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1. Introduction
Public safety inside the building is ensured by the set of measures, an impor-

tant components of identification of threats and their neutralization are active
disaster response systems [1]. They are required in any commercial property,
especially on the factories and industrial enterprises, in banks and molls, as well
as educational, medical and government institutions.

Emergency systems ensure the stability of the organization working pro-
cess, performing various functions of protection and control. It is security sys-
tems that can cope with the prevention of fire-hazardous and other emergencies,
life-threatening and health-threatening situations; provide real-time monitoring,
carry out notification and take urgent measures in case of emergency.

Previously, security systems were scattered sensors to detect a specific emer-
gency that triggered an alert or response system.

Modern building emergency systems are automatic control systems with a
multi-level network structure, which has a common control center based on a
local computer network. The emergency system contains communication lines,
information receiver controllers and other peripherals designed to collect and
process information from various sensors (fire and burglar alarms, air quality and
humidity sensors). Automated systems also perform the functions of centralized
control of various response tools (warning lights, sprinklers, engineering systems).

Nowadays Wireless sensor network(WSN) is a promising tool for exploring the
physical world. Important advantages of WSN are the lack of cable infrastruc-
ture, small units, low power consumption, built-in radio interface, high enough
computing power and relatively low cost. The Wireless sensor network is a dis-
tributed system of non-serviced miniature electronic devices (network nodes) that
collect data about environmental parameters and transfer them to the server by
node to node communication using wireless connectivity. Several nodes of such a
network act as gateways (hubs) that perform communication with the global net-
work. Management of all nodes, as well as decision-making in case of an unusual
situation, is carried out by the server (information processing center).

The basis of the network is made up of sensors that can measure physical
parameters of the environment, for example, temperature, pressure, smoke, and
humidity. In addition, the sensor contains a microcontroller, memory, a radio
transmitter, an autonomous power source and sometimes actuators.

The network based on mesh topology is characterized by high reliability, high
bandwidth, and reduced power consumption. High reliability is provided by the
redundancy of nodes (if one node fails, the data will be transmitted bypass,
along a different path). Using multiple alternative routes increases the network
bandwidth. Reducing power consumption is achieved by reducing the power of
signals and data transfer over a greater number of nodes, separated by smaller
distances. All this makes WSN wide application possible in many spheres of
human activity for the automatization of information gathering, various technical
and natural objects monitoring [2].

The sensor nodes of the network can be fixed permanently, but they can also
have some mobility, so they can arbitrarily move relative to each other in some
space without violating the logical connectivity of the network. In the latter case,
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the sensor network does not have a fixed topology, and its structure dynamically
changes [3].

Moreover, the nodes must perform data processing from the sensors, decide
whether to transfer information to the gateway or not and determine the subset
of the information to be transmitted. Nodes can also act as hubs that provide
transfer of information from territorially remote sensors to gateway nodes. Net-
works in which nodes perform different roles belong to heterogeneous networks.
When designing the network, in addition to locating the nodes, it is necessary to
assign an appropriate role to each node of the network.

It is also necessary to take into account limitations of energy consumption,
computational capabilities and throughput capacity of radio channels. These
aspects can limit the network’s scalability, requiring to use more gateways in
order to cover a larger area of observation [4].

Thus, important requirements for the WSN are the ability to scale area and
number of sensors, the reliability of the system, optimal placement of station-
ary sensors, the definition of roles among sensors, low power consumption, self-
organization, joint signal processing, ability to work on request. Moreover, wire-
less sensor networks are required to ensure the certain reliability of operation,
especially in areas where the failure or delay in the delivery of information about
a particular phenomenon can have critical consequences.

All these aspects make it difficult to design an effective architecture and often
require the development of specialized solutions. Based on the formulated network
requirements, it becomes necessary to solve the problems of the optimal devices
placement indoors, distribution of roles between devices, ensuring the stability
and reliability of the network.

Since the optimization problem of the placement of the device indoors is com-
putational hard we implement efficient search technique to ensure that restrictions
on coverage and robustness are met. For that, we use the Genetic algorithm (GA)
with some genetic operators, make the comparison of these operators and propose
their best combination for given problem. We also make an overview of papers
in this area and compare received results with some of them.

Protocols and physical models of radio communication between the devices
of active response system, as well as literature overview can be found in Chapter
2. Genetic algorithm with all used operators is described in the details in Chap-
ter 3. Chapter 4 is dedicated to designing and implementation of the created
application. Received results from the experiments are compared in Chapter 5.

The digital version of this thesis also contains the program which was created
for solving a particular optimization problem using GA. Appendix A explains
content and structure of digital bundle.
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2. Background
This chapter gives an idea about what the Wireless sensor network is (Section

2.2) and provides the literature overview (Section 2.2).

2.1 Wireless sensor network
More particullary we discuss roles and mission of devices in the network (Sub-

section 2.1.1), physical constraints (Subsection 2.1.2) and radiomodels used to
estimate connectivity (Subsection 2.1.3).

2.1.1 Overview
Radio frequency (RF) module usually works in 868 MHz or 2.4 GHz frequency

range, supporting one of the main high-level network protocols for machine-to-
machine communication (Zigbee, Thread, Z-Wawe) [5]. These standards mainly
support pair, cluster tree, star and mesh topologies. The most promising for
building fault-tolerant, secure and scalable network is a mesh topology (Figure
2.1) in which all components cooperate with one another for the data distribution
and transmission. The automatic configuration makes this network robust and
adaptive. To maximize the performance of data transmission within the network,
it is proposed to compute a channel metric, based on the bandwidth, signal
strength, its stability, latency or other parameters.

There are 3 main roles of devices in the mesh network:

• Leaders

• Hubs

• Sensors

Figure 2.1: Network architecture

5



Leaders control the process of network formation and security, specifically
allow connection of new nodes, encrypting data, assign roles within the network
between other devices. There can be only one leader at the same time. Hubs
expand the network range, in case leader disconnects - one of them takes his role.
Sensors are equipped with environment parameter detectors, can communicate
with only one chosen hub simultaneously.

Addressing is done with the protocol IPv6, and the interaction is based on top
of the standard for low-power wireless personal area networks IEEE 802.15.4 [5].
For communication with a global network, one or more hubs are connected to the
Internet via any available channel. To ensure the security of data transmission,
encryption AES-128 standard is used as well as the system for identifying devices
in the network.

2.1.2 Physical constraints
Because each device has limited sensor detection radius, it is required to place

a large number of devices for full area coverage. Moreover, devices are usu-
ally battery-powered and it is hard or even impossible to charge batteries often.
There are several straightforward approaches for nodes’ placement and battery
distribution management, which do not guarantee good results. Namely, Direct
Transmission and Minimum Transmission Energy, following which may result in
fast discharging of sensors, placed far from hubs (because of huge transmission
power needed); or hubs, placed close to the leader (because they work almost
all the time as relays for other nodes). The material of walls, their thickness,
mutual position of devices are also playing a big role on battery consumption and
network stability.

Mesh networks usually do not have a single point of failure. If hub disconnects,
all its sensors try to reconnect to another one, while other hubs consider new ways
of communication between each other. If leader losses connection new device takes
its role.

Therefore, if robustness of network is one of the goals, there is a need in an
algorithm for optimal mesh network nodes’ placement on the floor map of the
building.

