
BACHELOR THESIS

Kristýna Pant̊učková

Optimization of a circulating multi-car
elevator system

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the bachelor thesis: RNDr. Jǐŕı Fink, Ph.D.
Study programme: Informatika

Study branch: Obecná informatika

Prague 2018

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University in Prague has the right to conclude a license agreement on
the use of this work as a school work pursuant to Section 60 subsection 1 of the
Copyright Act.

In date

i

I dedicate this thesis to my supervisor for his guidance and my family for their
support.

ii

Title: Optimization of a circulating multi-car elevator system

Author: Kristýna Pant̊učková

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: RNDr. Jǐŕı Fink, Ph.D., Department of Theoretical Computer Sci-
ence and Mathematical Logic

Abstract: Circulating multi-car elevator is a system holding multiple cars in two
shafts, where cars move upwards in one shaft and downwards in the other shaft.
This system is similar to the paternoster, but cars have to stop on floors and
open doors to load and unload passengers. Besides many technical challenges,
this system brings algorithmic problems regarding efficient control of all cars.
This thesis studies an off-line optimization problem, where the most efficient
elevator system is searched for a fixed set of passengers. For this purpose, we
created a computer program, implementing a genetic algorithm for searching for
the most efficient elevator control and a discrete event simulation for evaluation
of the efficiency of the control. The program provides a graphical user interface
for input of parameters, generating passengers and displaying the results.

Keywords: genetic algorithm optimization elevator systems

iii

Contents

Introduction 4

1 Model description 7
1.1 Building . 7
1.2 Elevator system . 7

1.2.1 Properties of an elevator system 7
1.2.2 Rules for the movement of cars 8

1.3 Traffic . 8
1.3.1 Types of the traffic . 8
1.3.2 Generating passengers . 9

1.4 Optimization criterion . 9

2 Optimization 10
2.1 Trivial control . 10
2.2 Genetic algorithm . 10

2.2.1 Genetic algorithms . 10
2.2.2 Genetic algorithm in our implementation 11

3 Results and discussion 13
3.1 Simulations in a ten-storey building 14

3.1.1 AWT in the trivial control with different number of cars
and 300 passengers . 14

3.1.2 AWT for different number of passengers 14
3.1.3 Improving AWT by increasing car capacity 14
3.1.4 Evaluation of efficiency of the trivial control and compari-

son with results found by the genetic algorithm 23
3.1.4.1 Up-peak with 4 cars 23
3.1.4.2 Down-peak with 5 cars 23
3.1.4.3 Down-peak with 6 cars 23
3.1.4.4 Lunch-peak with 4 cars 23
3.1.4.5 Lunch-peak with 5 cars 26
3.1.4.6 Interfloor with 5 cars 26
3.1.4.7 Interfloor with 6 cars 26

3.2 Simulations in a twenty-storey building 29
3.2.1 AWT in the trivial control with different number of cars

and 300 passengers . 29
3.2.2 AWT for different number of passengers 29
3.2.3 Improving AWT by increasing car capacity 29
3.2.4 Evaluation of efficiency of the trivial control and compari-

son with results found by the genetic algorithm 37
3.2.4.1 Up-peak with 6 cars 37
3.2.4.2 Down-peak with 6 cars 37
3.2.4.3 Down-peak with 7 cars 37
3.2.4.4 Down-peak with 8 cars 40
3.2.4.5 Down-peak with 9 cars 40

1

3.2.4.6 Lunch-peak with 8 cars 40
3.2.4.7 Interfloor with 8 cars 40
3.2.4.8 Interfloor with 9 cars 40

3.3 Conclusion . 45

4 State of art 46

5 User interface 49
5.1 Input of parameters . 49
5.2 Running the algorithm . 53
5.3 Genetic algorithm progress . 56
5.4 Results . 58
5.5 Animation . 58

6 Software documentation 60
6.1 Communication with GUI . 60

6.1.1 Animation . 60
6.1.2 Lines of a log . 60

6.2 CMCE simulation and optimization 60
6.2.1 Model representation and simulation 60

6.2.1.1 Model . 61
6.2.1.2 Events . 62
6.2.1.3 Types of events 62
6.2.1.4 Passengers . 62
6.2.1.5 Cars . 63
6.2.1.6 Building . 63
6.2.1.7 Elevator system 63
6.2.1.8 Elevators . 64
6.2.1.9 Traffic . 64

6.2.2 Genetic algorithm . 64
6.2.2.1 Evolution . 64
6.2.2.2 Chromosomes . 65
6.2.2.3 Computing of costs of chromosomes 65
6.2.2.4 Population . 66

6.3 GUI . 66
6.3.1 Files . 66

6.3.1.1 Format of files 66
6.3.1.2 Writers . 66
6.3.1.3 Readers . 66

6.3.2 Forms . 67
6.3.2.1 Parameters of the model 67
6.3.2.2 Simulations and optimization 67
6.3.2.3 Results . 67
6.3.2.4 Animation . 67

6.4 File formats . 68
6.4.1 Input file with parameters 68
6.4.2 Input file with passengers 70
6.4.3 Input file with assignment 70
6.4.4 Output file . 70

2

Conclusion 71

Bibliography 72

A Attachments 75
A.1 Input and output files . 75
A.2 Source codes . 75
A.3 Program documentation . 75

3

Introduction
One of the most important issues in the design of high buildings is an efficient

vertical transportation system [1]. For this purpose, escalators, moving walks
and elevators are used. Elevators are more suitable for travelling over large ver-
tical distances. Moreover, escalators are not sufficient for transport of disabled
persons [2]. In addition to classic single-car elevators, other types of elevators
were invented to improve the efficiency of vertical transportation. For instance,
double-decker elevators, consisting of two decks which can serve two adjacent
floors at the same time [3], decrease the number of elevators needed to serve
the building by increasing the elevator capacity.

Another type of elevator is the paternoster (see Figure 1), which holds mul-
tiple cars circulating in two shafts without stopping. The paternoster elevator
can transport more passengers than conventional elevators [4]. However, the pa-
ternoster is not safe for transporting children, elderly persons and disabled per-
sons. In the Czech Republic, paternosters are no longer subjects of standards
(ČSN EN 81) and regulations (government regulation no. 122/2016 Sb.) related
to elevators, which implement European standards (95/16/ES) [5]. Nowadays,
paternosters are considered to be lifting devices.

In 2013, the Hitachi company proposed a new type of elevator, called circu-
lating multi-car elevator (CMCE), which is inspired by paternoster, but its cars
have closable doors and stop on floors to load and unload passengers [6]. CMCE
holds multiple cars circulating in two shafts. Cars move upwards in the first shaft
until they reach the top of the shaft. Then they move to the second shaft and
continue to move downwards until they reach the bottom of the shaft. Afterwards
they move back to the first shaft and continue to move upwards. The advantage
of this type of elevator is that its two shafts with multiple cars require less space
than multiple shafts of conventional single-car elevators. The Hitachi company
developed a 1/10 scale prototype of CMCE holding six cars. In their prototype,
opposite cars are connected to balance each other and thereby decrease the energy
consumption.

This thesis is focused on optimization of the control of CMCE. A common
way of improving efficiency of the vertical transportation is splitting floors to sec-
tors and assigning these sectors to cars, both either statically or dynamically [1].
Another option is applying certain rules based on the current traffic type, for ex-
ample prioritizing upwards or downwards calls. Efficient elevator control can also
be achieved by using an optimization method, for example linear programming,
neural networks or genetic algorithms, for searching for the best assignment of
passengers to cars. While evaluating elevator systems, different types of traffic
must be considered, because demands on elevators vary in different parts of a day
and the elevator system should be efficient under all conditions.

In this thesis, we use an off-line optimization algorithm to search for the opti-
mal assignment of passengers to cars. In contrast with on-line algorithms, which
process problems without the knowledge of the future situation, off-line algo-
rithms receive the whole problem and search for the solution using all the data [7].
The solution of an off-line algorithm can be used for assessing the efficiency of
other algorithms. In this thesis, we use a genetic algorithm for off-line optimiza-

4

Figure 1: Paternoster. By Helfmann [Public domain], from Wikime-
dia Commons, https://upload.wikimedia.org/wikipedia/commons/b/b2/
Paternoster.png

5

https://upload.wikimedia.org/wikipedia/commons/b/b2/Paternoster.png
https://upload.wikimedia.org/wikipedia/commons/b/b2/Paternoster.png

tion. Genetic algorithms are iterative algorithms inspired by biology [8].
The aim of this thesis is to study CMCE, understand its behaviour and search

for the optimal CMCE system control. For this purpose, a computer program
was created within this thesis. The program provides a graphical user interface
for input of parameters of the building, elevator system and traffic and a simple
animation of the elevator control.

This text contains a description of the subject studied in the thesis, explana-
tion of the method used for optimization, a case study focused on optimization of
concrete CMCE systems, examples of approaches to elevator system optimization
and documentation of the program.

Because searching for the most efficient CMCE control using a genetic algo-
rithm is computationally expensive and takes a lot of time, in the case study we
compared CMCE with different properties in different traffic types in the trivial
control, sending the nearest car to a passenger. Then we used a genetic algorithm
to find an efficient CMCE control for a few sets of passengers and compared
the results with the trivial control.

6

1. Model description
This chapter describes the technical background which is used to simulate

and optimize a CMCE system. A model in a simulation consists of a building,
an elevator system and passengers. An elevator system is a system consisting of
one or more CMCE. One elevator holds one or more cars.

1.1 Building
The CMCE system is evaluated in office buildings, where on each floor, certain

number of persons have their offices. Properties of a building include:

• the number of the lowest floor

• the number of the highest floor

• the height of a floor

• for all floors the number of persons who have their offices on that floor

• the time required for boarding and alighting of a passenger

We assume that each floor has the same height. A building must contain
a lobby, which is assumed to be on the floor number zero. We assume that
the time required for entering a car and the time required for leaving a car are
equal and they are the same for all passengers.

1.2 Elevator system

1.2.1 Properties of an elevator system
An elevator system consists of one or more elevators. An elevator is charac-

terized by:

• the number of cars in an elevator

• the capacity of a car

• the time required to open the door of a car

• the time required to close the door of a car

• the maximum velocity of a car

• the acceleration of a car

• the deceleration of a car

• the height of a car

• the minimum distance between cars

7

• the time required to move a car from one shaft to the other shaft

Properties of all elevators in the system are the same. The maximum velocity,
acceleration and deceleration are assumed to be the same in both shafts. All
elevators serve all floors.

1.2.2 Rules for the movement of cars
It is assumed that before the beginning of the simulation, the traffic is sparse.

Therefore, at the beginning of a simulation, cars are staying on floors, they are not
moving and their doors are closed. Half of the cars are situated, in one shaft and
half in the other shaft with even distances between each other. When passengers
arrive, cars start to move towards them. Passengers board a car in the order of
their arrival. Immediately after the last passenger alights or enters, the car starts
closing the door and does not wait for passengers, who have not arrived yet.

To move to the other shaft, a car must stop at the end of a shaft and after
a certain time the car is placed at the end of the other shaft. Only one car at
a time can occupy the top space of shafts used for moving cars form one shaft to
the other shaft. The same holds for the bottom space of shafts. The minimum
distance is always preserved between two cars.

In the situation where the path towards a car’s next stop is blocked by another
car, the car moves towards the next car, until it must stop to preserve the min-
imum distance. The blocking car is ordered to move away. After a forced stop,
the car starts to move again, when the distance between cars is large enough.
The blocking car notifies the waiting car, after it starts moving, with a delay
of two seconds, because the future path of a car is computed from the current
distance from the preceding car.

Cars serve calls assigned to them in the order in which they pass the floors.
A car stops on all floors where any passengers want to exit the car and on all floors,
where any passengers assigned to this car can enter the car. A fully occupied car
only stops on floors, where passengers want to get off the car.

1.3 Traffic

1.3.1 Types of the traffic
CMCE system control is evaluated during periods, in which the demands on

the elevator system are expected to be the highest. These periods include the up-
peak, down-peak, lunch-peak and interfloor [1]. Up-peak occurs in the morning,
when people arrive at the building and travel to their offices. Down-peak occurs in
the evening, when people travel to the ground floor to leave the building. Lunch-
peak occurs at noon, when some people travel to the floor where a canteen or
a restaurant is situated and some people leave the building. Interfloor traffic
consists of people travelling between various floors.

The passengers considered in the simulation are either loaded from a file or
generated on the basis of the up-peak, down-peak, lunch-peak or interfloor traffic.
Types of traffic are defined by total number of passengers, time period of arrival
times of passengers and ratios of journeys to or from special floors and journeys

8

of general traffic. Special floors include floor number zero for up-peak, down-peak
and lunch-peak traffic and the floor with a canteen for lunch-peak traffic. General
traffic consists of journeys between various floors.

1.3.2 Generating passengers
In some types of traffic, many passengers travel to or from one special floor.

When passengers are generated, firstly the requested number of passengers with
the special floor at one end of their journey is generated. At the other end of
their journey, there is the floor on which their office is located. In the up-peak
traffic, these passengers are passengers travelling from the lobby to their offices.
In the down-peak traffic, these passengers are passengers travelling from their
offices to the lobby. In the lunch-peak traffic, these passengers include passengers
travelling from their offices to the floor with a canteen, and passengers travelling
from their offices to the lobby.

