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Department: Department of Probability and Mathematical Statistics
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Introduction
In recent years, mathematical statistics has marked a growing popularity in
functional data statistics. Due to an ever-increasing digitalisation and rapid
collection of data, we mark a shift from dealing with random variables to
dealing with random functions on an interval, usually representing time. Thus,
tests that deal with random functions are becoming essential for correct
statistical inference.

In univariate statistics, the analysis of variance (ANOVA), which deals with
testing an equality of means of multiple groups of samples, has proven to be
exceptionally useful in statistical inference. The functional case, however, was
until recently merely transformed into a univariate test statistic, where all
information about specific parts of functions that lead to rejection vanish.

The main goal of this thesis is to describe a functional one-way ANOVA test
which includes a graphical interpretation, thereby providing a means for a detailed
analysis of results without any need for further testing after rejection of the null
hypothesis.

The first chapter of this thesis introduces several basic definitions and results
from univariate statistics, which will be relied on in the subsequent chapters.
Then, the univariate analysis of variance is introduced, along with the F -test,
which is an elementary test of the ANOVA problem.

The second chapter introduces the topic of functional data and the one-way
ANOVA setting for functional data, which is followed by a straightforward
extension of the F -test to the functional case.

The thesis continues by introducing an envelope test, from which the rank
envelope test is rigorously derived. The rank envelope test is crucial in developing
the new graphical functional one-way ANOVA test.

The last chapter describes how the new one-way ANOVA test is constructed
from the rank envelope test. It is then applied to real data, as well as to
simulations, where various versions of the test are compared with each other
and with the F -test from Chapter 2.
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1. Univariate Statistics

1.1 Preliminaries
In this section, we will review a few basic definitions and theorems of
mathematical statistics on which we will rely throughout the rest of the thesis.
We will be working with a probability space (Ω, F ,P) throughout the chapter.

Definition 1.1. Let X1, . . . , Xn, n ∈ N be a sequence of independent,
identically distributed real-valued random variables from distribution F0. We
call the sequence a random sample from distribution F0 and we denote it as

X1, . . . , Xn ∼ F0.

Definition 1.2. Let X1, . . . , Xn, n ∈ N, be a sequence of real-valued random
variables. We call the random variables exchangeable, if ∀B1, . . . , Bn ∈ B, where B
is a Borel σ-algebra on R, and for every permutation π : {1, . . . , n} → {1, . . . , n},
it holds that:

P(X1 ∈ B1, . . . , Xn ∈ Bn) = P(Xπ(1) ∈ B1, . . . , Xπ(n) ∈ Bn).

Remark. Notice that if the sequence X1, . . . , Xn is a random sample, it is
exchangeable.

Definition 1.3. Let X1, . . . , Xn be a random sample from distribution F0.
Reorder the sequence into a sequence X(1), . . . , X(n), such that

X(1) ≤ X(2) ≤ · · · ≤ X(n).

We call X(k) the k-th order statistic.
Let Ri ∈ {1, . . . , n} be a random variable such that Xi = X(Ri). We call Ri

the rank of Xi.

Notice that rank is not necessarily unique for some distributions. For example,
in a random sample from a discrete distribution, a pair of random variables has
a non-zero probability to be equal.

Theorem 1.1. Let X1, . . . , Xn ∼ F0 be a random sample, such that

∀i, j ∈ {1, . . . , n}, i ̸= j : P(Xi = Xj) = 0

and let R1, . . . , Rn be the respective ranks of X1, . . . , Xn. Then,

P(Ri = k) = 1
n

, ∀i, k ∈ {1, . . . , n}.

Proof. Directly from Casella and Berger [2002], Chapter 5, page 230.

A generalised version of this theorem will be proved in Chapter 3.
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Definition 1.4. Let A ⊂ Rn, n ∈ N. By 1A we will mean a function

1A : Rn → {0, 1},

such that

1A(x) = 1 if x ∈ A,

1A(x) = 0 if x /∈ A.

Definition 1.5. Let Xn ∼ Fn, n ∈ N, X ∼ F be random variables. We say that
random variables Xn converge to X for n → ∞ in distribution, if

lim
n→∞

Fn(x) = F (x) for all x ∈ R where F is continuous.

We denote this convergence as Xn
d−−−→

n→∞
X.

