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Abstract: Magic is a popular element in current computer games. Although
most games spoil the sensation of magic as of something extraordinarily sub-
tle by allowing the player to cast spells by simply hitting key combinations,
several games require the player to finish a more complicated action be-
fore casting a spell: Drawing a complicated glyph that represents the spell
is one of such actions. This thesis aims to provide a repurposable library
that would allow simple implementation of structured glyph-drawing-based
in-game spell systems. The thesis studies several relevant approaches to pat-
tern recognition, describes a neural-network based method for recognition
of various shapes and shape combinations, develops a system for describing
the parameters and results of the used algorithm in terms of predefined spell
shapes and their recognized combinations, and implements this approach in
a library and an accompanying simple demonstrational game. The library
and its parameters are benchmarked and systematically optimized.
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1. Introduction

Magic has always been a popular part of computer games. In many games,
magic has its own lore and laws that make it systematical. Great examples
of the complexity of magical spell systems include the games Magicka and
Magicka 2, where the player casts spells by combining eight elements (as seen
on fig. 1.1): For example, using only earth element results in a rock thrown
at the enemy, but adding fire will create a classic fireball.

In books and movies, wizards can be seen performing complicated hand
gestures or drawing complex shapes in order to cast spells. In games, on the
other hand, casting magic is usually extremely easy, since players may often
just push a few buttons to cast even the strongest spells. This spoils the feel-
ing of magic as something extraordinary and secret, requiring years of study.
Complicated magic systems allow the game developers to engage players in a
different game experience, requiring focus, some amount of creative thinking,
and possibly cooperation with other players.

In this thesis, we focus on the constructive kind of spell casting: While
the majority of games simply binds spells to buttons, there are several that
use some kind of different system. One class of such systems uses pattern
recognition algorithms to translate the player’s image-like (or, say, rune-like)
input to a spell definition. However, as shown in the next section, these
systems usually recognize only simple gestures or patterns, which is partly
caused by the difficulties in implementing such a system1. The goal of this
thesis is to create a comprehensive pattern recognition system that can be
easily plugged into games to allow simple and robust recognition of player-
drawn shapes and their translation to an arbitrary spell system.

1In this thesis we ignore other difficulties, which mainly include various marketing and
accessibility issues.

Figure 1.1: Magicka spell interface. Image taken from Mag.
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Figure 1.2: Castlevania: Dawn of Sorrow spell interface. Images taken from
Cas.

1.1 Pattern recognition in current games

Symbols and gestures are usually an integral part of the magic and there were
many attempts to bring them into video game environment. Howard [How14]
provides a classification of existing gestural systems into three categories
(which sometimes overlap and combination of these approaches is used):

Alternative controllers One such category are systems that utilize alter-
native controllers to mouse and keyboard, such as Wiimote or Kinect.
A recent game from this category is Fable: The Journey, where the
player casts spells by moving his hands: For example, push spell is cast
by pushing into the air. Patterns made by the player are recognized
using Kinect technology. While moves are simple in nature, such as
waving sideways or back and forth, both hands at the same time can
be used, which results in quite complex gestures.

Restricted drawing forms Another technique used in several games is to
let player draw into a predefined grid, or through predefined points.
Both Castlevania: Dawn of Sorrow and Deep Labyrinth take advan-
tage of an Nintendo DS drawing interface that allows players to draw
magic signs. In Castlevania, players draw signs by connecting glowing
points in a circle in out-of-combat situations, as seen in fig. 1.2. Deep
Labyrinth introduces special casting interface that consists of 3×3-grid,
where the player connects dots.

The restriction to pre-existing following grid takes away a part of the
creative freedom, but makes recognition algorithms much easier to im-
plement and run: For example, only tracing the order of the connected
points in Deep Labyrinth is sufficient to recognize the spell.
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Figure 1.3: Black & White teleport and fireball gestures. Images taken from
Ban.

Free-hand drawing One of the first games to integrate some form of pat-
tern recognition of drawn shapes is Black & White. Using a mouse,
players are able to cast miracles by drawing a specific pattern on the
ground, as in fig. 1.3. The player can draw anything anywhere on the
ground, and its up to the game logic to recognize if the result matches
some of the miracle patterns. Alternatively, the player can still cast
miracle by clicking on a button — presumably because a lot of players
had trouble drawing the miracles.

A similar approach to recognition of player-drawn spells is used in Arx
Fatalis. Players are drawing symbols into the air with a mouse, and a
sequence of the drawn symbols represents some spell. While casting,
game encodes the mouse moves into characters that represent the 8
directions. After player finishes the spell, a Levenshtein distance is
calculated from each predefined spell sequence to the player’s created
sequence and the candidate with the lowest Levenshtein cost is returned
as a matching spell.

1.2 Goals

The result of the thesis allows the players to draw complex spells, preferably
more complex than in Black&White or Arx Fatalis. For that purpose, we
create an algorithm that recognizes a set of basic symbols which can be
arbitrarily combined to form new, very complex symbols.

Possibilities of such combinations include composition (symbol is made
from other smaller symbols) and embedding (a symbol is put inside another
symbol, or into a somehow important position relative to other symbol, e.g.
on the top of a triangle). Several examples of symbols and their combinations
is shown in fig. 1.4.
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Figure 1.4: In the figure, embedded positions are always in the middle of the
shape. From left to right: circle with embedded triangle; square composed of
triangles; triangle composed of triangles, with water drop embedded; circle
composed of triangles, with embedded circle composed of water drops; trian-
gle composed of circles, with embedded triangle composed of circles; square
composed of triangles, with embedded triangle, with embedded circle
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We refrain from using any aiding structures (as e.g. in Castlevania) to
retain generality of the system.

For the purpose of evaluation the work, we specify the following require-
ments on the resulting recognition system:

Durability against shape deformations Since we want to recognize
hand-drawn shapes, our system has to be prepared for human-like
imprecise drawing, especially when drawing with a mouse. However,
drawing an exact line between a shape that should still be recognized
and a shape that should be rejected is difficult and possibly subjective;
we therefore only evaluate the performance on deformed shapes.

Extensibility We would like to offer an easy-to-use library that can be
used in other projects. For this purpose, we need to let the users
define their own shapes that should be recognized. The library should
provide interfaces for both preparing custom shapes and using them in
the pattern recognition.

Performance Our system should be applicable in demanding video games
environment, prepared for the possibility of many players drawing their
spells at once. To achieve this, we require fast, ideally parallelizable
recognition technique.

Recognition of embedded shapes To allow players cast complex spells,
we need to give them an ability to somehow encode multiple symbols
in one spell. One possible way to do it are shape embeddings. Each de-
fined shape can contain several areas, where other shapes might occur.
These areas are then processed in our recognition system and classified.

Recognition of shape conglomerations For the purpose of this work, we
consider shape conglomeration a group of shapes from the same shape
class e.g. circle, arranged such that the whole conglomeration forms
another shape. We can also look at it as taking the curves of the
shape, sampling them uniformly, and then replacing all the samples
with the pattern shape.

1.2.1 Approach

The thesis is divided into several steps: First chapter reviews the approaches
and algorithms commonly used to solve the pattern recognition problem.
We have closely examined three algorithms, namely the Normalized cross-
correlation,Shape matching and object recognition using shape contexts and

7



Matching of Shapes Using Dynamic Programming. In the same chapter, we
describe Artificial neural networks and place them in the context of pattern
recognition. In chapter 3, we describe the implementation of the resulting
neural-network-based recognition algorithm. The implementation is accom-
panied by a simple game prototype that is used to demonstrate the properties
of the recognition system. Finally, we perform benchmarking of the perfor-
mance of our algorithm, with respect to recognition success rate and speed.

In the appendix, we describe the interface of our algorithm and provide a
guide for using it in another project. A simple explanation of demonstrational
game usage is also included.
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2. Pattern recognition

In this chapter, we describe several classes of algorithms for pattern recog-
nition. In the first part, we review some of the algorithms, namely the Nor-
malized cross-correlation, Shape matching and object recognition using shape
contexts and Matching of Shapes Using Dynamic Programming. The second
section is devoted to the Artificial neural networks in the context of pattern
recognition, which are later used for the implementation of thesis goal.

Pattern recognition problem is a broad term for classification problems
that are based on the similarity of the features of classified objects. Precise
mathematical definition can be found in the work of Nieddu and Patrizi
[NP00]. We will focus more on the shape recognition problems category,
which is a form of pattern recognition. A shape can be typically defined as an
equivalence class under the group of transformations, and the problem is then
to algorithmically approximate the human-like visual pattern recognition.
We define an image as a two-dimensional grid of pixels with values from the
range [0, 1] and we define the shape as a group of image instances where a
human sees the same shape.