Secondly, the general traffic is generated. General traffic consists of passen-
gers travelling from their offices to random floors and passengers travelling from
random floors to their offices. The up-peak, down-peak and lunch-peak traffic
include certain amount of general traffic. The interfloor traffic consists only of
journeys of general traffic. If the number of passengers included in the traffic is
lower than total number of persons in the building, a random subset of all pos-
sible passengers is selected. The arrival time of a passenger is a random number
falling in the requested time period.

1.4 Optimization criterion
Quantities commonly used for measurement of passenger satisfaction include

for example, the average waiting time, average travel time and average journey
time [1]. In this thesis, we use the average waiting time (AWT), defined as the av-
erage time elapsed between the arrival of a passenger and opening of the door
of the car to which the passenger is boarded, as the optimization criterion. This
criterion was chosen, because it corresponds well with the satisfaction of pas-
sengers with the elevator system. The travel time, defined as the time spent in
the elevator, and the journey time, consisting of both the waiting and travel time,
are more interesting for employers, since lengthy times spent in elevators affect
the productivity of employees.

9

2. Optimization
This chapter describes the method used for off-line optimization and details

of the implementation. For searching for an efficient assignment of a fixed set of
passengers to cars, we use a genetic algorithm.

2.1 Trivial control
In order to evaluate the efficiency of a CMCE system control found by our

implementation of a genetic algorithm, we compare it with a trivial algorithm.
In the trivial control, the car with the shortest distance from the required floor
is sent to that floor, since it is expected to arrive first. If the car cannot stop on
the floor due to its current position and velocity, the distance from the required
floor involves the whole way around the elevator. If a car becomes fully occupied
before an assigned stop, the next nearest car is called.

2.2 Genetic algorithm
This section contains a general description of genetic algorithms and details

of our implementation.

2.2.1 Genetic algorithms
Genetic algorithms are iterative algorithms inspired by evolution in the nature.

In a genetic algorithm, individual solutions are represented by chromosomes.
Chromosomes consist of genes. Firstly, the initial population consisting of random
chromosomes is created. From the population, a new population, representing
the next generation of chromosomes, is created by crossbreeding and mutation [8].
For each chromosome, the probability of crossbreeding with another chromosome
and passing its traits to the next generation is affected by its cost. The lower
the cost of a chromosome, the better the solution represented by the chromosome
is.

There are more methods for selecting parents of new chromosomes. Parents
can be chosen randomly. Another option is to sort the population by cost and pair
the best chromosome with the second best chromosome, the third with the fourth,
and continue in this manner to the worst chromosome. Selection of parents can
be also based on their costs or their ranks in the population. Another method of
selection is the tournament selection method. In this type of selection, a small
number of chromosomes is randomly selected from a population and the best of
them is chosen as a parent.

Children are created from parents by a crossover method. One possible
crossover method is the single-point crossover. This method chooses a point
splitting a chromosome to the left and right part. One child inherits the left part
from the first parent and the right part from the second parent and the second
child inherits the left part from the second parent and the right part from the first
parent. In the two-point crossover method, a chromosome is split to three parts

10

and a child inherits either the middle part, or the left and the right part from
a parent. Another method of crossover is the uniform crossover, where a child
inherits each item in the chromosome with the probability of 50 % from the first
parent and with the probability of 50 % from the second parent.

A genetic algorithm can include mutation, which can add new useful traits to a
population. Mutation is a random change of random genes in a population. It is
characterized by the mutation rate, which is defined as the ratio of the number of
mutated genes and the total number of genes in the population. The algorithm
can exclude the best chromosomes, called elites, from mutation.

2.2.2 Genetic algorithm in our implementation
In our implementation, costs of chromosomes are calculated by a discrete

event simulation. A chromosome is represented by a list of integers representing
cars assigned to passengers. This list is sorted by arrival times of passengers
in ascending order. This implementation uses the tournament selection method,
which was chosen, because it is easy to implement. We select unique chromo-
somes for each tournament. We implemented the single-point crossover method.
The first half of passengers in the new chromosome inherits cars from one parent
and the second half from the other. Mutation is realized by changing random as-
signed cars in random chromosomes to different random valid car numbers. After
the mutation, the worst chromosomes in the population are replaced by new ran-
dom chromosomes. This action removes the worst solutions from the population
and also brings new potentially useful traits to the population. The evolution is
stopped after the requested number of iterations and returns the best solution
from all iterations.

Since instances are evaluated by a discrete event simulation, which is com-
putationally expensive, the single-point crossover method was chosen to take
advantage of partially computed simulations. When children are created, they
use partial simulations of their parents, since they share the first half of their as-
signments of passengers to cars with one of them. A partial simulation is created
and saved during a simulation by creating a deep copy of a model, when half of
the passengers arrive. To avoid computing costs of chromosomes with the same
assignments again, costs of chromosomes are saved. When the number of saved
costs reaches its bound, the oldest cost is deleted.

Parameters of the evolution include:

• the number of iterations

• the size of a population

• the percentage of elites in a population

• the percentage of chromosomes, which will be replaced

• the number of rivals in the tournament selection

• the mutation rate

• the value, by which the mutation rate decreases between generations

11

• the minimum mutation rate

Parameters of the evolution can be configured by a user. If the difference of
the mutation rate is non-zero, the mutation rate decreases at the end of each
iteration by this value, until it reaches the minimum mutation rate.

12

3. Results and discussion
This chapter contains results of simulations in two buildings with one CMCE

with different properties. Because searching for the optimal CMCE control using
a genetic algorithm takes a lot of time, we decided to compare CMCE under
different conditions in the trivial control and then find a more efficient CMCE
control for some sets of passengers. In both buildings, simulations of the trivial
control were run with different number of cars in the up-peak, down-peak, lunch-
peak and interfloor traffic with different number of passengers. We have searched
for the ideal number of cars for CMCE with the trivial algorithm of control in each
building regarding AWT. To obtain more representative results, we computed
AWT for 10 different sets of passengers and compared the average value of AWT
for different number of cars, types of traffic and number of passengers.

Then we have investigated for concrete sets of passengers, how efficient
the trivial algorithm is, using the genetic algorithm. For this purpose, we se-
lected a few examples whose AWT was high in the trivial control and tried to
find a better elevator control with tolerable AWT. We expect, that waiting times
of passengers arriving later will be higher in worse elevator control, because the el-
evator will be overloaded and will not be able to serve existing passengers together
with incoming passengers. Therefore, we compared the dependence of AWT on
the minute of arrival in the trivial control and the optimized control found by
the genetic algorithm for these examples.

Properties of both buildings and their elevators are:

• the height of a floor: 4 meters [9]

• the time required for boarding or alighting of a passenger: 1 second

• the number of persons, who have their office on a floor: 30 (for all floors)

• the capacity of a car: 10 persons

• the time required for closing of the door: 2 seconds

• the time required for opening of the door: 3 seconds

• the maximum velocity: 3 m/s [10]

• the acceleration: 1 m/s2 [11]

• the deceleration: 1.5 m/s2

• the time required to move a car from one shaft to the other shaft: 5 seconds

• the height of a car: 2.5 meters [12]

• the minimum distance between two cars: 25 cm

The up-peak traffic consists of 90 % passengers travelling from the lobby to
their office and 10 % general traffic. The down-peak consists of 90 % passengers
travelling from their office to the lobby and 10 % general traffic. In the lunch-
peak traffic, there are 20 % passengers travelling to the lobby, 60 % passengers

13

travelling to the floor number two, where the canteen is situated, and 20 %
general traffic. The trivial control has been simulated with sets of 100, 200 and
300 randomly generated passengers arriving during the time period of 15 minutes.

3.1 Simulations in a ten-storey building

3.1.1 AWT in the trivial control with different number of
cars and 300 passengers

In a 10-storey building, the average AWT was the highest in the down-peak
(see Figure 3.1). The average AWT with 300 passengers decreases with increasing
number of cars. With very high number of cars, where cars have less space
for their movement, the average AWT slightly increases, especially in the up-
peak (see Figure 3.2). The ideal number of cars seems to be around 12, where
the average AWT is lower than 8 seconds in the up-peak, lower than 10 seconds
in the lunch-peak and interfloor and lower than 18 seconds in the down-peak.

3.1.2 AWT for different number of passengers
With less cars, the average AWT is higher with higher number of passengers

(see Figure 3.3, Figure 3.4, Figure 3.5 and Figure 3.6). With more cars, the aver-
age AWT is similar with different number of passengers except for the down-peak,
where the average AWT for 300 passengers is the highest for all numbers of cars.

3.1.3 Improving AWT by increasing car capacity
Waiting times can be sometimes lowered by increasing the capacity of a car.

For example, in the down-peak with 300 passengers and 6 cars, high waiting
times are partly caused by the fact, that cars are not stopping on lower floors
while moving downwards, because they are fully occupied. Passengers travelling
from lower floors to the lobby have very high waiting times (see Figure 3.7). By
installing CMCE elevator with cars of capacity 15, the average AWT of these
passengers would significantly decrease. To achieve the average AWT under 18
seconds, 9 cars would suffice. Ideal number of cars with a capacity of 15 would
be around 10, where the highest AWT is about 13 seconds.

By increasing the car capacity to 15 persons, the average AWT decreases,
especially with lower numbers of cars, except for the interfloor traffic (see Fig-
ure 3.8). With 9 and more cars, the average AWT is lower in the up-peak traffic,
where most passengers board on one floor, and in the down-peak traffic, where
most passengers board cars in one shaft (see Figure 3.9). However, increasing
the car capacity is not helpful in the lunch-peak and interfloor traffic.

In the up-peak traffic, the average AWT with 4 and more cars is lower with
higher number of passengers (see Figure 3.10), where high waiting times caused
by small capacity of cars are eliminated. In a more dense traffic, it is more likely,
that a car is already moving towards the floor on which a new passenger arrived.
Moreover, in a sparse traffic, cars spend more time waiting, until motionless cars,
which are blocking their path, move away.

14

Average waiting time of trivial control with 300 passengers
(average of 10 sets of passengers)

number of cars

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

3 4 5 6 7 8 9 10 11 12 13 14 15

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150 up-peak

down-peak
lunch-peak
interfloor

Figure 3.1: AWT in seconds in a ten-storey building with one CMCE with dif-
ferent number of cars. Values on the y-axis are average values of AWT of ten
different sets of passengers. The CMCE was evaluated in different types of traffic
with 300 passengers.

Average waiting time of trivial control with 300 passengers
(average of 10 sets of passengers)

number of cars

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

9 10 11 12 13 14 15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

up-peak
down-peak
lunch-peak
interfloor

Figure 3.2: AWT in seconds in a ten-storey building with one CMCE with dif-
ferent number of cars. Values on the y-axis are average values of AWT of ten
different sets of passengers. The CMCE was evaluated in different types of traffic
with 300 passengers.

15

Average waiting time of trivial control in up-peak
(average of 10 sets of passengers arriving during 15 minutes)

number of cars

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

3 4 5 6 7 8 9 10 11 12 13 14 15

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150 100 passengers

200 passengers
300 passengers

Figure 3.3: AWT in seconds in the up-peak in a ten-storey building with one
CMCE with different number of cars and passengers. Values on the y-axis are
average values of AWT of ten different sets of passengers.

Average waiting time of trivial control in down-peak
(average of 10 sets of passengers arriving during 15 minutes)

number of cars

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

3 4 5 6 7 8 9 10 11 12 13 14 15

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140 100 passengers
200 passengers
300 passengers

Figure 3.4: AWT in seconds in the down-peak in a ten-storey building with one
CMCE with different number of cars and passengers. Values on the y-axis are
average values of AWT of ten different sets of passengers.

16

Average waiting time of trivial control in lunch-peak
(average of 10 sets of passengers arriving during 15 minutes)

number of cars

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

3 4 5 6 7 8 9 10 11 12 13 14 15

0

10

20

30

40

50

60

70

80

90

100 passengers
200 passengers
300 passengers

Figure 3.5: AWT in seconds in the lunch-peak in a ten-storey building with one
CMCE with different number of cars and passengers. Values on the y-axis are
average values of AWT of ten different sets of passengers.

Average waiting time of trivial control in interfloor
(average of 10 sets of passengers arriving during 15 minutes)

number of cars

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

3 4 5 6 7 8 9 10 11 12 13 14 15

0

10

20

30

40

50

60

70
100 passengers
200 passengers
300 passengers

Figure 3.6: AWT in seconds in the interfloor in a ten-storey building with one
CMCE with different number of cars and passengers. Values on the y-axis are
average values of AWT of ten different sets of passengers.

17

Average waiting time of trivial control in down-peak with 300 passengers and 6 cars
(average of 10 sets of passengers)

journey

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

fr
om

 1
 to

 0

fr
om

 2
 to

 0

fr
om

 3
 to

 0

fr
om

 4
 to

 0

fr
om

 5
 to

 0

fr
om

 6
 to

 0

fr
om

 7
 to

 0

fr
om

 8
 to

 0

fr
om

 9
 to

 0

ot
he

r

10 persons
15 persons

Figure 3.7: AWT in seconds depending on origin floors of passengers in the down-
peak in a ten-storey building with one CMCE with 6 cars. Comparison of average
AWT with cars with the capacity of 10 and 15. Values on the y-axis are average
values of AWT of ten different sets of passengers.