1.2 A one-way ANOVA test
In this section, the one-way analysis of variance (or ANOVA) is introduced, along
with the most basic test that belongs to this branch of statistics. As a reference,
we use Bingham and Fry [2010], Section 2.6. For a fixed k ∈ N, we will consider
the model:

F = {Fi = N(µi, σ2); µi ∈ R; i = 1, . . . , k; σ2 > 0},

where N(µ, σ2) denotes the normal distribution with a mean of µ and a variance
of σ2.

The name ANOVA is used to denote the collection of procedures that deal
with the following problem:

Let k, n1, . . . , nk ∈ N and let:

X1,1, . . . , X1,n1 ∼ F1,

X2,1, . . . , X2,n2 ∼ F2,

...
Xk,1, . . . , Xk,nk

∼ Fk

be random variables of the model F , such that:

• Every group Xi,1, . . . , Xi,ni
is a random sample from the distribution Fi.

• Groups are independent of each other.

We test the following null hypothesis:

H0 : µ1 = µ2 = · · · = µk,

where µi
..= EXi,j, ∀i ∈ {1, . . . , k}, ∀j ∈ {1, . . . , ni}. The alternative hypothesis

is:
H1 : ∃i, j ∈ {1, . . . , k} such that µi ̸= µj.
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Example
The analysis of variance was first described by Ronald Fischer, whose motivation
was the following problem in agriculture, as is described in [Bingham and Fry,
2010].

We want to compare the effects of fertilisers on crop yields. For k ∈ N
fertilisers and ni ∈ N trials for each fertiliser i ∈ {1, . . . , k}, we measure the yield
of a crop. We assume that the yields are independent of each other and that their
distribution is normal and equal in variance.

For k = 2, we can simply use the two-sample t-test. For k > 2, we compare
the variability between groups with the variability within groups, which should
be similar if the effect of fertilisers is generally the same. We will formalise this
method into an F -test.

Definition 1.6. For random variables Xi,j defined as above and for n = ∑k
i=1 ni,

we call:

X i,+ = 1
ni

ni∑
j=1

Xi,j the sample mean of group i,

X+,+ = 1
n

k∑
i=1

ni∑
j=1

Xi,j the overall sample mean,

SST =
k∑

i=1

ni∑
j=1

(Xi,j − X+,+)2 the total sum of squares,

SSA =
k∑

i=1
ni(X i,+ − X+,+)2 the sum of squares between groups,

SSe =
k∑

i=1

ni∑
j=1

(Xi,j − X i,+)2 the residual sum of squares.

Theorem 1.2. Let Xi,j, i ∈ {1, . . . , k}, j ∈ {1, . . . , ni} be random variables.
Then,

SST = SSA + SSe.

Proof. see Bingham and Fry [2010], page 43.

Theorem 1.3. Let random variables Xi,j be defined as above and assume that
the model F holds. Then,

SSe

σ2 ∼ χ2
n−k; E

(
SSe

σ2

)
= σ2, (1.1)

where χ2
n−k is the chi-squared distribution with n − k degrees of freedom.

Furthermore, under the null hypothesis H0, the following is true:

SST

σ2 ∼ χ2
n−1; E

(
SST

σ2

)
= σ2, (1.2)

SSA

σ2 ∼ χ2
k−1; E

(
SSA

σ2

)
= σ2, (1.3)

SSA and SSe are independent. (1.4)
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Proof. see Bingham and Fry [2010], page 43-44.

Theorems 1.2. and 1.3. yield that the ratio between the ’external’ (between
groups) sum of squares and the ’internal’ (within groups) sum of squares has a
high probability of being close to zero if the null hypothesis is true. The test
statistic will be:

FA
..= SSA × (n − k)

SSe × (k − 1) .

Theorem 1.4. If the model F holds and the null hypothesis is true, then
FA ∼ Fk−1,n−k, where Fk−1,n−k is the Fischer-Snedecor distribution with
(k-1, n-k) degrees of freedom.

Proof. see Anděl [1998], page 115.

The critical region is naturally defined by an F -quantile:

H0 is rejected ⇐⇒ FA ≥ Fk−1,n−k(α),

with F -quantile is defined for FA ∼ Fk−1,n−k and α ∈ (0, 1) by the equality

P(FA ≥ Fk−1,n−k(α)) = α.

