front-end of the
ParallaX compiler — the control-flow analysis. We start by analyzing the available
control flow constructs and their representation in a hybrid flow graph. Then we
explain the algorithms used to transform the procedural code to a hybrid flow
graph, based on the control-flow structure.

The control-flow analysis consumes the output of both the instruction clas-
sifier and data-flow analysis and produces a hybrid flow graph, the graph is
gradually expanded as the code is analyzed. We parse the code, one instruction
at a time, and we either add the new instruction directly to the graph (in case
of basic instructions), or we create a control flow sub-graph and connect it to
the main graph. Basic instructions do not influence the control-flow, they are
directly transformed into an appropriate node and then connected according to
data flow. Control flow constructs are handled in three steps:

1. Recursively create the sub-graph representing the loop or branch body.
2. Add special operations that handle the data flow.

3. Connect the created graph into the final HFG according to the data-flow.
One special construct is the HFG start node. It is used to start the entire

62

graph and it does not have any input from inside of the graph. It sends an input
to nodes that do would not have an input otherwise, like a load constant. The
starting impulse must be specially handled in control flow, because in branch-
es only some operations must be started (in active branch) and some must be
restarted (in loops).

6.7.1 Branch Infrastructure

Each conditional branch, also known as if-else, is composed of a condition and
two branches (represented by sub-graphs), which can be empty. The basic infras-
tructure used to represent a branch is shown in Figure (left), it is the only
interface between the branches and the rest of the HFG.

pre-branch
infrastructure

previous BB [X][cond] previous BB [X][start]

H [

L) 4 7

: loop input ®(.‘
Q=< infrastructure ¥

Z

branch i
bgadr;lc [BBtrue] [BBfalse] Ibog’dpy [body H cond N'

AVY

Q @ § :
post-branch : loop output ;
infrastructure [M}<-------- é) infrastructure | Gle- - (!)

Figure 6.6: Branch (left) and loop (right) infrastructure

I\
K 7

Figure shows the branch with the surrounding code, where the previous
basic block and both branches are already constructed and the next basic block
is connected once it is ready. The infrastructure is built around the branches and
it serves as their only interface with the rest of the HFG. The figure defines the
infrastructure for a single variable. The special nodes (pre-branch and post-branch
sections) must be replicated for each variable used in the branch.

For branches we use combination split-merge, where the split separates data
for branches and merge collects them at the end. Split-merge interface is created
only for values used in the branch (accessed variables or arguments). The split
and merge nodes are defined in Section as part of the Hybrid Flow Graph
semantics.

The infrastructure must make sure that the right branch is executed, based on
the condition. And it must ensure that only one branch is executed at a time, no
nodes from the other can executed, because that would mean that unused values
may remain in the graph and make further computations skewed or completely
invalid.

The starter node is handled like a variable, by a split-merge, and it is added
only if a starter impulse is necessary (when a branch contains a node without
input, like a load constant).

If one of the branches does not modify a variable, we simply connect the split
to the merge, thus the value is transfered unchanged. When a variable is not

63

used in any of the branches, we skip this entire step since no special operations
are necessary.

6.7.2 Loop Infrastructure

A loop contains a body, a condition and a backward conditional jump. We con-
sider only do-while loops, because the others can be constructed from it using
conditional branches (if-else). The infrastructure used to represent a simple loop
is in Figure (right) and it is the only interface between the branches and the
rest of the hybrid flow graph.

For loops, we use combination merge-split, where merge selects the input and
split distributes the output of the loop. Split returns the produced values into
the loop and outputs the last value when the loop ends. Merge must make sure
that the first iteration uses the value produced before the loop and the split value
is used for the other iterations. The special nodes (loop input and loop output
sections) must be replicated for each variable used in the loop.

The loop requires a loop primer operation that controls the input and output.
It is defined in Figure [4.6| and it instructs the input merge to first use the initial
input and then use the output of the split while the loop is running.

Starter is necessary in a loop to repeatedly start nodes without other input
and we use the output of the loop primer as a starter. The only thing we must
do is to convert it from boolean to the starter token via a conversion node (filled

triangle node in Figure .

6.7.3 Control-Flow Analysis Overview

The control-flow analysis consumes a single sequence of the classification tokens,
produced by the instruction classifier, and the consumer sets, produced by the
data-flow analysis. The output of the control-flow analysis is a hybrid flow graph.
We parse the classification token sequence using a pushdown automaton, com-
monly used by syntax analyzers in parsers, and we use the consumer lists to
connect the graph as it is constructed. It is important to note that the CIL
structure closely follows the original C# control flow and therefore we can parse
it by instructions without loosing information.

The automaton analyzes control-flow constructs in the code, where we recog-
nize: conditional branches (if-else), loops and basic instructions (without control-
flow behavior). The automaton creates subgraphs, representing the constructs,
and connects them to the final hybrid flow graph, which starts empty at the be-
ginning. The basic instructions are directly converted to nodes and added to the
final graph. For the branches and loops, we first construct the graphs represent-
ing their bodies, then we add the infrastructure explained in Sections and
and finally we connect the product to the final hybrid flow graph.

In this section, we continue to use the method factorial defined in Listing
as an example to explain the functionality of our compiler. When we apply the
automaton to the methods classification stream, it first creates nodes represent-
ing the basic instruction ldc. Next, we encounter a loop and the automaton
constructs a HFG representing its body, Figure left, and then it adds the loop
infrastructure, Figure right.

64

Figure 6.7: factorial loop body (left) and infrastructure (right).

Finally, we connect the loop to the ldc node and complete the graph by adding
the return ret node. We eliminate instructions like load local (Idloc), because they
do not modify data, they are removed by the optimizations presented in the next
chapter. The complete graph is in Figure [6.8]

Figure 6.8: The HFG representation of the factorial function

6.7.4 Hybrid Flow Graph Construction

To analyze the control flow, we designed a pushdown automaton based on a
context-free grammar. The grammar takes the classifications, produced by the in-
struction classifier, as terminals and assigns semantic values to the non-terminals
like a purely-synthesized attribute grammar. The automaton is generated from
the grammar in Listing [6.7], where the used functions are explained in the follow-
ing text. The functions are defined using pseudo-code algorithms, which contain
the implementation without technical details that would make them too long.

For basic instruction, the AddBasicNode function creates a small graph con-
taining a node representing the instruction and its input nodes connected by
edges. The function is defined in Algorithm [0 The block rule then connects
the new graph with the main HFG using the MergeGraph function defined in
Algorithm [9

65

Listing 6.7: Parser grammar

start :
block
{ $% = CompleteGraph($1); }
block:
block construct
{ $% = MergeGraph($1, $2); }
| construct
{ $% = $1; }
construct :
instruction
{ $%$ = $1; }
| if
{ $%$ = $2; }
| loop
{ $% = $%2; }

instruction:
INSTRUCTION
{ $% = AddBasicNode($1); }

if:
CONDITIONAL block FIXED TARGET block TARGET
{ $% = AddBranch($1, $2, $5); }
| CONDITIONAL block TARGET
{ $% = AddBranch($1, $2, EmptyGraph); }
loop:

TARGET block CONDITIONAL
{ $% = AddLoop (%4, $2); }

Algorithm 8 AddBasicNode

Require: REG — associative register mapping instructions to nodes
I — CIL instruction
IN — the number of inputs of

Ensure: G — graph representing ¢

REG' — updated register

: N ={Vi}U{l,:n€eZAn>0An<IN}

: E={(1,,V;): I, e Ny U{([I],I,) : I, € N}

. REG[I] :=V;

: G=(N,FE)

. REG' = REG

T o W N

66

The graphs are created with input edges that do not have source, but they are
annotated with the identifier of the value they represent, [/] in the algorithms.
These empty edges are connected according to the consumer sets when the sub-
graph is merged to the HFG. We start HFG creation with the first instruction,
which has no inputs because the stack is empty, and then we merge others to it.
During the construction, we continually update a register mapping the construct-
ed nodes to the original instructions so we can properly connect them according
to the data-flow analysis.

Algorithm 9 MergeGraph
Require: REG — associative register mapping instructions to nodes
SET — consumer sets, produced by data-flow analysis
G — previous version of HFG
S — subgraph
Ensure: HFG — new HFG
HFG:=(G.NUS.N,G.EUS.E)
Empty .= ((I,V) e HFG.E : 1 ¢ HFG.V)
HFG.E = HFG.E \ Empty
for all (I,V) € Empty do
HFG.E = HFG.EU{(REG[SETII]],V)}
end for

The function AddBranch, used in the rules for conditional branches (if-then-
else and if-then), creates a subgraph consisting of the conditional jump instruc-
tion, and either one or two branches. The jump instruction itself is converted as
a basic instruction, because it contains the condition (e.g. bgt — branch if greater
than). Then we create the split-merge infrastructure, explained in Section [6.7.1]
and we connect the branch inputs to the splits and the outputs to the merges.
The resulting graph is then merged to the final HFG using the MergeGraph
function.

The AccessedV ariables function collects all the variables and arguments ac-
cessed by at least one node in a graph. The accessed variables are then used
to construct the split-merge infrastructure for the conditional branch, which is
handled by the AddSplit M erge function. The merge-split infrastructure replaces
the variables in the register (REG) with the appropriate merge or split output.

The rule for do-while loops is similar to that for the conditionals, but it uses
the loop infrastructure described in Section [6.7.2]

The rule for the complete graph connects the HFG after all instructions and
control flow constructs are processed. The function CompleteGraph adds a global
starter node ([), parameter nodes (P*) and a return node (R). We add these
nodes here because it is the root non-terminal that has to produce a complete
hybrid flow graph.

6.7.5 Broadcast Introduction

One last step is necessary to make the final hybrid flow graph valid, we have to
introduce broadcast operations, which ensure that every other operation except
split has just a single output. The process is defined in Algorithm [12] where a
broadcast is introduced for every node with more than one output.

67

Algorithm 10 AddBranch

Require: REG — associative register mapping instructions to nodes
SET — consumer sets, produced by data-flow analysis
J — conditional jump
B0 — false branch
B1 — true branch
Ensure: G — new HFG
: G := AddBasicNode(REG, J)
: Values := AccessedVariables(REG,G1, G2)
: for all val € Values do
G := MergeGraph(REG, SET, G, AddSplitMerge(REG, val))
end for
. G := MergeGraph(REG, SET, G, B0)
: G := MergeGraph(REG,SET, G, B1)

Algorithm 11 AddLoop

Require: REG — associative register mapping instructions to nodes
SET — consumer sets, produced by data-flow analysis
J — conditional jump
B — loop body
Ensure: G — new HFG
: G := AddBasicNode(REG, J)
: Values := AccessedV ariables(Body)
: for all val € Values do
G := MergeGraph(REG, SET, G, AddMergeSplit(REG, val))
end for
: G := AddLoopPrimer(REG, Q)
: G := MergeGraph(REG,SET, G, B)

e =S B TR R

Algorithm 12 AddBroadcasts

Require: G — complete hybrid flow graph
Ensure: H — modified HFG

1. V= V(G)

2. B = E(G)

3: for allv € V : v.code # split N|[{o €V : {(v,0) € E}}| >1do
4 OUT :={oeV:(v,0) € E}

5. E:=FE\{(v,0) € E:0eOUT}

6: V=V U{b:b.code = broadcast}

7. E:=FEU{(v,b)}U{(b0):0ecOUT}

8: end for

9 H:= (V,E)

68

6.7.6 Source Code and HFG Equivalence

Finally, we present sketch of a proof that the HFG, produced by the presented
algorithm, is equivalent to the source code.

To prove the equivalence, we must prove 1) that each instruction is executed
in a HFG if and only if it would have been executed in the source code, 2) that
each HFG operation produces the same output (including the order of values) as
its CIL counterpart and 3) each operation can be executed multiple times without
influencing its behavior.

When we prove both, we can conclude that when a HFG is executed, the same
instructions are executed, they get the same input and produce the same output
as they do in the source code. This means that the outputs are the same and no
additional side effects were introduced.

The second requirement is fulfilled by the fact that basic operations are defined
exactly according to a CIL instructions. They produce the same output with the
same input in the same order - when triggered multiple times with different inputs
it produces the same sequence of outputs as the original. The only special case is
instructions without input, like Idc (load constant). These operations have input
in HFG so they can be triggered by control flow and the first requirement makes
sure that they are executed exactly as they are in the source code.

The first requirement can be proven via induction over basic blocks. Basic
blocks in a HFG are subgraphs containing only basic operations. The blocks are
connected by special operations and their interface is a set of live variables.

The operations in a basic block are executed only when they receive input.
This means that all the operations are executed once they get all the values
in the block interface, because each operations gets an input (either from the
interface or from another operation). The starter node is special, we consider it a
separate block executed automatically. This behavior is the same as CIL, where
all instruction in a block are executed once the block starts.

Next we consider the branch infrastructure (Figure and the semantics of
the split operation. The infrastructure contains split for every variable accessed
in any branch and once the these splits get input, they pass the data to just one
of the branches. They always select the same branch as they have the same input
condition. The selected branch is executed, while the other is not. This behavior
is the same as in CIL.

Loop infrastructure (Figure is controlled by a set of split operations placed
at the end of the loop body. These splits either return the data to the loop or
pass it to the next basic block, which controls when the loop ends (block that
gets the data is executed). Their behavior is controlled by the loop condition.
The loop ends once the condition is false, just as in CIL.

The final step is inductive, we have proved that a basic block is executed once
it gets inputs and that the control flow infrastructure distributes inputs properly.
Now we use induction over the control flow complexity: 1) single basic block
executed (via starter) 2) loop and branch distribute inputs and thus start the
correct basic block (body/branch or the next one). Thus every basic operation
is executed if and only if it is executed in the source code.

69

6.8 Data types

The Hybrid flow graph is strongly typed to prevent unpredictable or incorrect
behavior. The data types are assigned to edges, where each edge has a single type
that defines what data can be transfered over it. The information is passed to
the streaming environment plan that uses it to properly define the data streams.
In HFG, we use the data types based on the types available in C# and we then
map the types to the data types of the target platform, C++ types in case of the
Bobox system.

We extract the data types during the data flow analysis, see Section [6.6], where
we identify both the consumer identifier and the incoming type. The data types
of all potential producers for a single instruction must be identical or implicitly
convertible (like int to long) and the compilation fails if the types do not match.
It is important to note that all the CIL instructions have a single output, with
the exception of the instruction dup that duplicates its input and all its outputs
have the same type as its input.

The data-flow analysis extracts the output type for each instruction using the
following rules that assign data type to each instruction based on its operation
code and operand:

e constant — the type is defined by the instruction suffix (/4 for Int32 etc.)
e conversions — the type is defined by the suffix

e load / store variable — the type is identical to the type of the variable

e load / store argument — the type is identical to the type of the argument
e arithmetical operations — the type is identical to the type of the inputs

e conditional jumps — the output is always bool

e fixed jumps — no output, the jumps are never part of the HFG

Data types for edges connecting basic nodes (representing CIL instructions)
are all gathered in the data flow analysis. Control flow introduces special nodes
that are not part of the original CIL and their data types are dependent on the
basic nodes they connect. We solve this situation in the control-flow analysis,
where we assign the edges data types once the branch or loop infrastructure is
connected to all its inputs and outputs. When the infrastructure is connected, we
propagate the data type from inputs, which are typed by the data flow analysis,
through the special operations to all the edges.

6.9 Array Support

The compiler supports one dimensional arrays, treating them as any other da-
ta type. The compiler supports only one dimensional arrays to limit potential
aliasing of the embedded arrays, which is extremely difficult to trace. Most im-
portantly, multi dimensional arrays can be represented in an one dimensional
array by appending the embedded arrays one after another. The process is il-
lustrated in Figure [6.9, where the elements can be accessed using the following

70

formula: arrayly * width + x]. Thanks to this limitation, the data flow analysis
is able to track the arrays through their entire lifetime and eliminate aliasing.

—> AL | A2 A3 A4 |

Figure 6.9: Array flattening.

Arrays are transported as other data types, an entire array is a single value
in the stream. The elements are extracted by kernels only when needed. This
approach is not very efficient, especially when the array is accessed sparsely, but
it allows us to support the arrays in any control flow structure including multiple
nested loops. Without this approach, it would be impossible to manage loops
containing both scalars and arrays, since the array streams would be longer and
it would not be possible to match the values and loop iterations. The efficiency
is addressed by optimizations that unpack the arrays in situations where it is
possible and they restructure the graph around them so that the expansion is
managed properly, see Sections [7]

We do not support objects, because they cause similar problems as the multi-
dimensional arrays, and they are not necessary to implement the data intensive
applications or database procedures. The purpose of the compiler is not to execute
any C# code in a streaming environment, but to allow programmers to implement
streaming applications using a restricted C#.

6.10 Aliasing

The compiler strongly restricts the input language to limit the effects of aliasing,
where a single memory location can be accessed via multiple symbolic names
(pointers or references). There are two possible causes in of aliasing in a C#
code, multiple references can point to a single object or multiple array indices
can point to the same array in a multi-dimensional array. There are also pointers
in unsafe C# code, but we do allow the unsafe code at all.