Average waiting time of trivial control with 300 passengers
and car capacity of 15 persons

(average of 10 sets of passengers)

number of cars

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

3 4 5 6 7 8 9 10 11 12 13 14 15

0

10

20

30

40

50

60

70

80

up-peak
down-peak
lunch-peak
interfloor

Figure 3.8: AWT in seconds in a ten-storey building with one CMCE with differ-
ent number of cars with capacity of 15. Values on the y-axis are average values
of AWT of ten different sets of passengers. The CMCE was evaluated in different
types of traffic with 300 passengers.

18

In the down-peak traffic, the average AWT is lower with all numbers of cars
and all numbers of passengers (see Figure 3.11). In the lunch-peak and interfloor
traffic, the average AWT is similar with higher number of cars with all numbers
of passengers to the average AWT with cars of capacity 10 (see Figure 3.12 and
Figure 3.13). Similarly to the up-peak, in the down-peak and lunch-peak traffic,
the average AWT is lower in more dense traffic with higher numbers of cars.

19

Average waiting time of trivial control with 300 passengers
and car capacity of 15 persons

(average of 10 sets of passengers)

number of cars

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

9 10 11 12 13 14 15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

up-peak
down-peak
lunch-peak
interfloor

Figure 3.9: AWT in seconds in a ten-storey building with one CMCE with differ-
ent number of cars with capacity of 15. Values on the y-axis are average values
of AWT of ten different sets of passengers. The CMCE was evaluated in different
types of traffic with 300 passengers.

Average waiting time of trivial control in up-peak
and car capacity of 15

(average of 10 sets of passengers arriving during 15 minutes)

number of cars

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

3 4 5 6 7 8 9 10 11 12 13 14 15

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34 100 passengers

200 passengers
300 passengers

Figure 3.10: AWT in seconds in the up-peak in a ten-storey building with one
CMCE with different number of cars with capacity of 15. Values on the y-axis
are average values of AWT of ten different sets of passengers.

20

Average waiting time of trivial control in down-peak
and car capacity of 15

(average of 10 sets of passengers arriving during 15 minutes)

number of cars

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

3 4 5 6 7 8 9 10 11 12 13 14 15

0

5

10

15

20

25

30

35

40

45

50 100 passengers
200 passengers
300 passengers

Figure 3.11: AWT in seconds in the down-peak in a ten-storey building with one
CMCE with different number of cars with capacity of 15. Values on the y-axis
are average values of AWT of ten different sets of passengers.

Average waiting time of trivial control in lunch-peak
and car capacity of 15

(average of 10 sets of passengers arriving during 15 minutes)

number of cars

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

3 4 5 6 7 8 9 10 11 12 13 14 15

0

5

10

15

20

25

30

35

40

45

50

55 100 passengers
200 passengers
300 passengers

Figure 3.12: AWT in seconds in the lunch-peak in a ten-storey building with one
CMCE with different number of cars with capacity of 15. Values on the y-axis
are average values of AWT of ten different sets of passengers.

21

Average waiting time of trivial control in interfloor
and car capacity of 15

(average of 10 sets of passengers arriving during 15 minutes)

number of cars

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

3 4 5 6 7 8 9 10 11 12 13 14 15

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85 100 passengers

200 passengers
300 passengers

Figure 3.13: AWT in seconds in the interfloor in a ten-storey building with one
CMCE with different number of cars with capacity of 15. Values on the y-axis
are average values of AWT of ten different sets of passengers.

22

3.1.4 Evaluation of efficiency of the trivial control and
comparison with results found by the genetic algo-
rithm

This subsection contains comparison of AWT in the trivial control and AWT
in the control found by the genetic algorithm for one set of passengers in the up-
peak, down-peak, lunch-peak and interfloor traffic.

3.1.4.1 Up-peak with 4 cars

For one set of 300 passengers in the up-peak traffic with 4 cars, the genetic
algorithm found after 5000 iterations an elevator control with AWT of 21 seconds,
while AWT in the trivial control was 44 seconds (see Table 3.1). The simulation of
the trivial control finished after almost 18 minutes, while the simulation of the op-
timized control finished after more than 16 minutes. In the trivial control, waiting
times of passengers arriving after the 8th minute are very high (see Figure 3.14).
In the optimized control, waiting times of these passengers are significantly lower.

3.1.4.2 Down-peak with 5 cars

For a set of 300 passengers in the down-peak traffic with 5 cars, the genetic
algorithm could find an elevator control with AWT of 26 seconds, while AWT in
the trivial control was 43 seconds (see Table 3.2). The simulation of the trivial
control finished after almost 17 minutes, while the simulation of the optimized
control finished after about 16 minutes. The optimized solution lowered high
AWT occurring in the trivial control for passengers arriving between the 9th and
the 14th minute.

3.1.4.3 Down-peak with 6 cars

With 6 cars, the genetic algorithm found for the set of passengers described
in 3.1.4.2 an elevator control with AWT of 23 seconds, while AWT in the trivial
control was 32 seconds. Both simulations finished after more than 16 seconds.
In the trivial control, passengers arriving between the 10th and the 14th minute
(see Figure 3.16). In the optimized control, waiting times of these passengers
were lower.

3.1.4.4 Lunch-peak with 4 cars

For a set of 300 passengers in the lunch-peak traffic with 4 cars, the genetic
algorithm found after 7000 iterations a solution with AWT of 32 seconds, while
AWT in the trivial control was 37 seconds (see Table 3.3). Both simulations

number of cars 4 5 6 7 8
average waiting time 44 21 9 9 6

Table 3.1: AWT in the trivial control in seconds for one set of passengers arriving
during 15 minutes in the up-peak traffic in a ten-storey building depending on
number of cars with a capacity of 10 persons in one CMCE elevator.

23

Waiting times depending on arrival times of passengers
in up-peak traffic with 300 passengers and 4 cars

(one particular set of passengers)

arrival time (minutes)

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

10

20

30

40

50

60

70

80

trivial control
solution of genetic algorithm

Figure 3.14: AWT (in seconds) depending of arrival time of passengers (in min-
utes) for one set of 300 passengers in the up-peak traffic in a ten-storey building
with one CMCE with 4 cars with a capacity of 10 persons.

number of cars 4 5 6 7 8
average waiting time 56 43 32 29 24

Table 3.2: AWT in the trivial control in seconds for one set of passengers arriving
during 15 minutes in the down-peak traffic in a ten-storey building depending on
number of cars with a capacity of 10 persons in one CMCE elevator.

24

Waiting times depending on arrival times of passengers
in down-peak traffic with 300 passengers and 5 cars

(one particular set of passengers)

arrival time (minutes)

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

10

20

30

40

50

60

70

80

90

100

110

120 trivial control
solution of genetic algorithm

Figure 3.15: AWT (in seconds) depending of arrival time of passengers (in min-
utes) for one set of 300 passengers in the down-peak traffic in a ten-storey building
with one CMCE with 5 cars with a capacity of 10 persons.

Waiting times depending on arrival times of passengers
in down-peak traffic with 300 passengers and 6 cars

(one particular set of passengers)

arrival time (minutes)

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

10

20

30

40

50

60

70

80

90

trivial control
solution of genetic algorithm

Figure 3.16: AWT (in seconds) depending of arrival time of passengers (in min-
utes) for one set of 300 passengers in the down-peak traffic in a ten-storey building
with one CMCE with 6 cars with a capacity of 10 persons.

25

number of cars 4 5 6 7 8
average waiting time 37 31 24 22 16

Table 3.3: AWT in the trivial control in seconds for one set of passengers arriving
during 15 minutes in the lunch-peak traffic in a ten-storey building depending on
number of cars with a capacity of 10 persons in one CMCE elevator.

number of cars 4 5 6 7 8
average waiting time 55 51 35 26 17

Table 3.4: AWT in the trivial control in seconds for one set of passengers arriving
during 15 minutes in the interfloor traffic in a ten-storey building depending on
number of cars with a capacity of 10 persons in one CMCE elevator.

finished after about 16 minutes. In the trivial control, the highest waiting times
occurred for passengers arriving between the 10th and the 11th minute (see Fig-
ure 3.17).

3.1.4.5 Lunch-peak with 5 cars

For the passengers described in 3.1.4.4 with 5 cars, the genetic algorithm found
a solution with AWT of 26 seconds, while AWT in the trivial control was 31
seconds. Both simulations finished after about 16 seconds. In the trivial control,
the highest waiting times occurred for passengers arriving between the 6th and
the 7th minute (see Figure 3.18).

3.1.4.6 Interfloor with 5 cars

For a set of 300 passengers in the interfloor traffic, AWT in the trivial con-
trol with 5 cars (with a capacity of 10 persons) was 51 seconds (see Table 3.4).
The genetic algorithm could found after 2000 iterations a different assignment of
passengers to cars, whose AWT is 34 seconds. This shows, that the trivial control
is not optimal, since this solution is by about 40 % better than the trivial control.
In this optimized solution, the last passenger left the car after about 16 minutes
from the beginning of the simulation. In the trivial control simulation, the last
passenger got out of the car after almost 18 minutes. In the trivial control, a lot
of the highest waiting times occur for passengers arriving in the second half of
the time period (see Figure 3.19), where the elevator is not able to serve more in-
coming passengers. However, in first three minutes, AWT are significantly lower
in the trivial control.

3.1.4.7 Interfloor with 6 cars

With 6 cars, the genetic algorithm could find for the set of passengers described
in 3.1.4.6 an elevator control with AWT of 28 seconds, while AWT in the triv-
ial control was 35 seconds. In the trivial control, AWT is very high especially
for passengers arriving between the 7th and the 11th minute (see Figure 3.20).
The optimized control eliminates these high AWT. The simulation of the trivial
control finished after more than 17 minutes, while the simulation of the genetic
algorithm solution finished after about 16 minutes.

26

Waiting times depending on arrival times of passengers
in lunch-peak traffic with 300 passengers and 4 cars

(one particular set of passengers)

arrival time (minutes)

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

20

30

40

50

60

70 trivial control
solution of genetic algorithm

Figure 3.17: AWT (in seconds) depending of arrival time of passengers (in min-
utes) for one set of 300 passengers in the lunch-peak traffic in a ten-storey building
with one CMCE with 4 cars with a capacity of 10 persons.

Waiting times depending on arrival times of passengers
in lunch-peak traffic with 300 passengers and 5 cars

(one particular set of passengers)

arrival time (minutes)

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

20

25

30

35

40

45

50

trivial control
solution of genetic algorithm

Figure 3.18: AWT (in seconds) depending of arrival time of passengers (in min-
utes) for one set of 300 passengers in the lunch-peak traffic in a ten-storey building
with one CMCE with 5 cars with a capacity of 10 persons.

27

Waiting times depending on arrival times of passengers
in interfloor traffic with 300 passengers and 5 cars

(one particular set of passengers)

arrival time (minutes)

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

20

30

40

50

60

70

80

90

trivial control
solution of genetic algorithm

Figure 3.19: AWT (in seconds) depending of arrival time of passengers (in min-
utes) for one set of 300 passengers in the interfloor traffic in a ten-storey building
with one CMCE with 5 cars with a capacity of 10 persons.

Waiting times depending on arrival times of passengers
in interfloor traffic with 300 passengers and 6 cars

(one particular set of passengers)

arrival time (minutes)

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

20

30

40

50

60
trivial control
solution of genetic algorithm

Figure 3.20: AWT (in seconds) depending of arrival time of passengers (in min-
utes) for one set of 300 passengers in the interfloor traffic in a ten-storey building
with one CMCE with 6 cars with a capacity of 10 persons.

28

3.2 Simulations in a twenty-storey building

3.2.1 AWT in the trivial control with different number of
cars and 300 passengers

Similarly to the previous building (see section 3.1), the average AWT with
300 passengers is generally the highest in the down-peak traffic (see Figure 3.21).
The ideal number of cars is around 26 (see Figure 3.22), where the average AWT
are about 10 seconds in the up-peak and interfloor, 12 in the lunch-peak and 22
in the down-peak. The average AWT generally decreases with increasing number
of cars and slightly increases again with very high number of cars.

3.2.2 AWT for different number of passengers
Similarly to the previous building, the average AWT is higher for higher num-

ber of passengers with less cars and similar for different numbers of passengers
with more cars (see Figure 3.23, Figure 3.24, Figure 3.25 and Figure 3.26).

3.2.3 Improving AWT by increasing car capacity
Similarly to the previous building, high waiting times can be lowered by in-

creasing the car capacity. For instance in the down-peak with 300 passengers and
16 cars, where we can see that high AWT occur for passengers with low origin
floors (see Figure 3.27), increasing the car capacity to 15 persons significantly im-
proves waiting times. And also improvement of AWT is noticeable mainly with
low number of cars (see Figure 3.28 and Figure 3.29). Increasing the car capacity
is useful especially in the up-peak and down-peak. To decrease the average AWT
under 22 seconds, 16 cars with the capacity of 15 persons would be enough.

In the up-peak and lunch-peak and sometimes in the down-peak, waiting times
are higher with lower number of passengers (see Figure 3.30, Figure 3.32 and
Figure 3.31). In contrast with other types of traffic, in the interfloor the average
AWT is higher with a higher car capacity with low number of cars and at least
200 passengers (see Figure 3.33). It seems that in the interfloor traffic with
small number of cars, it was more convenient not to load many passengers to
one car. Cars then arrive later to distant passengers, since they must stop more
often to load and unload passengers and therefore they are moving slower around
the elevator.