The one-way ANOVA F -test is an exact test – if the model F holds, the
significance level is exactly α. It is also a one-tailed test since we consider a test
statistic that is close to zero to be in support of the null hypothesis.
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2. ANOVA Tests on Functional
Data
This chapter introduces the concept of functional data and functional one-way
ANOVA. It continues by describing a commonly used functional one-way ANOVA
test, which will be subjected to comparison with the graphical ANOVA test later
on.

2.1 Functional Data
Definition 2.1. Let (Ω, F ,P) be a probability space and let I be a set of indices,
such that X(t) : (Ω, F) → (R, B) is a random variable ∀t ∈ I. We denote a
stochastic (or random) process as

{X(t), t ∈ I} : (Ω, F) → (RI , BI),

where (RI , BI) is the product measurable space

( X
t∈I

R,
⨂
t∈I

B).

The set of indices I is commonly interpreted as a set of points in time, thus
the name ’process’. This mirrors the actual applications of the definition – in
practice, it is common to measure a process for a period of time and infer on the
whole measurement. The ’randomness’ steps into the problem either as an error
of measurement or as a natural irregularity of the observed phenomenon.

Notice that for a fixed ω ∈ Ω, our stochastic process {X(ω)(t) : t ∈ I}
becomes a function X(ω) : I → R. Therefore, the term ’random function’ is
sometimes used instead. We will be using this term as well.

In practice, the interval I is often discretised and instead of {X(t) : t ∈ I},
we only measure a random vector. Nonetheless, it makes sense to construct a
theory on random functions and approximate them by a random vector at the
latest moment.

A random function {X(t), t ∈ I} has a mean function, denoted as

E(X)(t), t ∈ I,

differing from the univariate case only in the fact that it is a real function, not a
real number. We also consider an autocovariance function, denoted as

Cov(X)(t, s), t, s ∈ I,

which is the covariance between random variables X(t) and X(s). By variance of
a random function, we will mean

Var(X)(t) ..= Cov(X)(t, t), t ∈ I.

In the rest of this thesis, we will consider all random functions to have finite
variance functions Var(X)(t) < ∞.
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Example
Consider the problem of measuring the temperature of water in one year. We
can measure the temperature continuously, such that one random element of our
observations is a single function, with an interval on the x-axis representing the
time of one year and the y-axis representing temperature.

Since weather is a very complex phenomenon, it appears to be partially
random in time. Thus, we can measure water temperature for several years and
statistically examine the collection of functions.

As in univariate statistics, there are numerous statistical problems and tests
that deal with them. In this thesis, we are interested in the problem of testing an
equality of mean functions – in other words, we are dealing with the extension of
ANOVA to functional data, sometimes named as fANOVA, to which we will now
move on.

2.2 Functional ANOVA
Let K, n1, . . . , nK ∈ N, K > 2, N ..= ∑K

i=1 ni, I = (a, b) ⊂ R and let:

{X1,1(t), t ∈ I}, . . . , {X1,n1(t), t ∈ I} ∼ PX1 ,

{X2,1(t), t ∈ I}, . . . , {X2,n2(t), t ∈ I} ∼ PX2 ,

...
{XK,1(t), t ∈ I}, . . . , {XK,nK

(t), t ∈ I} ∼ PXK

be random functions, such that ∀i ̸= j, i, j ∈ {1, . . . , K} :

• Each group {Xi,1(t), t ∈ I}, . . . , {Xi,ni
(t), t ∈ I} is a random sample from

distribution PXi
.

• ∀X ∼ PXi
, ∀Y ∼ PXj

, ∀t, s ∈ I : random variables X(t) and Y (s) are
independent.

• ∀X ∼ PXi
, ∀Y ∼ PXj

, ∀t, s ∈ I : Cov(X)(t, s) = Cov(Y )(t, s).
This assumption is called ’homoscedasticity’.

We have already assumed that mean and autocovariance functions exist and are
finite for each group. We test the following null hypothesis:

H0 : ∀t ∈ I : µ1(t) = µ2(t) = · · · = µK(t).

where µi(t) ..= EXi,j(t), ∀j ∈ {1, . . . , ni}, i ∈ {1, . . . , K}.
By µ(t), t ∈ I, we will denote the overall mean, which exists under the null

hypothesis. The variance function, which is the same for all {Xi,j(t), t ∈ I}, will
be denoted as Var(X)(t), t ∈ I.

