
BACHELOR THESIS

Martin Červeň

Artificial Intelligence for Go on
Non-standard Topologies

Department of Software and Computer Science Education

Supervisor of the bachelor thesis: Mgr. Jakub Gemrot, Ph.D.
Study programme: Computer Science

Study branch: IOI

Prague 2018

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

Title: Artificial Intelligence for Go on Non-standard Topologies

Author: Martin Červeň

Department of Software and Computer Science Education: Department of Soft-
ware and Computer Science Education

Supervisor: Mgr. Jakub Gemrot, Ph.D., Department of Software and Computer
Science Education

Abstract: Go is a popular strategic game for two players. It is usually played on a
squared board of 19x19. The aim of this thesis is to create an application allowing
a user to play Go on any board defined by a graph, such as sphere and torus. We
created a web based client-server application, written in JavaScript and Node.js,
that is using protocol Websockets for fast communication. Application allows
user to play against other players on the Internet. Server can support multiple
concurrent games at the same time. Boards can be created by modelling tool
Blender and then imported into the application. Our application supports 3D
rendering of these boards in web client using WebGL. It has responsive control,
allowing changes of view by rotating, moving and zooming. Users can also play
against artificial intelligence.

Keywords: game tree search, Monte Carlo Tree Search, board game, Go, non-
standard topology

ii

I would like to thank to my supervisor Jakub Gemrot for answering my questions
and for his patience. I would also like to thank to my family for continuous
support throughout my study.

iii

Contents

1 Introduction 3
1.1 Goal of the thesis . 3
1.2 Structure of the thesis . 3

2 Background 5
2.1 Rules of Go . 5
2.2 Go on non standard topologies . 8

3 Related work 12
3.1 Applications for playing Go . 12

3.1.1 KGS . 12
3.1.2 Online-go.com . 12
3.1.3 Freed Go . 13

3.2 Computer Go and AI . 13

4 Analysis 15
4.1 Application architecture . 15

4.1.1 Monolithic application . 15
4.1.2 Client server architecture 16

4.2 Type of client server architecture 16
4.2.1 Platform-dependent client server 16
4.2.2 Multi-platform game framework/engine 17
4.2.3 Web client server . 17

4.3 3D rendering in web browsers . 18
4.3.1 Choosing the right technology 19
4.3.2 Using graphics library . 20

4.4 Programming language of client 21
4.5 Programming language of server 21
4.6 Choice of programming tools . 21

4.6.1 Basic text editor . 22
4.6.2 Advanced text editors . 22
4.6.3 Debugging in browser . 22
4.6.4 WebStorm . 23

4.7 Choice of other frameworks and libraries 23
4.7.1 Bootstrap . 23
4.7.2 Express.js . 23
4.7.3 Socket.io . 23

4.8 Creation of user defined boards 23
4.8.1 Create custom board editor 24
4.8.2 Use existing software . 24

4.9 Choice of AI algorithm . 24
4.9.1 Use existing Go AI . 24
4.9.2 Use existing AI technology 25
4.9.3 Monte Carlo tree search 25

1

5 User documentation 27
5.1 User documentation of client . 27

5.1.1 Requirements for client . 27
5.1.2 How can user connect to the application 27
5.1.3 Lobby . 27
5.1.4 How can user create new game 28
5.1.5 How user joins already created game 28
5.1.6 How user plays 3DGo game 28
5.1.7 How to create new boards for 3DGo 31

5.2 User documentation of Server . 34
5.2.1 How to install and run app 34

6 Development documentation 37
6.1 Server . 37

6.1.1 Events . 39
6.1.2 Layered design of events 40

6.2 Games . 41
6.2.1 Controller . 41
6.2.2 Model . 41

6.3 Client . 42
6.3.1 ClientController . 42
6.3.2 GameController . 43
6.3.3 Model . 43
6.3.4 View . 43

6.4 AI Client . 44
6.4.1 How AI client connects to the game 44

6.5 Addition of other games by other developers 45

7 Conclusion 46

Bibliography 47

List of Figures 51

Attachments 53

2

1. Introduction
Go is an ancient strategic board game for two players. It is played approx-

imately by 40 millions players, mainly in Asia. It is interesting to the field of
artificial intelligence because it has simple rules, but is difficult to master. In
May 2017 AI called AlphaGo developed by Google beat No.1 ranking player in
the world Ke Jie [1]. Go is played on square wooden board using black and white
stones. Rules of the game are further described in section 2.1.

While there are applications allowing a user to play Go on squared board,
there is no accessible way of playing Go on other than square board. In our
thesis we are going to develop an application allowing users to design their own
Go boards, visualise them, allow them to play Go on these boards against other
players and develop basic artificial intelligence that will be able to play against
user.

We developed a web based application that satisfy these needs. It consists
of client and server, and has 3D visualisation of Go boards. It is written in a
modular way, which could be used for development and playing of other games
than Go, for example, we implemented game Connect Four. You can play our
application at http://3dgo.io:3000 against other human players or AI.

1.1 Goal of the thesis
The goal of our thesis is the development of an application that would allow

user to play Go on boards defined by undirected graph. Playing on these boards
requires creating them, and visualising them. It would also be useful to be able
to play against other players across the Internet. We also develop Artificial
Intelligence that players can play against. To summarise these needs, we develop
an application that would satisfy following goals.

Goal 1.) allow users to play Go on boards defined by undirected graph,

Goal 2.) support multiplayer playing of Go against other users,

Goal 3.) allow users to play against artificial intelligences,

Goal 4.) visualise Go defined by undirected graphs,

Goal 5.) let users design their own Go boards, and play on them in this ap-
plication.

1.2 Structure of the thesis
In the second chapter, Background, we describe the game of Go, it’s rules

and history. We also define Go on non standard topologies and give some

3

http://3dgo.io:3000

examples of non-standard boards.

In the third chapter, Related work, we describe several Go applications and
their features. We also mention Go AI history.

In the fourth chapter, Analysis, we describe decision process that we used
to select architecture of our application, which frameworks and technologies we
used and which algorithm we chose for AI.

User documentation will be presented in the fifth chapter. We will describe
how a user connects to the website, how to start a server, how can user create a
game and how to play a game using our application.

In the sixth chapter, Development documentation, we present how we
developed our application, what classes we created and we will show state
diagrams of client and server and give an example of communication between
client and server.

In the last, seventh chapter, Conclusion, we summarise what we have
achieved and we will outline the future work that could be done and was not
part of our goals.

4

2. Background
In this chapter we will introduce Go game and its rules. We then describe Go

on non standard topologies, which we will call 3DGo

2.1 Rules of Go
In this section we will introduce rules of Go. We chose to use rules as found

on Wikipedia [2] , which are essentially rules of the American Go Association [3]
in somewhat digestible form. We added examples of rules in figures for additional
clarity.

Game of Go is a board game played by two players, called Black and White.
Go is played on a squared board, composed of 19 vertical and 19 horizontal lines.

Point where horizontal line meets vertical line is called an intersection. Two
intersections are adjacent, if they are connected by horizontal or vertical line with
no other intersections between them. Go is played with tokens known as stones.

At any time, each intersection on the board is in one of the following states:
empty, occupied by black stone, occupied by white stone. A position is an
arrangement of the states of all the intersections on the board. Two placed
stones of the same color (or two empty intersections) are connected if between
them exists path of the same state.
Liberty of a stone is an empty intersection adjacent to that stone or adjacent to
a stone which is connected to that stone. Position is a Example of stones with
various number of liberties is in figure 2.1.

Play: Board is empty at the beginning of the game. The players alternate in
moving, with Black playing first. Move is either a pass, or a play. Play consists
of following steps:

1. Placing a stone of their color on an empty intersection.
2. Removing from board any stones their opponents color that have no liber-

ties, this is called capture. Capture of one stone is shown in figures 2.3 and
2.3 and capture of multiple stones is shown in figures 2.4 and 2.5.

3. Removing from board any stones of their own color that have no liberties,
this is called self-capture.

Prohibition of suicide: Play is illegal if one or more stones of that players
color would be removed in step 3 of that play. Suicide is shown in figure 2.6.