Value types, like numbers, cannot cause aliasing, because they cannot be
accessed via references of indices and we do not allow boxz’ngE]. We allow only a
single data type with reference semantics — single-dimensional arrays. However;
we handle the arrays in a way that they cannot introduce aliasing, because we
always transport the entire array as a single value and our data analysis tracks
the array from its creation and through all the statements that can access it. The
process is explained in Section [6.9

There is one situation, where aliasing can happen: the parameters of the
entire application can be single-dimensional arrays and multiple parameters can
contain a reference of the same array. There is no way for our data analysis to
decide if the parameters are aliased and we assume that they are never aliased.

'Boxing is a process that converts a value type into a reference type by wrapping it into
a simple object. The process is used to allow the use of value types in contexts that require
reference types, like some containers.

71

This assumption may cause us problems in general applications, but we focus on
the data intensive applications and database queries, which can be analyzed and
we can ensure that the parameters are not aliased.

72

7. Optimization

The previous chapter explained the front-end of the ParallaX compiler that pro-
duces a hybrid flow graph from C# code compiler to CIL. The produced HFG can
be, thanks to its structure, almost directly executed using a streaming system.
However, the HFG produced by the front-end does not offer much kernel paral-
lelism as there is always at most one data element at each edge. In addition, the
communication overhead in the streaming system would probably cost more than
the sequential execution of the original code, since all instructions are represent-
ed by separate nodes. Fortunately, there are several transformations which may
improve the level of parallelism available as well as reduce the synchronization
overhead.

All the optimizations are a special case of a process we call the component
extractions. The optimizations are implemented as rules of an associative graph
rewriting system that modifies a layered hybrid flow graph, where the HFG pro-
duced by the front-end can be considered a layered HFG with a single layer. The
produced layered HFG contains custom operations implemented by a subgraph
that they replace, which means that they represent more complex nodes without
communication overhead (we rely on the C++ compiler to place the variables
into registers). For a detailed description of the layered hybrid flow graph, see
Section [4.5]

In streaming environments, the custom operations become components (see
Figure implemented in a single kernel, avoiding the communication overhead.
In addition some custom operations can allow other operations to be vectorized,
by replacing control-flow constructs, mainly loops.

The optimization process used in the ParallaX compiler generally involves
graph transformations, since our intermediate language, the Hybrid Flow Graph,
is graph-based [5]. The optimizations we use can be divided in two main groups:
general and HFG-specific optimizations [I]. The general optimizations fulfill a
similar function as those used in traditional compilers, despite being implemented
as a graph rewriting system.

We demonstrate the optimization technique on a vectoradd function that adds
two vectors and stores the result in third vector. The source code is in Listing [7.1]
We transform the source code to a HFG and use the presented optimizations to
improve the efficiency of the resulting graph, which is in Figure [7.1] The graph
is gigantic and inefficient and we will gradually improve it as we introduce and
apply the optimizations.

In unoptimized HFG, any array is treated similarly to a elementary data
type, it is passed around the graph, undergoing partial modifications by store
instructions which change the array at the referenced positions. Although this
behavior might be efficiently mimicked by the implementation if the underlying
streaming system allows passing data by reference, this is certainly not as effective
as required. Therefore, the optimizations described below try to recognize typical
patterns in array handling and transform them into alternative representations
which avoid passing the array as a whole. Consequently, the movement of the
complete array is used only as a fall-back behavior when these optimizations fail,
which is sometimes inevitable given the general undecidability associated with

73

Listing 7.1: Vector addition
int [| vectoradd (int[] a, int[] b, int[] c¢)

{

for (int i = 0; i < c.Length; i++)
{

c[i] =a[i] + b[i];
¥

return c;

Figure 7.1: Hybrid flow graph representing the vectoradd function

Turing-complete programming environments.

The optimizations introduce the split between code and plan generation de-
scribed in the compiler overview, Chapter |5l The split is defined by the layers of
the produced layered HFG, where the top layer represents the execution plan and
the layers representing the custom operations are transformed to kernels. Their
implementation is defined by the subgraph they replace (the left hand side of
the optimization rule, for example Figure [7.3)). Both the plan and the separate
operations are provided to the streaming environment for execution.

7.1 Related Work — Transformations Improving
Parallelism

In the optimization stage, the compiler restructures the intermediate code pro-
duced by the front-end to produce a more efficient and compact code, which can
be than transformed into an application. The goals of the transformations are
similar to some phases known from traditional compilers: the optimizations focus
on better memory management and simple code restructuring [57], vectorization
[36] or general parallelization [72].

The Hybrid Flow Graph requires custom optimizations that modify its struc-
ture, usually reducing granularity of the operations. The basic optimization used
in the compiler is the component extraction, which performs a single graph trans-
formation, replacing a subgraph by another [I]. The general principle is then
used to implement all the other optimizations.

74

The general optimizations focus mainly on vectorization of the array oper-
ations. We locate arrays that are read or modified in a loop following certain
structure and we replace the inefficient array management with more efficient
custom nodes, able to perform the computations using vector instruction. This
process usually involves advanced numerical methods that study the ranges of
array indices [30], but we avoid this by restricting the graph structure eligible
for optimization. We require that the array is either read or modified (not both)
and the index used is always the variable controlling of the loop plus a constant.
This constraint does not currently allow for maximal vectorization, but it sup-
ports the most common patterns, see Chapter [11] for experimental results. The
optimizations will be gradually improved to include more complex code.

Compilers can contain even more advanced optimizations that significant-
ly modify the structure of the intermediate code. These optimizations include
transformation, like loop skewing [36], where the loop iterations are restructure
to provide more predictable behavior. Our optimizations always restructure the
HFG, because they rely on graph rewriting, but the current implementation does
not yet support transformation that would completely restructure the code. One
potential example is the use of the parallelogram blocks to optimize the matrix-
based dynamic algorithms (like Levenshtein distance) [2], which is our main case
study. At the moment, we apply this transformation manually (at the input C#
code), but it is theoretically possible to do so automatically, which is one area of
our future study.

The HFG specific optimizations focus on removing the special operations in-
troduced by control-flow, because they usually prevent efficient vectorization and
may limit kernel parallelism. We apply these optimizations after the graph has
been vectorized, because we can eliminate the control-flow infrastructure only
if the surrounding graph no longer needs the them. The actual process is very
similar to the dead code elimination commonly used in compilers [57] 36], 84].

7.2 Component Extraction

The component extraction is an operation that transforms a layered hybrid flow
graph to another layered HFG. The transformation itself is implemented as a rule
of an associative graph rewriting system defined over layered hybrid flow graphs.
The transformation combines multiple nodes into one complex node, reducing
both the kernel parallelism and communication overhead. It can greatly improve
throughput of the graph, but it can also limit parallelism, so it has to be used
carefully. The concept is shown in Figure where three arithmetic operations
are replaced by a custom operation with the same behavior.

customHstIoc]

Figure 7.2: Component extraction application

75

The optimization can be applied to any subgraph, but we limit the application
mostly to the bodies of loops which represent the most computation-heavy part of
the code. This way, we are able to create one custom node for the loop body and
vectorize the entire loop, if its structure supports it. The rule for the example in
Figure is in Figure [7.3] where the custom1 operation is implemented by the
second layer, represented by the graph in dashed box titled customl. The cus-
tom operation code is represented by the node $1 which represents the subgraph
matched by the [add|mul|sub|div]* node in the pattern graph.

Two3snd

[———————=—==

Figure 7.3: Component extraction pattern graph

The theoretical implementation of the custom node produced by this opti-
mization is a custom operation and an embedded subgraph with properly matched
inputs and outputs, where the embedded graph defines the semantics of the cus-
tom operation it implements. The actual implementation is more efficient and it
will be explained in detail in Section |8 that focuses on the implementation of the
compiler back-end.

The following optimizations are special cases of the component extraction
adapted for common patterns or constructs. The optimization differ slightly from
the general version, because they not only introduce a custom component, but
they also optimize its implementation (the subgraph). This is possible, because
the optimizations match a very specific subgraph with known properties.

7.3 Dead and Empty Nodes Elimination

The component extraction is our main optimization method, but we also intro-
duced two additional optimizations — the empty node elimination and the dead
node elimination. Both these additional optimizations are applied after each ap-
plication of the component extraction to eliminate unnecessary nodes and make
the graph more compact.

The empty nodes elimination is an algorithm that removes operations that
perform no action and are not needed in the final hybrid flow graph. The algo-
rithm removes all the operations representing the instructions loading and storing
local variables and arguments, because they are no longer used to manage the
variables, they simply copy their input to output. The optimization is defined by

Algorithm

76

Algorithm 13 Empty node elimination
Require: G - original HFG
Ensure: H — new HFG
1. V.= V(G)
2. B = E(G)
3: for all v € V : v.code € {ldloc, stloc,ldarg, starg} do

4. IN:={ieV:(i,v) € E} // always just one

5. OUT :={oe€V:(v,0) € E} // always just one
6: E:=FE\{(i,v) E:i€IN}

7. E:=E\{(v,o) E:0€0UT}

8 V:=V\{v}

9. E:=FEU{(i,0):i€ INNoe€OUT}

10: end for

11: H:= (V,E)

The dead nodes elimination recursively removes all the nodes without output,
because HFG nodes have no side-effects, nodes without output have no purpose.
All the nodes without any output are considered dead and are removed. This
transformation is applied recursively. The complete process is defined in Algo-
rithm [14]

Algorithm 14 Dead node elimination
Require: G - original HFG
Ensure: H — new HFG
Vo= V(G)
. E:= E(GQ)
change :== TRUFE
while change do
dead :={v eV :{(v,0) e E:0ecV} =10}
change := dead # ()
for all d € dead do
E:=F\{(a,d) E:a€eV}
V=V \{v}
end for
: end while
. H:=(V,E)

_ = =
Mo 2

7.4 Range Extraction

First optimization we use is called range extraction. It replaces the complex struc-
ture of the loops controlling variable (usually i) with a range custom operation.
The range operation has three inputs, initial value, limit and step, and it produces
a sequence (g, T1, Ta, ... : To = init Ax;y1 = x;+ step). The range has three out-
puts, numerical sequence, boolean sequence and a final value. All three sequences
are the same length (determined by the loop condition) and the boolean sequence
produces flags defining whether the numbers satisfy the comparison. The boolean

7

sequence is used to drive the remaining loop. The final value is output outside
the loop and contains the final value of the control variable.

The pattern required by this optimization is a loop containing add node, a
merge and a split node (plus some potential broadcasts). The rewriting rule used
to implement this optimization is in Figure

Figure 7.4: Range extraction pattern graph

Figure shows the application of the range extraction optimization on the
vectoradd function, the add node and the loop infrastructure are replaced by a
range operation. All the unnecessary edges are removed.

7.5 Array Extraction

The second optimization we need is called array extraction. This optimization
eliminates the constant array copying inside loops, removing unnecessary com-
munication overhead. This optimization is based on custom operations load array
and store array. These operations replace a cyclical subgraph that copies an array
in every iteration with a single operation that caches the array and provides the
values according to the range introduced by the previous optimization.

T e e

@ @ length

Figure 7.5: Range extraction application

78

The rules implementing this optimization are in Figures and [7.7] where
the load array and store array nodes replace parts of the loop responsible for
the constant copying of the array. This optimization is always executed after the
range extraction, and it ensures that the loop can be vectorized later.

Figure 7.7: Array extraction rule for the ldelem instruction

Figure[7.8|shows the application of array extraction on a loop on the vectoradd
function, we use both the rules repeatedly until we eliminate all the loops iterating
the arrays. There are some dead nodes, mainly the loop primer (L), which will
be removed in the next step.

S
ldc 1 [Idc 1] [Iength

Figure 7.8: Array extraction application

79

Listing 7.2: Store array node

void store_array (stream inl, stream in2, stream in3,
stream in4, stream outl)
{

while (!inl.eof())
{

var arr = inl.next ();
while (in2.next ())

{
}

outl.put(arr);

arr [in3 .next ()] = in4d.next ();

Listing 7.3: Load array node

void load_array (stream inl, stream in2, stream in3,
stream outl, stream out2)
{

while (!inl.eof ())
{

var arr = inl.next ();
while (in2.next ())

{
}

outl.put(arr);

out2.put(arr[in3.next ()]);

Pseudo-code implementation of the custom operations is in the following list-
ings, store array is in Listing and the load array is in Listing [7.3]

7.6 Token Extraction

Once all the arrays are extracted, we must make sure that the Tokens are dis-
tributed properly even when the loop is later vectorized. This means that we
must replace the loop infrastructure for the Tokens with a vectorizable node that
properly distributes the tokens according to the range node.

The rule implementing this optimization is in Figure [7.9] we just remove the
cast node connected to the loop primer node and add a token cast node connected
to the range node. This way we connect the last of the loops infrastructure to
the range node and the loop primer can be safely removed.

80

[range] M~ -] - L [ranoe] M~ -] - T
;T s

[4A

Figure 7.9: Token extraction rule for the cast special operation

v-load™]
o o

[add|mul| store @ v-store

sub|div]* array > V-range
v-token f—————————1
o o,
@5 i

Figure 7.10: Vectorization rule

7.7 Vectorization

Finally, we introduce the vectorization to further improve the performance of the
graph. Vectorization is almost impossible to use when a graph contains control
flow nodes, because consecutive values may take different paths in the graph,
which would break the vectors. However, the custom operations introduced by
the optimizations are fully predictable and if they replace all the control flow of
a loop then we can vectorize that loop.

This optimization takes the body of a loop, which has been completely trans-
formed into custom operations, and transforms it into a single vectorized custom
operation, unless it contains another nested loop or branch. The rule implement-
ing the optimization is in Figure [7.10, where the loop body is replace with a new
custom operation (vectorl in the example), unlike the other optimization, where
we use a predefined custom operation designed specifically for the situation.

We illustrate the process on the vectoradd function. We take the hybrid flow
graph representing the function and apply all the component extraction-based
optimizations, the resulting graph is in Figure [7.8] Then we eliminate all the
dead nodes and once the loop is completely removed, we can batch the data so
that the range, load array and store array operations can process and produce
data in vectors containing parts of the arrays not just single elements. We use
the vectorization optimization to replace the loop with vectorized versions of the
operations, which use vector instructions, like -mm_add_epi32(v1,v2) in SSE. The
completely optimized hybrid flow graph is in Figure [7.11

7.8 Array Extraction and Vectorization Chain-
ing

We can further modify the array extraction and vectorization so they can be
chained one after another. First, we introduce the chained vectorization opti-
mization, by allowing the output to be a ldelem operation in a proper format.

81

Figure 7.12: Modified vectorization rule

Figure shows the modification, where the ldelem operation is required to be
directly connected to the merge operation to ensure that there is no broadcast.
Broadcast would meant that the array is accessed more than once in the loop and
cannot be optimized due to potential data dependences.

Next, we introduce the chained array extraction optimization, which supports

other custom operations as a source of the array index, not just the range oper-
ation. The rule is in Figure [7.13]

Figure 7.13: Array extraction rule for the ldelem instruction

82

8. Compiler Back-end

The compiler back-end transforms the optimized hybrid flow graph to a platform
specific code. It must produce all the components necessary to execute the ap-
plication in the environment, which usually means a machine code or byte code,
but streaming environments are more complex. They require en execution plan
and kernel implementations, usually in different language.

We present all the platforms currently supported by our compiler in Sec-
tion [8.2l The following sections describe the specific back-end implementations
for each platform.

8.1 Related Work — Compiler Back-end

The compiler back-end transforms the intermediate code into the code for the
target platform. The standard practice is to transform the optimized intermedi-
ate code into machine or byte code and apply platform-specific optimizations to
produce application best suited for the target environment [57].

The ParallaX compiler back-end transforms an optimized Hybrid Flow Graph
into a Bobox application. We cannot implement the back-end of the compiler in
the standard, straight-forward way, because the applications for Bobox framework
must contain both an execution plan and the code of all used kernels (boxes)
[2]. The beck-end is divided in two parts: component transformation and plan
construction.

First we transform the subgraph representing the components, created using
the component extraction, into C++ classes. The native implementation of the
Bobox system supports kernels implemented as C++ classes [2] and the managed
implementation uses C#. The process is similar to the call graph analysis [85],
where the subgraph nodes represent procedures.

The Hybrid Flow Graph structure is very similar to the Bobox execution plan.
We transform the top layer of the optimized HFG directly into Bobolang [3]. The
process requires only the export of the graph in the correct Bobolang notation.

The produced application must be compiled with the Bobox runtime, which
loads both the kernels and the execution plan and executes the application. The
Bobox system creates a memory representation of the execution plan, instantiates
the used kernels (boxes) and executes the plan. This process is similar to the
modern dynamic languages, like C#, where the source code is compiled into an
intermediate byte code, which is later executed by a CLR runtime [30].

The back-end traditionally performs platform-specific optimization [57, [36],
but we can skip this step, because the optimizations are performed by the C++
compiler (for the boxes) and the Bobox environment (for the execution plan) [2].

8.2 Supported Environments

The compiler currently supports four target platforms. Each platform requires
its own back-end implementation that is able to produce all the necessary com-
ponents for the final application.