2.1.3 Wireless data link signalling models
One of the possible ways how to obtain information about radio signal prop-

agation is to build a spatial signal propagation model. Using an appropriate
mathematical model of the signal propagation we can determine the distance
at which probability of erroneous data packet receipt is less than some preset
acceptable error probability and thus determine the reliable radio signal recep-
tion distance. The connection between the network nodes is established, and the
maximum data transmission rate is ensured in the primary service area.

The data link modeling task is determining the maximum distance at which
the wireless mesh nodes can be located and which ensures the connection relia-
bility. Usually, the threshold value is 1% probability of an erroneous data packet
reception which ensures 99% connection reliability.
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Friis Model

A lognormal Friis Model with attenuation is used for describing the signal
propagation process in the paper [6]. We can describe it using following notation:
PL(d) is the average attenuation of the signal at the distance of d in dBm, PL(d0)
is the average attenuation of the signal at the distance of d0 = 1m, n is the rate of
transmission loss, Xσ(0, σ) is Gaussian random variable with zero mathematical
expectation and standard deviation σ.

PL(d) = PL(d0) + n ∗ 10 log d

d0
+ Xσ(0, σ) (2.1)

The signal attenuation at the distance of d0 = 1m with the carrier signal
wavelength λ can be calculated using Friis equation:

PL(d0) = 20 log 4πd0

λ
(2.2)

It is assumed that at distances not exceeding one meter the signal propagates
just like in the open space model. Let us determine the carrier signal wavelength
at frequency f = 868 ∗ 106 Hz and speed of sound c = 300 ∗ 106 m

s
as λ = c

f
=

300
868 = 0.346 m. Then the signal attenuation at the distance of d0 will be equal to

PL(d0) = 20 log 4π

0.346 = 31.198 dBm (2.3)

Let us assume that a random variable Xσ determines all dynamic changes in
the environment as well as the multipath signal transmission. Parameters n and
σ for this model are set based on the experimental environment data. Based on
the set transmitter power Pt and receiver sensitivity Ps, as well as the calculated
value of the signal attenuation, the signal-to-noise ratio γdB is calculated in dB
at some distance at the receiver input.

γdB = Pt −PL(d) − Ps

This value can be used to determine the probability of erroneous receipt of one
bit. The VirtualWire standard is designed for transmission and reception of short
messages using broadcast wireless communication and amplitude modulation [7].
The probability of erroneous amplitude modulation reception:

P = 0.5e−( γdB
4 )0.5Z(

√
γdB

2 ) (2.4)

where Z(
√

γdB

2 ) is the additional Laplace error function.
Probability of erroneous reception of one data bit is PER = 1−(1−P). Based

on this, one can determine the probability of erroneous reception of 8-byte long
data packet (it is enough for transmission of data from sensors) as

PER = 1 − (1 − P)8∗8 (2.5)
The Figure 2.2 illustrates the erroneous reception of the VirtualWire data

packet with amplitude modulation as a function of signal-to-noise ratio obtained
using relationships (2.4) and (2.5). Using the graph in the Figure 2.2, one can
determine the signal-to-noise value at which the probability of erroneous data
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Figure 2.2: Probability of erroneous data packet reception

packet reception is 1%. This value is 10.9 dB. Thus, it can be concluded that
at signal-to-noise ratios exceeding 10.9 dB the connection between two nodes of
wireless smart sensor network ensures 99% reliability.

The logarithmic model of signal attenuation at n = 4 (the value corresponding
to the flat Earth model), in accordance with relationships (2.1), (2.2) and (2.3),
can be described as:

PL(d) = 31.198 + 40log(d) + Xσ(0, σ) (2.6)
The reliable radio signal reception distance can be determined by setting defi-

nite receiver sensitivity and transmitter power values. The selected model can be
used for designing a wireless data link in premises or space where the multipath
transmission effect occurs.

Keenan-Motley Model

Since Friis model is describing the signal propagation on the line-of-sight,
without any obstacles between the transmitter and receiver and our primary goal
is to describe placement of the devices indoors, we have to introduce second radio
model.

This radio model should count with walls between the devices and adjust
reliable radio signal reception distance according to it. For this purpose we have
chosen Keenan-Motley Model [8], empirical model which includes the free space
path loss (2.1) with additional loss due to the walls and floors. Because we are
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optimizing only one-level floorplan, the path loss for this model is going to be
simplified to

PLKM(d) = PL(d) + nwLw, (2.7)
where PL(d) - free space path loss, d - distance between the devices, nw -

number of walls between them and Lw - Wall attenuation factor (WAF).
Signal attenuation is computed similarly to (2.6) but using (2.7) as path loss.
The main advantage of this model is that it is well-studied. This means that

we can find tables with WAF for a lot of different materials, wall thicknesses and
radio frequencies.

For our particular case, 3 was chosen as WAF for the modern office building
walls. Unfortunately, it is quite time-consuming to compute this radio model for
big floorplans and dense grids so the Friis model was picked as a primary radio
model.

2.2 Literature overview
A lot of papers has been dedicated to design and analyze topology of WSN.
In the literature, the case of modeling networks with fixed position is widely

represented e.g. [9, 10]. In this case, algorithms of graph theory are used to
solve the problem. The solution of problems in this formulation is sought by con-
structing minimum spanning trees, Steiner trees, Hamiltonian paths in the graph.
However, this approach can be used only if the weights of the links connecting
the devices are known.

Another approach to design a network topology are optimization problems.
As a criterion of optimality, we can use the cost of equipment or the stability
of the signal in the coverage area which, however, does not make it possible to
ensure compliance with other criteria, such as e.g. network robustness.

When designing the optimal network topology, the problem can be formulated
as a multicriteria optimization problem. The criteria convolution method or main
criterion method are used for the problem linearization [11]. The brute-force
algorithm presented in this paper considers all possibilities of the solution and
chooses from them the one which corresponds to the extremum of the criterial
function.

The network topology design problem can also be solved using a facility loca-
tion problem, or a covering problem which are described in the following papers.

In the placement problem [9], the initial data are the sets of sensors and hubs,
the maximum possible radius of the wireless connection between the sensor and
the hub, distance function between the sensor and the hub. It is necessary to
find such placement of hubs that they form a set of minimum power, while for
each sensor the distance to the hub should be at most the radius of the wireless
connection.

The coverage problem is formulated as a problem of defining a system of
subsets of devices with assigned weights such that their union coincides with a
given set. It is required to find a coverage of the minimum total weight.

Given the limitations on the number of sensors connected to the hub, the
coverage problem can be reduced to the linear programming problem and then
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solved by the greedy algorithm e.g. [9]. The introduced modification of the greedy
algorithm is aimed to reduce the power of the solution sets on the algorithm
iterations and to obtain the optimal network topology in polynomial time.

Without taking into account the extinction of the signal in a room, the range
of the sensor can be described by a circle. Thus, the coverage problem reduces
to the task of constructing circular covers.

The problems of constructing and analyzing circular coverages are discussed in
a number of studies [12, 13, 14]. Mentioned articles are dedicated to the creation
of accurate mathematical models for solving coverage problems. In the paper [15]
a mathematical model of the problem based on Voronoi diagram is constructed.
This approach is applicable only to cover polygons by circles of the same radius
and requires some additional variables (vertices of Voronoi diagram).

Based on the proposed coverage criterion [16], a mathematical model of the
covering problem of an arbitrary polygon with circles of different radiuses is de-
veloped. Formalization of the conditions of covering by circles of different radii
requires the input of additional variables, which led to a significant dimension
increase of the problem.