Positional superko rule: A play is illegal if it would have the effect of
creating a position that has occurred previously in the game (pass is allowed).This
rule is shown in figure 2.7.

End: The game ends when both players have passed consecutively. The final
position is the position on the board at the time the players pass consecutively.
Example of final position is shown in 2.8

5

Territory: In the final position, an empty intersection is said to belong to a
player’s territory if all stones adjacent to it or to an empty intersection connected
to it are of that player’s color.

Area: In the final position, an intersection is said to belong to a player’s area
if either: 1) it belongs to that player’s territory; or 2) it is occupied by a stone of
that player’s color.

Score: A player’s score is the number of intersections in their area in the final
position.

Winner: If one player has a higher score than the other, then that player
wins. Otherwise, the game is drawn.

Optionally, a non integral value called komi is added to the white’s score
to break the tie. Because Black player moves first he has an advantage. Komi,
which was nonexistent before 20th century, was progressively increased over time
to offset this advantage and is now usually 6.5 or 7.5.

Figure 2.1: Stones with various liberties

Figure 2.2: White stone has one lib-
erty

Figure 2.3: Black captured white
stone

6

Figure 2.4: White stones has one lib-
erty

Figure 2.5: Black captured white
stones

Figure 2.6: Example of suicide, White cannot play at highlighted position.

7

(a) Initial position (b) Black plays

(c) White captures (d) Black can not play the same move

Figure 2.7: Example of positional superko rule.

Figure 2.8: Example of a final position

2.2 Go on non standard topologies
We extend Go by not playing only on a squared board, but also on boards

defined by an arbitrary undirected graph, as stated in goal Goal 2.). The game

8

mechanics and rules stays the same as in traditional Go. But since in traditional
Go, each stone has four, three and two liberties depending on position, in 3DGo
it can have less or more. This will lead to different strategies than on a squared
board.

There were a few tendencies to extend Go for other boards than squared or
change dimensions from ordinary. Few programs exists that allow this. However,
most of them are only available for one platform, does not support current
operating systems, or are only single-player. One such example is shown in
section 3.1.3.

Our application allows creation of board with arbitrary "topology". In other
words, each vertex can have arbitrary neighbours, and boards can be arbitrary
large, and vertices together can be arbitrarily connected.

This allows creation of interesting boards such as torus, as show in figure
2.12, which has no edges or corners like square board, mobius strip, which is
like band of rubber but with inverted edges, this creates interesting play as it
disallows capture along the edge.

The other interesting examples are circle, as shown in figure 2.11 or sphere
with cut off top and bottom, in figure. 2.10. These are examples of seemingly
different boards, but are topologically the same.

Our thesis also creates new material for development of artificial intelligence.
To date, advances in Go AI are oriented for 19x19 squared boards. It would be
interesting to observe play of artificial intelligences on other boards than squared.

Figure 2.9: Hexagonal grid, screenshot from a game

9

Figure 2.10: Spehre with cut off top and bottom

Figure 2.11: Circle board, screenshot from a game

10

Figure 2.12: Torus board, screenshot from a game

11

3. Related work
In this chapter we present related work in two sections. First section describes

several applications that allow user to play Go. Second section describes history
of Go AI.

3.1 Applications for playing Go

3.1.1 KGS
KGS [4] is a client server application written for playing Go. It was created by

William M. Shubert in 2000, and is written in Java. It has a lobby, chat rooms,
and support play of squared Go boards of sizes 2x2 to 38x38. It also supports
viewing files in Smart Game Format (SGF) [5] and connecting AIs in Go Text
Protocol (GTP) [6]. AlphaGo was trained on database of games from this server.
In 2017 it was sold to American Go Foundation, and several new clients not based
on Java are being developed.

Figure 3.1: Screenshot of CGoban,
the KGS client.

Figure 3.2: Screenshot of a game
played on KGS.

3.1.2 Online-go.com
Online-go server [7] is a popular Go server that is available from the browser.

It has appealing user interface, hosts regular tournaments and users can play
against AI. It also has ranking system, database of the played games and real
time chat.

12

Figure 3.3: Online-go web client, screenshot from a game.

3.1.3 Freed Go
Freed Go is a Go application by Lewey Geselowitz [8]. Users can play Go on

boards like Sphere, Torus, Mobius Strip and else. It renders these boards in 3D
and supports user to user network play. It has also several drawbacks, such as, it
does not have central server, it is only for windows platform, does not allow play
against AI, is not open source, and its controls support only rotation of view.
Figures 3.4 and 3.5 shows boards in Freed Go.

Figure 3.4: Screenshot of cylindric
board in Freed Go.

Figure 3.5: Screenshot of a irregular
board in Freed Go.

3.2 Computer Go and AI
Chess was for a long time main topic of study of Artificial intelligence commu-

nity [9]. Focus of AI researchers shifted to computer Go after Deep Blue defeated
reigning chess champion Garry Kasparov in 1997.
Computer programs playing chess at that time were using Alpha beta pruning
and were run on large supercomputers. Deep blue searched on average 126 million
positions per second in match with Kasparov [10].

13

It is not easy to design a Go playing program that plays well, because it is
not easy to design evaluation function of moves [11]. Go has up to 361 legal
moves and more than 10170 states. This is too much for alpha beta searches used
succesfully in chess. [9].
In 2006, Coloum proposed new algorithm using monte carlo simulations combined
with tree search, called Monte Carlo tree search[12]. Then, in 2007 UCT was
added, which also imporved performance of Go playing programs. Neural net-
works was used in 2000s but they have not met performance of MCTS algorithms

In October 2015 AlphaGo beat european Go champion Fan Hui on 19x19
board.
AlphaGo was trained on millions of games from professional games. [13]

In 2016 Alpha Go beat one of strongest players in history, Lee Sedol [14]. Next
version of Alpha Go beat Next stage in computer Go came next year. Google
Deepmind created new program AlphaGo Zero that did not learn from human
games, but played against itself over many iterations. At each iteration, next
generation of program would be stronger than previous.
In 2017, AlphaGo Zero,that was trained without human knowledge, beat the pre-
vious version of AlphaGo trained on human expert moves. [13]

14

4. Analysis
In this chapter we analyse possible application architectures we could use.

We also consider how we are going to render boards of our application and what
are our options. We also consider what programming language could be used
to develop our application, what libraries and frameworks we could use, and
what tools would be beneficial to the development of our application. We also
consider possibilities of creating custom boards, and what are advantages and
disadvantages of various approaches. Lastly, we describe several algorithms for
possible AI, and chose appropriate one for our problem.

For each choice we list several options, their advantages and disadvantages,
and pick one we deemed the best. We will guide our choices by the goals we set
up earlier in the introduction. At the end of the chapter we will repeat choices
that we made along the way.

Let us reiterate the goals:

Goal 1.) allow users to play Go on boards defined by undirected graph,

Goal 2.) allow users to play Go on these boards against other users,

Goal 3.) allow users to play against artificial intelligences,

Goal 4.) visualise Go defined by undirected graphs,

Goal 5.) let users design their own Go boards, and play on them in this ap-
plication.

4.1 Application architecture
Our application can be programmed by different approaches. In this section

we describe two types of application architectures, we consider their advantages
and disadvantages and describe which one is better suited for our problem.

4.1.1 Monolithic application
Monolithic application [15] is an application performing all the tasks itself. It

has these advantages:

• it is easy to design and program,

• it is not dependent on the Internet connection.

But it also has disadvantages, such as:

• user has to download and install it,

• if application is updated, he has to download update,

• user cannot play with other players on the Internet,

• AI will run on the same machine, taking computing time.

15

4.1.2 Client server architecture
Client server architecture is a distributed application structure that allows

splitting tasks between multiple machines. [16].
These are its advantages:

• user can play against other players on the Internet,

• AIs can connect to the server as clients, so we can use the already-
programmed system, and agents can run as a separate process or on
another machine,

• according to [17], 54,4% of all people on earth is connected to the Internet.

It also has few disadvantages:

• it is harder to design and program than monolithic application,

• user has to download client,

• if client is updated, he has to download update,

• connection to the Internet is required.

Goal 1.) could be implemented in both architectures, but because we want
to support multiplayer play as stated in Goal 2.), thus we choose client server
architecture.