2.1 Algorithms classification

There are many of algorithms on for pattern recognition that can be catego-
rized based on different criteria. Dougherty [Dou12] categorize the algorithms
into following approach-based classes:

Statistical approach Algorithms in this category are based on the under-
laying probability model. The shape class is determined by the features
that can be automatically extracted from its members and the proba-
bility distributions of the shape belonging to each class. An example
of such algorithm is the naive Bayess classifier.

Nonmetric approach This class contains decision tress, syntactic meth-
ods, and rule-based classifiers. The idea of these algorithms is that
each shape can be decomposed into the simplest sub-patterns called
primitives. These primitives are then viewed as a language and the
shape class as a set of rules, from which the shape can be derived.
However, the inference of the grammar rules from the training data
and the detection of the primitives are difficult problems.

Cognitive approach Neural networks and support vector machines belong
to this class. Neural networks are inspired by biological neural struc-
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tures. They can be described as massively parallel computation systems
that can learn complex input-output relationships.

At the same time, [Dou12] remark:

However, in spite of the seemingly different underlying
principles, most of the neural network models are implicitly
similar to statistical pattern recognition methods.

[BL08] proposes in the work different classification based on the creation
process of the classifier. The algorithms are divided into learning-based ap-
proaches and template-based approaches. In the learning-based approaches,
pattern classifiers are obtained through training on pre-classified samples.
In the template based approaches, patterns are described by templates and
the recognition problem is transformed into searching for the best matching
template for a given input image.

Another classification proposed by Ghafoor, Naveed Iqbal, and Khan
[GNIK03] divides the algorithms into three classes based on the level of pre-
processing:

• Algorithms that use pixel values directly, e.g. correlation-based meth-
ods. Example from this category is the normalized cross-correlation,
described in section 2.2.

• Algorithms that use low-level features such as edges and corners, e.g.
distance transform method, described in Ghafoor, Naveed Iqbal, and
Khan [GNIK03].

• Algorithms that use high-level features such as identified objects or
relation between the features, e.g. graph-theoretic-methods [BA83].

Given the amount of algorithms to choose from, we have decided to review
only a few of them, namely the normalized cross-correlation, shape contexts
object matching and matching of shapes using dynamic programming, and
the general approach of using the neural networks, which we use in our
algorithm implementation.

2.2 Normalized cross-correlation

Following description is based on the work of [Lew01]. Cross-correlation is
a method to measure the similarity between a template and a given area
of an image, both in the form of a grid of pixel values. The term cross-
correlation itself means a difference between two signals. It is one of the
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oldest approaches to pattern and feature recognition and extraction, and
still serves as a base for more complex algorithms.

It works by computing the distance between an image and the searched
template. We can compute an Euclidean distance of a image f and a template
t, where pattern is on a position (u v), by comparing corresponding pixels of
the image at (x y) and the template shifted to (x− u y − v).

d2f,t(u, v) =
∑
x,y

[f(x, y)− t(x− u, y − v)]2

When expanded, it gives us three terms. One of them is the cross correlation
term c(u, v).

d2f,t(u, v) =
∑
x,y

f(x, y)2 − 2c(u, v) +
∑
x,y

t(x− u, y − v)2

c(u, v) =
∑
x,y

f(x, y) ∗ t(x− u, y − v).

Other two terms express the energy (brightness) of the template and the
image, respectively. We perform this computation for all possible values of
u, v, looking for the lowest value. The we can then consider distances lower
than a certain threshold to be a match, and the corresponding u, v terms
give us the location.

Computing distance this way has several serious drawbacks. It is compu-
tationally demanding since we have to consider every position and every pixel
appears in the computation many times, based on the size of the template.
The method may also give false matches if the image energy changes a lot
with the position. Also, the range of values of cross-correlation term depends
on the size of the template and it is not invariant to scaling and rotation.

The performance of the method can be improved substantially if we use
convolution. Convolution is an integral that expresses the amount of overlap
of one function g as it is shifted over another function f, which is similar
to the cross-correlation. For discrete real valued signals such as pixels of an
image, they differ only in a time reversal in one of the signals. We can then
apply the convolution theorem.

Convolution theorem [Wik18] states that when certain conditions are met,
Fourier transform of a convolution is an element-wise product of Fourier
transforms of input signals. From Convolution theorem follows that time
domain or space domain convolution is equivalent to element-wise multipli-
cation in the frequency domain. To compute convolution, we simply need
to take element-wise multiplications of Fourier transforms of signals to be
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convoluted. Cross-correlation differs in that we take the complex conjugate
of the Fourier transform of the second signal.

Problems with the range of cross-correlation value and dependency on
brightness can be fixed by using normalized cross-correlation, where the im-
age and the template vectors are normalized to unit length. Other desired
aspects, such as scale invariance, has been addressed in many algorithms
using a cross-correlation method. However, they usually introduce some
trade-offs and they may not achieve all the required properties together.

Normalized cross-correlation is defined as:

γ(u, v) =

∑
x,y f(x, y)[f(x, y)− f̄u,v][t(x− u, y − v)− t̄]

{
∑

x,y f(x, y)[f(x, y)− f̄u,v]2
∑

x,y[t(x− u, y − v)− t̄]2}0.5

where t̄ is the mean of the feature pixel brightnesses and f̄u,v is the mean of
the values of f(x, y) in the region under the feature [Lew01].

2.3 Shape matching and object recognition

using shape contexts

Shape matching approaches that use shape contexts are usually based on the
extracted features, which generally introduces a more robust recognition of
deformed images. Shape context is usually a group of shape features and their
relations and the shape class is then defined by their similarity. We review
the algorithm by Belongie, Malik, and Puzicha [BMP02]. The approach
attempts to find corresponding feature points of the image and the template,
and then computes their distance as a sum of errors of corresponding points.

We treat an image as a possibly infinite set of points that for the shape
and we assume that each shape is represented by a finite subset of its points.
We extract from both image and template a certain number of feature points,
100 is recommended by the authors. These points do not need to be the key-
points, such as maxima of curvature or corners. This allows us to use a
simple extraction method like edge detection.

With feature points extracted, we need to find the corresponding points
between the template and the tested image. To do so, Belongie, Malik, and
Puzicha [BMP02] introduces a shape context descriptor 2.1, defined by the
sample points and their relations. For each sample point p, we can create a
set of vectors originating from p to all other feature points. Such set of vectors
represents positions of other sample points relative to the origin point. The
more sample points we choose, the more is this shape descriptor exact.

However, such descriptor might be too detailed and too sensitive to in-
traclass variations. In the paper, the authors presented a more robust and
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Figure 2.1: A scheme of representation of point sets using shape context.
A shape is represented by a discrete set of points sampled regularly along
the contours. For every point, a log-polar histogram—the shape context—is
computed which approximates the distribution of adjacent point locations
relative to the reference point. Image and description taken from Belongie,
Malik, and Puzicha [BMP02].

compact shape descriptor. The idea is that for each point p, we compute
coarse histogram by assigning other points to bins in polar coordinates with
a center in p. Polar coordinates are more sensitive to points near p. We can
then compute the cost of matching two points as

Cij = C(pi, qj) =
1

2

K∑
k=1

(hi(k)− hj(k))
2

hi(k) + hj(k)
,

where hi(k) and hj(k) represent a k-bin normalized histogram at pi and
qj. Given a set of costs Ci,j between all pairs of points pi and qj, we need
to find the best alignment, which means that we want to minimize the total
cost of matching

H(pi) =
∑
i

C(pi qpi(i)).

This can be solved in O(N3) time using the Hungarian method[BMP02].
We can achieve scaling invariance by normalizing all radial distances by

the mean distance, and rotation invariance is obtained when searching for
the lowest cost among all permutations. According to the paper, this method
is also robust against small geometric disturbances.
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2.4 Matching of shapes using dynamic pro-

gramming

A method proposed by Petrakis, Diplaros, and Milios [PDM02] introduces
an algorithm which uses dynamic programming combined with high-level
features extraction. Similarly to the previous algorithms, the method is
based on computation of a distance between the template and the image,
but in a different way.

The algorithm requires that the both shape and the template are rep-
resented as a sequence of convex and concave line segments, split by inflex
points. The idea of the algorithm is to recursively merge segments using two
grammar rules CV C → C and V CV → V , where V denotes concave and
C convex segment. Simultaneously, merging cost when the rules are applied
is computed using a merging cost function, and the results are stored in
the dynamic programming table. The merging cost represents a measure of
dissimilarities between the merged segments of the shapes.