29

Average waiting time of trivial control with 300 passengers
(average of 10 sets of passengers)

number of cars

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0

10

20

30

40

50

60

70

80

90

100

110
up-peak
down-peak
lunch-peak
interfloor

Figure 3.21: AWT in seconds in a twenty-storey building with one CMCE with
different number of cars. Values on the y-axis are average values of AWT of ten
different sets of passengers. The CMCE was evaluated in different types of traffic
with 300 passengers.

Average waiting time of trivial control with 300 passengers
(average of 10 sets of passengers)

number of cars

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

up-peak
down-peak
lunch-peak
interfloor

Figure 3.22: AWT in seconds in a twenty-storey building with one CMCE with
different number of cars. Values on the y-axis are average values of AWT of ten
different sets of passengers. The CMCE was evaluated in different types of traffic
with 300 passengers.

30

Average waiting time of trivial control in up-peak
(average of 10 sets of passengers arriving during 15 minutes)

number of cars

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0

5

10

15

20

25

30

35

40

100 passengers
200 passengers
300 passengers

Figure 3.23: AWT in seconds in the up-peak in a twenty-storey building with one
CMCE with different number of cars and passengers. Values on the y-axis are
average values of AWT of ten different sets of passengers.

Average waiting time of trivial control in down-peak
(average of 10 sets of passengers arriving during 15 minutes)

number of cars

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0

10

20

30

40

50

60

70

80

90

100

110
100 passengers
200 passengers
300 passengers

Figure 3.24: AWT in seconds in the down-peak in a twenty-storey building with
one CMCE with different number of cars and passengers. Values on the y-axis
are average values of AWT of ten different sets of passengers.

31

Average waiting time of trivial control in lunch-peak
(average of 10 sets of passengers arriving during 15 minutes)

number of cars

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0

5

10

15

20

25

30

35

40

45

50

55 100 passengers
200 passengers
300 passengers

Figure 3.25: AWT in seconds in the lunch-peak in a twenty-storey building with
one CMCE with different number of cars and passengers. Values on the y-axis
are average values of AWT of ten different sets of passengers.

Average waiting time of trivial control in interfloor
(average of 10 sets of passengers arriving during 15 minutes)

number of cars

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70 100 passengers
200 passengers
300 passengers

Figure 3.26: AWT in seconds in the interfloor in a twenty-storey building with
one CMCE with different number of cars and passengers. Values on the y-axis
are average values of AWT of ten different sets of passengers.

32

Average waiting time of trivial control in down-peak with 300 passengers and 16 cars
(average of 10 sets of passengers)

journey

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

0

5

10

15

20

25

30

35

40

45

50

55

fr
om

 1
 to

 0

fr
om

 2
 to

 0

fr
om

 3
 to

 0

fr
om

 4
 to

 0

fr
om

 5
 to

 0

fr
om

 6
 to

 0

fr
om

 7
 to

 0

fr
om

 8
 to

 0

fr
om

 9
 to

 0

fr
om

 1
0

to
 0

fr
om

 1
1

to
 0

fr
om

 1
2

to
 0

fr
om

 1
3

to
 0

fr
om

 1
4

to
 0

fr
om

 1
5

to
 0

fr
om

 1
6

to
 0

fr
om

 1
7

to
 0

fr
om

 1
8

to
 0

fr
om

 1
9

to
 0

ot
he

r

10 persons
15 persons

Figure 3.27: AWT in seconds depending on origin floors of passengers in the down-
peak in a twenty-storey building with one CMCE with 16 cars. Comparison of
average AWT with cars with the capacity of 10 and 15. Values on the y-axis are
average values of AWT of ten different sets of passengers.

Average waiting time of trivial control with 300 passengers
and car capacity of 15 persons

(average of 10 sets of passengers)

number of cars

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

up-peak
down-peak
lunch-peak
interfloor

Figure 3.28: AWT in seconds in a twenty-storey building with one CMCE with
different number of cars with capacity of 15. Values on the y-axis are average
values of AWT of ten different sets of passengers. The CMCE was evaluated in
different types of traffic with 300 passengers.

33

Average waiting time of trivial control with 300 passengers
and car capacity of 15 persons

(average of 10 sets of passengers)

number of cars

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0

2

4

6

8

10

12

14

16

18

20

22

up-peak
down-peak
lunch-peak
interfloor

Figure 3.29: AWT in seconds in a twenty-storey building with one CMCE with
different number of cars with capacity of 15. Values on the y-axis are average
values of AWT of ten different sets of passengers. The CMCE was evaluated in
different types of traffic with 300 passengers.

Average waiting time of trivial control in up-peak with 300 passengers
and car capacity of 15

(average of 10 sets of passengers arriving during 15 minutes)

number of cars

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0

2

4

6

8

10

12

14

16

18

20 100 passengers
200 passengers
300 passengers

Figure 3.30: AWT in seconds in the up-peak in a twenty-storey building with one
CMCE with different number of cars with capacity of 15. Values on the y-axis
are average values of AWT of ten different sets of passengers.

34

Average waiting time of trivial control in down-peak with 300 passengers
and car capacity of 15

(average of 10 sets of passengers arriving during 15 minutes)

number of cars

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0

5

10

15

20

25

30

35

40
100 passengers
200 passengers
300 passengers

Figure 3.31: AWT in seconds in the down-peak in a twenty-storey building with
one CMCE with different number of cars with capacity of 15. Values on the y-axis
are average values of AWT of ten different sets of passengers.

Average waiting time of trivial control in lunch-peak with 300 passengers
and car capacity of 15

(average of 10 sets of passengers arriving during 15 minutes)

number of cars

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0

5

10

15

20

25

30

35

40 100 passengers
200 passengers
300 passengers

Figure 3.32: AWT in seconds in the lunch-peak in a twenty-storey building with
one CMCE with different number of cars with capacity of 15. Values on the y-axis
are average values of AWT of ten different sets of passengers.

35

Average waiting time of trivial control in interfloor with 300 passengers
and car capacity of 15

(average of 10 sets of passengers arriving during 15 minutes)

number of cars

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

100 passengers
200 passengers
300 passengers

Figure 3.33: AWT in seconds in the interfloor in a twenty-storey building with
one CMCE with different number of cars with capacity of 15. Values on the y-axis
are average values of AWT of ten different sets of passengers.

36

3.2.4 Evaluation of efficiency of the trivial control and
comparison with results found by the genetic algo-
rithm

This subsection contains comparison of AWT in the trivial control and AWT
in the control found by the genetic algorithm for one set of passengers in the up-
peak, down-peak, lunch-peak and interfloor traffic.

3.2.4.1 Up-peak with 6 cars

For a set of 300 passengers in the up-peak traffic with 6 cars in one elevator,
the genetic algorithm found a solution with AWT of 23 seconds, while AWT of
the trivial control was 49 seconds (see Table 3.5), which is more than double.
It means that if the elevator control was more efficient, six cars would be suffi-
cient to serve this set of passengers. Efficient trivial control would require more
cars. The simulation of the trivial control finished after almost 19 minutes, while
the simulation of the solution found by the genetic algorithm finished after about
17 minutes. In the trivial control, AWT are very high for passengers who arrived
later than in the first 4 minutes (see Figure 3.34). In the solution of the genetic
algorithm, AWT does not seem to depend on arrival times.

3.2.4.2 Down-peak with 6 cars

For a set of 300 passengers in the down-peak traffic with 6 cars, the genetic
algorithm found a solutions with AWT of 40 seconds, while AWT in the trivial
control was 83 seconds (see Table 3.6). In the trivial control, AWT are very high
for passengers arriving after 5 or more minutes (see Figure 3.35). In the opti-
mized control, AWT are significantly lower. AWT of the solution of the genetic
algorithm is by about 52 % lower than AWT in the trivial control. The simulation
of the trivial control finished after more than 18 minutes, while the simulation of
the control found by the genetic algorithm finished after more than 16 minutes.

3.2.4.3 Down-peak with 7 cars

With 7 cars in one elevator, the genetic algorithm found for the set of pas-
sengers described in3.2.4.2 a solution with AWT of 34 seconds, while AWT in
the trivial control was 61 seconds. Both simulations finished after about 17
minutes. The optimized solution eliminated AWT exceeding a minute, which
occurred in the trivial control for passengers arriving between the 4th and the 9th

minute (see Figure 3.36).

number of cars 6 7 8 9 10 11 12
average waiting time 49 28 15 15 12 10 9

Table 3.5: AWT in the trivial control in seconds for one set of passengers arriving
during 15 minutes in the up-peak traffic in a twenty-storey building depending
on number of cars with a capacity of 10 persons in one CMCE elevator.

37

Waiting times depending on arrival times of passengers
in up-peak traffic with 300 passengers and 6 cars

(one particular set of passengers)

arrival time (minutes)

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

10

20

30

40

50

60

trivial control
solution of genetic algorithm

Figure 3.34: AWT (in seconds) depending of arrival time of passengers (in min-
utes) for one set of 300 passengers in the up-peak traffic in a twenty-storey build-
ing with one CMCE with 6 cars with a capacity of 10 persons.

number of cars 6 7 8 9 10 11 12
average waiting time 83 61 50 59 37 35 26

Table 3.6: AWT in the trivial control in seconds for one set of passengers arriving
during 15 minutes in the down-peak traffic in a twenty-storey building depending
on number of cars with a capacity of 10 persons in one CMCE elevator.

38

Waiting times depending on arrival times of passengers
in down-peak traffic with 300 passengers and 6 cars

(one particular set of passengers)

arrival time (minutes)

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170

trivial control
solution of genetic algorithm

Figure 3.35: AWT (in seconds) depending of arrival time of passengers (in min-
utes) for one set of 300 passengers in the down-peak traffic in a twenty-storey
building with one CMCE with 6 cars with a capacity of 10 persons.

Waiting times depending on arrival times of passengers
in down-peak traffic with 300 passengers and 7 cars

(one particular set of passengers)

arrival time (minutes)

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

20

30

40

50

60

70

80

90

trivial control
solution of genetic algorithm

Figure 3.36: AWT (in seconds) depending of arrival time of passengers (in min-
utes) for one set of 300 passengers in the down-peak traffic in a twenty-storey
building with one CMCE with 7 cars with a capacity of 10 persons.

39

number of cars 6 7 8 9 10 11 12
average waiting time 87 32 42 32 30 25 20

Table 3.7: AWT in the trivial control in seconds for one set of passengers arriving
during 15 minutes in the lunch-peak traffic in a twenty-storey building depending
on number of cars with a capacity of 10 persons in one CMCE elevator.

3.2.4.4 Down-peak with 8 cars

With 8 cars, the genetic algorithm found for the set of passengers described
in 3.2.4.2 a solution with AWT of 34 seconds, while AWT in the trivial control
was 51 seconds. Both simulations finished after more than 17 minutes. The op-
timized solution does not include AWT higher than a minute, which occurred
in the trivial control for passengers arriving between the 6th and the 9th minute
(see Figure 3.37).

3.2.4.5 Down-peak with 9 cars

With 9 cars, the genetic algorithm also found for the set of passengers de-
scribed in 3.2.4.2 a solution with AWT of 33 seconds. AWT in the trivial control
was 59 seconds. The simulation of the optimized control finished more than 17
minutes, about a minute earlier than the simulation of the trivial control, which
finished after more than 18 minutes. The optimized solution does not include
AWT of about a minute and higher, which occurred in the trivial control for
passengers arriving after more than 5 minutes (see Figure 3.38).

3.2.4.6 Lunch-peak with 8 cars

For a set of 300 passengers in the lunch-peak traffic with 8 cars, the genetic
algorithm found a solution with AWT of 31 seconds, while AWT of the trivial
control solution was 42 seconds (see Table 3.7). Simulations of both solutions
finished after about 16 minutes. The optimized control decreased high AWT of
passengers arriving between the 8th and the 12th minute (see Figure 3.39), where
AWT in the trivial control were over a minute.

3.2.4.7 Interfloor with 8 cars

For a set of 300 passengers in the interfloor traffic with 8 cars, the genetic
algorithm found a solution with AWT of 41 seconds, while AWT of the trivial
control was 44 seconds (see Table 3.8). The simulation of the trivial control
finished after almost 18 minutes, while the simulation of the optimized control
finished after almost 17 minutes. Unlike the trivial control, AWT in the optimized
control do not exceed a minute for any minute in the period of arrival times
(see Figure 3.40).

3.2.4.8 Interfloor with 9 cars

With 9 cars, the genetic algorithm found after 7000 iterations for the set of
passengers described in 3.2.4.7 a solution with AWT of 34 seconds, while AWT
of the trivial control was 49 seconds. The simulation of the optimized control

40

Waiting times depending on arrival times of passengers
in down-peak traffic with 300 passengers and 8 cars

(one particular set of passengers)

arrival time (minutes)

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

20

30

40

50

60

70

80

90

100

trivial control
solution of genetic algorithm

Figure 3.37: AWT (in seconds) depending of arrival time of passengers (in min-
utes) for one set of 300 passengers in the down-peak traffic in a twenty-storey
building with one CMCE with 8 cars with a capacity of 10 persons.

Waiting times depending on arrival times of passengers
in down-peak traffic with 300 passengers and 9 cars

(one particular set of passengers)

arrival time (minutes)

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

20

30

40

50

60

70

80

90

100

110
trivial control
solution of genetic algorithm

Figure 3.38: AWT (in seconds) depending of arrival time of passengers (in min-
utes) for one set of 300 passengers in the down-peak traffic in a twenty-storey
building with one CMCE with 9 cars with a capacity of 10 persons.