4.2 Type of client server architecture
We chose client server architecture in the previous section as the go to appli-

cation architecture. Now we need to specify how clients would look like. We have
several options.

4.2.1 Platform-dependent client server
Our first option is to build client for every architecture that we target. It is

easier with languages such as Java and C#, but still, the user has to have installed
Java virtual machine (JVM) [18] or Common Language Runtime (CLR)[19] to
run the application.

These are its advantages:

• user can play with other players on the Internet,

• AI can connect to the server as client.

Its two disadvantages are:

• For every platform have specific application, in case of Java or C# have
installed JVM or CLR respectively. For example Apple’s iOS devices does
not support Java, which is large portion of user base.

• In case of updates, rebuild and download updated application.

16

4.2.2 Multi-platform game framework/engine
Another choice that is often used is using some kind of game framework/engine

that builds application for many platforms. Great example of this is Unity game
engine [20] ,shown in Figures 4.1 and 4.2.

Figure 4.1: Screenshot of Unity edi-
tor

Figure 4.2: Game running in Unity
editor

It has same advantages as desktop client server, plus it can build to many
different platforms. While it may seem as perfect solution, it also has several
disadvantages:

• necessity of using engine’s/framework’s editor,

• necessity to build application for each platforms,

• necessity of using some predetermined language, such as C# in Unity,

• it is usually not free,

• necessity to study particular framework in depth.

• Other limitations, for example, free version of Unity limits player number
for multiplayer to 20, and building for WebGL is not supported on mobile
devices [21].

4.2.3 Web client server
This design will use web browser as a client. Web browser is an application

allowing user to connect to the Internet and browse web pages. First browser,
shown in figure 4.3, was written in 1990 by Tim Berners-Lee at CERN [22] and
since then browser’s capability dramatically increased. Rich web applications
[23] rival capabilities of their desktop counterparts. Figure 4.4 shows an example,
Google Docs [24]. Almost every personal computer today has some sort of browser
capability.

17

Figure 4.3: The first web browser by
Tim Berners-Lee

Figure 4.4: Google Docs web appli-
cation

Advantages of this architecture for our application are:

• user does not have to install application,

• large user base, 55.4% [17],

• user can play with other players on the Internet,

• AI can connect to the server as client,

• user does not have to update application.

It also has disadvantages:

• it is hard to design and program,

• user has to download client every time.

Web applications have large user base and are inherently multiplatform. Users
do not have to install application, they only connect to the website. Web appli-
cations offer easy updating and are not artificially limited in any way as game
engines. We therefore decided to choose Web client server architecture for
developing our application. Our choice satisfies our first three goals:

Goal 1.) because this could be implemented in any architecture,

Goal 2.) becuase we chose client server architecture,

Goal 3.) because AI can connect to server as clients, and play against human
clients or other AI via server.

4.3 3D rendering in web browsers
Because we want to play Go on boards defined by non directed graph, our

graphs can be badly represended in 2D. We could project other shapes into 2D
plane, for example torus, but the result would look very messy and chaotic.
Because of this, we will render boards in 3D. There could be boards that could
look chaotic even in 3D too, but for sake of simplicity of gameplay we are not
going to consider that. Next we consider technologies which we could use for 3D
rendering, and select one which we will use.

18

4.3.1 Choosing the right technology
While Adobe Flash [25] has been dominant force in interactive web gaming

industry for many years [26], it started to lost ground with Apple’s decision to
not support it in iOS in 2010 [27]. Adobe said that it discontinues use of Flash
in favour of open standards like HTML5 and WebGL [28]. Figures 4.5 and 4.6
show games built with Adobe Flash.

Figure 4.5: Civilization Wars [29], a
real time strategy game built with
Adobe Flash

Figure 4.6: Yellow Planet [30], a
3D running game built with Adobe
Flash.

Microsoft Silverlight [31] is a similar application framework as Adobe
Flash for writing rich web applications. It was deprecated in favour of HTML 5
in 2015 [32].

WebGL [33] is a JavaScript API for hardware-accelerated 2D and 3D
graphics rendering within compatibile web browsers without use of plug-ins like
Flash and Silverlight. It can be used with HTML5 <canvas> elements. Its API
is modelled after OpenGL ES 2.0. It is cross-platform and widely implemented in
major browsers[33]. Figure 4.7 shows Quake [34], 3D game ported to WebGL and
figure 4.8 shows Experience Curiosity, an 3D interactive application developed by
Nasa [35].

Figure 4.7: Quake game ported to
WebGL

Figure 4.8: Experience Curiosity in-
teractive application

WebGL offers many advantages, such as support in all major browsers, is fast,
and allows rendering of 3D graphics. It is standard 3D graphics API for the Web
[36]. We will use WebGL for 3D rendering of our application.

19

4.3.2 Using graphics library
Now that we established that what technology we will use for rendering, we

need to consider what other functionality we need for board rendering and com-
fortable gameplay of our application. We need to be able to:

• render stones,

• render edges between stones,

• manipulate view of board, e.g. zooming, panning, rotating,

• select stones we wish to play by clicking or touching.

But since WebGL is just a low-level drawing API that works with arrays of
data and shaders, it is very tedious to work with [36]. We need several more
things to be able to render boards and play our application such as:

• have common math operations with vectors and matrices,

• import objects and create basic shapes,

• have a scene that will contain all objects that we wish to draw,

• have multiple views on the scene,

• have a way to manipulate objects,

• have a way to manipulate cameras, such as rotation, zoom and panning.

All this functionality that we listed, has been already implemented in graphics
libraries, which are WebGl under the hood. We will pick one, Three.js [37], which
has most stars on github, and is has very good documentation, code examples
and friendly community. Figures 4.9 and 4.10 show examples of various projects
build with Three.js.

Figure 4.9: Cassini’s Grand Tour by
National Geographic [38].

Figure 4.10: Interactive visualisa-
tion of Milky Way by Google [39].

Three.js has these advantages:

• it hides the details of 3D rendering and has common objects like scenes,
cameras, meshes, materials, lights,

• it is fast,

20

• it has basic geometric shapes and supports import of common 3D file for-
mats,

• it has common math operations,

• it supports interaction with objects such as clicking and selecting,

• it supports interaction with camera, such as rotation, zoom and panning,

• it can render to 2D Canvas, SVG, and CSS in case some browser does not
support WebGL,

• it is open source.

There are also game engines built on top of Three.js, offering additional func-
tionality, but since Three.js fulfils all our needs for rendering boards and playing
Go, we will directly use Three.js. This choice satisfies Goal 4.), because we
have all the tools necessary to visualise Go boards in 3D.

4.4 Programming language of client
Because we decided that we will use WebGL, we will program logic of our

application in JavaScript.

4.5 Programming language of server
We already decided that we will use JavaScript for client side programming.

Now we need to decide what language we will use to program server.
Since we are going to use JavaScript for client side programming, we decided

to program server in JavaScript too. This will save us time because we don’t
have to think in two languages, and we can reuse parts of code between client
and server.

JavaScript can be run on server using JavaScript runtime environment, such
as very popular Node.js [40]. Javascript has been most popular language for 5
years in a row according to [41], and Node.js most popular framework in 2017
[41].

4.6 Choice of programming tools
In this section we identify what we need to effectively program our applica-

tion and explore various options for programming tools that could help us with
development, and select most suitable ones.

We would like to have tools that would have features such as:

• ability to write code efficiently,

• syntax highlighting of code,

• code linting,

21

• debugging of JavaScript on both client and server side,

• code refactoring,

• custom hotkeys and code snippets,

• source control such as Git,

• ease of use.

4.6.1 Basic text editor
Basic text editor usually is able only to read/write text to file, but some

programmers use it although it does not offer any help or functionality that we
listed above.

4.6.2 Advanced text editors
Text and source code editors such as Atom [42] and Visual studio code [43]

are open source programs that besides text editing abilities offer additional func-
tionality through use of plug-ins. They support syntax highlighting, linting, code
refactoring, custom hotkeys and even can be used to debug Node.js applications.

Figure 4.11: Atom editor Figure 4.12: Visual studio code edi-
tor

4.6.3 Debugging in browser
For client side debugging, all major browsers has some sort of debugging

capability. In figure 4.13 and 4.14 we show two examples of debugging in Google
Chrome and Apple Safari respectively.