Rows and columns of the dynamic programming table represent the inflex
points of the shape and the template, respectively. The cost D(A,B) of
matching shape A with shape B is defined as:

D(A,B) = minT{g(iT , jT )},

where {g(iT , jT )} is a cost of a complete match. The complete match is
characterized by a complete path ((i0, j0), (i1, j1, ..., (iT , jT )), i.e., a path that
covers all segments of both shapes. In turn, {g(iT , jT )} is defined as follows:

g(iT , jT ) = min(iw, jw)
T∑

w=1

ϕ(a(iw−1|iw), b(jw−1|jw))

Expression ϕ(a(iw−1|iw), b(jw−1|jw)) represents the dissimilarity cost func-
tion defined as:

ϕ(a(iw−1|iw), b(jw−1|jw)) = λMergingCost(a(iw−1|iw))
+λMergingCost(b(jw−1|jw))
+DissimilarityCost(a(iw−1|iw), b(jw−1|jw))

The first two terms in represent the cost of merging segments a(iw−1|iw) in
shape A and segments b(jw−1|jw) in shape B, respectively, while the last term
is the cost of associating the merged sequence a(iw−1|iw) with the merged
sequence b(jw−1|jw). Each merging should be a recursive application of the
grammar rules CV C → C and V CV → V .

14



The lambda value controls merging tendency. With lower value, merging
is more encouraged. For shapes with much detail, it is practical to set higher
values, otherwise, these details may be lost during merging.

At the end of the computation, each field F (i, j) of the dynamic table
contains the minimal cost of merging the first i − 1 segments of the shape
and j− 1 segments of the template. The lower the merging cost is, the more
are the segments similar.

Since the algorithm assumes, that first segments of the shape and the
template are aligned and match, we may need to run the algorithm for all
possible starting points of shape if we don not know the first segment before-
hand.

Differently to the previous algorithm, we now require the extraction of
high-level features, we need to extract convex and concave segments in correct
order. However, we obtain a matching algorithm that is independent of shape
translation, scaling and rotation. We can also directly control the invariance
to deformations using the lambda parameter.

2.5 Neural networks

Neural networks are mathematical models of computation inspired by a be-
havior of a biological nervous system [Bis96]. They have been successfully
used to solve problems in many different areas, including image and pattern
recognition. They can be used to solve problems, where we can not easily
mathematically describe the solution given the instance of the problem, for
reasons of either complexity or lack of existing mathematical model.

Neural networks have several advantages over the previous methods.
They do not require feature extraction since they are able to learn it, so
we can use pixel values directly. They also have a great ability to generalize,
which can be used for the recognition of the shape compositions and embed-
dings. On the other hand, they have to go through a learning process before
they can be used.

2.5.1 Neuron

Artificial neural networks are structures based on the parallel computational
model of the biological neural systems. The basic network unit is a neuron
(see section 2.5.1), which is characterized by its input and output connection
weights, the activation function and a bias. The artificial neural network is
built from a number of connected neurons, usually in a layered structure,
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Figure 2.2: The model of a neuron unit. Image taken from Neu

and the network learning can be characterized as a process of altering the
weights of the connections between neurons and the biases of the neurons.

Activation function characterizes the behavior of the neuron. When the
values from the input connections are available, the activation function is
applied onto the sum of the values and the result is passed further to other
neurons. Two common examples of activation functions are the step function
and the sigmoid function:

• Step(x) =

{
1 (x ≥ 0)

0 (x < 0)

• Sigmoid(x) = 1
1+e−x

2.5.2 Artificial neural networks

An artificial neural network is a mathematical model, consisting of a set
of neurons interconnected by connections. More exactly it is a set M =
(N,C, I, O, w, t), where:

• N is a finite set of neurons.

• C ⊂ N ×N is nonempty set of oriented connections.

• I ⊂ N is nonempty set of input neurons.

• O ⊂ N is nonempty set of output neurons.

• w : C → R is weight function.

• t : N → R bias function.
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In practice, multilayer neural networks are commonly used. Multilayer
networks are networks, in which the neurons are organized in layers starting
with the input layer and ending with the output layer, with hidden layers in
between. For each neuron in this structure, its input connections originate
only in the previous layer, and its output connections reach only to the
following layer.

2.5.3 Learning process

Learning process of an neural network is an optimization problem, where we
want to optimize the error function. Error function describes a difference
between actual and expected output values for given set of training data.
One of the popular error functions is mean square error function:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2.

Learning process consists of showing inputs to the network and adjusting
its connection weights based on the actual and correct output values in order
to lower the MSE.

2.5.4 Learning algorithms

Back-propagation algorithm

Back-propagation is one of the most popular algorithms for neural networks
training, and it serves as a base for many other algorithms.

The algorithm is based on the gradient descent method. In the first
step, the input is evaluated and the mean square error of the output is
computed. However, a different error function may be used. We can compute
the gradient ∂E

∂wij
for a given training sample using the chain rule

∂E

∂wij

=
∂E

∂ini

∂ini

∂wij

= aj ∗
∂E

∂ini

= aj ∗
∂E

∂ai
∗ ∂ai
∂ini

,

where E is the error function, wij is the weight of the connection between
the neurons i and j, ini is the weighted sum of the inputs of the neuron i
and ai is the output value of the neuron i.

If we use the sigmoid activation function denoted g, the derivation is:

dg

dx
= g(x)(1− g(x))
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which gives us:
∂E

∂ini

= ai(1− ai)
∂E

∂ai
.

We can put the equations together to obtain:

∂E

∂wij

= ajai(1− ai)
∂E

∂ai

There we have two possible cases for the neuron i:

1. i is an output neuron. Then we get:

∂E

∂ai
= −(ti − ai)

where the ti is the expected output for the neuron i for the current
input.

2. i is a hidden neuron. In this case we consider all neurons k that receive
input from i. Since we are propagating backwards, we know the values
∂E
∂ak

for all k. Using chain rule again gives us:

∂E

∂ai
=

∑
k

∂ink

∂ai

∂E

∂ink

and from combining the equations we get:

∂E

∂ai
=

∑
k

wkiak(1− ak)
∂E

∂ak

Now we have defined gradient values ∂E
∂wij

for all weights in a given neural

network. We can then use the following rule to update the weights:

∆twij = −ϵ
∂E

∂wij

+ α∆wt−1
ij .

∆twij is the change at time t for the weight wij. The value ϵ is called the
learning rate. If the learning rate is too low, it will take much longer to train
the network. If it is too high, the algorithm will cross large section in the
search space and will probably oscillate.

In summary, the input is evaluated and the difference between the correct
and actual output is computed using error function. The difference is propa-
gated back through the network and weights are updated using the gradient
descent method. The whole process is repeated until the desired error value
is achieved.
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Quick-prop algorithm

The quick-prop algorithm is an improved version of the backpropagation.
It is based on independent optimization steps for each weight, rather than
updating all weights at once. For the update computation, it also requires
data from the last iteration, which increases space complexity. The modified
∆ function of the quick-prop algorithm is:

∆twij = ∆t−1wij ∗ (
▽ijE

t

▽ijEt−1 −▽ijEt
)

where ∆twij is the weight delta from t-th iteration and ▽ijE
t denotes partial

wij-derivation of error function E in t iteration.

2.5.5 Advanced structures of neural networks

There are several advanced techniques in the neural networks field that are
commonly used. We describe two of them, the convolution networks and
deep neural networks.

Deep neural networks All neural networks with more than two hidden
layers can be considered deep neural networks. With the advantage
of more layers, deep neural networks can outperform other methods of
machine learning. The process of training such network is called deep
learning.

More layers allow the network to make more complicated model ab-
stractions over the data. However, there are many challenges to over-
come. Deep neural networks have a large number of parameters and
training them is demanding on computational power. They are also
prone to overfitting, as the added layers of abstraction allow them to
find possible unforeseen dependencies in the training data.

Convolutional neural networks Convolutional networks can be consid-
ered a special case of deep neural networks, because they usually have
higher number of layers. They are well suited for pattern recogni-
tion directly from the pixels of the image because of their structure of
layers with different purposes. For convolutional networks the convo-
lutional layer is characteristic. This layer is essentially a filter, that
performs feature extraction. The filter is composed from neurons that
have shared weights, so that the filter performs the same operation on
every part of the input. This in turn lowers the number of parameters
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of the network. Usually, more than one filter is used on the input im-
age, allowing the network to extract different features from the simple
ones like edges and corners, to very complex features, such as a house
or a tree.