41

Waiting times depending on arrival times of passengers
in lunch-peak traffic with 300 passengers and 8 cars

(one particular set of passengers)

arrival time (minutes)

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

20

30

40

50

60

70

80

90

trivial control
solution of genetic algorithm

Figure 3.39: AWT (in seconds) depending of arrival time of passengers (in min-
utes) for one set of 300 passengers in the down-peak traffic in a twenty-storey
building with one CMCE with 8 cars with a capacity of 10 persons.

number of cars 6 7 8 9 10 11 12
average waiting time 67 62 44 49 29 20 23

Table 3.8: AWT in the trivial control in seconds for one set of passengers arriving
during 15 minutes in the interfloor traffic in a twenty-storey building depending
on number of cars with a capacity of 10 persons in one CMCE elevator.

42

finished after about 16 minutes, while the simulation of the trivial control finished
after about 17 minutes. The optimized solution eliminates high AWT occurring
in the trivial control for passengers arriving after the 6th minute (see Figure 3.41).
However, AWT in the first five minutes are mostly lower in the trivial control.

43

Waiting times depending on arrival times of passengers
in interfloor traffic with 300 passengers and 8 cars

(one particular set of passengers)

arrival time (minutes)

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

20

30

40

50

60

70

trivial control
solution of genetic algorithm

Figure 3.40: AWT (in seconds) depending of arrival time of passengers (in min-
utes) for one set of 300 passengers in the interfloor traffic in a twenty-storey
building with one CMCE with 8 cars with a capacity of 10 persons.

Waiting times depending on arrival times of passengers
in interfloor traffic with 300 passengers and 9 cars

(one particular set of passengers)

arrival time (minutes)

av
er

ag
e

w
ai

tin
g

tim
e

(s
ec

on
ds

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

10

20

30

40

50

60

70

80

90

100

110 trivial control
solution of genetic algorithm

Figure 3.41: AWT (in seconds) depending of arrival time of passengers (in min-
utes) for one set of 300 passengers in the interfloor traffic in a twenty-storey
building with one CMCE with 9 cars with a capacity of 10 persons.

44

3.3 Conclusion
Based on results listed in this chapter, AWT in the trivial control generally

decreases with increasing number of cars and sometimes slightly increases with
very high number of cars. With less cars, waiting times significantly increase
with increasing number of passengers. With more cars, waiting times are some-
times slightly lower with higher number of passengers, since cars are circulating
in the elevator and stationary cars are not blocking their movement. Increasing
the car capacity generally improves waiting times, when there are few cars in
CMCE. With more cars, higher car capacity is most useful in the up-peak traf-
fic, where most passengers have the same origin floor, and in the down traffic,
where most passengers have the same direction. Observations presented in this
paragraph are valid for both buildings.

Judging by examples presented in subsection 3.1.4 and subsection 3.2.4,
the trivial control is not optimal. In some cases, AWT could be reduced by at
least 40 % by using a more efficient algorithm to control CMCE. In most cases,
the highest AWT occurred in the trivial control for passengers, who arrived in
the second half of the time period. However, AWT did not directly depend on
the arrival time.

Results presented in subsection 3.1.4 and subsection 3.2.4 were obtained by
the genetic algorithm with these parameters:

• the mutation rate: 0.01

• the percentage of elites excluded from mutation: 10 %

• the percentage of chromosomes replaced by random chromosomes: 0 %

• the size of subsets in the tournament selection: 3 chromosomes

• the size of a population: 150 chromosomes

• total iterations: 2000 to 7000

In general, algorithms with higher mutation rates, very low mutation rates,
lower percentage of elites or smaller populations found worse solutions after
the same number of iterations. Replacing a few percent of the worst chromo-
somes did not seem to affect the performance. Algorithms with bigger popu-
lations were slower. In algorithms with the populations size of 150, choosing
parents in the tournament selection from more than three random chromosomes
caused the algorithm to converge to worse solutions. On the other hand, choosing
parents from less than three parents led to much slower convergence. The genetic
algorithm with 7000 iterations took more than 6 hours to finish on a personal
computer.

45

4. State of art
Efficient elevator control is a subject of interest of many researchers. This

chapter mentions a few papers related to elevator control.
Y. Kuroda, M. Nakata and S. Yamaguchi [13] focused on optimization of

multi-car elevator group control. They proposed an algorithm for minimizing
the average service completion time. The algorithm is based on car collision
avoidance realized by zone and direction restriction. They avoid car collisions by
synchronizing directions of cars in a shaft and stopping cars until the collision
is improbable. They compare the average service completion time in multi-car
and single-car elevator groups in the up-peak, down-peak and interfloor traffic
and in the traffic with more journeys to one special floor. Their algorithm is
efficient especially in the up-peak and interfloor traffic. Their simulations show,
that multi-car elevator systems controlled by their algorithm are more efficient
than single-car elevator systems in high hall call rates and increasing the number
of cars improves performance.

A. Valdivielso, T. Miyamoto and S. Kumagai [14] proposed a method of multi-
car elevator group control including schedule completion time optimization, op-
timal parking for different traffic types and interference risk prevention based on
synchronized scheduled directions. They compare their algorithm with a zoning
algorithm. Their algorithm outperforms the zoning algorithm in the down-peak
and interfloor traffic and in the up-peak traffic with lower passenger arrival rates.

M. Brand and D. Nikovski [15] focused on optimal parking of empty cars in
a single-car elevator system in the up-peak and down-peak traffic. In the down-
peak traffic, they split a building to zones, each served by one car. Then they
compared the benefit of actively parking the cars at the center of their zones for
different passengers arrival rates. In the up-peak traffic, they used Markov chains
with dynamic programming to find the parking minimizing average waiting times
in a limited time horizon and they evaluated this approach for different arrival
rates.

M. Brand and D. Nikovski [16] focused on reduction of long waiting times
based on using higher moments of the average waiting time in the optimization
function. They introduced a method for computing these moments based on
dynamic programming and Markov chains.

S. Ramalingam, A. U. Raghunathan and D. Nikovski [17] proposed an ap-
proach to group elevator scheduling problem based on maximizing a submodular
function under a matroid constraint. They proposed an approximation of the to-
tal waiting time and formulated the problem as a quadratic Boolean optimization
problem. Then they reformulated the problem as a submodular maximization
problem under a matroid constraint. The solution was then found by a greedy
algorithm. Their method with further enhancements achieved lower average wait-
ing times in comparison with conventional methods.

M. Ruokokoski, H. Ehtamo and P. M. Pardalos [18] focused on formulation
of the elevator dispatching problem as a mixed-integer linear program. They
presented and improved the formulation of the problem. They proposed a refor-
mulation of the problem with decreased number of variables and they also pro-
vided rules for removing unnecessary arcs from the graph of the problem. They

46

introduced new valid inequalities for the problem and described the polytope of
the elevator dispatching problem in the down-peak period.

P. Cortes, J. Larrañeta and L. Onieva [19] proposed a genetic algorithm for
controllers of single-car elevator groups. The fitness function of an elevator is
the approximate time the elevator needs to serve all its calls. The function
is computed from distances between the current floor and highest and lowest
floors in the upwards and downwards direction and estimated floor-to-floor time.
The function does not involve destination floors of passengers. The algorithm
includes mutation, uniform crossover and random selection of parents. Chromo-
somes in a population are replaced by new chromosomes with probability based
on their ranking in the population. They compared their algorithm with an algo-
rithm used traditionally in industry. The genetic algorithm reduced the system
waiting time, consisting of the waiting time and the trip time, by almost 25 %.

B. Bolat et al. [20] focused on the elevator group control based on a genetic al-
gorithm. They used a roulette wheel selection method and compared single-point,
two-point and uniform crossover and more mutation probabilities. The algorithm
was tested on more buildings in a lunch-peak period. The optimized control was
by 20-25 % more efficient regarding the average waiting time and the average jour-
ney time. Their fitness function can be computed fast, therefore their algorithm
can be used for real time elevator control.

M. Baygin et al. [21] compared a genetic algorithm based elevator control with
classical control, assigning the call to the closest car, and elevator control with
passengers’ destination floors entered using a numeric keypad. The methods were
tested on a prototype of an elevator group in the interfloor traffic. The system
with a keypad was by 20 % more efficient than the optimized system without
the knowledge of destination floors.

J. Debnath and G. Serpen [22] proposed and tested methods of optimization of
elevator scheduling in fully-automated parking structures. Their hybrid method
is based on genetic algorithms and nested partitioning. A genetic algorithm is
used during iterations of nested partitioning for finding the best subregion and
comparing it with its surrounding region. They also provided a method based on
the queueing theory for computing the minimum number of elevators for given
number of floors in the parking structure.

L. Yu et al. [23] proposed a hybrid real-time scheduling algorithm for double-
deck elevator group based on genetic network programming and ant colony op-
timization with evaporation. In their hybrid algorithm, they modify the new
generation created by crossover using the pheromone instead of mutation once
in ten iterations. Thanks to ant colony optimization, their algorithm often con-
verges faster than an approach based only on genetic programming. Genetic
programming increases the chance of finding the global minimum. They opti-
mized average waiting time, percentage of persons waiting for more than 60 sec-
onds and energy consumption in regular, up-peak and down-peak traffic. They
demonstrated the efficiency of their algorithm via simulations.

C. E. Imrak and M. Ozkırım [24] focused on optimization of elevator group
control using neural networks. Their feed-forward neural network with back-
propagation allows adapting to new traffic patterns, while the traditional du-
plex/triplex algorithm for controlling groups of two or three cars is not efficient
in the up-peak traffic. In comparison with traditional algorithms, the performance

47

of their algorithm based on combining a neural network with the duplex/triplex
algorithm is better.

L. Cui [25] focused on intelligent elevator group scheduling in different types
of traffic based on fuzzy neural networks with back-propagation. He proposed
a new Gaussian membership function for the fuzzy set.

B. Bolat and P. Cortés [26] proposed algorithms for optimizing the average
journey time in elevator group control based on genetic algorithms and tabu
search. The fitness function included both initial and destination floors of pas-
sengers and balance of service of cars in the elevator group. In their simulations,
the probabilistic tabu search was the most efficient regarding average journey and
waiting times. However, genetic algorithms were faster.

B. Bolat, O. Altun and P. Cortés [27] proposed an algorithm for elevator group
control based on particle swarm optimization. They compared their algorithm
with two genetic algorithms and a tabu search algorithm in buildings with 10 to
24 floors and 2 to 6 cars. Their algorithm with 30 particles and 30 generations
was more efficient regarding average journey times and also computational times.

B. Bolat et al. [28] focused on different meta-heuristic algorithms for optimiza-
tion of journey times in elevator group control. They also proposed a new version
of simulated annealing called simulated annealing with random restarts. In their
version, the local search restarts from a random position, if the local search does
not improve the current solution after a given number of attempts. They com-
pared the differential evolution, simulated annealing with random restarts, artifi-
cial bee colony, bat algorithm, bacterial foraging optimization algorithm, particle
swarm optimization, genetic algorithm and tabu search. In buildings with 10 to
24 floors and 2 to 6 cars with at most 10000 function evaluations allowed to each
algorithm, artificial bee colony and tabu search were the most efficient algorithms
for reducing the average passenger journey time. Their algorithm simulated an-
nealing with random restarts was the third best algorithm.

48

5. User interface
This chapter describes the graphical user interface of the program created

within this thesis. A user can interact with the program via forms. Some pa-
rameters can be loaded from files and the program writes the results to files
(see section 6.4).

5.1 Input of parameters
The user interface is opened by running the program CirculatingMultiCarEl-

evatorGUI.exe. There must be the files CirculatingMltiCarElevator.dll and Cir-
culatingMultiCarElevatorLogLines.dll in the same directory.

After starting the application, a form is shown (see Figure 5.1). In this form,
the user can set model properties. The user enters parameters of the building,
elevators and traffic in required units. The settings can be loaded from a file or
saved to a file. The user also selects passengers for simulations. If the settings are
not valid, the application displays a message. By closing this form, the application
is closed and all of the computations are cancelled.

Properties of elevators include:

• the number of elevators in the elevator system

• the number of cars in each elevator

• the capacity of cars

• the time required to open the door of a car

• the time required to close the door of a car

• the maximum velocity of a car

• the acceleration of a car

• the deceleration of a car

• the time required to move a car from one shaft to the other shaft

• the height of a car

• the minimum distance between two cars

Minimum distance is the distance in a shaft, which will be always preserved
between two cars during a simulation. If the elevator system contains more
elevators, it is assumed, that the properties of all elevators are the same. The sum
of the minimum distance and the height of a car must not be higher than height of
a floor. The height of a floor can be set in the section with building parameters.
Maximum number of cars is set to 1.5 * number of floors in order to provide
enough space for movement of cars.

Properties of a building include:

49

Figure 5.1: Model parameters. The user selects parameters for the building,
elevators and traffic. Parameters can be also loaded from a file or saved to a file.
On the bottom, the user selects the traffic type or loads passengers from a file.