Figure 4.13: Chrome DevTools [44]
in Google Chrome

Figure 4.14: Web Inspector [45] in
Apple Safari.

22

4.6.4 WebStorm
WebStorm [46] is a Integrated development environment (IDE) by JetBrains

and is free for students. It offers syntax highlighting, code linting, code refactor-
ing, Node.js debugger, integrated source control, refactoring tools and it can also
use debug plug-in within the browser so we can also debug client side code with
it. It has also same user interface as another popular IDEs we are familiar with,
such as IntelliJ IDEA and PyCharm, made by the same company. WebStorm
offers all the tools we need, has familiar UI, and for us, programming in it is
faster than other two editors we tried, Atom and Visual Studio Code.

We therefore decided to use Webstorm for development of our application.

4.7 Choice of other frameworks and libraries
In this section, we describe three additional libraries that we will need to

create responsive, good looking application.

4.7.1 Bootstrap
We chose web client architecture in the section 4.2. We will be rendering Go

games in 3D, but we need a way to connect players together. That could be
done for example by creating HTML table of available games, sent to client by
server. Since plain HTML is not particularly eye catching in the 21st century,
we will use front-end library Bootstrap [47] to get more polished look for our
application. We chose it because it is most popular library on GitHub and we
have some experience with using it.

4.7.2 Express.js
Another library that we will use, is Express.js [48]. It is an web framework

for Node.js. While Node.js itself is a JavaScript runtime environment with net-
working capability, Express.js makes it easier to set up and run server with the
Node.js.

4.7.3 Socket.io
Because we will need to communicate from server to client, and from client

to server, we will use Websockets [49], which is a TCP-based protocol. It has
several advantages, such as full duplex communication, it has lower overhead than
HTTP and it is providing a stateful connection. There are several libraries for
easy Websocket client to Node.js programming, we will use Socket.io [50], which
has most GitHub stars.

4.8 Creation of user defined boards
In this section we describe several possible ways, how could a user create

custom board and play it in our application.

23

4.8.1 Create custom board editor
We could create custom board editor in the client. This has several advantages

such as:
• it is user friendly,

• user directly sees the board he\she is creating.
But it has also several disadvantages, for example:

• it is hard to implement,

• it has limited capability to create complex shapes.

4.8.2 Use existing software
Using existing software to create boards has many advantages:

• we do not have to program additional part,

• we could leverage existing capabilities of modelling software such as proce-
dural generation on shape generation,

• different softwares could be used.
It has one disadvantage:

• user has to export board from modelling tool and import it into our appli-
cation.

By using existing modelling software, we do not have to program custom ed-
itor. Existing modelling softwares have vast capacity to create complex shapes,
the only disadvantage to this is that we have to implement importer to our ap-
plication. We therefore choose to use existing modelling software to create
boards, and create importer to import them into our application. This choice
satisfies Goal 5.), and we have thus covered how are we going to satisfy all goals.

4.9 Choice of AI algorithm
In this section we describe few AIs and approaches used in computer Go, and

then we select most suitable approach.

4.9.1 Use existing Go AI
There exists open source Go AIs such GNUGo by Free Software Foundation

[51] or Pachi made by Petr Baudiš [52]. These AIs are used only for squared
boards, which prevents us from using them. They are also developed by large
teams of people and their source code is using lot of heuristics used specifically
for squared 19x19 boards such as databases of moves and patterns. Furthermore,
they are using GTP [6] for communication. Since we are using Websockets
protocol for communication, it would be additional thing to implement.

There are also Go AIs such as AlphaGo [14] and Crazy Stone [53] which are
proprietary and we cannot use them.

24

4.9.2 Use existing AI technology
We therefore need to build our own 3DGo AI, which will be inspired by

algorithms that are used by existing Go AIs. Our two candidates are Monte
Carlo tree search [9] and neural networks [54].

Neural networks that are used by AIs such as AlphaGo are trained on large
databased of moved or by self play. Either way, they are specified for squared
boards and require extremely large amounts of computing power, 1700 years of
computation on common hardware [55].

Furthermore, we would require separate training for each board, making this
approach impractical. MCTS does not require training and is not confined on
squared board only. We decided to use MCTS algorithm for our AI.

4.9.3 Monte Carlo tree search
MCTS is an algorithm that iteratively builds search tree that assigns value to

the moves. Root node is current state a game, and its children are next moves
from current state. Children node with highest value is move which algorithm
thinks its best move in that situation. Algorithm is anytime, that means if stop
it prematurely, it gives us current best result. If we give it more time, it should
give us better result.
MCTS algorithm consist of four steps:

1. Selection: Start from root R and select successive best child nodes down to
a leaf node L.

2. Expansion: Add a child node C to the L according to available actions.
3. Simulation: From node C do a random playout until terminal state and

compute outcome.
4. Backpropagation / Backup: Go from C to R and update nodes with infor-

mation from playout along the way.

These steps are shown in figure 4.15

Figure 4.15: Steps of MCTS algorithm, figure from [56].

25

Upper Confidence Bounds for Trees (UCT)

Since MCTS pick up best children in selection, it is called greedy MCTS.
There can be nodes with immediate bad values, but in the long run could be
best. Thus we need a way to explore even nodes with immediate bad values. We
will give each node a bonus based on uncertainty we have about that node, and
thus we will explore even nodes that are not immediately of high value. Thus we
want to maximize:

nval + c
√

ln(pvisits)
nvisits

where nval is value of a node n, c is a tunable constant, we will use 1√
2 according

to [56], pvisits is number of visits of parent node of n and nvisits is number of visits
of node n.

26

5. User documentation
This chapter describes how to use our application. It outlines elements of web

interface, parts of GUI, and shows tutorial on how to play the game of 3DGo. It
shows how to use the web interface to join an already created game, how to create
a new game and how to play against artificial intelligence. Moreover, we show
how to create an arbitrary board using free, open source modelling tool Blender
[57] and how to import it into our application to play it.

5.1 User documentation of client

5.1.1 Requirements for client
User who wants to play our application needs browser Google Chrome version

63.0.3239.108 or higher, or Apple Safari version 11.0.1. or higher.
Mozilla Firefox version 57.0.1 (64 bits) is also supported, but user needs to go to
about:config page and set dom.moduleScripts.enable to true.

5.1.2 How can user connect to the application
User can connect to the website clicking on following link:

http://3dgo.io:3000

He then selects already created game from a list of games by clicking on Play
game! button, as shown in figure 5.1

Figure 5.1: Selected game starts when user clicks on "Play game" button

5.1.3 Lobby
When user goes to website http://3dgo.io:3000 he is sent to a lobby page. It’s

purpose is to let users create a new game or to play other games, available in the
table in the center of the screen. Table lists available games, sorted by date of
their creation.

27

http://3dgo.io:3000
http://3dgo.io:3000

Figure 5.2: Lobby, screenshot

5.1.4 How can user create new game
User can create new game by selecting which board he wants to play from

drop-down list. He also selects which user he wants to play against, human,
random agent or MCTS agent.

He then clicks on play game button.

Figure 5.3: How user create game, screenshot

5.1.5 How user joins already created game
User can see all information about games in lobby. If he wants to play desired

game, he needs to click on green button Play Game! which initiates the selected
game. There is additional info in the table as player ID, game type, opponent.

5.1.6 How user plays 3DGo game
3DGo is played similarly to classic Go. In the figure 5.4 we depict finite state

machine of 3DGo game.

Liberty counting

Player can click on any stone that is already on board to display its liberties.
The stone or whole group will be highlighted, and sprite will be displayed with
number of liberties of that stone or group.

28

Figure 5.4: Finite state machine of user interaction with client.

Figure 5.5: Librety counting of stones

29

Figure 5.6: Stone selected to play on board

To prevent misclick, when user wants to play a move, he has to click on some
blank space. Blue color is highlighting that selected stone. If he clicks on that
stone again, it is sent to server and processed.