83

The compiler supports the native and managed implementation of the Bobox
streaming system. Both implementations have similar basics and the main differ-
ence is supported language for the kernel implementation. The native implemen-
tation requires kernels implemented as C++ classes with the basic_boz (provided
by Bobox) as the base class, while the managed implementation uses C#. Both
environments require an execution plan implemented in the Bobolang declarative
language [3].

The compiler is able to parallelize the C# application directly by embedding
the managed Bobox directly into the application assembly. The methods are
transformed into plans, executed by the embedded Bobox.

The last currently supported platform are the NET asynchronous methods.
The asynchronous methods internally create a graph of parallel tasks executed
by the .NET runtime. The HFG structure is similar to that of an application
implemented using asynchronous methods, with the nodes representing separate
methods and edges representing calls and we use this similarity to transform the
hybrid flow graph to the asynchronous methods.

8.3 Bobox Transformation

The Bobox system is our main target environment and the back-end for Bobox
performs two main operations. We transform the application HFG directly into
a Bobox plan and then we add custom operations created by the component
extraction. Component extraction groups the bodies of optimized loops into single
vectorized operations.

All the kernels, based on CIL instructions, are already implemented in a
library attached to Bobox. The custom operations must be handled separately,
because we must provide Bobox with their implementation. They are transformed
into a C++ class and attached to the Bobox system, which is then compiled into
the final application. This approach allows us to generate C++ code and the
C++ compiler performs all the necessary optimizations.

The transformation is the same for both the native and managed implementa-
tion of Bobox, the only difference is the programming language used to implement
custom operations, C++ for native and C# for managed. The native imple-
mentation is our main platform, because it is more optimized for data intensive
applications. The managed implementation is used mainly for testing.

8.4 Transformation Overview

Transforming the HFG into a Bobox plan is a straight-forward process and if there
are no custom operations then the plan is the only thing necessary to complete
the application, because the standard operations are already implemented in a
library attached to Bobox.

The Bobox execution plan must be implemented in the Bobolang declarative
language, which is described in detail in Section 2.2 The plan is divided into
two sections, kernel and stream declaration. Kernels are declared along with
their type, unique name, parameters, inputs and outputs (including their unique

84

identifiers). Streams connects declared kernels including the identification of a
specific input or output, if the kernels have more than one.

It is important to note that we include in the HFG input nodes, which always
represent the inputs of other nodes, perform no action and contain only identifier
and data type. The inputs are added for all other nodes and every edges has either
input as a source or a sink. The input nodes are used in the transformation fo
Bobolang to match the stream inputs and outputs and they are removed in the
process.

8.5 Execution Plan Construction

Algorithm 15 Hybrid flow graph transformation to Bobolang plan
Require: G — source HFG
Ensure: B — Bobolang plan

1: B :="operatormain()— > (){”

2: for all n € N(G) do

33 IN:={ie N(G):(i,n) € E(G)}

4: INPUTS =77

5. for allie IN do

6: INPUTS :=INPUTS +"({i. TYPE})[i_{i.ID}]"
7. end for

8: OUT :={oe N(G) : (n,0) € E(G)}

9. OUTPUTS :="7

10: for all o € OUT do

11: OUTPUTS := OUTPUTS +7({o.TY PE})[o{0.ID}]"

12: end for

13: B:=B+4+"{n.ANNOTATION}}INPUTS} — {OUTPUTS} {n.ID};”
14: end for

15: for all e € {ed € E(G) : e. SINK.ANNOTATION = Input} do

16: ID:=eSINK.ID

17 B:=B+"{e.SOURCE}[o{ID}] — {e.SINK}[i_ {ID}]”

18: end for

19: B:=B+"}”

Algorithm shows the entire transformation process using the C# string
notation, where the {X} part is replaced in the final string by the value of X.
The algorithm first transforms nodes to Bobolang kernels, where we omitted the
kernel parameters, since they are used only for the constants to indicate their
values. Next, we transform the edges that connect a node through an input to
another node, we use the input to match the stream ends.

The transformation is best demonstrated on an example, we take a small HFG
and transform it to Bobolang plan. We transform the right graph in Figure [8.1
and the produced Bobolang plan is in Listing In the graph, we omit input
nodes for nodes with only one input and we perform the component extraction
optimization described in Section [7.2], which replaces the arithmetical nodes with
a custom operation.

85

0 CUStOfTIH ret]

P—@

Figure 8.1: Optimized vector addition HFG

operator main()—>() {

Start()—>(token)[0_.6] start_0;

Ldc(token)[i-7]—>(int)[0-9] Ildc_1(1);

Ldarg(token)[i-8]—>(int)[0-10] ldarg_-2("a”);

Ret(int)[i-11]—>() ret_3;

broadcast (token)[i-6]—>(token)[o-7],(token)[0_-8] broad_4;
CustomBody (int)[i-9](int)[i-10]—>(int)[o_-11] custom_5;

start_0[o_6] —> [i.6]broad_4;
broad_4[o.7] — [i-7]ldc_1;
broad_-4[0.8] [i-8]ldarg_2;

- —
lde_1[0.9] — [i.-9]custom_5;
ldarg 2[0-10] — [i_-10]custom_5;
custom_5[o_11] — [i_11]ret_3;

}

Listing 8.1: Bobolang plan produced from the HFG in Figure 8.1

All the nodes in the Bobox plan are standard instruction kernels provided by
our library or broadcasts built in Bobox, the only exception is the Custom Body
node produced by the component extraction. This kernel has to be crated by the
compiler back-end and provided along with the plan, which is explained in the
next section.

8.6 Component Extraction

Component extraction is an optimization defined in Section [7.2] which reduces
communication overhead of the final application by grouping multiple HFG nodes
into a single custom node.

A graph without control flow can be directly transformed into a single custom
operation with semantics defined by a C++ function. The transformation is
performed in two steps. First, we sort the HFG nodes topologically and then
we transform each node into a method call, one after another. The topological
ordering makes sure that all the methods are called in correct order.

Figure [8.2] shows an example of the transformation, where the graph is topo-
logically ordered top-to-bottom and left-to-right. The produced code calls only
tiny methods representing CIL instructions, which are attached as a library and
inlined by the C++ compiler.

Algorithm [16] transforms a HFG without control flow nodes to a C++ func-
tion. The algorithm constructs the code directly from nodes, where each node is
represented by a call to a tiny function. We use C# string notation to build the

86

auto inl = Idc(5);

ldc 5| [dioc a
¢] ocy auto in2 = Idloc(a);

) X N auto in3 = add(in1, in2);
‘ add] Idc 34 —> auto in4 = Idc(3);
! \ auto in5 = mul(in3, in4);
mul H ret return in5;

Figure 8.2: Transformation of a graph without control flow

Algorithm 16 Component transformation algorithm

Require: G — source HFG

Ensure: C' — C++ code (sequence of statements)

O ="

: NODES := topology_sort(G)

. REG = @

: X =0

: for all node € NODES do

REG[X] := node

IN :={"in” + REGn| :n € NODES A (n,node) € E(G)}
S :="auto in{ X} = {annotation(node)}({join(’, ,IN)})"
C:=C+S8

X=X+1

: end for

W PN g Wy

— =
—_= O

statements, where the {X} is replaced by the value of X.

In the Bobox environment, this requires that we create a new kernel class and
compile it into the final application. We use Algorithm [16] to produce the code
for the custom box. We can do this, because we perform the optimization only
on the bodies of optimized loops that do not contain any control flow nodes. We
produce code that uses only the basic instructions implemented as tiny functions
immediately inlined by the compiler, which does not limit performance.

Once we have the source code for the kernel body, we create the class rep-
resenting the kernel. This class is always very similar, the only difference is the
Body method and the input / output streams. We transform the HFG to the
source code of the Body method and add the rest of the class implementation.
We omit the actual algorithm as its only job is to generate the input and output
stream names and copy the body code.

Listing shows the implementation of the custom kernel used in Figure|8.1|
The Body method implements the component showed in the left graph in Fig-
ure (3.1, which is then extracted and replaced by the custom node, shown in the
right graph.

87

class merge_ box : public basic_box {
public:
typedef generic_model<merge_box> model;

BOBOX_BOX_INPUTS_LIST (inl, 0, in2, 1);
BOBOX_BOX_OUTPUTS_LIST (out, 0);

merge_box (const box_parameters_pack &box_params)
: basic_box (box_params)
{}

virtual void sync_body () override

{
input_stream<int> inl(this, inputs::inl ()
input_stream<int> in2(this, inputs::in2())
output_stream<int> out (this, outputs::out

while (!linl.eof() && !in2.eo0f()) {
int 1 = inl.current()—>get <0>();
int r = in2.current()—>get <0>();
out.next()—>get <0>() = Body(inl, in2);

int Body(int inl, int in2)

auto il = add(inl, in2);
auto i2 = sub(inl, in2);
auto i3 = mul(il, i2);
return i3 ;

Listing 8.2: Implementeation of the custom kernel in Figure [8.1

38

9. Additional Environments

The ParallaX compiler contains multiple back-end implementations that provide
the support for other platforms, besides the managed and native implementation
of the Bobox streaming environment. The compiler also supports the .NET asyn-
chronous methods and a direct integration of the managed Bobox system. In this
chapter, we will explain the basics of the other platforms and we will describe
the implementation of the respective back-ends.

9.1 .NET Asynchronous Method

The asynchronous methods are parallel methods managed by the .NET frame-
work. The methods are implemented and called as synchronous methods, but
instead of immediately calculating their result, they return a task object that
contains the information about the ongoing calculation. The framework intro-
duces the await operator that pauses the caller, until the given task is completed
and then it returns the result.

The asynchronous methods are designed to mainly improve responsiveness and
throughput of applications that require time consuming operations, like network
communication. They are not well suited to parallelization of calculation heavy
or data intensive applications. As such, we use this platform mainly for testing
and evaluation.

9.1.1 Transformation Overview

The back-end for this platform transforms a HFG into a C# code composed of
asynchronous methods. The transformation process must handle three cases — a
subgraph without control flow, a branch (split-merge) infrastructure and a loop
(merge-split-primer) infrastructure. First, we explain the entire algorithm and
then we introduce the three separate steps.

All the CIL instructions are implemented as asynchronous methods in a library
attached to the produced code, so they can be used directly.

Algorithm transforms an input HFG info a C# code containing a list
of methods representing the control-flow constructs and a single main method,
which is an entry point to the produced code. The algorithm uses procedures that
transform loops, branches and graphs without control-flow, which are defined in
the following sections along with the pattern graphs LOOP and BRANCH . Be-
sides the transformation procedures, we us additional helper procedures described
in the following list:

e copy — creates a deep copy of a graph
e match — matches an associative graph rewriting rule (see Section 3.1.1])

e replace — replaces a subgraph by a single node with the given annotation

89

Algorithm 17 HFG transformation to asynchronous methods
Require: G — source HFG

LOOP — loop pattern graph

BRANCH — branch pattern graph
Ensure: C' — C# code (set of methods)

1. C:=10

2: H := copy(G)

3 X:=0

4: M =10

5. while Split € N(H) do

6: if match(LOOP, H, M) then

7 C := C U{LoopToMethod(G, M,”loop” + X)}
8: H :=replace(M,”loop” + X)

9: else if match(BRANCH,H, M) then

10: C := C U{BranchToMethod(G, M,” branch” + X)}
11: H :=replace(M,” branch” + X)

12: end if

13: X =X+1
14: end while
15: C:= CU{ToMethod(H,” main”)}

9.1.2 Graph Without Control-Flow

A hybrid flow graph does not contain any control-flow constructs, when it contains
no split or merge nodes. Without control-flow a HFG can be directly transformed
into a C# method the same way we transform the subgraphs after the component
extraction in the Bobox back-end.

We use the procedure ToMethod to transform a HFG without control-flow to
a single C# asynchronous method. The method is implemented using a modified
version of Algorithm [16] defined in the previous chapter (Section [8.6). A slight
modification is necessary for the algorithm to produce C# code instead of C++,
we replace the variables automatic type auto by the C# equivalent var.

9.1.3 Branch Transformation

The branch pattern graph shown in Figure 9.1 matches the infrastructure in-
cluding the conditional jump and the bodies of both branches, where we do not
use the traditional notation for split and merge so we can add the plus sign
meaning repetition in the associative graph rewriting systems. The bodies are
HFG subgraphs, without any control flow nodes that can be transformed by the
ToMethod procedure. Iterative application of the algorithm ensures, that nested
branches and loops are replaced from the inside of the nest out, starting with
constructs containing no embedded control flow.

Algorithm [18] transforms the subgraph matched by the pattern graph in Fig-
ure to a single asynchronous method, which is then added to the final code.
The subgraph is then replaced by the method name.

Figure 9.2 shows the transformation of a simple branch subgraph matched by
the patter graph. The transformation produces a single asynchronous method

90

CE—
() [~split] N
> split™ [merge]* > merge

- W v
| 5 [b|IF.|.b]gt [~split]

merge]*

—

Figure 9.1: Branch pattern graph

Algorithm 18 BranchToMethod algorithm
Require: G - original HFG
M — matched HFG subgraph
N — method name
Ensure: C' — C# code (method)
1. IN :={"p{i.ID}" :i € N(M)A3(n,i) € E(G) > n¢ N(M)}

2: OUT :={"p{o.ID}" :0€ N(M)A3(o,n) € E(G) >n¢ N(M)}
3: C:="async void {N}({join(,,IN)}, out {join(’,out’,OUT)}){”
4: C:=CH"if({ToMethod(M.JUMP)}){"

5. C:=C+ ToMethod(M.BODY TRUE)

6: C:=C+"}else{”

7. C:=C+ToMethod(M.BODY _FALSE)

8: C:=C+"}}

that is called by the other methods produced from the HFG.

9.1.4 Loop Transformation

The loop transformation is similar to the branch, but the final method is recur-
sive to accommodate the loop behavior. A loop can be transformed to either a
C# loop or recursion, where the recursion allows the separate iterations to run
in parallel, if they are independent, taking an advantage of the asynchronous
behavior.

Pattern graph in Figure matches an array infrastructure including its
conditional jump and body. The loop body does not contain any other control
flow constructs.

Algorithm transform the matched loop subgraph to a recursive asyn-

async void branchl1(int p1, out int p2)

{
if(blt()) {

p P2=inc(pl);
} else {

p2 = dec(pl);
}
}

Figure 9.2: Branch transformation

91

— . \
[~split| split™
merge]*

s

[[bit|bgt
l[159

Figure 9.3:

Algorithm 19 LoopToMethod algorithm
Require: G - original HFG
M — matched HFG subgraph
N — method name
Ensure: C' — C# code (method)
1IN :={"p{i.ID} :i € N(M)A3I(n,i) € E(G) —n¢ N(M)}
2: OUT :={"p{o.ID}" :0€ N(M)AN3(o,n) € E(G) >n¢ N(M)}
3: C :="async void {N}({join(",) ,IN)},out {join(',out’,OUT)}){”
4: C':=C+ ToMethod(M.BODY")
5. C = C +"if({ToMethod(M.JUMP)}){"
6: C:=C+"{N}{join("/ ,IN)},out {join(,out’,OUT)});”
7. C:=C+"}else{”
8: for all 7 € INANO € OUT do
9. C:=C+"{I} ={0};”
10: end for
1: C:=C+"}y

chronous method. The algorithm is a bit simplified in regarding the parameters
passing, where the inputs and outputs are matched, because every merge-split
pair represents a single variable. The process is illustrated in Figure[9.4] where a
simple loop is transformed according to the algorithm.

- C] async void loop1(int p1, out int p2)
{

@«»».« pl = dec(pl);
' If(bgtO(pl))
’. '—> loopl(pl, out p2);
} else {
,,,,,,,,,,,,,,, g) }p2 =pl;
b

Figure 9.4: Loop transformation

9.2 Managed Bobox Integration

The last currently supported target platform is an integrated managed Bobox. In
this setup, the compiler integrates the managed Bobox directly into the optimized

92

application, which is transformed into HFG and then to Bobox plan for the Bobox
to execute. The process overview is in Figure This platform was implemented
as the original proof of concept and it is not optimized for efficiency.

. - \
application graph optimized
\ register application
compiler > HFG Bobox

Figure 9.5: Application parallelization overview

The compiler transforms the application methods to HFGs and replaces their
original code with a simple command that executes the produced plan by Bobox.
The compiler also adds a graph register, which efficiently stores all the HFGs
transformed to Bobox plans. Bobox is attached as a dynamic library to the
application so it can be used to execute the plans.

The compiler creates an application that produces the same outputs as the
original, but its methods are implemented in HFGs transformed in Bobox plans.

9.2.1 Graph Execution

Bobox computation is defined by an execution plan that is very similar to a hybrid
flow graph, it is also an annotated directed graph. We have designed an adapter
that transforms a HFG to a Bobox plan which is then executed by Bobox. The
adapter is part of the graph register that stores all the HFGs and executes them
in Bobox.

A HFG is basically identical to a Bobox execution plan, but it requires specific
kernels to be executed, because Bobox must have access to the operations assigned
to each node. We must provide a set of kernels for all CIL instructions and all
control flow nodes. The kernels are already part of the Bobox library attached
to the optimized application.