50

• the number of the lowest floor

• the number of the highest floor

• the height of a floor

• the time required for boarding and alighting of a passenger

By clicking the button labelled Set number of persons on floors, the user can
display another form (see Figure 5.2). In this form, the user can set for each floor
the number of persons who have their offices on that floor. New settings can be
saved by clicking the button Save or cancelled by clicking the button Cancel.

On the right of the form with model parameters settings (see Figure 5.1),
the user can set parameters of the up-peak, down-peak, lunch-peak and interfloor
traffic. Controls are enabled based on the traffic type selected on the bottom of
the form. For each type of traffic, the user must enter specific parameters. On
the basis of the selected traffic parameters, passengers for simulations will be
generated.

In the up-peak traffic, most persons travel from the lobby to their offices.
In the down-peak traffic, most persons travel from their offices to the lobby.
In the lunch-peak traffic, some persons travel from their offices to the canteen
and some persons travel from their offices to the lobby. In the interfloor traffic,
persons travel either from their offices to various floors or from various floors to
their offices. For each type of traffic, the user sets the number of passengers in
a simulation. Then the program will generate a random subset of this size of
all possible passengers for simulations. The user sets percentages of journeys to
the lobby, from the lobby and to the canteen and the percentage of general traffic,
which consists of journeys between various floors.

For arrival times of passengers, the program will generate random numbers
falling in the period of the traffic chosen by the user. A simulation begins at
the time zero and ends after the last passenger leaves the car on their destina-
tion floor. The application is not suitable for simulating extremely heavy traffic,
because the simulation is always stopped when the time is higher than twice
the time period of arrival times of passengers and the maximum value of the in-
teger data type is assigned to the average waiting time. This action eliminates
extremely bad solutions during the genetic algorithm, especially when the time
period of arrival times is short.

If the option Passengers from file is selected, the user must enter the file
containing the passengers. By clicking the button labelled Remove passengers,
the passengers previously loaded from a file are removed. By clicking the button
labelled Save to file, the settings selected in the form are saved to a file in the valid
format and can be loaded later.

51

Figure 5.2: Settings of the number of persons, who have their office on particular
floors.

52

5.2 Running the algorithm
After clicking the button Start, the application displays a form with a sum-

mary of the model’s properties (see Figure 5.3). The user can run a simulation
with assignment of passengers to cars saved in a file, run a simulation of the triv-
ial control or run a genetic algorithm. The user must select the file, to which
the result will be written. The user can also choose a file for saving generated
passengers. If the user selected the option Genetic algorithm, they can select
parameters for a genetic algorithm:

• the number of iterations

• the size of a population

• the mutation rate

• the value, by which the mutation rate decreases between generations

• the minimum mutation rate

• the number of rivals in tournament selection

• the percentage of elites in a population

• the percentage of chromosomes, which will be replaced by new chromosomes

If the option Simulation with given assignment is chosen, the user must choose
a file with assignment of cars to passengers in the required format (see section 6.4).

Mutation rate indicates the ratio of the number of mutated genes and the total
number of genes in a population. At the end of each iteration, the mutation rate
is decreased by the given mutation rate decrease. Mutation is not performed on
elites. At the end of each iteration, the worst chromosomes are replaced by new
random chromosomes.

After clicking the button Start, the calculation starts. If the user selected
the genetic algorithm, the form shows another form displaying the progress of
the algorithm (see Figure 5.4). If the user selected the simulation of the triv-
ial control or simulation with given assignment, the form with results is shown
(see Figure 5.5). If the application could not generate passengers on the basis of
the traffic selected in the previous form, the form displays a message.

53

Figure 5.3: In this form, the user can run a simulation with an assignment of
passengers to cars loaded from a file, a simulation of the trivial control or a genetic
algorithm with configurable parameters.

54

Figure 5.4: Genetic algorithm progress. This form displays the lowest cost in
each generation, elapsed time and algorithm parameters and allows cancelling
the computation or stopping the evolution after the current iteration.

55

5.3 Genetic algorithm progress
On the top of the form showing the genetic algorithm progress (see Figure 5.4),

there is a box with the evolution log. For each iteration, the box contains a line
with the cost of the best individual in the generation. The form is updated once
in a second. Under the box, there are parameters of the algorithm. The form also
displays the time elapsed from the beginning of the computation and the average
waiting time in the trivial control for comparison.

When the algorithm finishes, the form displays another form with the results
(see Figure 5.5). The form containing results can be displayed again by clicking
the button Show results. The user can stop the evolution by clicking the button
Stop. After clicking this button, the evolution will be stopped, after the current
iteration finishes, and the results will be displayed. By clicking the button Exit,
the calculation is cancelled and the form is closed.

56

Figure 5.5: Simulation results. The user can view an animation of the simulation
for the selected elevator in the selected elevator control.

57

5.4 Results
The form with simulation results (see Figure 5.5) shows average waiting times

in the trivial control simulation and in the solution found by the genetic algorithm.
The log of the simulations is written to the selected file (see subsection 6.4.4).

5.5 Animation
In the form with simulation results (see Figure 5.5), the user can select one

elevator and view a simple animation of a simulation in the trivial or optimized
control. The animation is shown in a new form (see Figure 5.6). In the picture
on this form, there is a shaft with cars moving upwards on the left, the shaft
with cars moving downwards on the right and left and right sides of hallways in
the middle. Passengers on the left side of a hallway are waiting for a car mov-
ing upwards and passengers on the right side of a hallway are waiting for a car
moving downwards. In the middle of a hallway, numbers of passengers waiting
on both sides of the hallway and the number of the floor are shown. Next to
the bottom right corner of the picture, there are four buttons labelled by the plus
or minus sign. These buttons allow zooming the picture in or out in the vertical
or horizontal direction. The simulation can be progressed manually, by clicking
the button labelled Next step, or by a timer with the selected interval. The time
period between steps can be set in the bottom left corner of the form. Buttons
labelled Start and Stop allow starting or stopping the timer. By clicking the
button labelled Finish, the simulation is finished. The user can view the anima-
tion again from the beginning by clicking the button Repeat, which appears after
finishing of the animation.

58

Figure 5.6: The animation of a simulation. In the picture, there is a building
with 10 floors. On the floor number zero, there is the car number 0. There are
passengers number 66, 151 and 65 inside this car. The passenger number 174 is
still waiting in the hall. On the floor number three, there is the car number 1 with
the passenger number 169 inside. On the floor number 6, there is the car number
2 with two passengers inside. The door of this car is closed. These three cars
are moving upwards. After reaching the top of the left shaft, they will move to
the right shaft and continue to move downwards in the right shaft. The animation
can be progressed manually or by a timer using the buttons under the picture.
The picture can be zoomed in or out horizontally or vertically.

59

6. Software documentation
This chapter contains an overview of classes and their relations in the pro-

gram created within this thesis. The program (see section A.2 and section A.3)
is created in C# 7.0 and developed with .NET Framework 4.6. The solution
consists of three projects: CirculatingMultiCarElevator, CirculatingMultiCarEl-
evatorGUI and CirculatingMultiCarElevatorLogLines.

6.1 Communication with GUI
The library CirculatingMultiCarElevatorLogLines contains an interface rep-

resenting the object displaying the animation of one CMCE elevator and the hi-
erarchy of descendants of the abstract class Line, representing logs of simulations.

6.1.1 Animation
The object used for the animation must implement the interface IElevatorAn-

imation. In the project CirculatingMultiCarElevatorGUI, the animation is per-
formed by the form AnimationForm.

6.1.2 Lines of a log
The abstract class Line is used to create a log from a simulation and dis-

play the events in graphical form. Descendants of this class include information
about a given event. The class contains the abstract method Process called by
an instance of a class implementing the interface IElevatorAnimation to change
the state of the object on the basis of the event.

Descendants of the class Line include the abstract class CarLine, representing
an event of a car, ModelLine, representing an event of a model and PassengerLine,
representing an event of a passenger.

Descendants of the class CarLine, representing different events of cars, in-
clude classes CarPlacedLine, CarCalledLine, CarArrivalLine, DoorOpenedLine,
DoorClosedLine and CarLeavingLine. The descendant of the class ModelLine
are the classes StartLine and EndLine, representing the beginning and the end
of a simulation. The descendants of the class PassengerLine are the classes Pas-
sengerArrivalLine and the abstract class PassengerInCarLine with descendants
GotInLine and GotOutLine.

6.2 CMCE simulation and optimization
Classes for the CMCE simulation and optimization using a genetic algorithm

are located in the library CirculatingMultiCarElevator.

6.2.1 Model representation and simulation
This section contains the documentation of classes used for a discrete event

simulation.

60

6.2.1.1 Model

The class Model represents a model of a discrete event simulation. During
the simulation, events are planned to a calendar. Events are then processed by
their subjects in the order of their time. Model provides the method Simulate,
which allows running a simulation and returns an instance of the class Simula-
tionResult.

Model has a reference to one instance of the class Building, ElevatorSystem,
Controller and MechanicsComputations. Model contains a list of instances of
the class Passenger and at most one instance of Traffic, which is used in creating
the model description. Model provides access to its instances of classes Building,
ElevatorSystem, Traffic and MechanicsComputations and current time via public
properties.

Model provides methods for planning and removing events and appending
lines to a log (PlanEvent, UnplanEvent and Log), called by descendants of the
class Process during a simulation. Public methods of the class Model also include
the method CallCar called by passengers and the method CarCapacityFull called
by a car to inform the model that the limit of its capacity has been reached.
During planning their movement, cars call the method CanChangeShaft to find
out whether they have enough space to move to the other shaft and the method
GetAvailablePosition to get the furthest available position on their path to their
next stop.

An instance can be created by the public static method CreateModel.
The class model allows creating a deep copy by calling the method DeepCopy.
This method creates deep copies of objects in a model, including an elevator
system, calendar with events and passengers. Only the instance of the class
Building is not copied, because it only contains properties which do not change
during a simulation.

The class SimulationResult contains public properties representing the aver-
age waiting time computed in the simulation, assignment used in the simulation,
the list of passengers and the list of lines logged by the model during the simula-
tion. An instance can be created by the public static method CreateSimulation-
Result.

The class Controller contains the mode of elevator control represented by
the enumeration class ControllerMode, either the trivial control (Controller-
Mode.Trivial) or a control with passengers assigned to cars in advance (Con-
trollerMode.Assigned). In the second case, the model contains an instance of
the class Assignment, which represents such an assignment. Controller contains
methods for assigning calls to cars, which are called by a model and calls appro-
priate methods of a model.

The class Assignment contains a list representing cars assigned to passengers
in the order given by passengers’ identification numbers. Assigned cars are rep-
resented by their total order in the whole elevator system. The class contains
the public static methods for creating a random assignment with given number
of passengers and total number of cars.

Computations connected with movements of cars (distance, velocity or time)
are realized by an instance of the class MechanicsComputations, owned by
a model. Current state of the model is represented by an instance of the class
State. This class manages model’s current time and waiting passengers. It in-

61

cludes public method for placing passengers to their starting floors, getting wait-
ing passengers from floors and removing passengers, and the public constructors.

6.2.1.2 Events

Events in a discrete event simulation are represented by instances of the class
Event. An instance contains time of the event, the type of the event, repre-
sented by an instance of the enumeration class EventType, and an instance of
a descendant of the abstract class Process representing the subject of the event.

Descendants of the class Process are classes Model, Passenger, Doorman and
Car. These classes contain the method ProcessEvent, which is called by a model
during a simulation.

6.2.1.3 Types of events

The types of events connected with a model are represented by instances Start
and End, which represent the beginning and the end of a simulation.

The instances corresponding with cars are ArrivingToFloor, DoorOpened,
StartClosingDoor, DoorClosed, ArrivalPlanning, ConstantVelocity, Decelerat-
ing, ArrivingToFloor, ArrivingToPosition, GettingToOtherShaft and Blocking-
CarNotification.

The event of the type ArrivalPlanning starts planning future movement of
a car. The event StartClosingDoor represents the beginning of closing a door of
a car. The closing of the door can be cancelled, if there are passengers on the floor
wishing to enter the car, who were not present during boarding. The event type
ArrivingToPosition indicates stopping at a position, which is located between
floors. This type of stop is caused by moving away from the path of another car
or waiting for another car to move away. The event of the type BlockingCarNoti-
fication is planned by a car blocking movement of another car to make that car
re-evaluate its path.

Types of events of a passenger are PassengerArriving, GettingIn and Gettin-
gOut, representing entering and leaving a car.

The event planned by an instance of the class Doorman to plan arrivals of
next passengers is represented by the instance DoormanAction.

6.2.1.4 Passengers

Instances of the class Passenger contain information about the passenger’s ori-
gin and destination floor, the car and elevator used by passengers and their arrival
time and waiting time.

Public methods include the method AssignCar called by a model and
the method StopWaitingAt called by a car, when the final waiting time of a pas-
senger is known. An instance can be created by the public static method Cre-
atePassenger, a copy can be created by the method DeepCopy.

Arrivals of passengers are planned by an instance of the class Doorman.
A model creates an instance of the class Doorman at the beginning of a simula-
tion. The doorman then plans an event of the type DoormanAction to the time,
when the first passenger arrives. During this event, the doorman plans arrivals

62

of passengers arriving at that time and then plans its event to the next arrival
time.

6.2.1.5 Cars

The class Car represents a car in an elevator. Cars are ordered by a model to
move towards incoming passengers. During their movement, cars request unoc-
cupied positions, to which they can move, from a model.