Figure 5.7: Last played stone on board

30

5.1.7 How to create new boards for 3DGo
Boards used by 3DGo are stored as undirected graphs. We needed a way

to create any board that a user could imagine. We could either implement our
own editor, or use some existing software. Editor has to be multiplatform,
easily accessible and free. Having considered these options, we settled on
second one, because existing software is more flexible and has more creative
options. Boards created using third party editor must be converted to undirected
graph that 3DGo uses.

Blender [57] is a very popular modelling tool satisfying our requirements.
We have implemented loader which converts models in .obj [58] file format to
our undirected graph data structure. Loader only reads lines beginning with v
and l.

The .obj file we wish to convert has to have following format:

Blender v2.78 (sub 0) OBJ File: ''
www.blender.org
v -1.000000 0.000000 1.000000
v 1.000000 0.000000 1.000000
v -1.000000 0.000000 -1.000000
v 1.000000 0.000000 -1.000000
l 3 1
l 1 2
l 2 4
l 4 3

Lines begining with # are comments. Lines which begin with v means vertex
and its x,y,z coordinates. Lastly, lines in format l from to are edges.

Board creation workflow
First, ensure you have installed up-to-date Blender. You can install latest

Blender from https://www.blender.org. Below we describe how to create com-
patible .obj file for our loader.

1.) Open the Blender and delete default cube.

31

https://www.blender.org

Figure 5.8: Blender, screenshot

2.) Add or create any mesh you want.

Figure 5.9: Blender, screenshot

3.) After you are content with your creation, go to edit mode and press x
and then delete only faces.

32

Figure 5.10: Blender, screenshot

4.) Then, select File → Export → Wavefront (.obj)

Figure 5.11: Blender, screenshot

5.) Save the file with only following options: Include Edges, Keep Vertex
Order to the /app/serverSide/boards

33

Figure 5.12: Blender, screenshot

5.2 User documentation of Server
In this section we will describe how to set up Server. You can download up-

to-date version of the application at: https://github.com/martinerk0/3dgo

5.2.1 How to install and run app
We show how to install and run our application on one platform, Mac OS X

10.11.6 (El Capitan).

1. Download current version of Node.js from website https://nodejs.org/
en/

34

https://github.com/martinerk0/3dgo
https://nodejs.org/en/
https://nodejs.org/en/

Figure 5.13: Node, download

2. Run installer

Figure 5.14: Node, download

3. Download the latest application from github repository, https://github.
com/martinerk0/3dgo.

4. Unzip downloaded folder, and use terminal to cd to <name of downloaded
directory>

35

https://github.com/martinerk0/3dgo
https://github.com/martinerk0/3dgo

5. Type in terminal: node app.js <number of port>, so for example node
app.js 3000, server is now running on specified port.

6. open localhost:<number of port> or <your ip adress>:
<number of port>, and play!

36

6. Development documentation
In this chapter we describe how we implemented our application. We strived

for modular design by splitting each functionality in separate classes, and sepa-
rate files. This was possible using Node.js import/export and es6 export/import
recently introduced to javascript.

Our application consist of four main parts, which are split into respective
parts:

• Server

• Games

• User Client

• AI Client

In next sections we will describe each part.

6.1 Server
Server is a Node.js application implemented in file app.js.

Node.js libraries are called modules, Server app depends on these modules:

• express [48]

• path [59]

• socket.io [50]

Server is the central part of application. It listens for clients to connect. Each
client firstly connect to shared room [60] called lobby where they can create
games or join games.
Game is represented by classes AvailableGame,RunningGame which contains
info such as hostPlayer,joinPlayer and particular controller of the game. Players
are identified by unique socket id assigned by library socket.io.

When client creates game, AvailableGame object is created and added to the
list of available games and is displayed in the table. After another client joins
this particular game, it is removed from list of available games.
Game controller is created, which creates model of the game and handles all the
traffic between clients.
Game controller represents running game, and is added to the list of running
games.

Relaying messages to the Game controller by server is useful, because we can
have different game controllers and thus different running games on the same
server at the same time, this is shown in figure 6.1 . Controllers of course must
have same API.

37

Server

ThreeDGoController.js

ThreeDGo
Model

Connect4Controller.js

Connect4
 Model

Figure 6.1: Example of two games

We also pass reference to the server object so that controller can call methods
of server. This is useful for example when game is finished, and game controller
needs to tell server to remove game from list of running games, so controller calls
endGame method.

endGame(winner){
let runningGame={

hostPlayer: this.agent1.id,
joinPlayer: this.agent2.id

};
let data = JSON.stringify(runningGame);
this.server.endThisRunningGame(data);

}

Figure 6.2: Example of end game method, which tells server to end this particular
game

Usual lifecycle of a game is:

1. Server starts, no client is connected

2. Client 1 connects to the server

3. Client 1 creates a game

4. Client 2 connects to the server

5. Client 2 joins the game created by Client 1

6. Game has finished, clients are put to Lobby

This is illustrated in figure 6.3

38

Server

LobbyAvailable
games

Running
games

1

Server

LobbyAvailable
games

Running
games

2

Client 1

Server

LobbyAvailable
games

Running
games

3

Client 1

Game

Server

LobbyAvailable
games

Running
games

4

Client 1

Game

Client 1 connects to the server Client 1 creates a game

Client 2

Client 2 connects to the server

Server

LobbyAvailable
games

Running
games

5

Client 2

Client 2 joins the game created by Client 1

Server

LobbyAvailable
games

Running
games

6

Client 1

Client 2

Game finished, Clients are put to Lobby

Game

Client 1

Client 2

Server starts, no one is yet connected

Figure 6.3: Example of lifetime of a game

6.1.1 Events
Server is using library Socket.io which is event-driven[61, p. 38] When

server wants to send message to client, it emits event with some data

this.io.emit('nameOfEvent', someDataForRecipient);

Server has to listen for events from clients too:

socket.on('someEventFromClient', dataFromClient => {
// process data

});

In figure 6.4 we have example of code that listens for event ’gameMessage’,
used in ClientController.

In figure 6.5 we have example of code emit event ’gameMessage’, used in
ClientController.

39

socket.on('gameMessage',message => {
if(this.state==="playingGame"){

this.GameController.processMessageFromServer(message)
}
else{

alert("ERROR");
console.log(this.state);
console.log(message);

}
});

Figure 6.4: Example of code that listens for ’gameMessage’ events

sendGameMessage(message){
message.senderID = this.socket.id;
this.socket.emit('gameMessage',message);

}

Figure 6.5: Example of code that listens for ’gameMessage’ events

6.1.2 Layered design of events
Socket.io has a few default events such as ’connection’ and ’disconnect’ . In

addition to this, we defined our own events. We split these events into two layers
for client-server part and for actual game playing messages. This modular design
enables us to use any game with our client-server architecture, not just 3DGo.
We used while developing our application on test game, Connect4. First layer is
used for client - server communication, such as creating new game, joining game,
updating game list in lobby and ending the game. Second layer is used for passing
game-specific messages such as "play at 4th collumn" in game Connect4. This
design is shown in figure 6.6.

Figure 6.6: Layered communication between server and clients

Server events
These are all events that server emits and listens to, with their meaning.
Server emits following events:

40

• ’gameHasFinished’ - this event is sent to clients in a running game and
signals that game is finished

• ’userDisconnected’ - notifies clients that someone has disconnected

• ’updateList’ - notifies clients and gives them updated list of available games

• ’playGame’ - is sent to clients and signals them that game begins

And listens for following messages:

• ’createNewGame’ - is used when client wants to create a new game

• ’cancelNewGame’ - is used when client wants to cancel new game

• ’finishedGame’ - is used when client wants to exit game, I guess it should
be called exit game because it suggest peaceful end of the game

• ’joinGame - is used when a client wants to join a particular available game

• ’gameMessage’ - event used by games, it is relayed to specific game controller

6.2 Games
Although our main focus is on implementing 3DGo game functionality, we

designed our application to be very modular and support multiple games. This
allowed us to streamline class design and also implement out testing game, Con-
nect4 with much ease. We will show how additional games could be added to
our application, either for research or casual purposes. Thus our application can
be used for testing various AIs in one place for various games for example. Each
game roughly correspond to MVC patterns and thus has three parts, Model, View
and Controller.