Despite of the performance advantages, we have decided to use the classic
feed-forward neural networks with two hidden layers. Because we want to
allow the users train the network for their own defined shapes, we need to
be able to perform the learning on the user side and offer a simple interface
to do so. This does not correspond well with the advanced neural network
structures, which may require certain costly hardware or complicated learn-
ing process. Learning of classic neural networks is cheap in comparison, and
they can still perform quite well in the recognition tasks.

2.5.6 Data preparation for pattern recognition

Because of their generalization properties, neural network are successfully
used in pattern recognition. They are able to approximate an arbitrary
mapping between the input values and the output values [Bis96]. With this
ability, we are not forced to do feature extraction and we can initialize the
network with pixel values directly.

It is however recommended to apply several pre-processing transforma-
tions that can improve the generalization performance significantly.

Input normalization One of the common forms of pre-processing is input
normalization. By applying a linear transformation we can arrange all
of the inputs to have zero mean and unit standard deviation over the
transformed training set. In practice, input normalization ensures that
the inputs and target outputs stay in unit range, and we can expect
that the weights should also be in unit range. We can then initialize
the weights with suitable random number. Otherwise, we would have
to find a solution, where the weight values differ distinctly.

Training with noise Another technique that improves generalization ca-
pabilities of the network is training with noise. It involves the addition
of a random vector to the input vectors during training. A remark by
Bishop [Bis96] states that:

Heuristically, we might expect that the noise will ‘smear
out’ each data point and make it difficult for the network
to fit individual data points precisely, and hence will reduce
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over-fitting. In practice, it has been demonstrated that train-
ing with noise can indeed lead to improvements in network
generalization.

Data dimensionality reduction Data dimensionality reduction is a pre-
processing method that allows the network to have fewer input neurons.
It can take the the form of color information removal or pixel averaging,
where we group several pixel to one block and use average of each block
as an input. By lowering the number of inputs, we lower the number
of parameters that the learning process has to optimize.

Feature extraction Some of the more complicated techniques use feature
extraction as a pre-processing step. Simple geometric primitives ex-
tractions are common, such as extraction of lines with their lengths
and angles.
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3. Implementation

In the first part of this chapter we describe the recognition system imple-
mented by this thesis, in the second part we describe the game prototype
that demonstrates the usage of the algorithm. Implementation of the recog-
nition system consists of two parts, one responsible for the actual recognition,
and one for the training of neural network based on user-defined shapes. The
usage of the framework consists of three steps:

1. Defining the shapes and setting up desired recognition parameters.

2. Training the neural network to classify the defined shapes.

3. Using the framework and the trained network to recognize patterns.

3.1 Data representations

We have developed several data classes that are crucial for the algorithm func-
tionality. The ImageLines is a class that holds the input to the algorithm.
The next class is a ShapeDescriptor, an abstract class whose implementa-
tions are used to describe shapes, and the last one is a ShapeNode class for
the output data representation.

Image lines class We use the vector form in the interface. The shapes
are defined as a vector of lines with the start and end point. The
format of input is an instance of the ImageLines class, defined in the
ImageAnalyzer.h header file. This class wraps a vector of lines defining
the shape, accessible through GetImageLines method. The user is ex-
pected to fill the vector with the lines representing the two-dimensional
image before passing it into the Analyze method. The class offers sev-
eral other methods, used primarily by the recognition algorithm.

A line is represented by the instance of class Line, whose constructor
accepts two float2 type vectors, first containing the start coordinates
of the line, and second containing the end coordinates. Internally,
the coordinates are transformed into three-dimensional vectors of a
homogeneous coordinate system.

Shape descriptors Shape descriptors are a key part of the system, as they
are used both during training of the neural network and during anal-
ysis of image. They provide the information about the expected line
positions and possible embedded shape locations to the algorithm.
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Library user can define their own shapes by inheriting from the ab-
stract class ShapeDescriptor defined in ImageAnalyzer.h file. The
shape descriptors use the parametric-like expressions to define shapes.
Abstract class functions, which should be defined by the user, take pa-
rameter t in the interval [0, 1] as an argument, and return a point on
the curve in a 2D space in the interval [0, 1]2.

The curve does not have to be continuous, but it has to return a value
for every parameter value in the range. Thread safety of some methods
is also required. It is recommended to keep the shape complexity low,
as some very small details may be lost in the data preparation for the
training.

Output data format Output of the algorithm implementation is in the
form of instance of ShapeNode class defined in ImageAnalyzer.h file.
It represents a tree structure shown in fig. 3.1, where each node con-
tains the recognized shape index and its pattern shape index. Em-
bedded shapes are contained in a vector of child nodes. Indexes are
numbers assigned to each descriptor during algorithm setup, except for
the unknown shape index, which serves as a placeholder for unrecog-
nized shapes. We do not differentiate between the empty space and
any unrecognized shape.

3.2 Recognition process

The recognition process is depicted in fig. 3.3. It starts in the Analyze

method, declared in the ImageAnalyzer.h file. It accepts an instance of
ImageLines class as an argument, and returns ShapeNode instance describing
the recognized elements in the image.

We have then decided to create the interface for the vector graphics form
of input. We expect the input to the program to represent rather simple black
and white shapes or their combinations, without any additional information
like color or different shades. We also expect the input to be created on the
computer in a game, rather than from a photo, and in this environment, it
is common to use vector graphics.

The image lines are first normalized by normalization to the [0 − 1]2

coordinate space. This transformation is essentially a rescaling, preserving
both the length ratios and angles. Then, the top level shape is analyzed by
rasterizing the lines into the pixel map which is then passed into the trained
neural network.
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Figure 3.1: Input image with expected output. The embeddings form a tree
hierarchy, with a single shape in the root and the embedded shapes as its
sons. The unknown shape index marks both unrecognized shapes and empty
space.

Figure 3.2: The output schema for a more complicated image.

25



Figure 3.3: The figure shows the high-level schema of the algorithm. The
dashed arrows show appearances of important data structures: ImageLines,
ShapeIndex and ShapeDescriptor. The full lines describe the algorithm
flow. The algorithm starts with the input, the output is built during the
analysis. The algorithm stops when the shape is not recognized.
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Generally, the highest neural network output considered to be the
matched shape pattern, but only if the value is higher than a user-set con-
stant. There are optionally several more steps involved, described below:

Rotated shapes If a recognition of rotated shapes is enabled, the image
lines are rotated several times (the exact number is definable by user)
by an appropriate angle value, re-drawn and analyzed by the network
at each angle.

The network returns a vector of values, each output’s value signaling
the similarity to the shape assigned to the output, and the highest
value is considered the matched shape. If there are several highest
network outputs for different rotations with the same value, the first
highest value among all outputs is considered. A recognized shape
index is returned along with its matching rotation, in which it scored
the highest network output.

Composed shape When the top level shape is recognized, its shape de-
scriptor is used to sample the theoretical curve points via parameter t
uniformly on interval [0− 1]. If the recognition of rotated shapes is en-
abled, we transform the sample by an inverse rotation to the matched
rotation, to align the recognized shape with the shape descriptor. Then,
for each sampled point, this point is expanded into a small square, the
original image is clipped to this square, discarding the lines outside,
and the result is analyzed.

Recognized pattern shapes are counted over all samples, and if the
count of matches for any shape is high enough, the top level shape
is recognized as a composed shape created from a number of smaller
shapes of the type with the highest count. Pattern shapes that form
the composition are not tested for embedded shapes.

Embedded shape To recognize embedded shapes, we use the shape de-
scriptor of the shape recognized previously, and focus on the user-
defined embedded shape locations. For each embedded shape location
defined in the shape descriptor, we clip the image lines to that area,
and recursively run the Analyze method on the result. If the recogni-
tion of rotated shapes is enabled, we transform the an area by inverse
rotation to the matched rotation, to align the recognized shape with
the shape descriptor.
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Figure 3.4: Examples of generated deformations of the shapes.

3.3 Neural network preparation

We use the Fast Artificial Neural Network Library [Fan] to train and use
neural networks. This open source software is easy to use and install while
having a lot of options in terms of network architecture and training. Thanks
to its simple interface, we were able to develop an automatized training
system for the networks.

3.3.1 Training data

Training the neural network requires a training dataset. Since we want to
allow the extensibility in the form of user defined shapes, we have two options.
Either to let the user somehow make his own dataset, which is not very
convenient, or generate the data procedurally and try to approximate human-
like drawing.

We decided for the second option. We generate the data based on the
shape descriptors registered by the user and on the algorithm settings. To
generate a data sample for the neural network, we take the shape descriptor
and create a ImageLines instance from it.