Once all the kernels are available, we simply convert each HFG to a plan
by transforming each node to an appropriate kernel and connecting the kernels
according to the edges.

The source HFG is transformed to a Bobox plan and stored in a graph register
(see Section [9.2.2). This way we are able to execute the HFG efficiently and
repeatedly, which is necessary for methods called in a loop or similar.

9.2.2 Graph Integration

We use the compiler front-end presented in Section [6] to transform the methods
to HFGs. The Produced graphs are stored in the graph register, which is used by
the rest of the application to execute them via Bobox. The resulting structure of
the application is in Figure [0.6], in an UML-like notation.

The resulting parallel application contains some of its original code, paral-
lelized methods, a graph register and a Bobox library. Which methods are par-
allelized is driven by the configuration described in Section The register

93

D Graph
Application register
¢* WX) ¢*
Parallel
method HFG

Figure 9.6: Structure of the parallelized application

contains a list of graphs, one for each parallelized method, and an instance of
the Bobox environment. The compiler provides configuration tools that allow
users to specify which methods are parallelized and it automatically integrates
methods before parallelization.

The register is a singleton injected into the application by the compiler. Its
code is in Listing [9.1 The graphs are stored in the register in the variable
graphRegister, where they are inserted in the Initialize method. The graphs
are initially stored as strings and in the Initialize method, they are transformed
into a binary representation, optimized for efficient execution. The register ini-
tialization is performed only once when the application starts.

Listing 9.1: Graph register

public static class GraphRegister
{
static Bobox.Scheduler scheduler;
static List<Tuple<Box[], Modellnstance>> graphRegister;
static bool initialized = false;
static sbyte methodCounter;

private static Scheduler Scheduler

{

get

{

if (scheduler = null)

scheduler = new Bobox. SerialScheduler (1);
return scheduler

}
}

private static void Initialize ()

{

initialized = true;
Logger.debug_out = false;
graphRegister = new List<Tuple<Box[], Modellnstance >>();

FlowGraph graph = FlowGraph. DeserializeFromString (””);
Modellnstance instance = new Modellnstance ();

Box[] _interface = flow_graph.BuildPlan(graph,instance);
graphRegister .Add(_interface , instance);

94

}

public static void ExecuteGraph(int id)
{
if (linitialized)
Initialize ();
Scheduler .Go(graphRegister [id |. Item2);

}

public static Bobox.Box[] GetlnputOutput(int id)
{
if (linitialized)
Initialize ();
return graphRegister[id . Iteml;

}

The Bobox environment is also managed by the graph register. The register
uses the C# implementation of Bobox. The environment is represented by the
variable scheduler that contains the scheduler that manages the Bobox execution
plans. The graph register provides the ExecuteGraph method which submits
selected graph to the scheduler that executes it.

The parallelized methods are replaced by a short code that uses the register
to execute the HFG constructed from their original code. The replacement code
of the method is in Listing

Listing 9.2: Method replacement

int id = 0;

Box || param = register.GraphRegister.GetInputOutput (id);
(param [2] as param<Int32 >).Value = P;

(param [1] as ldc_i4_repeat).Repeat = 1;

register . GraphRegister. ExecuteGraph (id);

return (param[0] as ret<Int32>).AcceptedValues. First ();

The replaced method must do only three things - provide parameters for the
graph (based on its actual parameters), execute the graph and obtain the returned
value. In the code in Listing [9.2] the first four lines prepare parameters, calling
the ExecuteGraph executes the graph using the parallel environment and the
last line returns the value produced by the graph.

95

96

10. Case Study: Matrix-based
Dynamic Programming

In the previous chapters, we presented the ParallaX compiler for streaming en-
vironments that transforms a C# application to an application for the Bobox
streaming system. In this chapter, we will focus on the basic problem of edit dis-
tance, the Levenshtein distance, that will serve as a case study for the compiler.
The Levenshtein distance calculates the number of changes necessary to make
two strings equal, thus calculating their relative similarity.

The structure of the algorithm calculation, shown in Figure [10.1] severely
limits any available parallelism. To improve this situation, the author of this work,
as a member of a wider research team, has developed a special optimization that
restructures the calculation to blocks that offer parallelism, suitable for vector
instructions.

The author of this work designed the blocked Levenshtein distance algorithm
along with two colleagues and the algorithm was initially published with GPU-
specific optimizations [8] and then in a wider study that added Intel Xeon Phi and
CPU optimization [2]. In the team, the author was responsible for the algorithm
optimization for the GPUs. In the collaborative work, we described optimizations
greatly improving the application of SIMD instructions and the main principles
are described in the following sections.

The Levenshtein distance is just one problem of the matrix-based dynamic
programming class. A similar problem that uses dynamic programming is dy-
namic time warping (DTW) defined by Miiller [87]. Since the performance issue
is also quite important for DTW applications, Sart et al. discussed parallelization
techniques for GPUs and FPGAs [88]. They focused mainly on a specific version
of DTW algorithm, which reduces the dependencies of the dynamic programming
matrix, thus allows more efficient parallelization. Another example of a problem
suitable for dynamic programming is the Smith-Waterman algorithm [89], which
is used for protein sequences alignment. One of the first attempts to parallelize
this algorithm on GPUs was made by Liu et al. [90].

We evaluate the ParallaX compiler correctness and efficiency on the blocked
version of Levenshtein distance and compare the results to its serial C# imple-
mentation. The compiler must correctly transform the application to a streaming
processing application and then add the necessary kernel and vector parallelism
to improve its performance.

The rest of this chapter describes the blocked algorithm and its parallelization
by our compiler. In Section we explored other approaches to optimize the
Levenshtein distance. Section explains the distance algorithm and its prop-
erties. In Section[I0.3]we present the details of the blocked version of Levenshtein
distance. In Section we adapt the blocked algorithm for streaming environ-
ments and in the next chapter, we present thw experiments with the applications
produced by our compiler.

97

10.1 Problem Detalils

In the original research, we have selected the Wagner—Fischer dynamic program-
ming algorithm [91] for the Levenshtein distance problem as a representative for
our implementation since its computational simplicity emphasizes the communi-
cation and synchronization overhead associated with parallel computations. In
this work, we use the blocked Levenshtein distance to evaluate the ability of the
ParallaX compiler to exploit parallelism in a complex algorithm that provides
opportunities for vectorization.

In the matrix-based dynamic programming algorithms, the values v; ; of the
matrix are calculated recursively based on algorithm-specific function f(7, j). The
Functions f(i,7) employed in these calculations are often very simple. In the
case of the Wagner-A-Fischer dynamic programming algorithm [91] for the Lev-
enshtein distance, the function involves only comparison, incrementation, and
minimum:

f(i,7) = min(vi—1; + 1,011 + 1 — 5::5]], vij-1+1),

where the Kronecker 6 compares the ¢-th and j-th positions in the input strings
u and v respectively.

The dependencies between individual invocations of the formula f significantly
limit the parallelism available in the problem. For a M x N matrix (i.e., inputs
of size M and N respectively), at most min(M, N) elements may be computed in
parallel using the diagonal approach illustrated in Figure Therefore, when
the computation of f does not take orders of magnitude more time than the data
exchange, a pure diagonal approach cannot be effectively employed on current
CPU and GPU architectures, because it would require global synchronization
after every diagonal is processed.

\/4

current iteration

I_.> I:I previous iteration
\/

the iteration before last

Figure 10.1: Dependencies in the matrix and the diagonals

On the other hand, the diagonal approach gives us basis for processing sub-
sections of the distance matrix using SIMD instructions (in case of CPU and Intel
Xeon Phi) or threads running in lockstep (in case of GPU). Although possible, the
diagonal approach still produces insufficient parallelism and unnecessary memory
transfers, because the diagonals must be constantly rotated through the SIMD
registers. In Section we present a special transformation that divides the al-
gorithms matrix into block, which can be processed directly by SMID instructions
without unnecessary memory operations.

98

10.2 Related Work — Matrix-based Dynamic
Programming Parallelization

The algorithm and optimizations presented in this chapter are based on our previ-
ous work focusing on the parallelization of the matrix-based dynamic algorithms
on GPUs [§] and out next research that further extended the optimizations to
encompass Intel Xeon Phi [2]. Both our previous works focused on the vector-
ization capabilities of the respective accelerators. In this work, we transfer the
optimizations to the environment of streaming systems using the ParallaX com-
piler described in the previous chapters.

Most parallel algorithms are based on an observation of Delgado et al. [92],
who studied the data dependencies in the dynamic programming matrix. Two
possible ways of processing the matrix were defined in their work — uni-directional
and bi-directional filling. The original idea allows limited concurrent processing,
but it needs to be modified for massively parallel environment.

One of the first papers that covers the whole issue of the parallelization of
Levenshtein distance on GPUs was presented by Tomiyama et al. [93]. Their
approach divides the dynamic programming matrix into parallelogram blocks.
Independent parallelograms are computed by separate CUDA thread blocks while
each block is computed in a highly cooperative manner. The main focus of
the work addressed the problem of appropriate block size and its automatical
selection. On the other hand, their experiments are currently out of date, since
they were performed on a GPU with compute capability 1.3 only.

Manavski et al. [94] reimplemented the Smith-Waterman algorithm using CU-
DA technology. Slightly different solution was presented by Ligowski et al. [95].
Their work focused on searching in the entire database of proteins. Khajeh-Saeed
et al. [96] utilized the computational power of multiple GPUs to solve this prob-
lem. Perhaps the most recent version was presented again by Liu et al. [97] and
it combines observations from the previous work.

10.3 Levenshtein Distance Blocked Algorithm

As illustrated by Figure [10.2], the dependencies between elementary calculations
in the two-dimensional matrix allow parallel computation for all elementary tasks
on any diagonal line. An elementary task is consists of evaluation of the function
f (4, j) producing the value for a single element of the algorithm matrix. Thus, the
computation may be done by a single sequential sweep through all the diagonals
in the matrix whilst each diagonal is computed in parallel. Unfortunately, such
simple approach to parallelization suffers from two deficiencies: First, the size of
the diagonal (n) varies throughout the matrix which requires frequent addition
and removal of computing units (threads) during the sweep. Second, regardless
of the exact assignment of the physical threads to the elementary tasks, each
thread processing a task must interchange information with at least one other
thread when the computation advances to a subsequent diagonal. The compu-
tational cost of the elementary tasks is assumed to be small, thus the thread
communication cost plays an important role as well.

When more than one instance of the problem is computed simultaneously, it is

99

\ 1

Figure 10.2: A single block with emphasized input, output, and data dependencies

also possible to compute the instances in parallel while each instance is evaluated
sequentially (e.g., row-wise). However, this approach suffers from the inability to
utilize the SIMD while efficiently using the caches.

Thus, although the multi-instance problem seems to be embarrassingly par-
allel, non-trivial algorithms must be investigated to overcome the memory and
SIMD instruction constraints.

10.3.1 Parallelogram Blocks

Due to the nature of data-dependencies in the computation matrix, SIMD in-
structions work best when assigned to parallelogram-like portions of the matrix,
as depicted in Figure [10.2] The picture also shows the input values for such a
block, divided into left buffer (red), upper-left buffer (blue), and upper buffer
(green). The arrows show the dependencies for the first diagonal in the block
which will be computed in parallel. The output of the parallelogram block is
shown in light gray, the white fields inside the parallelogram correspond to tem-
porary values computed and later discarded during the block evaluation.

Each block is processed in three steps: load input data from the memory to
SIMD registers, compute the values, and write the results back to the memory for
the subsequent blocks. A block of height H and width W, with H equal to the
SIMD register size (4 for SSE and 8 for AVX), is processed by SIMD instructions
in W iterations. Between subsequent iterations, data is shuffled in the registers.

If H is bigger than the SIMD register size then the data must be processed
in multiple SIMD streams, which must exchange data between registers.

ETRArOrr
ol s e s e P s
o s le it A
ﬁJSfJGHJJ?HJJSHJJQH‘err ‘I'IH—'J
7FF'J8F|"J9FFH1Q_F'J11FIJJLJJJ

Figure 10.3: Distance matrix divided into parallelogram blocks

N

100

10.3.2 Blocked Algorithm

The elements of the distance matrix are grouped into parallelogram blocks as
shown in Figure [10.3] where the numbers denote coarse diagonals. Blocks that
are not completely contained in the distance matrix can be processed the same
way as the others, which allows us to avoid checking any conditions during the
block calculation, which comes at the cost of calculating some values that are
not used. Gray area represents the input values for the left and upper blocks
and the black square is the final result (computed edit distance). The blocks
communicate through memory buffers, allocated in advance and aligned to 16
bits. The division of the matrix into the blocks follows a similar pattern as in the
work of Tomiyama [93].

Similarly to the fine diagonals in Figure the coarse diagonals allow paral-
lel processing of blocks. Blocks retain the same scheme of dependencies as single
elements, thus the blocks in a coarse diagonal can be processed in parallel, be-
cause they depend only on blocks from two previous coarse diagonals. The block
numbers depicted in Figure indicate the order in which they are computed.

Each coarse diagonal of blocks is computed by a group of identical kernels,
where each corresponds to a single parallelogram block. Selecting appropriate
block size (i.e., its width and height) is an important factor that affects the
efficiency of the algorithm.

10.4 Matrix-based Dynamic Programming in
Streaming Environments

In the previous section, we presented the blocked implementation of the Leven-
shtein distance algorithm originally designed for CPUs. In this section, we ex-
amine the way the ParallaX compiler transforms the C# implementation of the
algorithm into a streaming application. The blocked algorithm can be adapted
for other problems that share similar dependences and data structure.

However; we can adapt the optimizations, presented in Chapter |7, to vec-
torize the blocked implementation. This allows programmers to optimize their
algorithm once it has been adapted to the blocked design.

The compiler is able to vectorize the code using the Intel CPU streaming
extensions, SSE and AVX, but it can be later extended to other hardware, like
GPUs, once the Bobox system supports it.

10.4.1 Blocked Algorithm Implementation in C#

We start with the blocked version of the Levenshtein distance algorithm imple-
mented in C# and we will deconstruct it to explain the necessary optimizations.
This is necessary, because the blocked implementation is complex and optimize
is all at once not be practical.

Listing 10.1: Blocked Levenshtein edit distance algorithm

int BlockedLevenshteinDistance (int [] strl, int[] str2,
int width, int height)

101

#region Initialization

var strWidth = strl.Length;

var strHeight = str2.Length;

var blockHeight = strHeight / height;

var offsetWidth = blockHeight % (height — 1);

var blockWidth = (strWidth + offsetWidth) / width + 1;
var maxWidth = width x blockWidth;

var appendixWidth = maxWidth — strWidth ;

int [|[] prelast = new int[blockHeight |[height + 1];

int [][] last = new int|blockHeight |[height + 1];

int [|[] current = new int[blockHeight |[height + 1];

int [|[] horizontal = new int[blockWidth |[width + 1];
int [][] newhorizontal = new int[blockWidth|[width + 1];

Set (prelast , MaxValue);

Set (last , MaxValue);

last [0][1] = 1;

Set (newhorizontal , MaxValue);

for (int i = 0; i < blockWidth; i++)

{
for (int j = 0; j <= width; j++)
{
horizontal [i][j] = i * width + j;
}
}

#endregion // Initialization

for (int j = 0; j < blockHeight; j++)

{
for (int i = 0; i < blockWidth; i++)
{
var offsetl = offsetWidth + isxwidth — j=*(height —1);
var offset2 = j % height;
var newHor = SolveBlock (width, height
ref prelast[j], ref last[j], ref current[j],
horizontal [i], newhorizontal [i],
strl, str2, offsetl, offset2);
res [0] = (i>0)? horizontal[i — 1][width]: MaxValue;
var t = horizontal [i];
horizontal [i1] = res;
newhorizontal [i] = t;
}

102

var pos = offsetWidth + strWidth;
return horizontal [pos / width][pos % width];

}

The blocked version of the Levenshtein distance algorithm is implemented in
Listing [L0.1] The implementation uses two additional functions, the function Set
initializes all elements of an array to a specified value and the function Solve Block

calculates the results for a single parallelogram block. The Solve Block function
is implemented in Listing

Listing 10.2: Solve single parallelogram block

int [] SolveBlock(int width, int height ,
ref int[] prelast, ref int[] last, ref int[] current,
int [] horizontal , int[] newHorizontal, int[] strl,
int [] str2, int offsetl, int offset2)

prelast [0] = horizontal [0];
int x = 1;

do

{

int nY =y — 1;
int sl offsetl + nX — nY;
int s2 = offset2 + nY;

int charl = strl[sl];
int char2 = str2[s2];
int left = last [nY];
int upper = last[y];
int upperleft = prelast [nY];

// ParallaXMath provides functions similar to
// C# Math, designed for the ParallaX compiler
int distl = ParallaXMath.Min(left , upper) + 1;
int dist2 = upperleft +

ParallaXMath . NotEquals(charl, char2);
current [y] = ParallaXMath.Min(distl , dist2);
y++;

}

while (y <= height);
newHorizontal [x] = current [height |;

103

var temp = prelast;
prelast = last;

last = current;
current = temp;
X+

}
while (x <= width);
return newHorizontal;

}

10.4.2 Blocked Algorithm in ParallaX Compiler

The Levenshtein distance calculates the edit distance of two strings, by comparing
every combination of characters in both. In this section, we call strWidth the
length of the first string and strHeight the length of the second one. This
basically means that the algorithm fills a matrix with strWidth x strHeight
elements and returns the one in the lower right corner.