In the paper [17] an approach based on the construction of the Dirichlet-
Voronoi covering on a given initial system of centers with successive improve-
ment is developed. The results of finding the optimal covering by circles of the
minimal radius are presented only for a hyperbolic plane and the sphere. The
implementation of the algorithm essentially depends on the shape of the area to
be covered.

Paper [18] considers a problem of the covering of the set of points as the
problem of quasi-differentiable optimization in Rn and an algorithm for solving it
in R2 was presented. There are also restrictions on the form of the covering set.

For a continuous problem of an optimal cover of a compact set with balls stated
in paper [19], an algorithm based on the theory of optimal partitioning of sets
and the application of the Shore algorithm is proposed and justified. When using
the proposed approach, the results of calculations (the minimum radius of the
spherical coverage) depend on the parameters of the algorithm, namely the step
size of the spatial grid and the value of the step of numerical differentiation for
the components of the generalized gradient calculation. The heuristic of finding
the optimal solution of the problem decreases with increasing dimension.

It should be noted that in all papers mentioned above, only minimization of
the device transmit power is considered as the objective function. Therefore, the
application of these approaches does not allow to take into account additional
requirements when designing the network structure regarding the distribution of
roles between devices, ensuring the stability and reliability of the network.

Usage of precise mathematical models for the covering problem requires sig-
nificant restrictions on the condition of the problem, which makes it impossible to
use in practice. In addition, the use of classical optimization methods is possible
only for calculating the topology of relatively small networks due to significant
computational difficulties.

Therefore, the most promising direction is approximate (heuristic) optimiza-
tion method. The merit of such an approach is the possibility to solve large-
dimensional problems with relatively small computational costs.

Various heuristic techniques and algorithms substantially reduce the solution

10



space [20].
One of the heuristics for solving the problem of a circular covering is to place

the sensors in deterministic points. To split the plane the basic placement tem-
plate in the form of the grid is used. If the template is completely covered by
sensor zones located at its vertices, then the entire region can be covered by a
set of such polygons. There are more advanced methods of coverage, based on
the placement of sensors in deterministic nodes, using Voronoi diagram [21] or
Delaunay triangulation [22].

Another basic heuristic approach to solve circular covering problem is based
on the random placement of sensors in the area [23]. In this case, during the
stochastic construction of the covering, two subproblems arise: how to determine
that the cover is constructed and how to remove the redundant sensors. The
basic methods for solving these subtasks are well studied [12].

One of the most effective approaches is the coverage criterion, based on the
analysis of the belonging of circle and boundary intersection points [24]. In case
each of these points belongs to the area of at least one another sensor, then the
coverage is constructed.

Various heuristic optimization methods are often used after random place-
ment of the sensors, namely the method of the ant colony [25], genetic algorithms
[26], the simulation of annealing [27], etc. The main aim is to improve the qual-
ity of the solution obtained. These methods allow to significantly improve the
result of preliminary design and to construct a quasi-optimal covering, satisfying
additional conditions.

Recently, many researchers are studying and developing technologies to ensure
such optimal placement of sensors that maximizes the coverage area and ensures
the connectivity of network nodes.

Paper [28] presents an approach that combines computational geometry and
methods of the graph theory (Voronoi diagram and search algorithms on a graph),
which allows one to construct a covering in polynomial time. The coverage of
the sensor area is characterized by Maximal Breach Path and Maximal Support
Path, these parameters can be used for future deployment or reconfiguration of
an existing network in order to improve the overall quality of the coverage.

Geometric analysis of the relationship between coverage quality and connec-
tivity of network nodes is presented in the paper [29]. However, the approach
proposed does not allow to construct an initial configuration that ensures the
optimal coverage of the domain and robust sensor connectivity.

Some researchers use methods of evolutionary computation and optimization
to construct a covering. The paper [30] suggests an approach based on a genetic
algorithm to the deployment of a mobile sensor network in real time. During the
initial planning of the sensor network, their optimal placement is calculated by a
genetic algorithm. Then an optimization algorithm is used to distribute the roles
of the sensor nodes taking into account their topology [31].

An example of successful application of modified genetic algorithms for WSN
design is given in the paper [32]. The proposed algorithm finds the optimal nodes
arrangement in the network, which ensures the minimization of consumed energy
for transmitting messages. Various approaches to the basic formation, including
the cluster’s creation in order to reduce the computational complexity of the
algorithm, are investigated.
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Thus, from the analysis of literature sources, it follows that analytical models
and methods of solution have a limited field of application, certain shortcomings
which do not allow to solve practical problems. The overwhelming majority of
papers related to the problems of circular coverage are studying heuristic methods
for their solution. Modern computational technologies, namely the genetic algo-
rithm and the method of ant colony, are used to solve problems of optimal sensor
network design. However, the quality functionals formulated in the literature do
not take into account all the requirements that are imposed in practice.

In this paper, we propose designing an algorithm that realizes the optimal
coverage of a given area and automatic role assignment (sensor, hub) for each
node. The resulting configuration should ensure connectivity of the network
nodes and robustness of the network itself.
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3. Genetic algorithm
Coherence and efficiency of the biological organisms elements suggest the pos-

sibility of using the principles of biological evolution in order to optimize systems
that are practically important for humans.

In 1975 the fundamental book ”Adaptation in Natural and Artificial Sys-
tems” of John Holland [33] was published, where he proposed the genetic algo-
rithm(GA). The algorithm was based on the principles of natural selection by
Charles Darwin.

The genetic algorithms are referred to the field of soft computing. The term
”soft computing”, according to Lotfi Zadeh in his work ”Soft computing and fuzzy
logic” [34], implies a set of inaccurate, approximate methods of solving problems
that often do not have a solution in polynomial time. Such problems have arisen
in biology, medicine, humanitarian sciences, and management. The methods of
soft computing well complement each other and are often used together. The
area of soft computing includes such methods as fuzzy logic, neural networks,
probabilistic reasoning, Bayesian network-based trust models, evolutionary algo-
rithms.

The genetic algorithm is a method that reflects a natural evolution of problem-
solving techniques, and primarily optimization problems.

Genetic algorithms are search procedures, based on mechanisms of natural
selection and inheritance. They use the evolutionary principle of survival of the
fittest individuals. They differ from traditional optimization techniques by several
basic elements. In particular, GA have a number of distinctive properties:

• parameter coding – genetic algorithms process not values of the parameters
of the task itself, but their encoded form;

• operations on population - genetic algorithms search for the solution based
not on a single point (the initial approximation) but on some population;

• minimum information about function – they use only the target information,
but neither derivatives nor the additional information;

• randomization of information - genetic algorithms apply probabilistic,
rather than deterministic, rules of choice.

Bayesian networks of trust are the model of probabilistic and cause-effect
relations between variables in statistical information modeling.

The scope of genetic algorithms is basically the optimization of multi-
parameter functions. Application of genetic algorithms is very extensive. They
are used for software development in artificial intelligence systems, optimization,
artificial neural networks and in other fields. It should be noted that genetic al-
gorithms help to solve the tasks for which neural networks were previously used.
In this case, the genetic algorithms are simply in the role of the method indepen-
dent on neural networks, designed to solve the same problem. For instance, the
traveling salesman problem, originally solved by a Hopfield network. Genetic al-
gorithms are often used together with neural networks. They can support a neural
network or both methods can interact within the same hybrid system, designed
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to solve a specific problem. Genetic algorithms are also used in conjunction with
fuzzy systems.