Based on the algorithm settings, it will be either a deformed simple shape
instance or an instance of a compound shape. In the case of creating a
deformed simple shape, shape curve is sampled many times using the shape
descriptor, and the points are connected by lines.

To approximate the deformations each point sample can be moved in the
direction perpendicular to the line between the original position of the last
point, and the original position of the the transformed point. Examples of
deformations created by this procedure can be seen in fig. 3.4.

The transformation offset is linearly magnified and then reduced, resulting
in a heuristics that try to approximate some of the humans like deformations
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of drawn shapes. Then, the line between the previous and new point is added
to the image instance.

In the case of the shape conglomeration, the shape curve is sampled less
frequently and each point is replaced by rescaled image lines of a randomly
chosen shape, but this shape is the same for the whole composition. See
fig. 1.4 for examples.

3.3.2 Training

Training is done using the generated data from the previous methods and the
FANN library. First, the training data and test data are generated,The size
of the test data is one-third of the size of training data. Then the network is
repeatedly trained on the training data until it reaches the user set up MSE,
or until it stops improving.

Internally, the training starts with a high MSE target value, which is
then gradually lowered, and in between the improvement ratio is checked.
We use the resilient backpropagation (rprop) algorithm from the FANN li-
brary, because we achieved best results with this algorithm in terms of the
improvements stability. In the neural network, we use an Elliot activation
function 1.

3.4 Game prototype

The game, which demonstrates the usage of this pattern recognition work,
has been developed using the Urho3D [Urh] game engine in version 1.7.
Urho3D is, as stated by authors, a free, lightweight, cross-platform 2D and
3D game engine implemented in C++ and released under the MIT license.

3.4.1 Game description

In the game, the player controls the character from a top down view perspec-
tive. The player can move and attack the enemies, and, most importantly,
cast spells by drawing.

Spells of the game are represented by totem objects — each time the
player casts spell, a totem is created. These totem have different effects
on the characters. They can take a form of positive effects that affect the
player’s character, like healing, or negative effects that affect the enemies, like

1The Elliot activation function is defined as Elliot(x) =
x·s
2

1+|x·s| + 0.5, where s is the
steepness parameter.
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burning. The task for the player is to survive and destroy all the enemies in
the game.

We now describe some of the constructs of the game implementation:

Drawable texture DrawableTexture is a component attached to ground
in the game. It allows player to draw shapes onto the ground. This
component handles the lines sampling and glowing shape line nodes,
depicted in fig. 3.6.

Characters The player’s character and the enemies 3.5 are represented by a
composition of several components: the animated mutant model com-
ponent, the health component and movement component. The enemies
have also an AI component attached, while the player’s character has
an controller component attached which causes it to listen to the key-
board controls, and the caster component, which allows the character
to extract drawn shape from the drawable texture, like in fig. 3.7. the
caster component also transforms the shape into an ImageLines in-
stance for the recognition.

SpellSystem The SpellSystem component is a initialization component
for the recognition algorithm. It is created only once for the game
and the algorithm setup is situated in the constructor. It holds the
shape indexes and is responsible for the algorithm output parsing and
construction of the spell.

Spell An instance of a node with the spell component is created each time
the player casts a spell. It is a temporary class, serving as a placeholder
for the totem object. It invokes the algorithm’s Analyze method in a
separate thread and waits for the result. This way, the game does
not freeze while the algorithm analyzes the image. The place of the
totem is marked by a green fire, as shown in fig. 3.8, while the image
is analyzed.

Totem The core of the game are totem objects (see fig. 3.9) and all the
spell effects are represented by them. Each totem has a duration for
which it exists and an area of effect around it, where the characters
are influenced by its presence. The totem can have several effects to it
attached.

Effects Effects are components attached to the totems. When a character
is inside an area of effect of the totem, the totem applies all of its
effects on the character. However, the effects can also be of an single
activation type, in which case they are activated only once when the
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totem is created. An example of such effect is an effect that increases
the totem duration.

States When an effect with duration is applied onto the character, a state
component is attached to it, as shown in fig. 3.10. For example, when
an over-time healing effect is applied onto a character, the healing state
component is attached to the character for a given duration.

3.4.2 Spell system

The game spell system consists of several parts. The first is the
DrawableTexture component, which is attached to the ground entity. This
component is able to track players drawings and store them as lists of points,
each list representing one continuous line.

When the player presses the button to cast the spell, the Caster com-
ponent attached to their character extracts the lines in a rectangular area
around the character and transforms them into the vector of lines. Then the
instance of Spell class defined in the SpellSystem.h file is created. There,
the ImageAnalyzer::Analyze method is finally called in a different thread
and when the analysis is done, the result is parsed and the spell is cast.

31



Figure 3.5: There are three mutants in the image, one is controlled by the
player, others are controlled by AI. The player starts drawing the spell
on the ground by pushing the left mouse button. The mouse position is
projected in the Caster component to the game surface and added to the
DrawableTexture component which creates a new line.

Figure 3.6: The blue glowing line in the image represents the drawing. While
the player holds the mouse button, the mouse positions are repeatedly sam-
pled and projected to the surface. The projection points are then added to
the line and the space between the points is filled with a blue glow dots to
show the line.
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Figure 3.7: The image shows a finished square shape. When the player re-
leases the mouse, the current line is ended. It is possible to continue drawing
other shapes. However, when the player casts spell, all lines in a large area
around the character are consumed and used for the spell. The extraction
of the lines from DrawableTexture and conversion into ImageLines class is
done in the Caster component.

Figure 3.8: When the player casts a spell, the extracted lines are removed and
a node with the Spell component is created to handle the spell. The node
is represented by green glowing orb and it marks the place where the totem
will be created. It invokes the ImageAnalyer::Analyze method with the
lines in another thread to avoid the freezing while the analysis is performed.
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Figure 3.9: When the analysis is finished, the SpellSystem component parses
the output. It creates a node with the Totem component, and for each shape,
the corresponding effect is added to the totem. The totem is then placed on
the spot of the Spell. The totem’s area of effect is marked by a rotating
circle of elements.

Figure 3.10: The recognized shape was square. Since square represents fire,
the totem has the FireEffect component attached to it. When the charac-
ters are detected inside the area of effect, the totem applies all of its effect
on them. In the figure, the FireEffect is applied to the enemy inside the
circle, causing it to have FireState component attached. This component
makes the enemy burn, periodically decreasing its health.
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4. Results

In this chapter we evaluate the learning performance of the resulting library.
In the first section we describe the process of the optimization of the neu-
ral network parameters, in order to achieve the best performance. In the
next sections we optimize the parameters of the algorithm and evaluate its
performance. For the purposes of evaluation, we have decided to use fixed
four shape descriptors, namely the square, circle, triangle and water drop
shape descriptors throughout this chapter. If the number of shape descrip-
tors changes, the same method can be applied to re-establish the modified
optimal parameters. Examples of the expected inputs of embedding and
composition can be seen in fig. A.5 and fig. A.10.

4.1 Neural networks performance

For the correct functionality of the algorithm, it is required that the network
is able to recognize the shapes. There are numerous parameters for the neural
networks, like the training algorithm choice, architecture and activation func-
tion. Because it is not feasible to test every combination of the parameters,
we have tested the influence of only a several of these parameters.

4.1.1 Setup

For all the tests we have fixed the following parameters like this:

Network architecture All tested networks have a layered structure, with
two hidden layers. However, we have tested the influence of different
sizes of the layers.

Training algorithm The networks are trained using resilient back-
propagation algorithm from the FANN library.

Activation function The neurons of the network use the Elliot activation
function, a faster version of the sigmoid activation function.

Shape descriptors We have used four basic shapes descriptors: square,
circle, triangle and a water drop throughout the the whole chapter.

Data The training data and the test data were generated by the developed
generator. The training data consisted of 150 000 images, where each
shape had the same amount of examples, and 50 000 images of random
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Figure 4.1: 9 examples of auto-generated training data. The resolution of
each image is 32*32 pixels.

data. The test data consisted of 40 000 images of examples of shapes,
and 20 000 images of random data. Examples of the data are shown in
fig. 4.1.

4.1.2 Tested parameters

We have tested the combinations o the following parameters:

Layer size We have tried several values for both layers. For the first hidden
layer, we have tried 100, 200 and 300 neurons, and for the second hidden
layer 10, 20 and 30 neurons. These values were chosen heuristically
from the range recommended by Karsoliya [Kar12].

The value of MSE We have trained the networks at different levels of pre-
cision, with the target MSE values of 0.1, 0.07, 0.04 and 0.01.