The blocked algorithm is a nest of four loops, where the outer two loops
iterate over bocks and the inner two loops solve a single block. The vectorization
is centered in the innermost loop, which does most of the actual computations
and is executed the most times. The body of the innermost loop is executed for
every element of the virtual matrix, which means that it is executed strWidth x
strHeight times.

The outer loops offer no significant opportunity for vectorization (they just
swap arrays) and they are executed significantly less times. The SolveBlock
function is called approximately (strHeight/height) % (strWidth/width), which
is far less that the inner loop body, for reasonably big blocks.

Inner Loop Vectorization

Listing 10.3: Inner loop code

// index computation

int nY =y — 1;

int s1 = offsetl + nX — nY;
int s2 = offset2 + nY;

// array loads

int charl = strl[sl];
int char2 = str2[s2];
int left = last [nY];

int upper = last [y];

int upperleft = prelast [nY];

// distance computation

int distl = ParallaXMath.Min(left , upper) + 1;
int dist2 = upperleft +

104

ParallaXMath . NotEquals (charl, char2);
// array store
current [y] = ParallaXMath.Min(distl, dist2);
y++

}

while (y <= height);

We focus the optimization effort on the innermost loop, its code is in List-
ing with its parts grouped and commented according to their function. The
separation is important, because it will help us to vectorize the code.

First, it is important to note the algorithm uses the ParallaX library dis-
tributed along with the compiler, which provides basic mathematical and utility
functions. Here, we use the functions Min, calculating minimum of two numbers,
and NotFEquals, which compares two numbers and converts the result to an in-
teger (similar to (int)(a! = b) in C++). The library functions are known to the
compiler and they are directly transformed to a node or a subgraph (depending
on the function).

Next, we can apply the component extraction optimizations presented in
Chapter [7] We can use the range extraction without any modification, because
the inner loop satisfies the pattern graph of the optimization.

The loop body can be divided into four separate parts, introduced by com-
ments in the Listing [10.3] Schema of the loop structure is in Figure [10.4]

[range Hcomigﬂ?e)l(tionH load array HcomputatioHstore array]

Figure 10.4: Blocked algorithm inner loop structure

The original implementation of the array extraction and vectorization opti-
mizations rely on a loop, where we first load data from arrays, perform computa-
tion and then store the results, as shown in Figure[10.5] The inner loop structure
is a bit more complicated, because it does not simply use the indices produced
by the range operation, instead it calculates them from the range outputs.

[range H load array HcomputatioHstore array]

Figure 10.5: Loop structure expected by the basic optimizations

To optimize the inner loop, we use the chained vectorization and chained array
extraction presented in Section [7.§ at the end of Chapter

Once we apply the chained rules, we can use the original versions to vectorize
the remaining parts of the inner loop. We use the standard array extraction to
vectorize the array store part and we use the standard wvectorization (see Sec-
tion to transform the distance computation part.

The vectorized inner loop is in Figure[10.6] including the subgraph represent-
ing both the custom operations vectl and vect2. The vectorized graph contains
incoming and outgoing edges that will be connected to the loop infrastructure of
the outer loops, which will be the focus of the next section.

105

g g | y ;ve“c'fé"'ii- i

i not
oad HES R =N

)f

[Ic;ad [
array

@E@/@\@ k

¥
load
array

Y
load
array

Figure 10.6: Fully vectorized inner loop of the blocked version of the Levenshtein
distance algorithm

The HFG contains operation load var, which is an accumulator providing the
repeatedly read variables of fsetl, of fset2 and nX. The custom operation vectl
implements the index computation, which provides the indices used to access the
arrays. The vect2 operation represents the actual distance computation, where we
use the built-in functions min and not Equals to efficiently calculate the distance.

Outer Loop Vectorization

The outer loops of the entire algorithm contain almost no arithmetic operations
and thus a very limited options for vectorization. We will inspect the loops one
after another and focus on the optimizations we can apply there.

The outer loop of the SolveBlock function calculates the value of the nX
variable and swaps the arrays used in the inner loop. This loop supports range
extraction and we can extract the variable calculation as a tiny custom operation,
but the rest of the loop must be preserved for the arrays to be swapped properly.

The inner loop of the blocked algorithm calculates the value of the two offsets
and swaps the arrays used by the SolveBlock. This loop supports the range
extraction and the offset calculation can be extracted as a custom operation, but
the rest of the loop infrastructure (merge-split) must remain to properly swap
the arrays.

The outermost loop contains no additional code and supports only the range
extraction.

The vectorization of the outer loops is limited, but they are not the most
important, because it is the inner loop that does most of the work. The inner
loop is completely vectorized including all the array accesses and computations.
In the next chapter, we will present experiments performed with the compiled
blocked algorithm.

106

11. Experiments

We described the ParallaX compiler in the previous chapters and in this chap-
ter, we will present the experiments we used to validate the correctness of the
produced code and performance of the final applications. The experiments are
divided in two groups: the correctness experiments validate the code produced by
the ParallaX compiler against the original code and the performance experiments
compare the performance of the produced applications with the C# original.

The actual implementation of the ParallaX compiler is a prototype that does
not support the full range of optimizations necessary to efficiently parallelize all
target applications. The goal of our work is to provide a proof of concept — a
working compiler, with a framework for optimizations, able to produce a correct
code. Because of this limitation, we test the performance of the produced code
on a limited spectrum of applications, where the presented optimizations are
sufficient to produce efficient applications.

11.1 Correctness Experiments

Before, we look at the performance, we must first verify that the applications
produced by the ParallaX compiler are equivalent to the original C# code, they
are based on. This is necessary to evaluate, because a compiler must primarily
produce a correct code. We test the Bobox applications produced by the ParallaX
complier. We use the managed implementation of Bobox, because that enables
us to evaluate both the original and the product in the same environment, the
Microsoft .NET.

In the case of the Bobox applications produced by the ParallaX compiler, a
correct code is an application representing a C# method that can be executed
in any implementation of Bobox and produces the same results as the original
code. The results of an application are only its return values, there are no side
effects, because we integrate all the called methods and we do not support libraries
besides the one specially provided with our compiler.

We verify the correctness of the compiler on a huge set of generated methods
and on well known algorithms including the factorial, greatest common divisor
and Levenshtein distance. The process is same for all the experiments:

1. Input — the CIL code of the tested method
2. Compile the CIL code to a Bobox application using the ParallaX compiler
3. Execute the tested method using .NET reflection

4. Execute the Bobox application using the managed implementation of the
Bobox system

5. Compare the returned values for both environments
e Values equal — report success

e Values differ — report failure

107

Listing 11.1: Generated method interface

public static int {0}(int p, int m)

{

int a = 0;

{1}

return a + m;

13

The original method is executed using the . NE'T refiection, defined in the CLR
standard [31], which allows extensive work with the data types and code structure
during runtime. The classes implementing reflection allow the programmers to
modify the application or execute dynamically loaded code and we use it to
execute the original version of the tested method.

The Bobox application produced by the ParallaX compiler is executed in the
managed (C#) implementation of Bobox to simplify the testing process. This
way we can use solely the managed .NET code to verify the correctness of the
produced code.

We test the compiler mostly on a set of methods, which we compose of the code
fragments presented on the following listings. The code fragments are written in
the C# string format notation, where the text N is replaced by the parameter
N. For example, the call Format("{0} —is —{1}”,0,” number”) would result in
the string 70 — is — number”.

The method interface is in Listing [I1.1], it has two parameters, a single local
variable and returns an integral number. We generate the methods by combining
the other fragments nesting them in one another (including repetitions) until the
depth three. Algorithm [20] generates all the methods, based on a set of all binary
trees of depth three, and Algorithm implements the TreeToCode function,
which generates the methods code based on a binary tree. The function Format
perform the replacement of the N parts with the parameters and the function
Random N ame generates a random string that is valid as a C# method name.

Algorithm 20 GenerateMethods
Require: TREES — set of all binary trees containing values (0-4)
FRAGMENTS — sequence of all code fragments
INTERFACFE — method interface
Ensure: METHODS — generated methods
1. METHODS =10
2: for allt €e TREES do
33 METHODS := METHODS U{Format(INTERFACE,
RandomName(), TreeToCode(t,0, FRAGMENTS))}
4: end for

The following fragments are combined by the Algorithm to the method
code. We use the fragments presented in the following listing — a fragment for
an arithmetic operation, conditional branch, loop and a sequence. Plus we add an

108

Algorithm 21 TreeToCode
Require: TREE — binary tree containing values (0-4), represented in an array
N — index in the tree, initially 0
FRAGMENTS — sequence of all code fragments
Ensure: CODFE — generated code
1: if N <TREE.Length then
2: CODE := Format(FRAGMENTS|N],
TreeToCode(TREE,2* N+ 1, FRAGMENTS),
TreeToCode(TREE,2* N +2, FRAGMENTS))
3: else
4. CODE :=""
5. end if

Listing 11.2: Arithmetic operation

a x= pj;

empty string representing empty code, which is used to terminate the replacement
at the appropriate depth (three).

Using the presented algorithm and code fragments, we are able to generate a
huge number of methods with all possible nesting of control flow constructs up
to the depth of three. We generate nested loops, branches and any combination.
The decremental behavior in loops is necessary to prevent endless iteration and
assure that the code always ends and produces a valid result.

The correctness test is implemented in the ParallaX project automatic MS
Unit test named — CILParser Multitest, distributed along with the project.
The description of the project structure and instructions involving the automatic
tests are in the chapter Attachments: Digital Content.

11.2 Levenshtein Distance Experiments

In this section, we evaluate the performance of the application produced by our
compiler. We take the blocked implementation of the Wagner—Fischer dynamic
programming algorithm [91], as explained in Section [10.3] We parallelize the
blocked algorithm using the compiler and compare the performance of the result-
ing application with the original C# implementation, executed in .NET 4.6 with
all optimizations. The blocked version of the algorithm enables the compiler to

Listing 11.3: Conditional branch

if(a % 2 = 0)
{{

{0}
13

109

Listing 11.4: Loop

do {{

{0}

a +=p——;
i3

while (p > 0);

Listing 11.5: Construct sequence

{0}
{1}

optimize the block code and employ vectorization as described in Section

The compiler produces an application for the native implementation of Bobox.
We compare two versions, one is accelerated using the older SSE streaming ex-
tension and the other uses the AVX extension. We measure both versions to
provide better insight into the vectorization impact on the overall performance
of the application.

We measure the performance of both the versions on pairs of strings of the
same size varying between 8 and 128 MB. We also measure the performance
for different block sizes, because the block size influences the ratio between the
kernel parallelism and vectorization. Bigger blocks provide more opportunities for
vectorization, because the blocks inner loop is strongly optimized, where smaller
blocks leave more room for parallel computation of separate blocks. We use blocks
with height equal to the vector size (4 for SSE and 8 for AVX) and with is always
specified in the experiment.

We measure the performance on two separate systems. First we a server
running Windows 10 equipped with the Intel Xeon E5-4620v4 processor, with
10 physical cores and 20 virtual threads, and 16 GB of DDR4 random access
memory. The second platform is a workstation running Windows 10 with Intel
i7-6500U CPU, with 2 physical cores and virtual threads, and 8 GB of RAM.
We use the high precision Performance counter, available in Windows, which is
capable to measure the time in nanoseconds.

We measure only the actual computation run time, all data is loaded prior to
the application start. In every experiment, we measure the application 10 times
for both the original and the compiled version and we print the results in a single
box plot to compare the performance including any special cases.

The experiment results are displayed as the time consumed to complete an
elementary task, for Levenshtein distance, this means the computation of the
value of a single element of the matrix. The results are acquired by dividing the
total wall time by the size of the matrix. The results are summed in two-quartile
boxplots with whiskers signifying the lowest value within 1.5* IQR (interquartile
range) of the lower quartile, and the highest value within 1.5 % IQR of the upper
quartile. The plots vertical axes are in logarithmic scale.

110

|
I

: B original
! - B bobox

3 4 5
L L

z g
;) £
X 4
[%} [0]
8 8
> © T >
g2 : [T2 :
§8°] ‘ - ‘ 1
Eool [— Eo ol b -+
2 : i ko)
© [;
2 - : m " =
© o - |
£ £ —
(= T T T T T T = T T T T T T
4 4 8 8 16 16 4 4 8 8 16 16
Data size (MB) Data size (MB)

Figure 11.1: Levenshtein distance calculated with block size 16, workstation(left)
server(right) , Bobox application is accelerated with SSE

1

5 6
L

Time per elementary task (ns)
log scale
3 4
Il Il
" }AIA{

m
»

B

8 |

Time per elementary task (ns),

o e]
T T T T T T T T T T T
2 4 4 8 8 2 2 4 4 8 8
Data size (MB) Data size (MB)

Figure 11.2: Levenshtein distance calculated with block size 128, workstation(left)
server(right) , Bobox application is accelerated with SSE

~ ~ o
) © - JE—) | p— p—
= T H u | c n o u |
;o = — 5 — ma =
g i — E —
< - R
2o >0 2 B
8 S ®
c O c o
Q0 Mo Q0 o
€ o E o =+
[o3e) oo -
° T °
g o~ __ — g |
— o

i: T T T T T T ’: T T T T T T

16 16 32 32 64 64 16 16 32 32 64 64

Data size (MB) Data size (MB)

Figure 11.3: Levenshtein distance calculated with block size 1024, worksta-
tion(left) server(right) , Bobox application is accelerated with SSE

Figures [T1.1], I1.2] [I1.3] [I1.4] contain the results for the Bobox application
accelerated with SSE, where we measure the performance for the block sizes 16,
128, 1024 and 32768. The block size defines the width of the parallelogram blocks
explained in the previous chapter, the block height is always equal to the vector
size (4 for SSE and 8 for AVX).

Figures [T1.5], [11.6] [11.7, [T1.8] contain the results for the Bobox application
accelerated with AVX. The results are better than the SSE acceleration, because
AVX supports bigger vectors and provides better performance, especially for big-
ger blocks.

The compiler is able to apply all the optimization described in Section [7| and

111

f= = =
7 bob

= —_

sg]

g 3

E o @7

[ogte]

©

[] o~ o —

Q _ — —

°E’ i —— ——

i: T T T Aﬁ T Aﬁ

16 16 32 32 64 64

Data size (MB)

Time per elementary task (ns),

log scale
05 1.0 20

5.0

—_ ®| original
B bobox

Data size (MB)

64 64

Figure 11.4: Levenshtein distance calculated with block size 32768, worksta-
tion(left) server(right) , Bobox application is accelerated with SSE

8 10
|

6
I I

log scale

Time per elementary task (ns),
4
L

Data size (MB)

Time per elementary task (ns),

log scale

Data size (MB)

Figure 11.5: Levenshtein distance calculated with block size 16, workstation(left)

server(right) , Bobox application is accelerated with AVX

Time per elementary task (ns),
log scale

W original
B bobox

Data size (MB)

Time per elementary task (ns),

log scale

W original
} = bobox

— —_— —
T T T T T T
2 2 4 4 8 8
Data size (MB)

Figure 11.6: Levenshtein distance calculated with block size 128, workstation(left)

server(right) , Bobox application is accelerated with AVX

the special optimization added in Section|10.4] The produced application was able
to employ both vectorization and kernel parallelism thanks to the optimizations
which significantly reduced the HFG complexity and granularity.

The performance is better for bigger blocks, which provide more opportunities
for vectorization and reduced loop overhead. The Bobox application outperforms
the original implementation in all experiments, with the exception of the smallest
block size on the workstation, where the small number of cores and block size

limit parallelization.

112

5~ — g —
= B - W bobox > 5 : W bobox
> > : — —
SL <4 :] Tl 9|
8 g | : E®
c O _ | ' c o
o) - L [T
E o @ E o o |
o0 2L 9O o
[[
8 o~ — g w0
_ o v
2 ! [] —_— £ [—_— —
[T T T T T T = T T T T T T
16 16 32 32 64 64 16 16 32 32 64 64
Data size (MB) Data size (MB)

Figure 11.7: Levenshtein distance calculated with block size 1024, worksta-
tion(left) server(right) , Bobox application is accelerated with AVX

Z — — 0 — ==
mi=] ! s{= = =[=
bob — bob
= - - - 5 = oo
‘; i N L ; o
S0 < 20 9|
g Eg N
G & o g 3
n o
58 5§25
o) ©
g o g v
o . 2 o
g —— — - 2 —_— — i
[T T T T T T ~ T T T T T T
16 16 32 32 64 64 16 16 32 32 64 64
Data size (MB) Data size (MB)

Figure 11.8: Levenshtein distance calculated with block size 32768, worksta-
tion(left) server(right) , Bobox application is accelerated with AVX

11.3 Streaming Experiments

In this section, we evaluate the ParallaX performance for a series of one dimen-
sional algorithms. We present a convolution from the DSP category, with data
dependences similar to the Levenshtein distance, but in one dimension. Next,
we present an algorithm similar to the S-boxes used in the Serpent cipher, with
multiple inputs and outputs. We conclude the experiments with a series of very
simple algorithms, that apply a single function to a stream of value, to test the
ParallaX compiler on very simple applications.