However, as a general rule genetic algorithms are not the panacea for opti-
mization problems. With high probability, genetic algorithms will show at least
not better results comparing to the specially-developed methods for solving spe-
cific tasks. A great advantage of evolutionary computation is the unified approach
they provide to solve a wide variety of problems.

Genetic algorithms show excellent results in solving complex search prob-
lems, most of which are NP-complete, such as the traveling salesman problem or
Boolean satisfiability problem [35].

3.1 Basic concepts of genetic algorithms
For describing GA, definitions in a simplified form are borrowed from genetics

and the basic concepts of linear algebra are used.
Vector is an ordered set of elements, called components of a vector. A Boolean

vector is a vector whose components take values from the two-element set, usually
0 or 1.

The population is a finite set of individuals. The individual is a set of chro-
mosomes coded in them set of problem parameters, so-called points in the search
space.

The chromosome is a vector of genes. The chromosome can be represented
as a Boolean vector obtained by binary or Gray code. The chromosome is usu-
ally denoted as A. A gene is an atomic element of a genotype, in particular,
chromosome. It carries the hereditary information. It is denoted by X.

Genotype is a set of chromosomes of a given individual. Consequently, in-
dividuals of the population can be either genotype or a single chromosome. A
phenotype is the set of values corresponding to a given genotype, it is decoded
structure or a set of problem parameters. An allele is the meaning of a par-
ticular gene. Locus is the position indicating the placement of the gene in the
chromosome.

A very important concept in genetic algorithms is the fitness function, also
called the evaluation function. This function plays an important role since it
allows to determine for the specific individuals in population the level of their
fitness and to choose from them the most adapted according to the evolutionary
principle of the survival of the fittest. In optimization problems, the fitness
function is usually optimized (mainly it is maximized) and is called the objective
function. For the tasks of minimization, the objective function is transformed,
and the problem is reduced to maximization.

On every iteration of the genetic algorithm, the fitness of each individual of
a given population is evaluated using the fitness function, and based on this the
following population of individuals is created constituting the set of solutions of
the problem.
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3.2 Classical genetic algorithm
Unlike evolution in real nature, GA simulates only the essential for develop-

ment processes in population.
The most adapted individuals have the opportunity to reproduce offspring

with other individuals of the population, which leads to the new individuals
that combine certain characteristics inherited from their parents. Less adapted
individuals are less likely to reproduce offspring, so the properties they possessed
will gradually disappear from a population during evolution.

Thus, the whole new population of permissible solutions is produced by se-
lecting the best representatives of the previous generation, crossing them and
getting a set of new individuals. This new generation will contain a higher ratio
of characteristics that the fittest members of the previous generation had. As a
result, good characteristics spread throughout the entire population.

Crossing the fittest individuals leads to the fact that the most promising areas
of the search space are explored. In the end, the population will converge to the
optimal solution of the problem.

There are many ways to implement the idea of biological evolution within
the framework of the genetic algorithm. The scheme of the genetic algorithm is
shown in Figure 3.1.

Figure 3.1: Genetic algorithm block diagram

Genetic operators are necessary in order to apply the principles of heredity
and variability to the population. Despite some distinctive features, which will be
discussed below, all operators do have such a property as the probability. That
is the described operators do not necessarily apply to all crossed individuals,
which introduces an additional element of uncertainty into the process of finding
a solution. In this case, the uncertainty does not imply a negative factor but is a
degree of freedom for the genetic algorithm.

Below we will have a closer look at the steps of the algorithm.
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3.2.1 Initial population
From biology, we know that any organism can be represented by its phe-

notype, which actually determines how the object looks like in the real world,
and the genotype, that contains all information about the object at the level of
chromosome set. Moreover, each gene reflects somehow in the phenotype. Thus,
we need to present each feature of the object in a form suitable for the genetic
algorithm.

All further functions perform at the level of the genotype, being agnostic to
the information about the internal structure of the object, which determines the
wide application of the genetic algorithm in a variety of problems.

The genetic algorithm uses bit strings for representing the object’s genotype.
In this case, each attribute of the object in the phenotype corresponds to one
gene in the genotype of the object. A gene is a bit string, often of a fixed length

For coding genotype from phenotype, it is possible to use the bit values of
characteristics as simplest method. Then it will be quite easy to create a gene of
a certain length, sufficient to represent all possible values of features. Unfortu-
nately, this method of coding is not perfect. The main drawback is that adjacent
chromosomes by phenotype can differ in many bits of the gene, which greatly
increases the size of the search space. One possible solution is to use the Gray
code.

In order to determine the phenotype of the object, we only need to know
what gene values correspond to what features of the object in phenotype. This
operation is called decoding.

Thus, in order to create the initial population, it is first necessary to determine
the methods of coding the individuals. These methods are later used to decode
optimized chromosome back to the individual.

3.2.2 Crossover
The crossover operator is an operator which exchanges the chromosomes parts.

It simulates the process of individuals interbreeding.

Single-point

Consider two parent chromosomes A and B and randomly choose point inside
the chromosome, which is dividing both of them into two parts. We call this
point a crossover point or breakpoint. The described process is shown in Figure
3.2.

This type of crossing-over is called single-point crossover because the parent
chromosomes are cut only at one random point.

Two-point

In two-point and multi-point crossovers, chromosomes are considered as cycles,
which are formed by connecting the ends of linear chromosomes. To replace a
segment of one cycle with a segment of another cycle, you need to select two
break points. In this representation, the single-point crossover can be considered
as the two-point crossover, but with one cut point fixed at the beginning of the
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chromosome. Therefore, a two-point crossover solves the same task as it is shown
in the Figure 3.3.

Uniform

Uniform crossover is taking two parent chromosomes A and B and then creat-
ing two new chromosomes from them gene by gene. The first descendant is taking
the gene from chromosome A with probability p and from chromosome B with
probability 1 − p. The second descendant is taking the gene from the opposite
chromosome than the first one. Uniform crossover is shown in the Figure 3.4

Particular case when the mixing ratio equals 0.5 is called half-uniform
crossover.

Three parent

In this method, we are combining three initial chromosomes A, B, and C into
one descendant. The rule is the following. Genes from the chromosome A and
B at the same position are compared. If they are the same this gene goes to the
descendant, otherwise, the gene from the chromosome C is taken.

The new chromosome is substituting chromosome A in the new population.

3.2.3 Mutation
The probability of a mutation is much smaller than the probability of crossing-

over and rarely exceeds 1%. Similarly, the probability can be a function of the
characteristics of the problem being solved. For instance, the probability of gene
mutation can be put inversely proportional to the length of the chromosome or
the size of the population.

Depending on the type of the function being optimized, the strategy of se-
lecting the mutation probability varies. For example, a mutation with a fixed
probability leads to good results for unimodal functions. For multimodal, a self-
adapting estimation is used.

Uniform

As well as crossing-over, mutations can be carried out not only at one random
point. You can choose to change several genes in one chromosome, and their
number can be again random. It is also possible to invert a group of contiguous
points at once.

Insertion

The insertion operator is a change of the genes order in the chromosome or
its fragment. This operator is used quite rarely, but its main purpose is to try to
find the order of genes, which has better evolutionary potential. Inversion also
greatly expands the scope of the search. The GA does not only try to find good
sets of gene values, it also simultaneously tries to find a good ordering of the
genes.
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Figure 3.2: Single-point crossover

Figure 3.3: Two-point crossover

Figure 3.4: Uniform crossover
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Flip Bit

This operator of the mutation is taking the particular chromosome and negates
the bits with some probability p, independently on other bits in the solution. It
is suggested to have this probability as p = 1

n
where n is the number of bits in

the chromosome.