An instance of this class contains a list of instances of the class Passenger,
representing the passengers inside the car. Cars use enumeration classes Car-
Movement and CarAction for representing their current state. The movement
of a car is represented by an instance of the class CarMovement, containing
instances Accelerating, MovingWithConstantVelocity, Decelerating, NotMoving
and ChangingShafts. The current action of a car is represented by an instance of
the class CarAction, including instances MovingToStop, MovingAway, Boarding,
DoorOpening, DoorClosing and None.

While planning its next movement, the car requests the next floor to stop
from its instance of the class StopsManager, which manages its future stops and
returns them in the right order.

The car provides the method Call, called by an instance of the class Ele-
vator to call the car to the required floor. The car also contains the method
UnassignStop called in trivial control by a model while assigning a passenger to
another car with free capacity. Other public methods include the method Placed
called by an elevator at the beginning of a simulation, method GetCurrentPosi-
tion called by a car or a model during planning paths of cars, method Distance
called by an elevator in the trivial control to find the closest car for a passen-
ger and the public constructor. The method DeepCopy creates a deep copy of
an instance.

Classes Car and StopsManager use instances of classes Floor and PositionTo-
Move, both descendants of the abstract class Position, for representing positions
in a shaft.

6.2.1.6 Building

An instance of the class Building contains public properties describing a build-
ing. These properties include numbers of the highest and the lowest floor, total
number of floors, height of a floor and a shaft, total population and a list of
numbers of persons on each floor.

Public methods include methods for conversions between numbers of floors
and indices of floors, where floors are indexed from zero, methods for conversions
betweens floor numbers and positions in shafts and the method PositionBetween,
which receives three floors and decides, whether the second floor lies between
the other floors. An instance can be created by the public static method Create-
Building.

6.2.1.7 Elevator system

An instance of the class ElevatorSystem contains a list of elevators in the el-
evator system. Since the properties of all elevators in the elevator system are

63

the same, an instance of this class contains also properties describing elevators.
These properties include the number of elevators, number of cars in an elevator,
door opening and closing time, maximum velocity, acceleration and deceleration,
height of a car, minimum distance between cars, number of floors, time required
to move a car to another shaft and capacity of cars.

Public methods of this class include methods for assigning a car to a passenger,
called by an instance of the class Controller, methods returning a required car or
elevator called by cars and model, method for placing all cars in all elevators in
the system and resetting cars’ positions, both called by a model.

An instance can be created either by the public static method CreateEleva-
torSystem or by the public constructor by copying properties of existing system.
By calling the method DeepCopy, a deep copy of an instance is created.

6.2.1.8 Elevators

An instance of the class Elevator manages a list of cars. Public methods
include methods for assigning passengers to cars, getting cars and placing cars,
all called by the corresponding elevator system. An instance can be created
by the public static method CreateElevator. This class contains the method
DeepCopy.

6.2.1.9 Traffic

The abstract class Traffic represents a type of traffic in a building. An instance
of a descendant of this class contains public properties representing total number
of passengers, ratio of passengers in general traffic and time period of passengers’
arrival times. The class includes the public abstract method CreatePassengers,
which creates a list of passengers on the basis of the traffic.

The descendants of this class are classes UpPeak, DownPeak, LunchPeak and
Interfloor. The class UpPeak extends the properties of the class Traffic by ratio of
passengers travelling from the ground floor, DownPeak adds ratio of passengers
travelling to the ground floor, LunchPeak adds ratio of passengers travelling to
the ground floor, the number of the floor with a restaurant or a canteen and ratio
of passengers travelling to this floor.

6.2.2 Genetic algorithm
This section contains the documentation of classes used in the imple-

mentation of a genetic algorithm. During the genetic algorithm, some
operations are run asynchronously using System.Threading.Tasks.Task, Sys-
tem.Threading.Tasks.Task<TResult> and the async/await concept [29].

6.2.2.1 Evolution

The class Evolution represents a genetic algorithm. At the beginning of
the evolution, an initial population of random chromosomes is created. In each
generation, a new population is created by crossover. Then mutation is performed
on chromosomes in the new population, except for elite chromosomes. The worst

64

chromosomes are removed from the new population and replaced by new ran-
dom chromosomes. The best chromosome from all generations is returned from
the evolution.

The class Evolution contains the public method RunAsync, which allows run-
ning the evolution. When the initial population is created, costs of chromosomes
are computed asynchronously (in the method InitialPopulationAsync). During
crossover, new chromosomes are created and their costs are computed asyn-
chronously (in the method NextGenerationTournamentSelectionAsync). An in-
stance can be created by the public static method CreateEvolution. This method
accepts an instance of the class ChromosomeEvaluator for computing costs of
chromosomes and parameters for evolution, including population size, mutation
rate, mutation decrease between generations, minimum mutation rate, number
of rivals in the tournament selection, maximum number of iterations, percent-
age of elites and percentage of chromosomes, which will be replaced by random
chromosomes.

6.2.2.2 Chromosomes

The class Chromosome represents a chromosome used by the class Evolu-
tion. A chromosome contains an instants of the class Assignment, representing
its assignment of passengers to cars. The class includes the static method Tour-
nament, allowing running the tournament between a list of chromosomes, called
by the class Evolution.

An instance contains the public method Crossover returning a pair of new
chromosomes created by crossover with another instance. The cost of a chro-
mosome can be computed by calling the method ComputeCost. For comput-
ing the cost, the chromosome uses an instance of the class ChromosomeEval-
uator passed to this method. After the cost is computed, the instance saves
the cost to return it immediately, when the method ComputeCost is called again.
The instance also contains a partial simulation, a model in the state after half
of the passengers arrived. Partial simulation is assigned to the chromosome by
ChromosomeEvalutator after computing the cost or creation of the chromosome
by single-point crossover. An instance can be created by the public static method
CreateRandom, which creates a new chromosome with a random assignment.

6.2.2.3 Computing of costs of chromosomes

An instance of the class ChromosomeEvaluator contains references to classes
Building, ElevatorSystem, Traffic and a list of passengers. An instance can be
created by the public static method CreateChromosomeEvaluator. The class
contains the public method Evaluate, which evaluates the chromosome passed as
an argument and returns its cost. For evaluating the chromosome, the instance
of the class ChromosomeEvaluator creates an instance of the class Model, calls
model’s method Simulate and returns the computed average waiting time. After
performing simulations, ChromosomeEvaluator saves the computed costs.

65

6.2.2.4 Population

Instances of the class Population represent a generation in the algorithm run
by the class Evolution. An instance of this class contains a list of chromosomes in
the generation, an instance of the class ChromosomeEvaluator used for evaluating
the chromosomes, its size and length and total number of cars of assignments in
this population.

The method MutationAsync performs mutation on all chromosomes in
the population using the given mutation rate and number of elites excluded from
mutation. The method ReplaceWorstAsync replaces the worst chromosomes by
new random chromosomes. Costs of mutated chromosomes and new chromo-
somes are computed asynchronously. The method FindBest returns the chromo-
some with the lowest cost of the population. Another public methods include
a method returning random chromosome from the population and a method for
setting the values in the assignment of the given chromosome. Chromosomes are
added to the population by the method Add. An instance of the class Population
is created by the public static method CreatePopulation. Methods of this class
are called by an instance of the class Evolution during a genetic algorithm.

6.3 GUI
The user interface is implemented in the project CirculatingMultiCarEleva-

torGUI. This project contains classes for reading from files, classes for writing
to files and forms for the input of parameters, running a genetic algorithm and
simulations, displaying results and animations of CMCE control.

6.3.1 Files
This section contains the documentation of classes used for reading from files

and writing to files. Instances of these classes are used by forms.

6.3.1.1 Format of files

The class FileFormatInfo specifies the format of files generated by the appli-
cation. The class provides keywords, delimiters and integers representing number
of parameters. These values are used by writers and readers.

6.3.1.2 Writers

The class ParametersWriter provides writing asynchronously properties of
the model to a file in the required format. The class PassengersWriter pro-
vides saving generated passengers to a file. For writing asynchronously to
files, these classes use the method System.IO.StreamWriter.WriteLineAsync of
the class System.IO.StreamWriter.

6.3.1.3 Readers

Classes ParametersReader and PassengersReader provide loading model prop-
erties and passengers asynchronously from files. The class ParametersReader re-

66

turns parameters from a file in the form of a list of integers from its method
LoadParametersAsync. The class PassengersReader returns a list of instances of
the class Passenger from its method ReadPassengersAsync.

For reading from the file, both classes use an instance of the class FileReader.
This class includes the method ReadKeywordAsync for reading a given keyword,
the method IsComment, which recognizes a commented line, and the method
ReadLineAsync. The class implements the interface System.IDisposable. Fil-
eReader uses the method System.IO.StreamReader.ReadLineAsync of the class
System.IO.StreamReader to read from files asynchronously.

6.3.2 Forms
This section contains the documentation of forms. Forms are descendants of

the class System.Windows.Forms.Form. There are some extension methods in
the static class Extension simplifying working with components.

6.3.2.1 Parameters of the model

ParametersForm accepts parameters of a model. For obtaining populations
of floors, the form creates an instance of the form BuildingPopulationForm. Pa-
rametersForm creates instances of the classes Building and ElevatorSystem and
either an instance of the class Traffic or a list of passengers and passes them to
SummaryForm.

6.3.2.2 Simulations and optimization

An instance of the form SummaryForm displays the summary of a model
and requests the file for writing the result. The form creates passengers, if it
did not receive them from ParametersForm, and writes them to a file, if it is
required. The form runs the simulation of trivial control. Then the form shows
GeneticAlgorithmProgressionForm, which runs the evolution to obtain an opti-
mized assignment and shows the progress of the evolution. When the evolution
ends, this form runs the simulation of the found assignment. After the compu-
tation finishes, it passes the instances of the class SimulationResult to the form
SimulationResultForm.

6.3.2.3 Results

The form SimulationResultForm accepts the results of the trivial and opti-
mized assignment. The form writes the results to a file and displays a description
of a model. For showing the model description and writing result to a file, the form
uses static methods ShowModelDescription and WriteResultToFile of the static
class SimulationDescriptor.

6.3.2.4 Animation

On request, SimulationResultForm creates an instance of the form Anima-
tionForm, implementing the interface IElevatorAnimation. This form displays
a simple animation of the simulation. The events in a simulation are represented
by a list of instances of the class Line. The form uses the static class Painter for

67

drawing pictures and instances and the class CarState for representing current
states of cars.

6.4 File formats
Parameters of the model and passengers in the simulation can be loaded from

files. The result of simulations is written to a file. This section describes formats
of these files (see section A.1).

Input files (files with parameters, passengers and assignments) can contain
comments. A comment begins with the character # and ends at the end of
the line. The last parameter in the file cannot be followed by any other characters.
Spaces and tabulators are skipped.

6.4.1 Input file with parameters
The file with parameters must contain keywords elevator, building and traffic.

The keyword traffic can be followed by one of the keywords up-peak, down-peak,
lunch-peak or interfloor, followed by corresponding parameters. Each parameter
must be on a separate line. The parameters must be integers and they must
be expressed in units used in the simulation. Distances must be indicated in
centimetres, time in hundredths of seconds, velocity in cm/s and acceleration
and deceleration in cm/s2. Number of persons on floors are listed from the lowest
floor to the highest floor after the height of a floor, each floor on a separate line.

The order of the parameters follows their order in the first form (see Fig-
ure 5.1). The keyword elevator is followed by lines containing:

• the number of elevators

• the number of cars in an elevator

• the capacity of a car

• the time required to open the door of a car

• the time required to close the door of a car

• the maximum velocity

• the acceleration

• the deceleration

• the time required to move a car from one shaft to the other shaft

• the height of a car

• the minimum distance

The keyword building is followed by:

• the number of the lowest floor

• the number of the highest floor

68

• the height of a floor

• the number of persons on each floor from the lowest floor to the highest
floor (each floor on separate line)

• the time required for boarding and alighting of a passenger

The keyword traffic can be the last word in the file. Alternatively, it can be
followed by exactly one of the keywords up-peak, down-peak, lunch-peak or inter-
floor. This keyword must be followed by corresponding parameters. The keyword
up-peak must be followed by:

• the number of passengers

• the percentage of passengers travelling from the ground floor

• the percentage of passengers in general traffic

• the time period

The keyword down-peak must be followed by:

• the number of passengers

• the percentage of passengers travelling to the ground floor

• the percentage of passengers in general traffic

• the time period

The keyword lunch-peak must be followed by:

• the number of passengers

• the percentage of passengers travelling to the ground floor

• the percentage of passengers travelling to the floor with a canteen

• the number of the floor, where the canteen is situated

• the percentage of passengers in general traffic

• the time period

The keyword interfloor must be followed by:

• number of passengers

• time period

69

6.4.2 Input file with passengers
In the file with passengers, each passenger must be on a separate line. Each

line must contain four integers:

• the identification number of the passenger

• the time of arrival of the passenger in hundredths of seconds

• the origin floor of the passenger

• the target floor of the passenger

These numbers must be separated by spaces or tabulators.

6.4.3 Input file with assignment
The program allows running a simulation with requested assignment of pas-

sengers to cars. This assignment is loaded from a file. Each line of this file
contains three integers:

• the ID of a passenger

• the ID of the elevator assigned to the passenger

• the ID of the car assigned to the passenger

These numbers must be separated by spaces or tabulators. Each passenger ID
must be contained exactly once in the file.