The experimental environment is the same as in case of the Levenshtein dis-
tance. We measure the performance on two separate systems. First, we use a
server, running Windows 10, equipped with the Intel Xeon E5-4620v4 processor,
with 10 physical cores and 20 virtual threads, and 16 GB of DDR4 random access
memory. The second platform is a workstation running Windows 10 with Intel
i7-6500U CPU, with 2 physical cores and virtual threads, and 8 GB of RAM.
We use the high precision Performance counter, available in Windows, which is
capable to measure the time in nanoseconds.

We measure only the actual computation run time, all data is loaded prior to
the application start. In every experiment, we measure the application 10 times
for both the original and the compiled version and we print the results in a single
box plot to compare the performance including any special cases.

The experiment results are displayed as the time consumed to complete an
elementary task, for Levenshtein distance, this means the computation of the

113

value of a single element of the matrix. The results are acquired by dividing the
total wall time by the size of the matrix. The results are summed in two-quartile
boxplots with whiskers signifying the lowest value within 1.5% IQR (interquartile
range) of the lower quartile, and the highest value within 1.5 % IQR of the upper
quartile. The plots vertical axes are in logarithmic scale.

11.3.1 Convolution Experiment

The first experiment is a simple convolution algorithm, which represents simpler
algorithms from the digital signal processing category. The algorithm constructs
a new signal by combining the neighboring values of the input signal, using the
function:

Al =2 B[I] — 0.5 B[l — 1] + 0.5« B[I — 2]

The function contains data dependences between the accesses to the array A,
but the dependences are of the type read-read, which do no prevent paralleliza-
tion. The application code is in Listing

Listing 11.6: Convolution algorithm code

int [| Convolution(int[] a, int[] b)
{
int i = 2;
int len = a.Length;
do
{
var prelast = b[i — 2];
var last = b[i — 1];
var current = b[i];
a[i] = 2 % current — 0.5 % last + 0.5 % prelast;
1++;
} while (i < len);
return a;

The experiment results shown in Figures(11.9/and[11.10} The ParallaX compil-
er successfully transformed, optimized and vectorized the code and the resulting
application outperforms the original C# implementation on both platforms.

11.3.2 Cryptography Experiment

The second experiment is based on the linear transformation used in the Serpent
Cipher to mix the outputs of the S-Boxes, the boxes combine the data with parts
of the key and the transformation produces the final cypher [98]. The algorithm
has four inputs and outputs and combines the values according to the following
equations, where & denotes xor, <<< denotes left rotation and << denotes left
shift:

114

Time per elementary task (ns),
log scale

4

Data size (MB)

n —
= original c — J— = original
— R e
g o —
>
3
c o
T 0
£ o
OO N
— 22
] 5
a —
E - E ? —
T = T T T T T T
64 16 16 32 32 64 64
Data size (MB)

Figure 11.9: Convolution algorithm performance, workstation(left) server(right)
, Bobox application is accelerated with SSE

»n p—

3 - - J—

: *] ‘ -

7] :

© - —_

< '

>0 © - -

8§

c o -

o

£ o

L0 <4

©

pul

5 J—

s 77 L —
)

£ .
[T T T T

Data size (MB)

EEE | = oiginal g — ﬁ == | m original
.| = bobox s o — —— B bobox
i3
>
sg
g5 24
E o N
RS
T o
SR
L 3
— g — ——— ——
T ': © T T T T T T
64 64 16 16 32 32 64 64
Data size (MB)

Figure 11.10: Convolution algorithm performance, workstation(left) server(right)
, Bobox application is accelerated with AVX

bo
by
by
bs
by
bs
bo
by
bo
by

= by <<< 13;
= by <<< 3;
= by @ by D by;

:bg@bz@(bo << 3),

=b <<< 1;
=by <<<T;
:b()@bl @bg;

:bg@bg@(bl << 7),

= by <<< 5;
= by <<< 22;

The C# implementation of the algorithms is in Listing [11.7]
cipher was designed for parallelization and the ParallaX compiler is able to fully
exploit the available parallelism. The experiment results are summed in Fig-
ures and [I1.12] the algorithm is more complex than the convolution ex-
periment, because it contains more arithmetic operations that take more time to

evaluate.

Listing 11.7: Convolution algorithm code

The original

115

void Cipher(int[] a0, int[] al, int[] a2, int[] a3,
int [] b0, int[] bl, int[] b2, int[] b3)
{

int i = 0;

int len = a0.Length;

do

{
var b_0 = b0[i];
var b_1 = bl[i];
var b_2 = b2[i];
var b_3 = b3[i];
b0 = (b0<< 13) | (b0 > —13);
b2 = (b2 << 3) | (b2 > —3);
bl =Dbl " b0 b.2;
b3 =b3 " b2 " (b0 << 3);
b.l = (b1 << 1) | (b1 > —1);
b3 =(b3<<7) | (b3> —17);
b.0=b0 " b1l " b.3,;
b2 =b2 " b3 " (bl<<T7):
b0 = (b0 << 5) | (b0 > —5);
b2 = (b2 << 22) | (b2 > —22);
a0[i] = b_0;
al[i] = b_1;
a2[i] = b_2;
a3[i] = b_3;
1++;

} while (i < len);
}

% o — % —

LS T —— = —— _

¥ . T 3 o -

< 0 | i 8 =

> >

53 5¢

g g8 w-

5§89 5§28

- = - _ =

[] —_ (]

a == [] — R _

S - —] & — — —

}: T T T T T T ’: T T T T T T

16 16 32 32 64 64 16 16 32 32 64 64

Data size (MB) Data size (MB)

Figure 11.11: Serpent linear transformation algorithm performance, worksta-
tion(left) server(right) , Bobox application is accelerated with SSE

11.3.3 Baseline Experiments

To evaluate the performance of the applications produced by the ParallaX compil-
er for extremely simple applications, we constructed a series of filter-like applica-
tions with different structure to examine the application performance in different

116

Data size (MB)

% o p— — 2
< N : H | original c
I~] —— — p
[o | i R N 4]
g 4 — s
> >
g3 s
c o | =
&6 @
€ o £
o0 2
[[
et =
@ [}
o —_ o
g 0 ! — Q
£ — I £
= T T T T T T =
16 16 32 32 64 64

log scale

16

16

32

32

Data size (MB)

64

64

Figure 11.12: Serpent linear transformation algorithm performance, worksta-
tion(left) server(right) , Bobox application is accelerated with AVX

situations. We use the function Filter defined in Listing to process the val-
ues and we use them in varying control flow structures to test the performance.
The functions are purely artificial, designed to provide the required computation-
al complexity and neither compiler uses the common sub-expressions to optimize
the application (we verified it by studying both the HFG and the CIL produced
by C# compiler).

Listing 11.8: Filter code

int Filter (int[] b, int i)
{
int x = b[i] + 1
¥ 1 % 1 % 1 % 1 % 1 * 1
¥ 1 % 1 % 1 % 1 % 1 % 1
¥ 1 % 1 % 1 % 1 % 1 * 1
* 1 % 1 % 1 % 1 % 1 % 1;
return i *x x;

11.3.4 Single Filter

The first application applies the Filter function to a series of values in a sin-
gle loop, Listing contains the application code. The performance of the
application is shown in Figure [11.13

Listing 11.9: Complex filter code

int [| SingleFilter (int[] a, int[] b)
{
int i = 0;
do
{
ali] = Filter(b, 1);
1++;

} while (i < a.Length);

117

return a;

}

7 3 =
;C' © i — ;:' ° e —
Z - i3
ge 5o
238 28 o
[N o n N
E o <+ — £ o
@0 : 209 o
0] : [-
: = - iz wm
_ 5 7] ———
aé —— E—— — E °© L
= N = T T T T T T = T T T T T T
16 16 32 32 64 64 16 16 32 32 64 64
Data size (MB) Data size (MB)

Figure 11.13: Performance of the SingleFilter application, workstation(left)
server(right) , Bobox application is accelerated with AVX

11.3.5 Serial Filter

The second application applies two filters to a series of data in two loops, one after
another. Listing|11.10| contains the application code, where the Filter function is
either the SimpleFilter or Complex Filter. The performance of the application

is shown in Figure [11.14]

Listing 11.10: Complex filter code

int [| SerialFilter (int[] a, int[] b, int[] c)
{
// filter 1
int i = 0;
do
{
al[i] = Filter (b, i);
1++;
} while (i < a.Length);

/) filter 2
i = 0;
do

{
c[i] = Filter(a, 1);
1++;

} while (i < c¢.Length);

return c;

118

7 — — 7
c = original c — BN | w oiginal
P, e g wmim P [-
8 L 8
> >
2o S o
c = O | S = -
£~ £g
L 0 QL »n
€ o £ o
(She] o O
© © o o
g - — E’_
0 4
o E—— - o 4 — ——
2 ‘ — g - — ——
[T T T T T T = T T T T T T
16 16 32 32 64 64 16 16 32 32 64 64
Data size (MB) Data size (MB)

Figure 11.14: Performance of the Serial Fiilter application, workstation(left) serv-
er(right) , Bobox application is accelerated with AVX

11.3.6 Multiple Filter

The last application applies two filters in parallel and then it merges the result
in three loops. Listing contains the application code, where the Flilter
function is either the SimpleFilter or Complex Filter. The performance of the
application is shown in Figure [11.15

Listing 11.11: Multi filter code

int [| MultiFilter (int[] a, int[] b, int[] ¢, int[] d)

{

// filter 1
int i = 0;
do

{
b[i] = Filter(a, i);
14+

} while (i < a.Length);

// filter 2
int i = 0;
do

{
d[i] = Filter(c, 1);
1++;

} while (i < c.Length);

// merge

int i = 0;

do

{
al[i] = b[i] + d[i];
1++;

} while (i < a.Length);

return a;

119

’%’; I L] | ’UE’; 8] E—— —] |
7 H | —— original - original
; | = — e 3 - =
a 0 - —] o
8 = k] =
> >
g2 ge
S o o | £ o 4
[TIRZ IR T 0
£ o £ o
[os] L o
© °
s g ~
@ o]
o J— o
£ v — == — g o —— — R
= T T T T T T L T T T T T T
16 16 32 32 64 64 16 16 32 32 64 64
Data size (MB) Data size (MB)

Figure 11.15: Performance of the MultiF'ilter application, workstation(left) serv-
er(right) , Bobox application is accelerated with AVX

11.3.7 Experiment Conclusions

The results show that the currently produced Bobox plans are efficient enough
that the final Bobox applications outperform the original C# implementation.
The results are better for applications that contain more arithmetic operations
than control flow, especially for bigger data sets. This means that the more
calculations outweigh control flow, the better is the Bobox doing in comparison
to the original application.

The results are best for the more complex applications accelerated with the
AVX extension. The produced Bobox applications achieve speedup roughly equal
to the number of cores of the CPU. The achieved performance is not ideal, but the
results suggest that the approach is viable. Additional optimizations can further
improve the performance of the final applications.

120

12. Conclusions

We introduce the Hybrid Flow Graph as an alternative intermediate represen-
tation for procedural code. The main advantage of the HFG is its conceptual
equivalence to streaming systems which, consequently, allows the use of stream-
ing systems as run-time environments for such programs. HFG can be used across
multiple systems, because it does not contain any domain-specific concepts.

We successfully implemented a prototype compiler that allows programmers
to design simple streaming applications in a restricted version of the C# language
and transform the produced code into HFG which is then executed in the Bobox
streaming system.

The compiler supports code written in a restricted version of the C# language,
where we limit the use of concepts that significantly modify control flow, like ex-
ception management. We experimentally verified the correctness of the produced
applications on a huge collection of generated methods, which we transformed,
executed and compared the results with the original.

Although the HFG allows direct execution by a streaming system, it requires
advanced optimizations to produce efficient applications. As our measurements
presented in Section [11|show, these steps reduce the synchronization overhead so
significantly that the performance bonuses, associated with vectorized execution
available in streaming systems, become clearly visible. The produced applications
do not use the system resources to the maximal extent, but additional optimiza-
tions should further improve the performance.

In our experiment setup, we were able to produce plans for the Bobox stream-
ing environment that outperform the original C# code. These result suggest that
transforming a well-known procedural language to streaming plans is a viable al-
ternative to dedicated non-procedural streaming languages. This approach allows
the use of streaming systems by programmers who are not experts in C++ and/or
parallel programming.

The steps used to optimize the code used for our experiments (Section are
only a part of the effort required to encompass the variability of programming
patterns which must be supported by any parallelizing or vectorizing technique.
Thus, our current and future work will focus on further optimizing steps — several
traditional compiler techniques such as loop skewing may be transferred to the
environment of HFG; however, there are also optimization techniques native to
the streaming environments that we would like to introduce to our system.

The compiler is currently able to handle all aliases in the code, because we
restrict reference data types in the input code, with the exception of arrays.
Arrays can cause aliasing between subscripts, but we handle the arrays as compact
objects, which prevents aliasing at the expense of efficiency. This behavior is
changed by optimizations that break arrays into streams and access the elements
one by one, but the optimizations are designed to be applicable only when there
is no risk of aliasing.

121

12.1 Future Work

In our future work, we will focus on widening the scope of applications the Paral-
laX compiler is able to transform and optimize efficiently. We will remove some
of the restrictions currently imposed on the supported source code and we will
further improve the code generation process to allow the compiler to produce
building blocks of the Bobox applications to encompass the use cases presented
in the motivation.

We currently use method integration (inlining) to process method calls, but it
is also possible to use the layered HFG to perform inter-procedural analysis. We
can introduce more layers to represent the called methods and their components,
thus creating basically a graph of Hybrid Flow Graphs. This way, the compiler
will be able to handle a wider scope of applications, including recursion.

The structure of streaming applications does not allow for a full object model
supported by C#. We will add at least structs, because they do not have reference
semantics and thus do not introduce complex aliasing. A full object support is
not necessary, because the compiler was not designed to optimize general C#
applications, but as a tool to implement algorithmic parts of bigger streaming
applications, such as database-like queries. These applications require at least
arrays, but the introduction of structures could simplify their design.

We can treat the structures as arrays and always transfer and access the
entire structure at once, or we might be able to break the structures into separate
variables and handle them more efficiently. The second approach means that we
treat a.x, a.y, b.x and b.y as separate variables for Vector2 a,b. This approach is
more efficient, but it requires more complex analysis to prevent aliasing, especially
when the method integration introduces multiple structure variables.

Our current experiments focus mainly on data intensive applications as our
target use cases, which are mostly streaming processing friendly. Other appli-
cations are also supported by the compiler, but their performance is inferior,
because they would require other special optimizations which are not currently
implemented. In the future we will focus on additional optimizations necessary
to produce efficient code for a wider selection of application.

In this work, we present a compiler that allows programmers to design stream-
ing applications with the C# programming language. Our work was motivated
by the intention to design algorithmic parts of bigger streaming applications in
a general programming language and integrate them directly into the streaming
application. To achieve this goal, the compiler must be able to produce parts
of streaming applications and integrate them with existing plans. This process
is not yet implemented, but it requires only a minor modification of the inputs
and outputs, which must be properly connected to the wider plan and we will
implement the changes in our future work.

122

Appendix A: Compiler
Infrastructure

The ParallaX compiler for streaming environments presented in this work is a
complex piece of software, which requires configuration to provide access to all
its features. This sections provides information about the configuration, general
work-flow and examples of an application structure that takes advantage of the
compiler features.

The compiler internally uses a newly developed intermediate language called
Hybrid flow graph or HFG to represent the parallelized code. Each processed
application is transformed to HFG, the resulting code can be used to parallelize
applications or it can be exported directly and executed by external parallel
environment, like Bobox. This allows us to process an application, produce a set
of HFG algorithms that we can combine directly in a streaming environment. The
compiler can be used as a cross-compiler for parallel environments that require
input in a form of computation plan represented by a directed graph, like Boboz.

12.2 Compiler Work Flow

The compiler is presented in detail in Chapters 5] [6] [[]and [§] It provides a unified
interface, based on C# code, and it offers multiple target platforms, focusing
mostly on the Bobox system. The work-flow is strongly influenced by the target
platforms, because they introduce additional steps and requirements.

The main target platform is the native implementation of the Bobox streaming
environment. The overview of its work flow is in Figure [12.1} where the compiler
produces execution plan and kernels for Bobox and the user must integrate the
components with the environment. In the case of a managed Bobox, this can be
done dynamically by attaching Bobox as a library, but the native (C++) imple-
mentation must be compiled along with the custom kernels to achieve optimal
performance. This allows the C++ compiler to optimize the kernels along with
the rest of the code.