3.2.4 Selection methods
After the new population of individuals is generated, the fitness function is

calculated and terminating condition is checked. In case the stopping condition
is not fulfilled, for the further development of the search process, specialized
operators of the genetic algorithm are applied. One of them is the selection
operator.

The selection operator is one of the most important operators helping to
maintain the genetic diversity of the population. Diversity is responsible for the
behavior of the population whether it is going to converge on some local maxima
or be optimized further.

The selection operator is the one which selects the individuals with some given
feature (for instance good value of the objective function) to produce an offspring.
So only those individuals whose fitness is greater or equal to some threshold value
can become parents. The threshold can be for example the average fitness of the
population.

Roulette wheel

Roulette method is one of the selection methods which is used in the classic
genetic algorithm in the following manner. Each chromosome is associated with
a segment of the roulette wheel whose value is set proportional to the value of
the fitness function of the given chromosome, as it is shown on the Figure 3.5.
Therefore, the greater the value of fitness function, the larger the sector on the
roulette wheel. Hence it follows that the larger the sector on the roulette wheel,
the higher the chance that this particular chromosome will be chosen.

The weak side of this method is that individuals with very small fitness func-
tions are too quickly excluded from the population, which can lead to convergence
of the genetic algorithm. Therefore, alternative selection algorithms have been
created and used.

Tournament

In the Tournament selection, a group of t ≥ 2 individuals is selected randomly
from a population consisting of N individuals. The individual with the highest
fitness in the group is selected, the rest are discarded. This operation is repeated
k times. Then, the selected individuals are used for crossing-over. The size of
group t is often equal to 2, in such cases we speak of paired (binary) tournaments.
The number t is called the tournament size.

The advantage of the tournament selection is that it does not require addi-
tional computations or ordering of the individuals in the population. The process
is shown on the Figure 3.6.
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Figure 3.5: Roulette selection method

Figure 3.6: Tournament selection method
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Truncation

In the Truncation selection individuals are ranked based on their rank de-
scending, so the fittest individual is the first to stand. The number of individuals
for crossing-over is selected in accordance with the threshold T ∈ (0; 1]. The
threshold determines which proportion of individuals starting with the very first
will participate in the selection. All the individuals that fall under the threshold
are reproduced 1

T
times.

Due to the fact that the sorted population is used in this strategy, the execu-
tion time can be large for big populations and depends on the sorting algorithm.

3.2.5 Generation of the next population
This step is, in its own way, one of the types of breeding. Here individuals are

selected from two populations (parents and descendants) into a new population
that will work on the next step of the algorithm.

In order to have different optimization strategies, it is necessary to provide
diversity in the formation schemes of a new generation. Here are the main schemes
for the formation of a new population.

Elitism strategy is the method based on building a new population only from
the best individuals of the reproductive group that unites parents and their de-
scendants. This method is good from the point of view that it excludes random
walk through the search space, as the best specimens (found at this stage of
the search or earlier) transit to the next generation. Unfortunately, it leads to
converging on the local maximum instead of the global one in most cases.

Exclusion selection is based on the bi-criteria principle. An individual from
the reproduction group is included in the population of a new generation based
on the fitness of this individual and whether in the next generation there is no
individual with a similar chromosomal set. Between all the individuals with the
same genotypes, the one with the higher fitness is preferred. Thus, two goals
are achieved: firstly, the best solutions possessing different chromosome sets are
not lost, and secondly, the population is consistently maintained with sufficient
genetic diversity.

Only descendants selection - the method is based on building a new population
only from the descendant population.

Random selection - when the individuals, that create a new population are
randomly selected from a reproduction group that unites parents and their de-
scendants.

3.2.6 Stop condition
The definition of a stop condition for the GA depends on its specific appli-

cation. In optimization problems, where the maximum (or minimum) value of
the fitness function is known, the algorithm can stop after reaching the expected
optimal value, possibly with the specified accuracy.

The algorithm termination can also occur when its execution does not lead to
any improvement of the fitness value already achieved.

The algorithm can be terminated after a certain execution time or after a
specified number of iterations have been performed.
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3.2.7 Best specimen
If the termination condition of the algorithm is satisfied, then the required

solution of the problem should be present. The best solution is considered to be
the individual with the highest fitness function value.

After the stopping condition is fulfilled, the final step is to select the fittest
chromosome from the population and decode it back to the phenotype.
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4. Project design
This chapter describes the technical details of the Genetic algorithm imple-

mentation for the WSN optimal placement. We describe the mathematical model
of the stated problem in Section 4.1, details of introduction of particular problem
to the GA in Section 4.2, technical implementation in Section 4.3 and interface
of the program in Section 4.4.

4.1 Model of the optimal network topology de-
sign problem

Consider the problem of mesh network nodes placement as the coverage prob-
lem.

Let us denote Ω as a region of a building from IR2, which should be covered
with devices

Xk - a set of coordinates of sensors’ centers
Xp - a set of coordinates of hubs’ centers
N1, N2 - number of hubs and sensors
τp - a set of coordinates of centers of hubs, visible from xp

τpd, d = 1, 2 - a set of coordinates of centers of hubs, visible from xk

rf(x1, x2) - function which returns maximum distance of stable radio connec-
tion between devices x1 and x2 based on radio propagation model.

Call the circle of radius r with a center in point x as set from IR2, s.t. B(x, r) =
{x ∈ IR2|c(x, x) ≤ r}, where c(x, x) is the Eucledian distance between points x
and x.

A set of centers {Xk, Xp} forms coverage of region Ω with circles of radius
r

(p)
1 and r

(k)
2 , where r

(p)
1 - radius of p-th hub coverage, r

(k)
2 - radius of k-th sensor

coverage, k = 1, ..., N2, p = 1, ..., N1.
It is necessary to place centers of circles Xk, Xp, such that measure on a set

of all covered points from Ω by these circles is maximized

µ(Ω ∩ [(
N1⋃
p=1

B(xp, r
(p)
1 ))

⋃
(

N2⋃
k=1

B(xk, r
(k)
2 ))]) ⇒ max

Let us distinguish following subsets in set Ω which are created after coverage
of Ω with circles.

• Ω(1) = Ω \ [(⋃N1
p=1 B(xp, r

(p)
1 )) ⋃(⋃N2

k=1 B(xk, r
(k)
2 ))] - subset of points in Ω,

which are not covered with circles.

• Ω(2) = Ω ∩ (⋃N1+N2
i=1

⋃N1+N2
j=1,i ̸=j(B(xi, ri) ∩ B(xj, rj))) - set of points which

belong to set Ω and intersection of two or more circles.

• Ω(3) = [(⋃N1
p=1 B(xp, r

(p)
1 )) ⋃(⋃N2

k=1 B(xk, r
(k)
2 ))]\Ω - set of points which belong

to at least one coverage circle but do not belong to region Ω.