Algorithm settings The neural networks were trained for different combi-
nations of algorithm settings, with embeddings and composition turned
off and on.

We trained the networks with all the combinations of the parameters above,
which gave us a total of 150 trained neural networks to evaluate.

4.1.3 Evaluation

The networks were evaluated in the following scenario. For each of the com-
binations of embeddings and composition being turned on or off, the dataset

36



of 1000 images was generated, with the same amount of examples for each
shape. Then, the network was assigned a score computed as a sum of scores
over all examples. Score per example was assigned by the following rules, in
order to mimic the actual usage in the algorithm, where we consider only the
maximum output:

1 If the maximum of the outputs of the network is in the corresponding
output neuron of the shape that is in the example, which means, that
the network classified the shape correctly.

2 If the maximum of in the correct output neuron and is higher than 0.7.

-1 If the maximum is in the wrong output neuron which corresponds to the
different shape than the one in the image, and the value is higher than
0.7.

0 Otherwise.

These rules mimic the usage of the network in the algorithm, where
only maximum values above 0.7 are considered. The value 0.7 was chosen
because the scores of the networks differ more with a numbers closer to 1,
and the plots are more clear. From the rules it follows that each network
could achieve a score in range from -1000 to 2000 on the dataset of 1000
samples.

4.1.4 Results

Figures 4.2 to 4.5 show the score of the networks achieved on different eval-
uation datasets. The datasets contain 1000 samples each, but differ in the
techniques used in the images. The first dataset contains only simple shapes,
without embeddings or conglomeration, the second contains embeddings only,
the third composition only, and finally the fourth contains both embeddings
and composition combined.

There is a visible gap on the y-axis between 0.07 and 0.04 in all graphs.
This is caused by the a sudden improvement when the network was trained
to reach MSE under 0.07. The network usually improved even a little more,
finishing the training with a MSE around 0.04 or lower.

Size of the network did not show any visible influence on the network
performance. It therefore seems that even the network with the lowest num-
ber of neurons is sufficient for this setup, although more neurons might be
needed for networks that need to recognize more basic shape descriptors.
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Figure 4.2: The plot shows results on a dataset containing only a simple
shapes, without embeddings or conglomeration. Each point represents a
single network. The x-axis shows achieved score according to the rules (see
section 4.1.3), and the y-axis shows the achieved MSE of the network during
training. The first graph shows by color whether was trained to recognize
embeddings, and by shape whether the network was trained to recognize
conglomerations. The second graph shows the structure of the network. The
color marks the number of neurons in the first hidden layer and the shape
marks the number of neurons in the second hidden layer.
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Figure 4.3: The plot shows result on a dataset containing embedded shapes.
Each sample contained shape with an embedded shape. The plot follows the
same format as in fig. 4.2.
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Figure 4.4: The plot shows result on a dataset containing composition of
shapes. Each sample contained shape composed from a number of instances
of a pattern shape. The plot follows the same format as in fig. 4.2.
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Figure 4.5: The plot shows result on a dataset containing combination of
embedded and composed shapes. Each sample contained a shape composed
from a number of instances of a pattern shape and with an embedded shape.
The plot follows the same format as in fig. 4.2.
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It can also be observed from the figures that the tendency to overtrain
is not present even with very low MSE. It is therefore preferable to aim for
a lower MSE values during training, as that clearly improves the achieved
score.

The key result, visible in fig. 4.2, is that training the network to rec-
ognize the embeddings and composition effects decreases only slightly the
performance on the simple shapes if the network is trained for a low final
MSE.

4.2 Algorithm parameters optimization

In this section, we test and evaluate the recognition algorithm performance.
In the evaluation, we use the best network trained for both embeddings
and composition, since it was observed from the results that the network
trained for both cases performs almost as well as networks trained for only
one case. We attempt to optimize the algorithm parameters (described in
appendix A.1.2) for the recognition of the used shape descriptors: square,
circle, triangle and water drop. It may be possible that the parameters would
have different optimal values for different shape descriptors.

4.2.1 Composition recognition

To measure the precision of recognition of composed shapes we have prepared
100 ImageLines instances of composition examples. Each instance represents
a shape composed of instances of another shape. We have also setup the
algorithm this way:

• COMPOSED SHAPES ENABLED = true; — Indicates that the algorithm
should search for the pattern shape.

• EMBEDDED SHAPES ENABLED = false; — Indicates that the areas of in-
terest defined by ShapeDescriptors are not examined for embeddings.

• ROTATION ENABLED = false; — Indicates that the shapes should not
be analyzed at different rotations.

This setting causes the algorithm to search for the pattern shape of the
possible composition, but to ignore embeddings locations and to not match
different rotations.

We have tested different combinations of settings of these variables:

1. COMPOSITION SAMPLES COUNT

42



2. COMPOSITION SAMPLES LIMIT

3. COMPOSITION WINDOW SIZE

Again, see appendix A.1.2 for detailed parameter explanation.

For each test instance we have compared the correct pattern shape with
the recognized pattern shape.

From the results in fig. 4.6, we can see that the success rate grows with
the increasing number of samples. The algorithm has more chances to hit
the area with the shape, rather than the area between the shapes. Generally
the chance to recognize at least one pattern shape is higher.

We can also see that the red and black colors representing the smaller sizes
of the sample window perform better with the higher sample count, while
being faster at the same time. The performance improvement for the smaller
sample window tells us that the network does not recognize the shapes if
the surrounding of the area covered by parts of other shapes. The speed
difference is caused mainly by rasterization algorithm that needs to process
more lines that are found in larger windows.

There is also a sharp drop in success rate when increasing the sample limit
to more than one. This means that the network has trouble recognizing even
a single pattern shape from the shapes that form the composition. There are
two factors that affect the recognition of the pattern shape:

The sampling window follows the ideal path from the shape descriptor, but
the real shape is usually more or less deformed, which means that the
window will hit only a part of the pattern shape.

The pattern shapes can be of various sizes which is hard to approximate
by a single size of the sampling window. And if even the window hits
the whole pattern shape, there is a very high chance of hitting also the
noise from other shape patterns, or from embeddings.

Both factors make the recognition very difficult for the network. The network
is rarely able to recognize even a single pattern shape correctly, and after
40 samples, the success rate does not improve much and stays somewhere
between 40% and 60%.

It is clear that the algorithm becomes gradually slower with the increas-
ing number of samples. The total time will also increase substantially if
the rotation is turned on, because each composition sample is tested for all
rotations.
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Figure 4.6: The x-axis shows the values of COMPOSITION SAMPLES COUNT,
which is actually a count of samples made around the shape contour. The
point color denotes the COMPOSITION WINDOW SIZE, and the point shape de-
notes the COMPOSITION SAMPLES LIMIT according to the legend. Each object
of the plot then represents a combination of parameters settings and the per-
formance and speed achieved with the parameters over the test samples. The
y-axis of the first plot shows the successful recognitions percentage over the
test samples, and in the second plot, the y-axis shows an average computation
time per one sample.
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4.3 Rotation

Rotation invariance is achieved by redrawing the image at different angles and
returning the best match from the rotated samples. We tested the influence
of the ROTATION SAMPLES COUNT variable on the precision and speed of the
algorithm.

In the results fig. 4.7 we can see that the precision of simple data shapes
reaches almost 100% at 15 samples. However, the recognition of the com-
posed shapes is much worse. At 15 samples, it reaches about 70% success
rate and barely improves for the higher sample values. At the same time we
know from fig. 4.5 that the network is able to recognize composed shapes
quite successfully.

From the result data, we conclude that the main cause of the problem
are false matches of different shapes. For example, a square composed from
circles can, at 45 degrees rotation, closely resemble a circle, and the network
assigns the circle a higher match value than the square at the correct rotation.

We can also observe from fig. 4.7, that the speed of the recognition of
composed shapes is much slower and the gap in the performance is increasing
with the samples count. This is caused by the fact that composed shapes
contain a lot more lines than the simple shapes and each of these lines adds
to the transformation time and to the drawing time.

We can deduce that setting ROTATION SAMPLES COUNT higher than 15 is
rather unnecessary.

4.4 Embeddings

The ability of the algorithm to recognize embeddings depends more on the
shape descriptor definition rather than on the algorithm settings.

The library user can define the points of interest by their position and
size, and these two parameters form a rectangular area where the algorithm
will search for embedded shape.

It is then recommended to set the size of this area lower, to avoid frag-
ments of the top shape appearing in this area, which might cause the network
to not recognize the embedded shape. If the embeddings are supposed to ap-
pear inside composed shapes, the area should be even smaller, otherwise the
fragments of the pattern shapes will appear inside.