C# code

C#

compiler plan] Bobox

> J

—— g
ParallaX Bobox
CIL code { compiler kernels application

Figure 12.1: ParallaX compiler architecture

Our compiler also provides back-end for direct parallelization of C# applica-
tions, either by integrating the managed implementation of Bobox or by trans-
forming the application code into asynchronous methods. The work-flow for both

123

platforms is very similar and requires much less additional work on the side of the
programmer. The compiler simply produces a new .NET application that with
different code but the same behavior. This work-flow is summed in Figure [12.2
where the Bobox runtime and execution plans are necessary only for the Bobox
integration method.

Bobox 2
C# code runtime g |
C# " | execution 3
compiler ! plans S|
ParallaX modified optimized
CIL code compiler CIL | | application

Figure 12.2: Compiler work flow overview

Both the different work-flows require that the input application is implement-
ed in C#, compiled into CIL and then fed to our compiler. This extra step can
be automatized via scripts or pre-build code.

12.3 Application structure

The compiler provides the user with a complete control over the application
processing and parallelization, because parallelism is beneficial only for certain
algorithms. The optimization process is controlled by two factors - the application
structure and the compiler configuration. The configuration is explained in next
section.

An application, that is to be parallelized, can be annotated by special at-
tributes provided as part of a tiny library distributed with the compiler. These
attributes do not modify the application behavior in any way, they are just used
by the compiler to locate parts of code that should be parallelized or transformed
to plan and kernels.

The code in Listing shows a simple application that adds numbers in a
loop. The Add method has an attribute called Transform that tells the compiler
what is to be done with the function. The attribute has a parameter that specifies
the operation performed by the compiler. Each operation is identified by a string
and it is applied to all methods or classes that have the Transform attribute with
that exact string as parameter.

The actual operations are defined the compiler configuration described in
next section. The configuration defines the operation identifiers which are then
compared to the parameters of the T'rans form attributes used in the application.

The Add method is very simple and it would have been integrated by the
NET JIT compiler, but by transforming it to a HFG, we can make it run in
parallel for each iteration of the loop. This does not improves performance as the
method is too simple, but it serves as an example.

124

Listing 12.1: Annotated application

class Program

{

[Transform (” CreateBobolang”)]
static int Add(int A, int B)

{
}

static void Main(string [] args)

{

return A + B;

for(int i = 0; i < 1000; i++)
{
int res += Add(i, 100);
}
Console. WriteLine (res);
¥
¥

12.4 Compiler Configuration

The compiler work is controlled by a XML configuration file. The configuration
contains a list of transformation files, where each transformation file represents a
set of transformations applied to a single assembly and its result is exported as
a new assembly. The transformation files are applied in series, which allows for
recursive optimizations.

A transformation file contains a list of profiles, where each profile represents
a single transformation applied to all methods with the attribute Transform,
where the profiles name matches the attributes parameter profile_.name. Fig-
ure [12.3| contains a schematic view on the application configuration in an UML-
like notation.

Profile Method
ParallaX [name] x| [Transform(name)]
* * A
y1
Configuration - Transfqrmation > Input
* file 1| assembly

Figure 12.3: Configuration file structure

12.4.1 Configuration File

The configuration also contains parameter OptimizationLevel Logging that de-
fines how much information is logged during the optimization. Available values

125

Listing 12.2: Compiler configuration file

<?xml version="1.0"7>

<GlobalConfiguration>
<TransfileNames>

<string>transfile .xml</string>

</TransfileNames>
<OptimizeationLogginglLevel>None
</OptimizeationLoggingLevel>

</GlobalConfiguration>

are None, Info and Debug, where None prints no logs (only fatal errors) and
Debug outputs everything. Listing shows a sample configuration file.

12.4.2 Transformation File

Transformation files have two parameters T'arget Assembly and Output Assembly,
which identify input and output assemblies. The transformation files can be
chained to incrementally modify an assembly, because every transformation file
produces a new version that can be loaded by the following transformation file.

All transformation files and profiles are processed in the order they are defined.
The profiles always apply only to the methods with the attribute T'ransform with
the profiles name as parameter. Each transformation file loads a single assembly,
processes all the profiles and produces a new assembly.

Listing[12.3|shows a simple transformation file, which contains a profile named
CreateBobolang. The C# source code shown in Listing would be affected
by this configuration, because the Add method has an attribute Transform with
a parameter " Create Bobolang”. This particular transformation file contains a
single profile that represents the Create Bobolang optimization, which produces a
Bobox execution plan from every method with the proper Transform attribute.

126

Listing 12.3: Compiler transformation file

<?xml version="1.0"7>
<Transfile>
<TargetAssembly>Example. exe<Target Assembly>
<OutputAssembly>Example_out . exe<Output Assembly>
<Profiles>
<Profile>
<Name>CreateBobolang</Name>
<ProfileOptimization>
CreateBobolang
</ProfileOptimization>
<OptimizationParameters>
<string>bobolangl . txt</string>
</OptimizationParameters>
</Profile>
</Profiles>
</Transfile>

127

128

Appendix A: Compiler Library

This chapter is focuses on the library distributed along with the ParallaX com-
piler. The library, called ParallaX Math, is part of the ParallaX interface that
provides the attributes used to control the compiler process, see Appendix A for
details.

The library is designed as an analogy of the Math library distributed as part
of the NET framework, we include most of the same functions, like minimum
(min) or absolute value (abs). The library provides fully functioning procedures
that can be tested with the C# source code.

The library functions are recognized by the ParallaX compiler, which does not
integrate them. Instead, the compiler transforms each call to one of the functions
directly into an optimized custom node that implements its functionality. This
gives programmers the basic arithmetic functionality and also allows them to
produce more efficient code, because the compiler can use specifically optimized
nodes, instead of using general optimizations.

The library currently provides only a limited selection of functions, because
it is a prototype designed to support the tests and experiments presented in this
work. The final release will contain more functions and algorithms to provide
a good foundation for the applications designed for the compiler. The library
currently provides the following functions:

e Min — minimum of two numbers.
e Max — maximum of two numbers.

Abs — absolute value of a number.

e Sign — sign of a signed integral number.

Fquals — compares two values for equality and converts the result to integer.

NotEquals — negation of Fquals.

129

130

Bibliography

1]

2]

[10]

[11]

Michal Brabec and David Bednarek. Programming parallel pipelines using
non-parallel C# code. CEUR Workshop Proceedings, 1003:82—-87, 2013.

Zbynek Falt, Martin Krulis, David Bednarek, Jakub Yaghob, and Filip Za-
voral. Locality aware task scheduling in parallel data stream processing. In
David Camacho, Lars Braubach, Salvatore Venticinque, and Costin Badi-
ca, editors, Intelligent Distributed Computing VIII, volume 570 of Studies in
Computational Intelligence, pages 331-342. Springer International Publish-
ing, 2015.

Zbynék Falt, David Bednarek, Martin Krulis, Jakub Yaghob, and Filip Zavo-
ral. Bobolang: A language for parallel streaming applications. In Proceedings
of the 23rd international symposium on High-performance parallel and dis-
tributed computing, pages 311-314. ACM, 2014.

Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian,
Mike Houston, and Pat Hanrahan. Brook for GPUs: stream computing on
graphics hardware. In ACM Transactions on Graphics (TOG), volume 23,
pages 777-786. ACM, 2004.

Frédéric Boussinot and Robert De Simone. The ESTEREL language. Pro-
ceedings of the IEEE, 79(9):1293-1304, 1991.

Xin Li and Reinhard Von Hanxleden. Multithreaded reactive programming
— the Kiel Esterel processor. Computers, IEEE Transactions on, 61(3):337—
349, 2012.

William Thies, Michal Karczmarek, and Saman Amarasinghe. Streamlt: A
language for streaming applications. In Compiler Construction, pages 179—
196. Springer, 2002.

A. Hagiescu, W. F. Wong, D. F. Bacon, and R. Rabbah. A computing
origami: Folding streams in FPGAs. In Design Automation Conference,
2009. DAC °09. 46th ACM/IEEE, pages 282287, July 2009.

Daniel J. Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack, Chris-
tian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan

Zdonik. Aurora: A new model and architecture for data stream management.
The VLDB Journal, 12(2):120-139, August 2003.

Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito,
Itaru Nishizawa, Justin Rosenstein, and Jennifer Widom. STREAM: The
stanford stream data manager (demonstration description). In Proceedings of
the 2008 ACM SIGMOD International Conference on Management of Data,
SIGMOD 03, pages 665-665, New York, NY, USA, 2003. ACM.

Dhruba Borthakur, Jonathan Gray, Kannan Sarma, Joydeep Sen Spiegel-
berg, Nicolas Muthukkaruppan, Hairong Kuang, Karthik Ranganathan,
Dmytro Molkov, Aravind Menon, Samuel Rash, et al. Apache hadoop goes

131

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[23]

realtime at facebook. In Proceedings of the 2011 ACM SIGMOD Interna-
tional Conference on Management of data, pages 1071-1080. ACM, 2011.

Hakan Kocakulak and Tugba Taskaya Temizel. A hadoop solution for
ballistic image analysis and recognition. In High Performance Computing
and Simulation (HPCS), 2011 International Conference on, pages 836-842.
IEEE, 2011.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data processing
tool. Communications of the ACM, 53(1):72-77, 2010.

Milind Bhandarkar. Mapreduce programming with apache hadoop. In Paral-
lel & Distributed Processing (IPDPS), 2010 IEEE International Symposium
on, pages 1-1. IEEE, 2010.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing
on large clusters. Communications of the ACM, 51(1):107-113, 2008.

Paul Zikopoulos, Chris Eaton, et al. Understanding big data: Analytics for
enterprise class hadoop and streaming data. McGraw-Hill Osborne Media,
2011.

Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and
Andrew Tomkins. Pig latin: a not-so-foreign language for data processing.
In Proceedings of the 2008 ACM SIGMOD international conference on Man-
agement of data, pages 1099-1110. ACM, 2008.

Zbynek Falt, David Bednarek, Martin Krulis, Jakub Yaghob, and Filip Zavo-
ral. Bobolang: A language for parallel streaming applications. In Proceedings
of the 23rd International Symposium on High-performance Parallel and Dis-
tributed Computing, HPDC 14, pages 311-314, New York, NY, USA, 2014.
ACM.

Martin Krulis, David Bednarek, Zbynék Falt, Jakub Yaghob, and Filip Za-
voral. Towards semi-automated parallelization of data stream processing. In
Intelligent Distributed Computing IX, pages 235-245. Springer, 2016.

Hartmut Ehrig, Grzegorz Rozenberg, and Hans-Jorg Kreowski. Handbook of
graph grammars and computing by graph transformation, volume 3. world
Scientific, 1999.

Reiko Heckel. Graph transformation in a nutshell. Electronic notes in theo-
retical computer science, 148(1):187-198, 2006.

Hartmut Ehrig, Michael Pfender, and Hans Jiirgen Schneider. Graph-
grammars: An algebraic approach. In Switching and Automata Theory,
1973. SWAT’08. IEEE Conference Record of 14th Annual Symposium on,
pages 167-180. IEEE, 1973.

Michael Lowe. Algebraic approach to single-pushout graph transformation.
Theoretical Computer Science, 109(1):181-224, 1993.

132

[24]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[38]

Hartmut Ehrig, Reiko Heckel, Martin Korff, Michael Lowe, Leila Ribeiro,
Annika Wagner, and Andrea Corradini. Algebraic approaches to graph trans-
formation: part ii: single pushout approach and comparison with double
pushout approach. In Handbook of Graph Grammars, pages 247-312, 1997.

Gilles Kahn and David MacQueen. Coroutines and networks of parallel
processes. 1976.

Stephen A Edwards. Kahn process networks. Languages for Digital Embedded
Systems, pages 189-195, 2000.

Todor Stefanov, Claudiu Zissulescu, Alexandru Turjan, Bart Kienhuis, and
Ed Deprettere. System design using kahn process networks: the com-
paan/laura approach. In Proceedings of the conference on Design, automa-
tion and test in Europe-Volume 1, page 10340. IEEE Computer Society,
2004.

Edward A Lee and Thomas M Parks. Dataflow process networks. Proceedings
of the IEEE, 83(5):773-801, 1995.

Zeljko Vrba, Pal Halvorsen, Carsten Griwodz, and Paul Beskow. Kahn pro-
cess networks are a flexible alternative to mapreduce. In High Performance
Computing and Communications, 2009. HPCC"09. 11th IEEE International
Conference on, pages 154-162. IEEE, 2009.

European Computer Manufacturers Association et al. Standard ECMA-33):
C# Language Specification. ECMA, 2006.

ECMA ECMA. 335: Common language infrastructure (cli). ECMA, Geneva
(CH),, 2005.

David S Platt. Introducing Microsoft. Net. Microsoft press, 2002.

Miguel de Icaza, P MOLARO, R PRATAP, D PORTER, et al. The mono
project. Awailable from www. mono-project. com, 2004.

Michal Brabec, David Bednarek, and Petr Maly. Transformation of pipeline
stage algorithms to event-driven code. In ITAT, pages 13-20, 2014.

Steven S. Muchnick. Advanced compiler design implementation. Morgan
Kaufmann Publishers, 1997.

Randy Allen and Ken Kennedy. Optimizing compilers for modern architec-
tures. Morgan Kaufmann San Francisco, 2002.

Michal Brabec and David Bednéarek. Transforming procedural code for
streaming environments. In Parallel, Distributed and Network-based Pro-
cessing (PDP), 2017 25th Euromicro International Conference on, pages
167-175. IEEE, 2017.

Michal Brabec and David Bednarek. Procedural code representation in a
flow graph. In DATESO, pages 89-100, 2015.

133

[39]

[40]

[41]

[42]

[43]

[45]

[46]

[47]

[48]

James L. Peterson. Petri nets. ACM Comput. Surv., 9(3):223-252, Septem-
ber 1977.

KAHN Gilles. The semantics of a simple language for parallel programming.

In Information Processing: Proceedings of the IFIP Congress, volume 74,
pages 471-475, 1974.

Mark B Josephs. Models for data-flow sequential processes. In Commu-
nicating Sequential Processes. The First 25 Years, pages 85-97. Springer,
2005.

Joaquin Ezpeleta, Jose Manuel Colom, and Javier Martinez. A Petri
net based deadlock prevention policy for flexible manufacturing systems.
Robotics and Automation, IEEE Transactions on, 11(2):173-184, 1995.

Marc Geilen and Twan Basten. Requirements on the execution of Kahn
process networks. In Programming languages and systems, pages 319-334.
Springer, 2003.

Angeles Navarro, Rafael Asenjo, Siham Tabik, and Calin Cascaval. Analyt-
ical modeling of pipeline parallelism. In Parallel Architectures and Compi-
lation Techniques, 2009. PACT’09. 18th International Conference on, pages
281-290. IEEE, 2009.

Zbynék Falt, Miroslav Cermdak, Jiff Dokulil, and Filip Zavoral. Parallel
SPARQL query processing using Bobox. International Journal On Advances
in Intelligent Systems, 5(3 and 4):302-314, 2012.

Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The program depen-
dence graph and its use in optimization. ACM Transactions on Programming
Languages and Systems (TOPLAS), 9(3):319-349, 1987.

Leif Geiger and Albert Ziindorf. Graph based debugging with fujaba. FElectr.
Notes Theor. Comput. Sci., 72(2):112, 2002.

Daniel Balasubramanian, Anantha Narayanan, Christopher van Buskirk,
and Gabor Karsai. The graph rewriting and transformation language: Great.
FElectronic Communications of the FASST, 1, 2007.

Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Graph
transformation systems. Fundamentals of Algebraic Graph Transformation,
pages 37-71, 2006.

Andrea Corradini, Fernando Luis Dotti, Luciana Foss, and Leila Ribeiro.
Translating java code to graph transformation systems. In Graph Transfor-
mations, pages 383-398. Springer, 2004.

Mark Thompson, Hristo Nikolov, Todor Stefanov, Andy D. Pimentel,
Cagkan Erbas, Simon Polstra, and Ed F. Deprettere. A framework for
rapid system-level exploration, synthesis, and programming of multimedia
mp-socs. In Proceedings of the 5th IEEE/ACM International Conference on
Hardware/Software Codesign and System Synthesis, pages 9-14. ACM, 2007.

134

[52]

[53]

[54]

[55]

[63]

[64]

Manu Sridharan and Rastislav Bodik. Refinement-based context-sensitive
points-to analysis for Java. ACM SIGPLAN Notices, 41(6):387-400, 2006.

Thomas Reps. Program analysis via graph reachability. Information and
software technology, 40(11):701-726, 1998.

Frances E Allen. Control flow analysis. In ACM Sigplan Notices, volume 5,
pages 1-19. ACM, 1970.

Michal Brabec, David Bednarek, and Petr Maly. Transformation of pipeline
stage algorithms to event-driven code. In Vera Kurkova, Lukéas Bajer, and
Vojtech Svatek, editors, Proceedings of the 14th Conference on Information
Technologies - Applications and Theory, Jasna, Slovakia, 2014., volume 1214
of CEUR Workshop Proceedings, pages 13—20. CEUR-WS.org, 2014.

Michal Brabec and David Bednéarek. Programming parallel pipelines using
non-parallel c# code. In ITAT, pages 82-87, 2013.

Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman. Compilers:
principles, techniques, € tools, volume 1009. Pearson/Addison Wesley, 2007.

Krste Asanovic, Stephen W. Keckler, Yunsup Lee, Ronny Krashinsky, and
Vinod Grover. Convergence and scalarization for data-parallel architectures.
In Proceedings of the 2013 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), CGO '13, pages 1-11, Washington,
DC, USA, 2013. IEEE Computer Society.

S. A. Edwards. The challenges of synthesizing hardware from C-like lan-
guages. IEEE Design Test of Computers, 23(5):375-386, May 2006.

S. J. Allan and A. E. Oldehoeft. A flow analysis procedure for the transla-
tion of high-level languages to a data flow language. IEEE Transactions on
Computers, C-29(9):826-831, Sept 1980.

P. A. Arras, D. Fuin, E. Jeannot, and S. Thibault. DKPN: A composite
dataflow/Kahn process networks execution model. In 2016 24th Euromi-

cro International Conference on Parallel, Distributed, and Network-Based
Processing (PDP), pages 27-34, Feb 2016.

F. Yazdanpanah, C. Alvarez-Martinez, D. Jimenez-Gonzalez, and Y. Etsion.
Hybrid dataflow/von-Neumann architectures. IEEE Transactions on Paral-
lel and Distributed Systems, 25(6):1489-1509, June 2014.

Marco Danelutto, Tiziano De Matteis, Gabriele Mencagli, and Massimo
Torquati. Data stream processing via code annotations. The Journal of
Supercomputing, pages 1-15, 2016.

M. Danelutto, J. D. Garcia, L. M. Sanchez, R. Sotomayor, and M. Torquati.
Introducing parallelism by using repara c++11 attributes. In 2016 24th

Furomicro International Conference on Parallel, Distributed, and Network-
Based Processing (PDP), pages 354358, Feb 2016.

135

[65]

[66]

[67]

[68]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

Jiutao Nie, Buqi Cheng, Shisheng Li, Ligang Wang, and Xiao-Feng Li.
Vectorization for Java. In Network and Parallel Computing, pages 3-17.
Springer, 2010.

Curt Albert, Alastair Murray, and Binoy Ravindran. Applying source level
auto-vectorization to Aparapi Java. In Proceedings of the 201 International
Conference on Principles and Practices of Programming on the Java plat-
form: Virtual machines, Languages, and Tools, pages 122-132. ACM, 2014.

Alan Leung, Ondfej Lhotédk, and Ghulam Lashari. Parallel execution of
Java loops on graphics processing units. Science of Computer Programming,
78(5):458-480, 2013.

Rafael Duarte, Alexandre Mota, and Augusto Sampaio. Introducing con-
currency in sequential Java via laws. Information Processing Letters,

111(3):129-134, 2011.

Walter Cazzola and Edoardo Vacchi. @ java: Bringing a richer annotation
model to Java. Computer Languages, Systems € Structures, 40(1):2-18,
2014.

Cristian Dittamo, Antonio Cisternino, and Marco Danelutto. Parallelization
of C# programs through annotations. In Computational Science—ICCS 2007,
pages H85-592. Springer, 2007.

Soumya S Chatterjee and R Gururaj. Lazy-parallel function calls for auto-
matic parallelization. In Computational Intelligence and Information Tech-
nology, pages 811-816. Springer, 2011.

Yeoul Na, Seon Wook Kim, and Youngsun Han. Javascript parallelizing com-
piler for exploiting parallelism from data-parallel html5 applications. ACM
Transactions on Architecture and Code Optimization (TACO), 12(4):64,
2016.

Martin Krulis. Is there a free lunch for image feature extraction in web appli-
cations. In International Conference on Similarity Search and Applications,
pages 323-331. Springer, 2015.

Jakub Misek, Benjamin Fistein, and Filip Zavoral. Inferring common lan-
guage infrastructure metadata for an ambiguous dynamic language type. In
Open Systems (ICOS), 2016 IEEE Conference on, pages 111-116. IEEE,
2016.

Paolo Tonella, Giuliano Antoniol, Roberto Fiutem, and Ettore Merlo.
Variable-precision reaching definitions analysis. Journal of Software Main-
tenance: Research and Practice, 11(2):117-142, 1999.

Stephen Richardson and Mahadevan Ganapathi. Interprocedural analysis vs.
procedure integration. Information Processing Letters, 32(3):137-142, 1989.

George Necula, Scott McPeak, Shree Rahul, and Westley Weimer. Cil: In-
termediate language and tools for analysis and transformation of ¢ programs.
In Compiler Construction, pages 209-265. Springer, 2002.

136

[78]

[79]

[84]

[85]

[36]

[87]

[38]

Herodotos Herodotou and Shivnath Babu. Profiling, what-if analysis, and
cost-based optimization of mapreduce programs. Proceedings of the VLDB
Endowment, 4(11):1111-1122, 2011.

Jakub Misek and Filip Zavoral. Control flow ambiguous-type inter-
procedural semantic analysis for dynamic language compilation. Procedia
Computer Science, 109:955-962, 2017.

Marc Berndl, Ondrej Lhotak, Feng Qian, Laurie Hendren, and Navin-
dra Umanee. Points-to analysis using BDDs. ACM SIGPLAN Notices,
38(5):103-114, 2003.

Jb Evain. Mono cecil. a vailable at: hittp://www. mono-p roject. com/Cecil,
accessed May, 2007.

Henry G Baker. Garbage collection, tail recursion and first-class continua-
tions in stack-oriented languages, December 31 1996. US Patent 5,590,332.

David Bednérek, Michal Brabec, and Martin Krulis. Improving matrix-
based dynamic programming on massively parallel accelerators. Information
Systems, 64:175-193, 2017.

Hongwei Xi. Dead code elimination through dependent types. In PADL,
volume 99, pages 228-242. Springer, 1999.

David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. Call
graph construction in object-oriented languages. ACM SIGPLAN Notices,
32(10):108-124, 1997.

Martin Krulis, David Bednérek, and Michal Brabec. Improving parallel pro-
cessing of matrix-based similarity measures on modern gpus. In International
Conference on Similarity Search and Applications, pages 283-294. Springer,
2015.

Meinard Miiller. Dynamic time warping. Information retrieval for music
and motion, pages 69-84, 2007.

Doruk Sart, Abdullah Mueen, Walid Najjar, Eamonn Keogh, and Vit Ni-
ennattrakul. Accelerating dynamic time warping subsequence search with
gpus and fpgas. In Data Mining (ICDM), 2010 IEEE 10th International
Conference on, pages 1001-1006. IEEE, 2010.

Temple F Smith and Michael S Waterman. Identification of common molec-
ular subsequences. Journal of molecular biology, 147(1):195-197, 1981.

Yang Liu, Wayne Huang, John Johnson, and Sheila Vaidya. Gpu accelerat-
ed smith-waterman. In Computational Science—ICCS 2006, pages 188-195.
Springer, 2006.

Robert A Wagner and Michael J Fischer. The string-to-string correction
problem. Journal of the ACM (JACM), 21(1):168-173, 1974.

137

[92]

Guillermo Delgado and C Aporntewan. Data dependency reduction in dy-
namic programming matrix. In Computer Science and Software Engineering
(JCSSE), 2011 Eighth International Joint Conference on, pages 234-236.
IEEE, 2011.

Ayumu Tomiyama and Reiji Suda. Automatic parameter optimization for
edit distance algorithm on gpu. In High Performance Computing for Com-
putational Science-VECPAR 2012, pages 420-434. Springer, 2013.

Svetlin A Manavski and Giorgio Valle. Cuda compatible gpu cards as effi-
cient hardware accelerators for smith-waterman sequence alignment. BMC
bioinformatics, 9(Suppl 2):S10, 2008.

Lukasz Ligowski and Witold Rudnicki. An efficient implementation of smith
waterman algorithm on gpu using cuda, for massively parallel scanning of
sequence databases. In Parallel & Distributed Processing, 2009. IPDPS 2009.
IEEE International Symposium on, pages 1-8. IEEE, 2009.

Ali Khajeh-Saeed, Stephen Poole, and J Blair Perot. Acceleration of the
smith—waterman algorithm using single and multiple graphics processors.
Journal of Computational Physics, 229(11):4247-4258, 2010.

Yongchao Liu, Adrianto Wirawan, and Bertil Schmidt. Cudasw++ 3.0:
accelerating smith-waterman protein database search by coupling cpu and
gpu simd instructions. BMC' bioinformatics, 14(1):117, 2013.

Ross Andersonl Eli Biham2 Lars Knudsen. Serpent: A proposal for the ad-
vanced encryption standard. In First Advanced Encryption Standard (AES)
Conference, Ventura, CA, 1998.

138

Attachments: Digital Content

The optical disk distributed with this work contains the following items:

This thesis in a digital form (thesis.pdf in the root directory).

LaTeX source codes of this thesis including all the figures and graphs (the
thesis directory).

Source code of the ParallaX compiler including all the tests and experiments
(the parallaz directory).

Source code of the native Bobox framework is included in the ParallaX
compiler so we can directly integrate the experiments with it and execute
them (the parallaz/NativeBobox/bobox directory).

The results of the experiments presented in this work are in the results
directory. The data is in the SCV format which can be opened in Excel.

Detailed instructions for experimental environment setup (readme.tat).

The digital content can also be downloaded from:

https://data.ksi.ms.mff.cuni.cz/svn/brabec_parallax/ThesisData.zip

The attached software contains the source code of the experiments and it is
possible to build and execute them using the included batch scripts. Visual Studio
with support of both the C# and C++ is necessary to build the experimentsﬂ
The compiler was developed and tested with Visual Studio 2015. The following
guide documents the steps necessary to execute the experiments:

1.

ATl R

Open the solution parallaz.sin in Visual Studio.

Build the solution (Build — Build Solution).

Open windows console

Make the parallax/Ezperiments directory the working directory.

Build the experiment applications using either the build.bat or complete_build. bat.

e Use the complete_build.bat if the MSBuild.exe is installed in the direc-
tory %ProgramFiles(x86)%/MSBuild/14.0/Bin/MSBuild.exe

e Use the build.bat if the MSBuild.exe is located in another directory,
execute: build.bat "path_to_M S Build.exe”

. Execute the experiments by running the measure.bat.

e The results are in the parallaz/FEzperiments/results directory.

e The plots are in the parallaz/Experiments/plots directory.

The unit tests are part of the parallax solution (parallaz.sin). The tests must
be executed in the Visual Studio using the command Tests — Run — All Tests
in menu.

'The Community edition can be downloaded from Microsoft —
https://www.visualstudio.com/vs/community/. See readme.tzt for details.

139

https://data.ksi.ms.mff.cuni.cz/svn/brabec_parallax/ThesisData.zip

140

Index

aliasing,

array extraction, [7g]

associative graph rewriting system,

(0]
asynchronous method,

basic instruction,
basic operations,
boxing,

broadcast operation,

C# programming language,
called method,

calling method,

cast operation, [34]

chain node,

chained array extraction,
chained vectorization,

CIL, 23

CIL sequential graph,
classification,

classification token,

CLR, [22]

Common intermediate language,
Common language runtime,
component extraction, [37} [73}{75]
conditional branch,
control-flow analysis, 48] [62], [64]
custom operation, [37] [73]

data operations,

data-flow analysis,
dead code elimination,

dead nodes elimination,
digital signal processing, |114
double-pushout approach,

empty node,
empty nodes elimination,
evaluation,

graph rewriting systems,
group node,

HFG,
Hybrid flow graph,

inlining,

input operation, [33]
instantiation, [30]

JIT,
just-in-time compiler,

Kahn process networks,
kernel,

layered hybrid flow graph,
live variable,

live variable analysis, [48]
loop primer operation,

merge, [63] [64]

merge operation, [35]
merge-split, [64]
method integration, [49]
Mono Cecil,

ParallaX compiler, [39]
parameter operation, [34]
pattern graph,

plan,

points-to analysis,
procedure integration,
program dependence graph,

range extraction, [77]

reaching definitions analysis, [46]
reduction,

reflection, [108

repeat node,

replacement graph,

return operation, [34]

single-pushout approach,
split operation, [34], [63], [64]
split-merge,

start operation, [33]

static CIL emulator,
stream, [T7]

streaming applications,
symbolic CIL emulation,
symbolic semantics,

Token,
Transform attribute,

vectorization, [8]]

141

142

Bibliography of the Author

1]

Michal Brabec and David Bednarek. Transforming procedural code for
streaming environments. In Parallel, Distributed and Network-based Pro-
cessing (PDP), 2017 25th Euromicro International Conference on, pages
167-175. IEEE, 2017.

David Bednérek, Michal Brabec, and Martin Krulis. Improving matrix-
based dynamic programming on massively parallel accelerators. Information
Systems, 64:175-193, 2017.

Michal Brabec and David Bednéarek. Programming parallel pipelines using
non-parallel C# code. CEUR Workshop Proceedings, 1003:82-87, 2013.

Michal Brabec, David Bednarek, and Petr Maly. Transformation of pipeline
stage algorithms to event-driven code. In ITAT, pages 13-20, 2014.

Michal Brabec and David Bednarek. Procedural code representation in a
flow graph. In DATESO, pages 89-100, 2015.

Michal Brabec, David Bednarek, and Petr Maly. Transformation of pipeline
stage algorithms to event-driven code. In Vera Kurkova, Lukas Bajer, and
Vojtech Svatek, editors, Proceedings of the 14th Conference on Information
Technologies - Applications and Theory, Jasna, Slovakia, 2014., volume 1214
of CEUR Workshop Proceedings, pages 13—20. CEUR-WS.org, 2014.

Michal Brabec and David Bednérek. Programming parallel pipelines using
non-parallel c# code. In ITAT, pages 82-87, 2013.

Martin Krulis, David Bednérek, and Michal Brabec. Improving parallel pro-
cessing of matrix-based similarity measures on modern gpus. In International
Conference on Similarity Search and Applications, pages 283—294. Springer,
2015.

143

144

	Introduction
	Motivation
	Objectives
	Contributions
	Text Structure

	Streaming Environments
	Related Work – Streaming Environments
	Configuration and Programming
	Available Parallelism
	Performance Concerns

	Common Techniques
	Graph Rewriting Systems
	Associative Graph Rewriting Systems
	Graph Rewriting System Use Cases

	Kahn Process Networks
	CIL Basics
	Common Language Runtime
	Common Intermediate Language

	SIMD Instructions
	Vectorization
	SIMD Instructions Types
	Memory Organization
	SIMD in C++

	Hybrid Flow Graph
	Related Work – Hybrid Flow Graph
	Basic Operation Semantics
	Representation of Control Flow
	Hybrid Flow Graph Execution
	Layered Hybrid Flow Graph

	Compiler for Streaming Environments
	Related Work – Intermediate Code and Parallelism
	Compiler Architecture
	Input Language Restrictions

	Compiler Front-end
	Front-end Overview
	Transformation Example

	Related Work – Compiler Front-end
	Method Selection
	Method Integration
	Integration overview
	Variable Renaming
	Parameter Patch
	Jump Extension
	Code Integration
	Stack Limit

	Code Preprocessing
	Data Flow Analysis
	CIL Sequential Graph
	Symbolic Semantics of the CIL Sequential Graph
	Execution of the Symbolic CIL Sequential Graph
	Construction of the CIL Sequential Graph
	Instruction Classifier

	Control Flow Analysis
	Branch Infrastructure
	Loop Infrastructure
	Control-Flow Analysis Overview
	Hybrid Flow Graph Construction
	Broadcast Introduction
	Source Code and HFG Equivalence

	Data types
	Array Support
	Aliasing

	Optimization
	Related Work – Transformations Improving Parallelism
	Component Extraction
	Dead and Empty Nodes Elimination
	Range Extraction
	Array Extraction
	Token Extraction
	Vectorization
	Array Extraction and Vectorization Chaining

	Compiler Back-end
	Related Work – Compiler Back-end
	Supported Environments
	Bobox Transformation
	Transformation Overview
	Execution Plan Construction
	Component Extraction

	Additional Environments
	.NET Asynchronous Method
	Transformation Overview
	Graph Without Control-Flow
	Branch Transformation
	Loop Transformation

	Managed Bobox Integration
	Graph Execution
	Graph Integration

	Case Study: Matrix-based Dynamic Programming
	Problem Details
	Related Work – Matrix-based Dynamic Programming Parallelization
	Levenshtein Distance Blocked Algorithm
	Parallelogram Blocks
	Blocked Algorithm

	Matrix-based Dynamic Programming in Streaming Environments
	Blocked Algorithm Implementation in C#
	Blocked Algorithm in ParallaX Compiler

	Experiments
	Correctness Experiments
	Levenshtein Distance Experiments
	Streaming Experiments
	Convolution Experiment
	Cryptography Experiment
	Baseline Experiments
	Single Filter
	Serial Filter
	Multiple Filter
	Experiment Conclusions

	Conclusions
	Future Work

	Appendix A: Compiler Infrastructure
	Compiler Work Flow
	Application structure
	Compiler Configuration
	Configuration File
	Transformation File

	Appendix A: Compiler Library
	Bibliography
	Attachments: Digital Content
	Index
	Bibliography of the Author