To have optimal coverage of region Ω with sensors it is necessary to minimize
the number of points, which belong to
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Ω∗ =
3⋃

i=1
Ω(i): µ(Ω∗) ⇒ min

For robustness of network let’s formulate following additional conditions:

• Each sensor should see at least two hubs. Using following notation xk -
coordinate of sensor, τpd - coordinate of hub, visible from xk, d = 1, 2, this
condition can be represented as

N2∑
k=1

2∑
d=1

c(xk, τpd) − rf(xk, τpd)) ≥ 0 (4.1)

• Each hub should see at least one another hub. For the xp - coordinate of
hub, τp - coordinate of hub, visible from hub xp, it is described as

N1∑
p=1

c(xp, τp) − rf(xp, τp) ≥ 0 (4.2)

As a target function, we will consider following

J(x) =
3∑

i=1

N1∑
p=1

N2∑
k=1

[
∫

Ω(i)
p

f(x, xp, rp
1)dx +

∫
Ω(i)

k

f(x, xk, rk
2)dx], where

Ω(i)
p = Ω(i) ∩ Ωp, i = 1, 2;

Ω(3)
p = {x ∈ ⋃N1

p=1 B(xp, rp
1), ∃p|c(x, xp) − rp

1 ≤ 0};
Ω(i)

k = Ω(i) ∩ Ωk, i = 1, 2;
Ω(3)

k = {x ∈ ⋃N2
k=1 B(xk, rk

2), ∃p|c(x, xk) − rk
2 ≤ 0}.

Then, Ω(3) = ⋃N1
p=1

⋃N2
k=1 Ω(3)

p Ω(3)
k

Function f(x, x, r) should be chosen in such manner that it has values in
boundary points of subsets Ω(i)

p , which are at the same time boundary points of
circles B(x, r) should be equal to zero. f(x, x, r)|x∈Ω∗

B
= 0

If take f(x, x, r) = |c(x, x)−r|, then in boundary points of circles B(x, r) value
of c(x, x) − r would be equal to zero or different from zero in point x depending
on whether x is covered or not covered with circle.

So the target function will be

J(x) =
3∑

i=1

N1∑
p=1

N2∑
k=1

[
∫

Ω(i)
p

|c(x, xp) − rp
1|dx +

∫
Ω(i)

k

|c(x, xk) − rk
2 |dx] (4.3)

Additional conditions for robustness of the network (4.1) (4.2) can be added
to function (4.3) using Penalty method in the following way

J(xp, xk, α) = J(xp, xk) + α(
N1∑
p=1

1
c(xp, τp) − rf(xp, τp)+

+
N2∑

k=1

2∑
d=1

1
c(xk, τpd) − rf(xk, τpd))

(4.4)
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Thus, the problem of finding the minimum of a functional (4.3) with con-
straints (4.1), (4.2) is reduced to the problem of unconditional optimization of
the functional (4.4). The value of α should be chosen rather small, so that in the
minimum point vicinity the impact of the constraints is not noticable. Then the
minimum point of the function without restrictions J(x) will coincide with the
one for the function J(xp, xk, α) restricted by constraints (4.1), (4.2).

4.2 Application of GA
In this section we describe methods which adapt our particular problem for the

Genetic algorithm. Those methods are used for grid generation (Section 4.2.1),
chromosome encoding (Section 4.2.2) and population initialization (Section 4.2.3).

4.2.1 Floorplan sampling
Consider a two-dimensional floorplan as a region Ω where the WSN deploy-

ment is required. This region should be sampled in order to solve the problem of
device placement. The easiest way is to cover the region with the uniform grid
where each node can be either empty or filled with one device of any type. The
grid is pretty dense to cover all points of interest and give wide possibilities of
device placement. This type of grid is shown in Figure 4.1

However, the fact that this method is later used to place sensors in real envi-
ronment imposes some restrictions. Usually, it is not allowed to place tempera-
ture/humidity sensors on the ceiling since measured values there can be different
from real up to 10%. The best place for the environmental sensor is on the wall
at the human’s head height. According to this, the second method of the re-
gion sampling was introduced. It is placing the nodes only on the walls with the
defined step which means that later optimal solution will consist of the sensors
which can be stuck to the wall. The result of this placement is shown in Figure
4.2

4.2.2 Encoding of individual
After the grid is created we receive nodes Xn, n = 1, ..., N and each of them

represents the exact position on the map. This grid is stable therefore allowing to
decode the phenotype of the chromosome. Then the binarily coded chromosome
consisting of N genes is created. Each gene Gn is represented by two bits and
encodes the status of the node Xn as follows in Table 4.1

Node status Bit 1 Bit 2

Empty node 0 0
Node contains sensor 0 1
Node contains sensor 1 0
Node contains hub 1 1

Table 4.1: Gene description
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Figure 4.1: Uniform grid

Figure 4.2: Wall grid
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4.2.3 Method of initial population generation
At the initial stage of the genetic algorithm, a certain population of chromo-

somes is initialized and randomly filled with values. The number of chromosomes
in population is not fixed and is usually chosen quite significant in order to di-
versify the population.

Even though chromosomes are filled with random values, there is a possibility
to improve the initial population by picking correct probabilities of bits to be
either 0 or 1. Creating ”good” initial population consisting of a set of local optima
can lead to a noticeable reduction of steps for the global optimum achievement,
which is not guaranteed when the initial population is formed randomly [36].

That will allow us to speed up the program execution and find an optimal
solution in the lower amount of steps. In our case, the user is able to choose the
probability of having 1 in the first and second bit of every gene from the interface.
But the program is suggesting the most appropriate probabilities based on the
floor area, grid density, hub and sensor coverage.

From the grid density, we know the total number of nodes N on the particular
floor plan. Total area and area of single device coverage give us target number
of hubs and sensors. From this, we can calculate target probability to have the
device in one node as a ratio of the target number of devices to the total number
of nodes.

4.3 Implementation
In this section we discuss technical details of the implementation.

4.3.1 Floorplan representation
The user of this tool has an ability to run the optimization of the WSN

placement on top of his own floorplan. To upload it to the program the following
format is used.

A file consists of two lines. On the first line we have the JSON object (Listing
4.1) which represents the outline of the floorplan. It is the array of walls where
each wall is the line between two points with coordinates (x1, y1) and (x2, y2). The
second line describes the internal structure of the floor which is the array of rooms,
where each room consists of walls as described before with Wall attenuation factor
parameter (Listing 4.2).

Outline and rooms should be simple polygons.
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1 [
2 {
3 "x1": 0,
4 "y1": 0,
5 "x2": 1,
6 "y2": 1
7 },
8 ...
9 ]

Listing 4.1: Outline JSON format

1 [
2 {"room":
3 [
4 {"x1":0,"y1":0,"x2":2,"y2":0,"waf":3},
5 {"x1":2,"y1":0,"x2":2,"y2":2,"waf":3},
6 {"x1":2,"y1":2,"x2":0,"y2":2,"waf":3},
7 {"x1":0,"y1":2,"x2":0,"y2":0,"waf":3}
8 ]
9 },

10 ...
11 ]

Listing 4.2: Floorplan JSON format

4.3.2 Radio connection matrix
After the floorplan is imported and sampled we are creating the radio connec-

tion matrix. That is the square Boolean matrix of order N where N is a number
of the grid nodes. At row i, column j we store the status of the radio commu-
nication between devices i and j. It is 0 if they can not exchange the message
between each other and 1 otherwise.

This matrix computation is quite time-consuming especially if we have the
dense grid. But later we don’t need to recompute it again since the grid is not
changing. And because radio connectivity is the important part of the fitness
evaluation for each individual in the population it is more efficient to precompute
it once rather than compute it for every new generation.

Radio models for this computation were described in Section 2.1.3. For the
Friis model computations are pretty straightforward, we just need to know the
distance between two points. But for the Keenan-Motley model it is also required
to count the number of walls between two devices. For that we are finding the
intersection of two segments geometrically. Those two segments are namely the
wall and line-of-sight between devices. We are iterating walls collection and in
such manner it is possible to calculate total WAF.