6.2.1 Controller
Controller takes care of:

• processes messages from clients

• processes messages from server

• processes input from user

• sends messages to and from client and server

6.2.2 Model
Model takes care of:

• state of the game,

• applying user moves to model,

• has support functions for AI and View, e.g. get all valid moves.

41

6.3 Client
In this section we describe client, its functions and components. Client is

the part of the application that is running in the web browser. User interacts
with client by mouse or touch events. Client displays HTML pages served by
server and displays 3d scenes using javascript library Three.js. Javascript files
are imported by following HTML statements:

<script src="socket.io/socket.io.js"></script>
<script src="lib/popper.js"></script>
<script src="lib/jquery-3.2.1.min.js"></script>
<script src="lib/bootstrap.min.js"></script>
<script type="module" src="js/ClientController.js"></script>

Notice last line, type="module", that means it is es6 import.
The parts of the client are:

• ClientController

• Controller

• View

• Model

6.3.1 ClientController
Client Controller is the main javascript client program. It:

• manages user input

• draws list of games

• initialized game controller.

• communicates with server

Client emit these events:

'joinGame','createNewGame','cancelNewGame','finishedGame'

and listens for these events:

'connect','gameMessage','updateList','playGame',
'gameHasFinished','userDisconnected','disconnect'

42

6.3.2 GameController
Game controller is responsible for managing input from user.

It sends only one event:

'gameMessage'

with message:

let message = {
name: 'makeMove',
move : move

};

6.3.3 Model
Model on Client is the same as on Server. It manages state of the game.

Which Model is selected depends on user choice
We further describe ThreeDG:

It can have following states:

"NOT_GAME_STATE", "MAKING_MOVE", "WAITING_FOR_TURN",
"EVAL_PHASE", "GAME_ENDED"

ThreeDG is using classes:

• UnorderedGraph

• Node

• Spot

6.3.4 View
View provides graphical output to the user. Each game has its respective

View. We implemented 3D rendering for 3DGo with JavaScript library Three.js
and simple text based View for Connect4 to showcase usage of different Views.
We redraw View when something changes, such as user rotates scene by mouse
or clicks.

ThreeView
ThreeView is class encapsulating rendering of the 3DGo. Since graph is rep-

resented by vertices and edges, we need a way to draw them. We use Three.js
library for that. We firstly create scene, renderer and then add objects to the
scene. Objects are stones from graph.Stones are there from the beginning, chang-
ing color and transparency signalises that position is blank, black or white. Edges
are drawn by lines.

43

6.4 AI Client
Our AI agent is programmed using client server approach. One way would

have been to run AI as some server based subroutine. Other way, which we chose
is to have AI agent as separate client, spawned on demand by server. It thus
consist of similar parts as human client.

• ClientController

• Controller

• Model

This lets us use the same architecture on server. For sever, the AI client is
just another ordinary client. We use client part of socket.io library for Node.js
apps.

6.4.1 How AI client connects to the game
When player chooses to play with AI, server:

1.) creates new available game

2.) forks new node AI process with ID of game to join

3.) does not add it to list of visible games

4.) AI connects to the game

Here is a diagram describing this with respect to time.

Figure 6.7: AI client connection to server

44

6.5 Addition of other games by other develop-
ers

If a developer wants to add another game to our app, he must implement the
following classes.

• Game Controller

• View

• Model

45

7. Conclusion
In this thesis we developed an application that lets to user play Go defined

by arbitrary graph, as we defined in Goal 1.) from introduction.
Our application also allows a user to play Go against other users on the

internet, as was required by Goal 2.). For this task, we selected web based client
server architecture. This approach has many advantages. Today, more than 50%
of population of Earth is connected to the Internet, and most computers have
installed web browsers. Our application is multiplatform, and does not require
installation of the client.

By Goal 3.), we implemented a way to play against AIs. Because we are using
client-server architecture, AI can connect to the server as a client and therefore
it can run on another machine. We used protocol Websockets, that allow fast
duplex communication without much overhead, which is especially suited for web
games. We tried to implement an artificial intelligence based on Monte Carlo tree
search, but this did not produce satisfying results. We can improve this in the
future work.

We implemented rendering of Go boards represented as graphs, as we stated
in Goal 4.). For this task we selected 3D rendering. Because we are using
web browser as client, we used modern technology WebGL. We also implemented
controls that allow the user to rotate, zoom and pan the view, and thus achieving
better user experience.

Lastly, we wanted to give the user the ability to create his own non standard
Go boards and to play them in our application. For this task we chose free
open source modelling tool Blender. User can use all the functionality of Blender
to design boards and then exports them in the suitable subset of .obj format.
These exported boards are then loaded into our application and thus we fulfilled
Goal 5.).

Future work
Because computer Go and artificial intelligence is a fairly complex topic, we

present some possible improvements that could be done in the future.
Since our implementation of MCTS algorithm did not produce satisfying re-

sults, we could look for the reasons why.
Because we have designed our application modularly, it is be possible to add

other games to the already implemented client-server architecture. Since any
artificial intelligence can be developed for our application, additional artificial
intelligences, regardless of platform or programming language or game may be
added.

In our next work, we could also focus on extending the application to the
database of users. Users will be able to log in, log off, save game history. For
example, a profile might be showing rank relative to the other players.

46

Bibliography
[1] Wikipedia. (Mar. 20, 2018). AlphaGo versus Ke Jie, [Online]. Available:

https://en.wikipedia.org/wiki/AlphaGo_versus_Ke_Jie (visited on
05/16/2018).

[2] ——, (2018). Rules of Go, [Online]. Available: https://en.wikipedia.
org/wiki/Rules_of_Go#Reference_statement (visited on 05/15/2018).

[3] American Go Association. (2018). Official AGA Rules of Go, [Online]. Avail-
able: http://www.cs.cmu.edu/~wjh/go/rules/AGA.html (visited on
05/15/2018).

[4] W. M. Shubert. (2000). KGS Go Server, [Online]. Available: http://www.
gokgs.com/help/index.html (visited on 05/15/2018).

[5] British Go Association. (Oct. 23, 2017). Definition of the Smart Game For-
mat, [Online]. Available: http://www.britgo.org/tech/sgfspec.html
(visited on 05/15/2018).

[6] G. Farnebäck. (2002). Go Text Protocol, [Online]. Available: http://www.
lysator.liu.se/~gunnar/gtp/ (visited on 05/15/2018).

[7] Online-go server. (2018). Online-go server, [Online]. Available: https://
online-go.com (visited on 05/15/2018).

[8] L. Geselowitz. (2004). Freed Go 1.1, [Online]. Available: http : / / www .
leweyg.com/lc/freedgo.html (visited on 05/12/2018).

[9] D. S. Sylvain Gelly, “Monte-Carlo tree search and rapid action value esti-
mation in computer Go,” Elsevier, 2011.

[10] M. Campbell, A. J. Hoane, and F.-h. Hsu, “Deep blue,” Artificial intelli-
gence, vol. 134, no. 1-2, pp. 57–83, 2002.

[11] B. Bouzy and T. Cazenave, “Computer Go: an AI oriented survey,” Artifi-
cial Intelligence, vol. 132, no. 1, pp. 39–103, 2001.

[12] R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo tree
search,” in International conference on computers and games, Springer,
2006, pp. 72–83.

[13] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, et al., “Mastering the game of go
without human knowledge,” Nature, vol. 550, no. 7676, p. 354, 2017.

[14] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al.,
“Mastering the game of Go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[15] Wikipedia. (2018). Monolithic application, [Online]. Available: https :
/ / en . wikipedia . org / wiki / Monolithic _ application (visited on
05/11/2018).

[16] A. S. Tanenbaum and D. Wetherall, Computer networks. Prentice hall, 1996.