Embedding matching has a simple influence on the algorithm perfor-
mance. Every point of interest defined in the ShapeDescriptor is analyzed
and if the embedded shape is found, the algorithm runs recursively on the
area of the embedded shape.
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Figure 4.7: The x-axis shows the values of ROTATION SAMPLES COUNT. Each
dot represents a test run over the test data. The red dots represent results
over the test data with simple shapes, and the blue dots represent results
over the test data with composed shapes. The y-axis of the first plot shows
success recognition rate and in the second plot the y-axis shows an average
computation time per one sample.
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Conclusion

The goal of this thesis was to develop a recognition algorithm that recognizes
structured combinations, such as compositions and embeddings. We have
reviewed the literature for pattern recognition and found out that although
the topic of recognition of shapes is covered well, approaches to recognition of
shape combinations and modifications that this thesis targets are rare. From
several reviewed algorithms we have chosen the artificial neural networks as
a base for our recognition algorithm.

We have developed a recognition library that allows users to define their
own shapes, train the appropriate neural network and use the library for
recognition of structures made from the defined shapes. For the purpose of
the neural network learning, we have also developed a shape images generator
that attempts to approximate human imprecise drawing.

We have then used the library in a game prototype to demonstrate its
functionality. The game supports several defined shapes and their combina-
tions in the form of embeddings and composition, which all systematically
map to different spell effects.

In the last chapter, we have benchmarked the performance of our library
and optimized the algorithm parameters for the used shape descriptors. The
results suggest that while the success rate of the recognition of composed and
embedded shapes is high, the recognition process of the pattern shape of the
composition still needs improvements.

4.5 Future work

There are several further directions that might be worth exploring:

• One of the main problems is the noise from the surroundings introduced
when extracting the area of embeddings and pattern shapes. Heuris-
tics, like extracting only continuous segments of lines or using neural
networks with stronger generalization power, might be used to improve
the recognition.

• Performance of the algorithm might be an issue in more demanding
game environments. Apart from the fact that the analysis of several
images can be performed in parallel, the algorithm can be even further
parallelized. The large number of relatively simple repeated computa-
tions is especially well suited for being run on GPU.
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• Developing a playable, gamer-targeting game that uses the library
would be a great final step of the development. The provided game
prototype is arguably not very well suited for the gamers (which will
find it boring after several spells), nor for the library: The game cur-
rently forces the players to draw shape during combat and while moving
the character, resulting time stress discourages the player from trying
out more complex shapes.

For example, a strategy game might be a better candidate. Instead
of building the base with player’s units, players could create them by
drawing the correct shape. The advanced shape structures would then
create buildings with stronger units.

Using an input controller that is more suitable for drawing than a mouse
might also greatly enhance the player experience.
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A. User guide

A.1 Recognition system

The interface of the library is located in two headers: ImageAnalyzer.h

and Training.h in the corresponding namespaces ImageAnalyzer.h and
Training.h, respectively.

A.1.1 Creation of shape descriptor

For both the training and for the recognition shape descriptors are required.
The shape descriptors have several rules, that need to be followed by the
user in their implementation. The intended purpose of the descriptor is to
describe a single 2D shape in a [0, 1]2 rectangular area. The descriptor is
expected to return the exactly same shape every time and all of its methods
should return the same values when called with the same parameters.

It is also required, that all of the shape descriptor methods are thread
safe. It is then recommended to design the shape descriptor as a class with a
constant inner state. Not following these rules may result in an unexpected
and dysfunctional behavior of the system.

The user can create a shape descriptor by including the ImageAnalyzer.h
header file and inheriting from the class ShapeDescriptor. This class con-
tains several abstract methods, that should be implemented:

GetName() Returns the name of the shape a string. This is only for de-
bugging purposes and it does not have to be unique or even constant.
However, it is recommended to return a constant unique name among
the descriptors.

GetPoint(float t) Function overload with one parameter t should re-
turn a point on the contour of the shape, based on the t parame-
ter. It is recommended to normalize the parameter into [0, 1] range by
NormalizeParam function.

GetPoint(float last t, float t, float & point) Function overload
with three parameters, that allows the descriptor to describe noncon-
tinuous curves. The point parameter passed by a reference should be
filled with the same value as from GetPoint(t) as it describes the
point of the curve. Then the function should return true if the curve
is continuous on the interval [last t, t], otherwise false.

51



GetPointsOfInterest() Function, that describes places, where an embed-
ded shape may appear. It returns a vector of float3 type, where the
first two numbers denote the top left corner of the square area, and the
third number is the size of the square. It is important for the correct
functionality that the points of interest do not overlap with the shape
curve, and that they are substantially smaller than the parent shape.

Examples of shapes descriptors can be found in the
ExampleShapeDescriptors.h file. Be careful to return the points
only in the normalized range [0, 1]2.

A.1.2 Algorithm properties

There are several variables then can be set up and influence the functionality
of the software. They can be found in the ImageAnalyzer namespace. Some
of them are used both in the training and in the recognition. It is necessary
then for the user to be consistent and use the same settings for the recognition
as they used for the training.

DEBUG IMAGE SAVE Boolean variable with default value false. Only for de-
bugging purposes. If true, the images created during the recognition
are saved as BMP files onto the hard disk into folder debug/, but only
in the initial rotation of the image.

DEBUG IMAGE SAVE SIDE SIZE Integer variable that controls the size of the
debug images.

COMPOSED SHAPES ENABLED Boolean variable with default value true. If false,
recognition algorithm recognizes the whole shape but does not search
for the pattern shape that might compose it. During training, the
generating algorithm does not produce compositions of the shape, so
the network is not trained to recognize the composed shapes.

COMPOSITION SAMPLES COUNT Integer variable describing the amount of sam-
ples taken when searching for the pattern shapes. This variable has
no effect when composed shapes are disabled. Otherwise, the interval
[0, 1] is sampled uniformly and each sample is passed into the GetPoint
method of the descriptor. The returned point is then expanded into
the sampling window and checked for pattern shape. Values greater
than zero are supported.

COMPOSITION WINDOW SIZE Float variable that describes the size of the sam-
pling window used during pattern shape matching. The actual window
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is a square with a side size of 2*COMPOSITION WINDOW SIZE. This vari-
able has no effect when composed shapes are disabled. Values greater
than zero are supported.

COMPOSITION SAMPLES LIMIT Integer variable describing the number of min-
imum pattern shape matches. If the count of the pattern shape matches
is lower, the pattern shape is not recognized. This variable has no ef-
fect when composed shapes are disabled. Values greater than zero are
supported.

EMBEDDED SHAPES ENABLED Boolean variable with default value true. If false,
recognition algorithm ignores the GetPointsOfInterestmethod of the
shape descriptor, where embedded shapes might be, and recognizes
only the top level shape and its composing shape. During training,
the generating algorithm will not generate embedded shapes, and the
network will not be trained to filter out these locations, where the
embeddings could appear.

ROTATIONS ENABLED Boolean variable with default value true. If false, recog-
nition algorithm will not test different shape rotations for the best
match, but will use the initial rotation. This variable does not have an
impact on training since rotation recognition is not a direct task of the
neural network.

ROTATION SAMPLES COUNT The amount of samples created when matching
rotated shape. It directly determines the rotation step angle size, which
is in degrees 360/ROTATION SAMPLES COUNT. This variable has no effect
when rotations are disabled. Values greater than zero are supported.

DEBUG OUPUT Integer variable with default value 1. Controls the amount of
debug info of the recognition system. If set to 0 or lower, no debug
output is produced. If set to value 1, it prints recognized shape with
its matching rotation and its composing shape to the standard output,
for the top level shape and each embedded shape. If set to 2 or higher,
produces the same output as with value 1, but also all network outputs
from the analysis are printed for all the rotations.

SHAPE VALUE LIMIT Float value that controls the recognition threshold. If
the maximal network output is lower than this value, the shape is not
recognized. Recommended range of values is [0, 1].

RECURSION LIMIT Int value that controls the recursion depth of the algo-
rithm. Values greater than zero are supported.
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IMAGE SIDE SIZE Integer variable, controls the size of the images that are
created anytime during algorithm. Every time there is an instance of
ImageLines class that should be analyzed by the network, the lines are
drawn into the square pixel map of a size set by this variable and then
serialized as an input to the network. The network input layer size has
to be the second power of this value. The default value is 32, which
means that the neural network has an input layer of size 1024 neurons,
and the images produced in the algorithm are pixel maps of 32 ∗ 32
pixels.