4.3.3 Compilation
The program is written in C# 7.0 using Microsoft Visual Studio 2017.
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In this project we use Json.NET [37] for deserializing JSON objects and Clip-
perLib [38] for deflating polygons in order to display floorplan in a nice way. Both
these libraries have to be linked as DLL files in order to compile.

4.4 User interface
In this section we describe user interface of the created program. The main

screen (Figure 4.3) consists of 3 zones and 3 buttons. Those zones are the output
of GA parameters and results, tabs for user input, and graphical representation of
the result. Buttons are for the generating floorplan, first population, and running
the genetic algorithm with this input until the stopping criteria is satisfied.

As the output user see total floorplan area, performed number of genetic steps,
target and currently achieved number of hubs/sensors, best fitness in the current
generation and among all generations. Fitness is split into 3 fields, those are for
the high, medium and low priority constraints.

There are 9 tabs for the user input, mainly they are dedicated to change
method or parameters of some genetic operator. On the Floorplan tab (Figure
4.3) user can choose the floor plan and it’s scale, type and step for the grid.

On the Population tab (Figure 4.4 (a)) user can change the probability of
having hub/sensor in the initial population using sliders. This probability is
calculated real-time and displayed on the label below. It is also possible to change
the number of chromosomes in first population.

Mutation tab (Figure 4.4 (b)) allows to choose the mutation method from
the list of Uniform, Insertion and Flip Bit, change number of mutations in one
chromosome and make it either fixed or random. And for the Uniform mutation,
it is possible to change the probability of having hub/sensor the same way as on
the Population tab.

Crossover tab (Figure 4.5 (a)) gives an ability to choose the method from
Single-point, Two-point, Three parent and Uniform list. Also, user can choose
the number of crossovers in population, either fixed or random in range.

On the Fitness function tab (Figure 4.5 (b)) user is able to choose parame-
ters for the hub and sensor coverage as well as penalization parameter for high,
medium and low priority constraints.

Selection tab (Figure 4.6 (a)) gives an ability to choose selection method from
Roulette wheel, Tournament and Truncation list. For the Roulette wheel, there
is a checkbox to put several bad chromosomes to the new generation.

On the Stopping criteria tab (Figure 4.6 (b)) user can choose criteria from
the Number of steps, Time, Stagnation list and it’s parameter.

Radio tab (Figure 4.7 (a)) is dedicated for changing radio devices parameters
such as transmit power, receive sensitivity, signal to noise ratio and type of radio
model (Friis or Keenan-Motley model).

On the Settings tab (Figure 4.7 (b)) user can change visual representation
of results such as color and size of hubs/sensors icon and connectivity between
devices.
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Figure 4.3: Main screen

Figure 4.4: Population (a) and mutation (b) settings
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Figure 4.5: Crossover (a) and fitness function (b) settings

Figure 4.6: Selection (a) and stoping criteria (b) settings
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Figure 4.7: Radio (a) and display (b) settings
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5. Experiments
This chapter is dedicated to comparing results between different algorithms

for indoor WSN placement. Primarily we would compare various genetic method
approaches between each other to achieve the best result in given problem (Section
5.1). Also received the result from genetic algorithm will be compared with other
papers in Section 5.2

5.1 Genetic methods
As the basic configuration, we are taking floorplan from the file demo1.json

with scale 1.1 and grid step 1. Hub and sensor cover 450 m2, and 40 m2 re-
spectively. Target numbers of hubs and sensors are computed as the ceiling of
the ratio of the total area to the coverage area. Coefficients for the hub optimal
number, sensor optimal number, and robustness of the network are 1, 0.75 and
0.0001 respectively. GA is performing 1000 steps and outputting fitness values of
the best chromosome in each generation.

For the method comparison, we introduce mistake on a number of hubs and
sensors in the population. That is the ratio of the difference between current and
target devices number to target for the best individual in the population. Zero
mistake means that we have exactly target number of devices, negative means
lower amount than needed and positive means more than needed.

We also introduce degeneracy as the difference between best and worst chro-
mosome in the population or as a ratio of different genes at the same position to
the total number of genes.

5.1.1 Population size
For the initial population, we place hub with 1.44% probability and sensor

with 21.12% while the target numbers are 0.38% and 4.9% respectively. Num-
bers for the initial population are taken empirically, they should be a bit higher
than the target. We will test populations of size 50, 100, 200 and 500. Bigger
population of e.g. 1000 or 2500 chromosomes becomes hard to compute in the
reasonable time.

As seen in Figure 5.1 for sensors mistake, population of 50 individuals is not
enough. Populations of 100 and 200 are better but still not reaching optimum,
while the population of 500 chromosomes reaches optimum on both the number
of hubs and sensors in approximately 300 generations.

5.1.2 Crossover method
Then we performed a comparison of 4 crossover methods, namely Single-

point, Two-point, Three parent, and Uniform. A number of crossovers in each
population is equal to 10%, this number is also received empirically. For the
uniform crossover, the coefficient is equal to 0.5 so it is a half-uniform method.

Only Uniform crossover has reached optimum value on number of sensors
(Figure 5.3) under 1000 generations. When using other methods our population
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degenerated earlier than reaching the optimal result.

5.1.3 Selection method
Roulette wheel as a selection method is not useful in our particular case (Fig-

ure 5.4). It is degenerating much quicker than other two methods and not reach-
ing the optimal result. Roulette wheel method with bad chromosomes gives a bit
better result but not much.

Comparing Truncation and Tournament methods it turns out that Truncation
is faster to find the optimal solution in a number of sensors but it also degenerates
(Figure 5.5) quicker than Tournament so the second one gives better result on
the robustness of the network.

5.1.4 Mutation method
The probability of chromosome mutation in population is 1%. And when

mutation operator is executed on chromosome it can mutate from 0 to 3 genes in
a chromosome.

Comparing three methods we can immediately notice that Flip Bit is not
useful in our case. That is because of the design of this method, which switches
the bits. In the initial population, we have around 90% of empty points which
are coded as 00. Flip Bit will change them to the hub (11) with high probability.
That is why the number of hubs grows dramatically (Figure 5.6). Also, this
operator not changing the number of sensors which are coded as 01 or 10 (Figure
5.7).

If talking about Uniform and Insertion mutations, on the first look Insertion
mutation looks more promising. They are working with almost same speed to the
optimal point on the number of hubs and sensors. But because insertion operator
just changes genes order without introducing or deleting random devices, it then
sticks to the optimal number and only improves robustness (Figure 5.8).

However, when taking a look on the decoded result it is noticeable that result
from Insertion method (Figure 5.10) is worse than the one from the Uniform
method (Figure 5.9) simply because Insertion is grouping devices together to
achieve better robustness. And that is making the overall floor coverage worse.

5.1.5 Proposed set of methods
As a result of this comparison we propose the following settings for the genetic

algorithm to achieve good results in the problem of WSN placement indoors.