47

https://en.wikipedia.org/wiki/AlphaGo_versus_Ke_Jie
https://en.wikipedia.org/wiki/Rules_of_Go#Reference_statement
https://en.wikipedia.org/wiki/Rules_of_Go#Reference_statement
http://www.cs.cmu.edu/~wjh/go/rules/AGA.html
http://www.gokgs.com/help/index.html
http://www.gokgs.com/help/index.html
http://www.britgo.org/tech/sgfspec.html
http://www.lysator.liu.se/~gunnar/gtp/
http://www.lysator.liu.se/~gunnar/gtp/
https://online-go.com
https://online-go.com
http://www.leweyg.com/lc/freedgo.html
http://www.leweyg.com/lc/freedgo.html
https://en.wikipedia.org/wiki/Monolithic_application
https://en.wikipedia.org/wiki/Monolithic_application

[17] Miniwatts Marketing Group. (2018). Internet Usage Statistics, [Online].
Available: https://www.internetworldstats.com/stats.htm (visited on
05/11/2018).

[18] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. (2013). The Java Virtual
Machine Specification, [Online]. Available: https://docs.oracle.com/
javase/specs/jvms/se7/html/index.html (visited on 05/12/2018).

[19] Microsoft. (Apr. 16, 2018). Common Language Runtime, [Online]. Avail-
able: https : / / docs . microsoft . com / en - us / dotnet / standard / clr
(visited on 05/12/2018).

[20] Unity Technologies. (2018). Unity, [Online]. Available: https://unity3d.
com (visited on 05/13/2018).

[21] Unity. (2018). Unity WebGL Browser Compatibility, [Online]. Available:
https://docs.unity3d.com/Manual/webgl-browsercompatibility.
html (visited on 05/15/2018).

[22] T. Berners-Lee. (2018). The WorldWideWeb browser, [Online]. Available:
https://www.w3.org/People/Berners-Lee/WorldWideWeb.html (visited
on 05/12/2018).

[23] J. Peterka. (2015). Rich Internet application, [Online]. Available: http://
www.earchiv.cz/l226/slide.php3?l=10&me=30 (visited on 05/12/2018).

[24] Google. (2018). Google Docs, [Online]. Available: https://www.google.
com/docs/about/ (visited on 05/12/2018).

[25] Adobe. (2018). Adobe Flash Player, [Online]. Available: https://www.
adobe.com/products/flashplayer.html (visited on 05/13/2018).

[26] C. Warren. (Nov. 19, 2012). The Life, Death and Rebirth of Adobe Flash.
Mashable, Ed., [Online]. Available: https://mashable.com/2012/11/19/
history-of-flash/#YIwDjkGKoPqI (visited on 05/13/2018).

[27] S. Jobs. (2010). Thoughts on Flash, [Online]. Available: https://www.
apple.com/hotnews/thoughts-on-flash/ (visited on 05/13/2018).

[28] Adobe Corporate Communications. (Jul. 25, 2017). Flash & The Future of
Interactive Content, [Online]. Available: https://theblog.adobe.com/
adobe-flash-update/ (visited on 05/13/2018).

[29] C. of Wonders. (2015). Civilization Wars, [Online]. Available: https://
www.bubblebox.com/play/adventure/1603.htm (visited on 05/13/2018).

[30] Flare3D. (2018). Yellow Planet, [Online]. Available: http://www.flare3d.
com/demos/yellowplanet/ (visited on 05/13/2018).

[31] Microsoft. (May 13, 2018). About Silverlight, [Online]. Available: https:
//www.microsoft.com/silverlight/what-is-silverlight/ (visited on
05/13/2018).

[32] J. Smith. (Jul. 2, 2015). Moving to HTML5 Premium Media, [Online]. Avail-
able: https://blogs.windows.com/msedgedev/2015/07/02/moving-to-
html5-premium-media/ (visited on 05/13/2018).

[33] Mozilla. (Jan. 27, 2018). The WebGL API: 2D and 3D graphics for the web,
[Online]. Available: https://developer.mozilla.org/en-US/docs/Web/
API/WebGL_API (visited on 05/13/2018).

48

https://www.internetworldstats.com/stats.htm
https://docs.oracle.com/javase/specs/jvms/se7/html/index.html
https://docs.oracle.com/javase/specs/jvms/se7/html/index.html
https://docs.microsoft.com/en-us/dotnet/standard/clr
https://unity3d.com
https://unity3d.com
https://docs.unity3d.com/Manual/webgl-browsercompatibility.html
https://docs.unity3d.com/Manual/webgl-browsercompatibility.html
https://www.w3.org/People/Berners-Lee/WorldWideWeb.html
http://www.earchiv.cz/l226/slide.php3?l=10&me=30
http://www.earchiv.cz/l226/slide.php3?l=10&me=30
https://www.google.com/docs/about/
https://www.google.com/docs/about/
https://www.adobe.com/products/flashplayer.html
https://www.adobe.com/products/flashplayer.html
https://mashable.com/2012/11/19/history-of-flash/#YIwDjkGKoPqI
https://mashable.com/2012/11/19/history-of-flash/#YIwDjkGKoPqI
https://www.apple.com/hotnews/thoughts-on-flash/
https://www.apple.com/hotnews/thoughts-on-flash/
https://theblog.adobe.com/adobe-flash-update/
https://theblog.adobe.com/adobe-flash-update/
https://www.bubblebox.com/play/adventure/1603.htm
https://www.bubblebox.com/play/adventure/1603.htm
http://www.flare3d.com/demos/yellowplanet/
http://www.flare3d.com/demos/yellowplanet/
https://www.microsoft.com/silverlight/what-is-silverlight/
https://www.microsoft.com/silverlight/what-is-silverlight/
https://blogs.windows.com/msedgedev/2015/07/02/moving-to-html5-premium-media/
https://blogs.windows.com/msedgedev/2015/07/02/moving-to-html5-premium-media/
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API

[34] B. Jones. (Jul. 2, 2014). Quake, [Online]. Available: http : / / media .
tojicode.com/q3bsp/ (visited on 05/13/2018).

[35] NASA. (2018). Experience Curiosity, [Online]. Available: https://eyes.
nasa.gov/curiosity/ (visited on 05/13/2018).

[36] T. Parisi, Programming 3D applications with HTML5 and WebGL: 3d ani-
mation and visualization for web pages. " O’Reilly Media, Inc.", 2014.

[37] R. Cabello, B. Ulicny, et al. (2018). Three.js library, [Online]. Available:
https://threejs.org (visited on 05/13/2018).

[38] N. Drake and B. T. Jacobs. (2017). Cassini’s Grand Tour. N. Geo-
graphic, Ed., National Geographic, [Online]. Available: https : / / www .
nationalgeographic.com/science/2017/09/cassini-saturn-nasa-
3d-grand-tour/ (visited on 05/13/2018).

[39] Google. (2014). 100,000 Stars, [Online]. Available: http : / / stars .
chromeexperiments.com (visited on 05/13/2018).

[40] Node.js Foundation. (2018). Node.js, [Online]. Available: https://nodejs.
org/en/ (visited on 05/14/2018).

[41] StackOverflow. (2017). Developer Survey Results 2017, [Online]. Available:
https://insights.stackoverflow.com/survey/2017#technology-
programming-languages (visited on 05/14/2018).

[42] GitHub. (2018). Atom text editor, [Online]. Available: https://atom.io
(visited on 05/14/2018).

[43] Microsoft. (2018). Visual Studio Code, [Online]. Available: https://code.
visualstudio.com (visited on 05/14/2018).

[44] Google. (2018). Chrome DevTools, [Online]. Available: https : / /
developers . google . com / web / tools / chrome - devtools/ (visited on
05/14/2018).

[45] Apple. (2018). Safari Web Development Tools, [Online]. Available: https:
//developer.apple.com/safari/tools/ (visited on 05/14/2018).

[46] JetBrains. (2018). Webstorm, [Online]. Available: https : / / www .
jetbrains.com/webstorm/ (visited on 05/14/2018).

[47] Bootstrap Core Team. (2018). Bootstrap, [Online]. Available: https://
getbootstrap.com (visited on 05/15/2018).

[48] StrongLoop and IBM. (2018). Express framework, [Online]. Available:
https://expressjs.com (visited on 05/15/2018).

[49] Internet Engineering Task Force. (2011). The WebSocket Protocol, [On-
line]. Available: https://tools.ietf.org/html/rfc6455 (visited on
05/14/2018).

[50] Automattic. (2018). Socket.IO library, [Online]. Available: https : / /
socket.io (visited on 05/15/2018).

[51] F. S. Foundation. (2009). Gnu go, [Online]. Available: https://www.gnu.
org/software/gnugo/ (visited on 05/15/2018).