6.4.4 Output file
Results of simulations are written to a file. This file contains:

• average waiting times in the trivial control and the solution found by the ge-
netic algorithm

• the summary of model and evolution parameters

• cars assigned to passengers in the trivial control and the solution of the ge-
netic algorithm

• the waiting times of passengers in the trivial control and the solution of
the genetic algorithm

• logs from simulations of the trivial control and of the assignment of passen-
gers to cars found by the genetic algorithm

70

Conclusion
Efficient elevator system control with short waiting times is an important

part of the design of buildings. Apart from conventional elevator system con-
trol methods, new methods based on different approaches are researched. These
methods include algorithms for elevator system control based for example on lin-
ear programming ([17], [18]), genetic algorithms ([19], [20], [21], [22], [26], [28]),
genetic programming ([23]), neural networks ([24], [25]), tabu search ([26], [28])
or partical swarm optimization ([27], [28]) and methods of finding the optimal car
parking ([14], [15]). Multi-car elevator control must be aware of the movement of
each car in the elevator. Circulating multi-car elevator is one of the new types of
elevators invented to provide better vertical transportation in high buildings ([6],
[4]).

This thesis was focused on optimizing CMCE systems regarding the average
waiting time. In the simulations of the trivial control of CMCE, which were pre-
sented in this thesis, waiting times decreased with increasing number of cars and
sometimes slightly increased with very high number of cars. With small number
of cars, waiting times increased with increasing number of passengers. With more
cars, waiting times were sometimes slightly better with more passengers. By in-
creasing the capacity of cars, waiting times could be improved, especially with
few cars. With more cars, higher car capacity was helpful mainly in the up-peak
and down-peak traffic. In most simulations, waiting times were the highest in
the down-peak and the lowest in the up-peak.

According to the solutions found by the genetic algorithm, the trivial control,
assigning a call to the nearest car, is not optimal for CMCE. In some cases,
the genetic algorithm found a solution with the average waiting time lower by at
least 40 %. Waiting times in the CMCE system could be reduced by implementing
a more efficient algorithm of elevator control.

Within this thesis, we created a computer program including a simulator of
CMCE and implementation of a genetic algorithm searching for the most efficient
CMCE system control.

Future work could be focused on finding a computationally less expensive
way of evaluating CMCE control and improving the algorithm of optimization.
The optimization method could also include elimination of extremely long wait-
ing times, which is not guaranteed by using solely the average waiting time as
the optimization criterion [16]. We can observe this fact on our results presented
in chapter 3, where waiting times of several passengers are usually far higher than
the average waiting time (see section A.1). The animation could be improved to
display more information about cars.

71

Bibliography
[1] G. C. Barney and Lutfi Al-Sharif. Elevator traffic handbook: theory and prac-

tice. Second edition. London: Routledge, Taylor & Francis Group, London,
2016.

[2] Wikipedia contributors. Escalator — Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Escalator&oldid=
840948517, 2018. Online. Accessed 28 April 2018.

[3] Wikipedia contributors. Elevator — Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Elevator&oldid=
841200623, 2018. Online. Accessed 16 May 2018.

[4] Wikipedia contributors. Paternoster — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Paternoster&
oldid=842636857, 2018. Online. Accessed 28 April 2018.

[5] Wikipedie. Výtah — wikipedie: Otevřená encyklopedie. https://cs.
wikipedia.org/w/index.php?title=V%C3%BDtah&oldid=15747451, 2018.
Online. Accessed 8 June 2018.

[6] Hitachi. http://www.hitachi.co.jp/New/cnews/month/2006/03/0301.
html, March 2006. Online. Accessed 28 April 2018.

[7] Wikipedia contributors. Online algorithm — Wikipedia, the free en-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Online_
algorithm&oldid=827449285, 2018. Online. Accessed 16 May 2018.

[8] Randy L. Haupt and Sue Ellen Haupt. Practical Genetic Algorithms. Second
edition. John Wiley & Sons, Inc., Hoboken, New Jersey, 2004.

[9] CTBUH. CTBUH Tall Building Height Calculator. http:
//www.ctbuh.org/LinkClick.aspx?fileticket=s4SVxV%2fruCM%3d&
tabid=1007&language=en-GB. Online. Accessed 5 June 2018.

[10] KONE. Elevator solutions. https://www.kone.my/new-buildings/
elevators-lifts. Online. Accessed 5 June 2018.

[11] James W. Fortune. How Fast Should Tall Building Elevators Go? CTBUH
Journal, (3), 2016.

[12] Nationwide Lifts. Elevator Dimensions. http://www.home-elevator.net/
info-elevator-dimensions.php. Online. Accessed 5 June 2018.

[13] Yuki Kuroda, Mitsuru Nakata, and Shingo Yamaguchi. A Problem and Its
Solution for Multi-Car Elevator Group Control. In ITC-CSCC: Interna-
tional Technical Conference on Circuits/Systems, Computers and Commu-
nications, pages 693–696, 2008.

72

https://en.wikipedia.org/w/index.php?title=Escalator&oldid=840948517
https://en.wikipedia.org/w/index.php?title=Escalator&oldid=840948517
https://en.wikipedia.org/w/index.php?title=Elevator&oldid=841200623
https://en.wikipedia.org/w/index.php?title=Elevator&oldid=841200623
https://en.wikipedia.org/w/index.php?title=Paternoster&oldid=842636857
https://en.wikipedia.org/w/index.php?title=Paternoster&oldid=842636857
https://cs.wikipedia.org/w/index.php?title=V%C3%BDtah&oldid=15747451
https://cs.wikipedia.org/w/index.php?title=V%C3%BDtah&oldid=15747451
http://www.hitachi.co.jp/New/cnews/month/2006/03/0301.html
http://www.hitachi.co.jp/New/cnews/month/2006/03/0301.html
https://en.wikipedia.org/w/index.php?title=Online_algorithm&oldid=827449285
https://en.wikipedia.org/w/index.php?title=Online_algorithm&oldid=827449285
http://www.ctbuh.org/LinkClick.aspx?fileticket=s4SVxV%2fruCM%3d&tabid=1007&language=en-GB
http://www.ctbuh.org/LinkClick.aspx?fileticket=s4SVxV%2fruCM%3d&tabid=1007&language=en-GB
http://www.ctbuh.org/LinkClick.aspx?fileticket=s4SVxV%2fruCM%3d&tabid=1007&language=en-GB
https://www.kone.my/new-buildings/elevators-lifts
https://www.kone.my/new-buildings/elevators-lifts
http://www.home-elevator.net/info-elevator-dimensions.php
http://www.home-elevator.net/info-elevator-dimensions.php

[14] Alex Valdivielso, Toshiyuki Miyamoto, and Sadatoshi Kumagai. Multi-Car
Elevator Group Control: Schedule Completion Time Optimization Algo-
rithm with Synchronized Schedule Direction and Service Zone Coverage Ori-
ented Parking Strategies. In ITC-CSCC: International Technical Conference
on Circuits/Systems, Computers and Communications, pages 689–692, July
2008.

[15] Matthew Brand and Daniel Nikovski. Optimal parking in group elevator
control. In IEEE International Conference on Robotics and Automation,
volume 1, pages 1002–1008, April 2004.

[16] Matthew Brand and Daniel Nikovski. Risk-Averse Group Elevator Schedul-
ing. In 14th International Congress on Vertical Transportation Technologies,
pages 2066–2070, April 2004.

[17] Srikumar Ramalingam, Arvind U. Raghunathan, and Daniel Nikovski. Sub-
modular Function Maximization for Group Elevator Scheduling. In ICAPS
International Conference on Automated Planning and Scheduling, pages 233–
241, 2017.

[18] Mirko Ruokokoski, Harri Ehtamo, and Panos M. Pardalos. Elevator dispatch-
ing problem: a mixed integer linear programming formulation and polyhedral
results. Journal of Combinatorial Optimization, 29(4):750–780, May 2015.

[19] P. Cortes, J. Larrañeta, and L. Onieva. A genetic Algorithm for Controlling
Elevator Group Systems. Lecture Notes in Computer Science: Artificial
Neural Nets. Problem Solving Methods, 2687:313–320, June 2003.

[20] Berna Bolat, Pablo Cortés, Ersun Yalçin, and Mustafa Alişverişçi. Optimal
Car Dispatching For Elevator Groups Using Genetic Algorithms. Intelligent
Automation & Soft Computing, 16:89–99, 2010.

[21] Mehmet Baygin, Dilbirin Orhan, Orhan Yaman, and Mehmet Karakose. A
New Real Time Control Approach for Time Efficiency in Group Elevator
Control System. International Journal of Intelligent Systems and Applica-
tions in Engineering, 4(Special Issue-1):211–215, September 2016.

[22] Jayanta K. Debnath and Gursel Serpen. Real-time optimal scheduling of a
group of elevators in a multi-story robotic fully-automated parking structure.
Procedia Computer Science, 61:507–514, 2015.

[23] Lu Yu, Jin Zhou, Shingo Mabu, Kotaro Hirasawa, Jinglu Hu, and Sandor
Markon. Double-deck elevator group supervisory control system using ge-
netic network programming with ant colony optimization with evaporation.
JACIII: Journal of Advanced Computational Intelligence and Intelligent In-
formatics, 11:1149–1158, 01 2007.

[24] C. Erdem Imrak and Mustafa Ozkırım. The modelling and simulation of
elevator group control sytems for public service buildings. IFAC Proceedings
Volumes, 36(7):145–150, 2003.

73

[25] Le-fu Cui. An elevator intelligent scheduling method using neural network
control. International Journal of Digital Content Technology and Its Appli-
cations, 7(3):174, 2013.

[26] Berna Bolat and Pablo Cortés. Genetic and tabu search approaches for
optimizing the hall call—car allocation problem in elevator group systems.
Applied Soft Computing, 11(2):1792–1800, 2011.

[27] Berna Bolat, Oğuz Altun, and Pablo Cortés. A particle swarm optimization
algorithm for optimal car-call allocation in elevator group control systems.
Applied Soft Computing, 13(5):2633–2642, 2013.

[28] Berna Bolat, Oğuz Altun, Pablo Cortes, Yunus Emre Yildiz, and Ali Osman
Topal. A Comparison of Metaheuristics for the Allocation of Elevators to
Calls in Buildings. Journal of Polytechnic, 20(3):519–529, 2017.

[29] Microsoft. Microsoft Developer Network. https://msdn.microsoft.com,
2018. Online. Accessed 24 May 2018.

74

https://msdn.microsoft.com

A. Attachments

A.1 Input and output files
Attachments contain examples of files with model parameters (Parame-

ters.txt), passengers (Passengers.txt), assignment of passengers to cars (Assign-
ment.txt) and results (Result.txt). Files with parameters and passengers are in
the format valid for loading the data to the program. Examples of files are located
in the folder Files.

In the subfolder Passengers of the folder Files, there are files with passengers
used in simulations in chapter 3. In the subfolder Results, there are output files
of examples presented in subsection 3.1.4 and subsection 3.2.4.

A.2 Source codes
Attachments contain source files of the program located in the folder Source

codes.

A.3 Program documentation
Attachments contain the HTML documentation of the program built from

the XML documentation. The introductory page can be displayed by opening
the file index.html. The documentation is located in the folder Help.

75

	Introduction
	Model description
	Building
	Elevator system
	Properties of an elevator system
	Rules for the movement of cars

	Traffic
	Types of the traffic
	Generating passengers

	Optimization criterion

	Optimization
	Trivial control
	Genetic algorithm
	Genetic algorithms
	Genetic algorithm in our implementation

	Results and discussion
	Simulations in a ten-storey building
	AWT in the trivial control with different number of cars and 300 passengers
	AWT for different number of passengers
	Improving AWT by increasing car capacity
	Evaluation of efficiency of the trivial control and comparison with results found by the genetic algorithm
	Up-peak with 4 cars
	Down-peak with 5 cars
	Down-peak with 6 cars
	Lunch-peak with 4 cars
	Lunch-peak with 5 cars
	Interfloor with 5 cars
	Interfloor with 6 cars

	Simulations in a twenty-storey building
	AWT in the trivial control with different number of cars and 300 passengers
	AWT for different number of passengers
	Improving AWT by increasing car capacity
	Evaluation of efficiency of the trivial control and comparison with results found by the genetic algorithm
	Up-peak with 6 cars
	Down-peak with 6 cars
	Down-peak with 7 cars
	Down-peak with 8 cars
	Down-peak with 9 cars
	Lunch-peak with 8 cars
	Interfloor with 8 cars
	Interfloor with 9 cars

	Conclusion

	State of art
	User interface
	Input of parameters
	Running the algorithm
	Genetic algorithm progress
	Results
	Animation

	Software documentation
	Communication with GUI
	Animation
	Lines of a log

	CMCE simulation and optimization
	Model representation and simulation
	Model
	Events
	Types of events
	Passengers
	Cars
	Building
	Elevator system
	Elevators
	Traffic

	Genetic algorithm
	Evolution
	Chromosomes
	Computing of costs of chromosomes
	Population

	GUI
	Files
	Format of files
	Writers
	Readers

	Forms
	Parameters of the model
	Simulations and optimization
	Results
	Animation

	File formats
	Input file with parameters
	Input file with passengers
	Input file with assignment
	Output file

	Conclusion
	Bibliography
	Attachments
	Input and output files
	Source codes
	Program documentation