A.1.3 Training phase

Training the neural network consists of several steps. The first step is
to set up the variables controlling the behavior of the recognition and
training algorithms. By including the Training.h file, the user can ac-
cess the ImageAnalyzer namespace for setting up the variables, and the
Training namespace for the training functions. After setting the variables,
it is necessary to register the desired shape descriptors through function
the Training::RegisterShapeDescriptor. This function takes a unique
pointer to the shape descriptor as its parameter, and returns an instance
of the ShapeIndex class. This class is only a wrapper over integers but it
works as an identifier of the shape in the algorithm and the calls to the
ImageAnalyzer::Analyze will return the ShapeIndex for each recognized
shape. The next step is to call the Training::Train function. This func-
tion has several parameters:

std::string name Describes the name of the neural network. When the
network is created and trained, it is saved under the current working
directory into the file with the name name with the extension .net.

vector<unsigned int> networkStructure This parameter describes the
layers of the network. Each number represents number of neurons in
a single layer. The first number describes the size of the input layer,
while the last number describes the size of the output layer. The user
can set any number of layers higher than two, and arbitrary sizes of
layers, apart from the first and last layer. The first layer has to be
equal to the second power of IMAGE SIDE SIZE, and the last layer size
has to be equal to the number of registered shape descriptors.

boolean generateData = true Parameter that controls whether the train-
ing algorithm should generate the training data. The algorithm
looks for training data in the current working directory in the file
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training.data and for test data in file test.data. If the parameter
is true, the algorithm will generate these two files, possibly overwriting
them. If the parameter is false, the algorithm uses the files found, or
ends with error, of the files are not found.

float targetMSE = 0.01 The MSE that the network should achieve on
the test.data. The training stops if the network achieves MSE lower
than this value, or if the network does not improve anymore.

int dataSize = 300 000 The parameter describing the number of gener-
ated training samples in the training.data. The size of the generated
test data is one third of this value. if the parameter generateData is
false, then this parameter is ignored.

after the training process finishes, the network is ready to be used in the
recognition algorithm.

A.1.4 Recognition phase

When the neural network is ready, the user can set up the recognition system
and use it in a game. The recognition system is used through interface located
in the ImageAnalyzer namespace in ImageAnalyzer.h file. The namespace
contains definition of the algorithm properties, as well as definition for classes
that the user is supposed to use, namely the ShapeDescriptor class, the
ImageLines class and the ShapeIndex class.

First, it is necessary to load the neural network into the algorithm, using
ImageAnalyzer::LoadNetwork function, which takes string describing the
path to the network as an argument. Then, the user has to register the same
descriptors used for the training of the loaded network again, but this time
using the ImageAnalyzer::RegisterShapeDescriptor, which takes the cor-
responding ShapeIndex instance together with the descriptor.

Alternatively, the ShapeIndex instance can be created from the order
number of the corresponding shape descriptor when registered for the train-
ing. It is also necessary to set up the algorithm properties the same way
they have been set up during network training. When these steps are done,
the user can repeatedly call the ImageAnalyzer::Analyze function to deter-
mine the shape hierarchy in the provided ImageLines instance. The Analyze
function is thread safe, so many calls can be done at the same time. However,
the set up has to be done synchronously and only once, before the first call
of Analyze function.
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A.2 Game

The game is a simple prototype. When the game is started the character
controlled by player is located in the middle of the screen. The character
can move over the surface plane, but falling of the edge results in death.
There will be also numerous enemies around. initially, all the enemies are
harmless and the player has control over the AI activity. This feature was
added because it was too difficult to draw more complicated spells without
dying. The goal of the game is to destroy all the enemies, either trough usage
of totems or character’s attacks.

A.2.1 Controls

The game uses both keyboard and mouse with the following mappings:

W, A, S, D The player can control the character using the keys W,A,S,D to move
the character up, left, down and right respectively.

E, R The keys E and R can be used to turn off, respectively on, the AI of
the enemies.

Q Using the Q key and pointing the mouse over the enemy, the players
character starts moving towards the enemy and attacking it.

Left mouse button The player can draw shapes on the ground using the left mouse button.

Right mouse button By pushing the right mouse button, the player invokes spell casting.

Mouse wheel Mouse wheel can be used to zoom in/zoom out.

A.2.2 Spells

The spells in the game are represented by totems. When the player casts a
spell, a totem is created with corresponding effects on it, described by the
rules below. The game supports four shapes: circle, square, triangle and
water drop. Each of these shapes maps to a different effect, based on its
position in the drawing. We distinguish between 3 positions of shapes: the
root position, the embedded shape and the pattern shape.

• The root position is assigned to the biggest shape, i.e. the shape that
forms the drawing.

• The embedded shape is a shape that is located in the center of another
shape.
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• The pattern shape is a shape that forms a composition of another shape.

Relations between the shape position, shape and effect are described by the
following rules:

The root shape mappings:

Circle The Shield effect A.1 is added to the totem. If the players char-
acter is inside the area of effect of this totem, its shield is slowly
recharged.

Square The Fire effect A.2 is added to the totem. The fire effect causes
all enemies near the totem to burn, decreasing their health peri-
odically.

Triangle The Freezing A.3 effect is added to the totem. The freezing effect
causes the enemies to move slowly.

Water drop The Healing A.4 effect is added to the totem. When the players
character is nearby, it is healed over time.

The embedded shape mappings:

Circle The Reach effect A.5 is added to the totem, extending its area of
effect twice.

Square The Power effect A.6 is added to the totem. The power effect
causes all the attacks of the player do substantially more damage
to the enemies.

Triangle The Durability effect is added to the totem. The durability effect
extends the duration of the totem twice.

Water drop The Distraction effect A.7 is added to the totem. Enemies un-
der the distraction effect start attacking the totem instead of the
player.

The pattern shape mappings:

Circle The DefenseWall effect A.8 is added to the totem. When the
totem with the defense wall is created, it creates a wall around it.

Square The Explosions effect A.9 is added to the totem. This effect causes
the enemies to explode, slowing them and reducing their health.

Triangle The Tower effect A.10 is added to the totem. The totem with the
tower effect starts shooting at any enemy that appears in its area
of effect.
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Water drop The Madness effect is added to the totem. Enemies under the
madness effect start attacking randomly each other.1

1While this effect is supported in theory, in reality it is nearly impossible to draw, since
the pattern shape is always classified as an circle rather than a water drop, due to the
imperfections of the algorithm.
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Figure A.1: The figures show a drawn circle and the created Shield effect
totem. The player’s character has a shield recharging on it.

Figure A.2: The figures show a drawn square and the created Fire effect
totem. The enemies in the area of effect of the totem are burning.

Figure A.3: The figures show a drawn triangle and the created Freezing effect
totem. The enemies in the area of effect of the totem are slower.
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Figure A.4: The figures show a drawn water drop and the created Healing
effect totem. The player’s character is healed in the presence of the totem.

Figure A.5: The first figure shows a triangle with an embedded circle. The
second figure shows the created totem has the are of effect increased twice.

Figure A.6: The first figure shows a circle with an embedded square. The
second figure shows the created totem shields the character and grants it
power state, increasing its attack.
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Figure A.7: The first figure shows a circle with an embedded water drop.
The second figure shows the created totem shields the character and its
Distraction effect lures the enemies.

Figure A.8: The first figure shows a square composed from circle pattern
shapes. The second figure shows the WallEffect caused by the circle pattern
shape.
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Figure A.9: The first figure shows a water drop composed from square pattern
shapes. The second figure shows an explosions effect caused by the square
pattern shape.

Figure A.10: The first figure shows a triangle composed from triangle pattern
shapes. The second figure shows the Tower effect caused by the triangle
pattern shape.
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B. Third party software

The following libraries and projects has been used in the implementation:

Urho3D [Urh] Urho3D is a game engine and the game prototype has been
implemented in it.

Fast Artificial Neural Network Library [Fan] The algorithm is built
around the Fast Artificial Neural Network Library [Fan], using its sim-
ple interface to train and use the neural networks.

EasyBMP [Bmp] The EasyBMP [Bmp] has been used to save the debug
images of the algorithm to the hard disk in the bmp format.

linalg.h [Lin] The linalg.h [Lin] is a library for linear algebra computa-
tions, which has been used for several matrix transformations in the
algorithm.
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Attachments

Attachment A — the Enclosed CD

On the CD attached to this thesis we enclose the source codes of the imple-
mented software together with the source codes of its dependencies Urho3D
[Urh] engine and Fast Artificial Neural Network Library [Fan].

The electronic version of this thesis is also enclosed.
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