[52] P. Baudiš, “MCTS with Information Sharing,” Master’s thesis, Charles Uni-
versity in Prague Faculty of Mathematics and Physics, 2011.

49

http://media.tojicode.com/q3bsp/
http://media.tojicode.com/q3bsp/
https://eyes.nasa.gov/curiosity/
https://eyes.nasa.gov/curiosity/
https://threejs.org
https://www.nationalgeographic.com/science/2017/09/cassini-saturn-nasa-3d-grand-tour/
https://www.nationalgeographic.com/science/2017/09/cassini-saturn-nasa-3d-grand-tour/
https://www.nationalgeographic.com/science/2017/09/cassini-saturn-nasa-3d-grand-tour/
http://stars.chromeexperiments.com
http://stars.chromeexperiments.com
https://nodejs.org/en/
https://nodejs.org/en/
https://insights.stackoverflow.com/survey/2017#technology-programming-languages
https://insights.stackoverflow.com/survey/2017#technology-programming-languages
https://atom.io
https://code.visualstudio.com
https://code.visualstudio.com
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developer.apple.com/safari/tools/
https://developer.apple.com/safari/tools/
https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/webstorm/
https://getbootstrap.com
https://getbootstrap.com
https://expressjs.com
https://tools.ietf.org/html/rfc6455
https://socket.io
https://socket.io
https://www.gnu.org/software/gnugo/
https://www.gnu.org/software/gnugo/

[53] R. Coulom. (2018). Crazy Stone, [Online]. Available: https://www.remi-
coulom.fr/CrazyStone/ (visited on 05/15/2018).

[54] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT
press Cambridge, 2016, vol. 1.

[55] G.-C. Pascutto. (2017). Estimate of computing power required to train
AlphaGo, [Online]. Available: http : / / computer - go . org / pipermail /
computer-go/2017-October/010307.html (visited on 05/15/2018).

[56] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P.
Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A survey
of monte carlo tree search methods,” IEEE Transactions on Computational
Intelligence and AI in games, vol. 4, no. 1, pp. 1–43, 2012.

[57] Blender Foundation. (2018). Blender, [Online]. Available: https://www.
blender.org (visited on 05/15/2018).

[58] Wavefront. (2018). Wavefront .obj documentation, [Online]. Available:
http : / / www . martinreddy . net / gfx / 3d / OBJ . spec (visited on
05/15/2018).

[59] Node.js Foundation. (2018). Node Path API, [Online]. Available: https:
//nodejs.org/api/path.html (visited on 05/15/2018).

[60] Socket.io. (2018). Socket.io documentation, [Online]. Available: https://
socket.io/docs/ (visited on 05/15/2018).

[61] D. Flanagan, JavaScript: the definitive guide. " O’Reilly Media, Inc.", 2006.
[62] JSDoc. (2018). Jsdoc, [Online]. Available: http://usejsdoc.org/index.

html (visited on 05/15/2018).

50

https://www.remi-coulom.fr/CrazyStone/
https://www.remi-coulom.fr/CrazyStone/
http://computer-go.org/pipermail/computer-go/2017-October/010307.html
http://computer-go.org/pipermail/computer-go/2017-October/010307.html
https://www.blender.org
https://www.blender.org
http://www.martinreddy.net/gfx/3d/OBJ.spec
https://nodejs.org/api/path.html
https://nodejs.org/api/path.html
https://socket.io/docs/
https://socket.io/docs/
http://usejsdoc.org/index.html
http://usejsdoc.org/index.html

List of Figures
2.1 Stones with various liberties . 6
2.2 White stone has one liberty . 6
2.3 Black captured white stone . 6
2.4 White stones has one liberty . 7
2.5 Black captured white stones . 7
2.6 Example of suicide, White cannot play at highlighted position. . . 7
2.7 Example of positional superko rule. 8
2.8 Example of a final position . 8
2.9 Hexagonal grid, screenshot from a game 9
2.10 Spehre with cut off top and bottom 10
2.11 Circle board, screenshot from a game 10
2.12 Torus board, screenshot from a game 11

3.1 Screenshot of CGoban, the KGS client. 12
3.2 Screenshot of a game played on KGS. 12
3.3 Online-go web client, screenshot from a game. 13
3.4 Screenshot of cylindric board in Freed Go. 13
3.5 Screenshot of a irregular board in Freed Go. 13

4.1 Screenshot of Unity editor . 17
4.2 Game running in Unity editor . 17
4.3 The first web browser by Tim Berners-Lee 18
4.4 Google Docs web application . 18
4.5 Civilization Wars [29], a real time strategy game built with Adobe

Flash . 19
4.6 Yellow Planet [30], a 3D running game built with Adobe Flash. . 19
4.7 Quake game ported to WebGL . 19
4.8 Experience Curiosity interactive application 19
4.9 Cassini’s Grand Tour by National Geographic [38]. 20
4.10 Interactive visualisation of Milky Way by Google [39]. 20
4.11 Atom editor . 22
4.12 Visual studio code editor . 22
4.13 Chrome DevTools [44] in Google Chrome 22
4.14 Web Inspector [45] in Apple Safari. 22
4.15 Steps of MCTS algorithm, figure from [56]. 25

5.1 Selected game starts when user clicks on "Play game" button . . . 27
5.2 Lobby, screenshot . 28
5.3 How user create game, screenshot 28
5.4 Finite state machine of user interaction with client. 29
5.5 Librety counting of stones . 29
5.6 Stone selected to play on board 30
5.7 Last played stone on board . 30
5.8 Blender, screenshot . 32
5.9 Blender, screenshot . 32
5.10 Blender, screenshot . 33

51

5.11 Blender, screenshot . 33
5.12 Blender, screenshot . 34
5.13 Node, download . 35
5.14 Node, download . 35

6.1 Example of two games . 38
6.2 Example of end game method, which tells server to end this par-

ticular game . 38
6.3 Example of lifetime of a game . 39
6.4 Example of code that listens for ’gameMessage’ events 40
6.5 Example of code that listens for ’gameMessage’ events 40
6.6 Layered communication between server and clients 40
6.7 AI client connection to server . 44

52

Attachments
Appendix A

The attachment contains three directories. Firstly, directory app, the appli-
cation directory, which contains:

• _JSDoc, directory containing support files for generation of documenta-
tion

• clientSide, directory containing code used by client

• node_modules, directory with node.js packages and libraries

• serverSide, directory containing code used by server

• app.js, main script of the application

• package.json,package-lock.json, files used for installing packages

• README.TXT

It also contains directory jsdoc which contains documentation generated from
source code by JSDoc [62]. You can view it by opening index.html file inside
the jsdoc directory.

Lastly, attachment contains directory thesis, which contains PDF document
of this thesis.

53

	Introduction
	Goal of the thesis
	Structure of the thesis

	Background
	Rules of Go
	Go on non standard topologies

	Related work
	Applications for playing Go
	KGS
	Online-go.com
	Freed Go

	Computer Go and AI

	Analysis
	Application architecture
	Monolithic application
	Client server architecture

	Type of client server architecture
	Platform-dependent client server
	Multi-platform game framework/engine
	Web client server

	3D rendering in web browsers
	Choosing the right technology
	Using graphics library

	Programming language of client
	Programming language of server
	Choice of programming tools
	Basic text editor
	Advanced text editors
	Debugging in browser
	WebStorm

	Choice of other frameworks and libraries
	Bootstrap
	Express.js
	Socket.io

	Creation of user defined boards
	Create custom board editor
	Use existing software

	Choice of AI algorithm
	Use existing Go AI
	Use existing AI technology
	Monte Carlo tree search

	User documentation
	User documentation of client
	Requirements for client
	How can user connect to the application
	Lobby
	How can user create new game
	How user joins already created game
	How user plays 3DGo game
	How to create new boards for 3DGo

	User documentation of Server
	How to install and run app

	Development documentation
	Server
	Events
	Layered design of events

	Games
	Controller
	Model

	Client
	ClientController
	GameController
	Model
	View

	AI Client
	How AI client connects to the game

	 Addition of other games by other developers

	Conclusion
	Bibliography
	List of Figures
	Attachments