• Initial population: 500 individuals, initial hubs/sensors probability of place-
ment higher than target

• Mutation: uniform with 1% probability and 0-3 genes to mutate. Hub-
s/sensors probability of placement lower than target

• Crossover: uniform with 10% probability

• Selection: tournament
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Figure 5.1: Sensors mistake depending on population size

Figure 5.2: Hubs mistake depending on crossover method
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Figure 5.3: Sensors mistake depending on crossover method

Figure 5.4: Sensors mistake depending on selection method
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Figure 5.5: Degeneracy depending on selection method

Figure 5.6: Hubs mistake depending on mutation method
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Figure 5.7: Sensors mistake depending on mutation method

Figure 5.8: Comparison between uniform and insertion selection
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Figure 5.9: Solution received with uniform mutation method

Figure 5.10: Solution received with insertion mutation method
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• Fitness coefficients: 1 for high priority, 0.75 for medium priority, 0.0001 for
low priority

• Device coverage: 450 m2 for hub and 40 m2 for sensor

• Stoping criteria: stagnation on 20 generations

This setup allows to receive an optimal result, it stops at around 300 gen-
erations with the outcome as shown in Figure 5.9 and the way to this result in
Figure 5.11. The degeneracy graph in Figure 5.12 over 1000 generations shows
that population is not degenerated before finding the optimal result.

5.1.6 Test case of different size
To demonstrate that the proposed set of methods works well not depending

on floor area or plan we created small and medium-size demo files. The newly
created test cases were four and two times smaller respectively than the original
one. The medium size demo file will be used later in Section 5.2.

For the small size demo result is pretty straight-forward, we have achieved the
target number of hubs and sensors, each sensor has both of those hubs in range
since the distances are small. The received result is shown in Figure 5.13.

5.2 Comparison with another algorithm
For the comparison with other existing algorithms used for designing the WSN

topology we have chosen paper [39]. Our works do have a lot in common:

• Devices of two types, namely sensors and hubs (gateways)

• Real building structure with walls

• Uniform grid sampling

• Radio model which counts the Wall attenuation factor

For the initial grid generation algorithm based on Self Growing Neural Gas
Algorithm with the radio ray tracing propagation Motif Model was used. Then
for the optimization part, they have used distributed agent-based algorithm, orig-
inally developed for the WiFi network optimization.

To compare results we have to estimate the floorplan area. Luckily, the pro-
posed floorplan is for existing building of Environmental Research Institute based
in Cork City. Using online tool we were able to estimate it’s area. We are also
mimicking their radio parameters to achieve the same connection range between
devices.

Our settings for this experiment are:

• File Demo3.json

• Scale 3.1, area 1127 m2

• Hub coverage 250 m2
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Figure 5.11: Number of devices over generations

Figure 5.12: Difference between best and worst chromosome
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• RX sensitivity -102 dB

Results are compared on the number of criterions in Table 5.1. Results of
external and our algorithms are also visualized in Figure 5.14 and Figure 5.15
respectively.

Criterion Paper [39] Our algorithm

Number of sensors 29 28
Number of hubs 3 4

Number of rooms covered with sensor 8 18
Target number of rooms covered with sensor 19 30

Percentage of rooms covered with sensor 42% 60%
Number of sensors seeing at least 2 hubs 0 21

Percentage of sensors having robust
connection

0% 75%

Table 5.1: Result comparison

The approach developed in Paper [39] is not resistant to changes in the net-
work topology, since each sensor is connected to only one router. So if one of the
routers fails, information from all sensors associated with it will be lost. In our
thesis, a mechanism that reduces the consequences of changing the local commu-
nication topology is proposed.

42



Figure 5.13: Small size test case

Figure 5.14: Result proposed in paper [39]

Figure 5.15: Result proposed in our thesis
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6. Conclusion
This thesis has managed to satisfy all set goals. It has formulated and im-

plemented the optimization problem of designing the Wireless sensor network
topology using Genetic algorithm.

The implementation itself consists of the framework for working with real
floorplans, user-friendly interface, multiple genetic operators (selection, crossover,
mutation) and stopping criteria. The fitness function was defined to properly
cover the area with devices and satisfy all the constraints on their number and
robustness of the network.

The computational experiments with adjusting input parameters and used
methods were conducted. Those experiments helped us to establish:

• lower and upper limits on the size of population

• probability parameters for generating the initial population

• combination of genetic operators which leads to converging to optimal result
in our particular problem

– 1% uniform mutation method gives us the uniform distribution of de-
vices around the area

– 10% half-uniform crossover method gives us a good diversity of popu-
lation to achieve optimality before degeneracy

– tournament selection is optimal from both speed and diversity points
of view

• with increasing number of iterations of GA the fitness value of best chro-
mosome in population change significantly up to a certain point after which
the population degeneracy is starting and it is no longer necessary to iterate
further. Therefore, the result stagnation was chosen as stopping criteria

To demonstrate the usage of those parameters and methods not dependent on
chosen floor size or plan, 3 demo files have been generated and tested. Results
are presented and compared to each other. One of the demo files was created in
order to compare it with existing paper in this area and results of this comparison
are described.

Lastly, analysis of modern scientific works devoted to the creation of models,
methods and algorithms for the optimal design of the Wireless sensor network
topology has been done. Based on the analysis, evolutionary modeling and genetic
search methods are looking promising for the further research.
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uńıversitetu, pages 147–149, 2009.

[10] Myung-Hee Son, Bheom-Soon Joo, Byung-Chul Kim, and Jae-Yong Lee.
Physical topology discovery for metro ethernet networks. ETRI journal,
27(4):355–366, 2005.

[11] A. M. Ta$ik, S. A. Lupin, and �. F. Vagapov. Primenenie algoritma

perebora dl� optimizacii topologii besprovodnyh sete$i. International
Journal of Open Information Technologies, 4(9), 2016.

[12] Bang Wang. Coverage problems in sensor networks: A survey. ACM Com-
puting Surveys (CSUR), 43(4):32, 2011.

[13] Jyoti Yadav and Sandeep Mann. Coverage in wireless sensor networks: A
survey. Int. J. Electron. Comput. Sci. Eng, 2:465–471, 2013.

[14] Anju Sangwan and Rishi Pal Singh. Survey on coverage problems in wireless
sensor networks. Wireless Personal Communications, 80(4):1475–1500, 2015.

45

http://www.airspayce.com/mikem/arduino/VirtualWire.pdf
http://www.airspayce.com/mikem/arduino/VirtualWire.pdf


[15] Nor Azlina Bt Ab Aziz, Ammar W. Mohemmed, and Mohammad Yusoff
Alias. A wireless sensor network coverage optimization algorithm based on
particle swarm optimization and voronoi diagram. In Networking, Sensing
and Control, 2009. ICNSC’09. International Conference on, pages 602–607.
IEEE, 2009.

[16] V. Komyak, A. Pankratov, V. Patsuk, and A. Prikhodko. The problem of
covering the fields by the circles in the task of optimization of observation
points for ground videomonitoring systems of forest fires. ECONTECH-
MOD: An International Quarterly Journal on Economics of Technology and
Modelling Processes, 5, 2016.
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Appendices

A Digital attachment
Content and structure of the digital bundle attached to this thesis:

thesis.pdf Document containing electronic version of this thesis

WSNO Source files for the project

\WSNO\
Form1.cs Main form interface handling
genetic.cs Genetic algorithm implementation
floorplan.cs Floorplan parsing drawing
sensors.cs Sensor grid creation drawing
radio.cs Radio models connectivity matrix
geometry.cs Helpful geometry computations
randomize.cs Better randomization

\WSNO\bin\Debug\
WSNO.exe Executable file
Newtonsoft.Json.dll Linked library
clipper library.dll Linked library
Demo1.json Floorplan demo file
Demo2.json Floorplan demo file
Demo3.json Floorplan demo file
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