The alternative hypothesis would be:

H1 : ∃i, j ∈ {1, . . . , K}, ∃t0 ∈ I : µi(t0) ̸= µj(t0).

It is important to mention that for:

t, s ∈ I, t ̸= s, i ∈ {1, . . . , K}, j ∈ {1, . . . , ni},
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random variables Xi,j(t) and Xi,j(s) are not necessarily independent. For
example, the autocovariance function Cov(X)(t, s) does not need to be a zero
function.

In the context of functional ANOVA, the interval I is fixed and the same for
all random functions. Therefore, we will denote random functions as X(t). The
rest of the notation that was introduced in this section will persist in all tests
that deal with functional ANOVA.

Example
We will use an example from [Mrkvička et al., 2018]. In years 1979 - 2014, the
temperature of water at the water level of Ř́ımov reservoir in the Czech Republic
was measured every day. Let us denote the temperatures as Y1(t), . . . , Y36(t) for
t spanning one year. Temperatures are clearly real functions of time, which we
have represented in a discretised form as a vector of 365 elements. We would like
to know whether the mean of the water temperature has changed over the 36
years. We divide the temperatures into three groups of 12 measured years, which
we consider as independent and identically distributed, as well as independent of
the other groups.

Figure 2.1: Water temperature in Ř́ımov water reservoir.

We now have three groups of random samples, which we denote as:

X1,1(t), . . . , X1,12(t),
X2,1(t), . . . , X2,12(t),
X3,1(t), . . . , X3,12(t).
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The null hypothesis is:

H0 : µ1(t) = µ2(t) = µ3(t), ∀t ∈ I.

Thus, we have arrived at the problem of functional ANOVA.

2.2.1 Asymptotic F-test
We will now describe a simple functional one-way ANOVA test, which was
introduced in [Cuevas, 2004]. It is a direct extension of the univariate ANOVA
F -test.

When dealing with the problem of functional ANOVA, one might consider
extending the test statistic of the univariate ANOVA F -test to the functional case.
One way around the issue of multidimensionality would be by performing the F -
test on every point of a discretised interval and applying Bonferroni’s inequality.
However, if the discretised interval contains too many points, the resulting test is
very conservative – even if the null hypothesis holds, on average, it is still rejected
in more than (100 ·α)% of the cases. The other way could be by applying the L2-
norm:

∥X∥2
..=

( ∫ b

a
X2(t)dt

) 1
2

on whole functions instead of using the sums of squares in a pointwise fashion.
This has been a subject of study in [Cuevas, 2004].

We get the following test statistic:

FN =

∑K

i=1 ni∥Xi,+−X+,+∥2

K−1∑K

i=1

∑ni
j=1 ∥Xi,j−Xi,+∥2

N−K

.

The difficulty with this approach is that FN has a very complicated distribution.
Therefore, the idea is to choose an asymptotic test, in which the distribution can
be considerably simplified.

We will utilise one important idea behind ANOVA – the comparison of the
’external’ sums of squares against the ’internal’ sums of squares.
Asymptotically, the denominator of FN almost surely approaches the overall
variance of the samples

σ2 ..=
∫ b

a
[Xi,j(t) − µ(t)]2dt.

Therefore, we can use the nominator as our test statistic, which shall reflect how
much the group means differ from the overall mean and, therefore, from each
other.

Due to some technical reasons, [Cuevas, 2004] use a slighly different test
statistic, denoted as

VN
..=

K∑
i<j

ni∥X i,+ − Xj,+∥2
2,

which converges to the same distribution as the original one. Notice that if H0 is
not true, VN tends to infinity for N → ∞. We will now define a Gaussian process,
which appears in the theorem that deals with the asymptotic distribution of VN .
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Definition 2.2. Gaussian process is a random function Z(t), t ∈ I, such that for
any finite subset {t1, . . . , tn} ⊂ I, n ∈ N, the random vector (Z(t1), . . . , Z(tn))
has a multivariate normal distribution.

The theorem that follows gives us the asymptotic distribution of VN . Notice
that it does not assume homoscedasticity.

Theorem 2.1. Let N, ni → ∞, ni

N
→ pi ∈ R ∀i ∈ {1, . . . , K}. Assume that

Xi,j, i ∈ {1, . . . , K}, j ∈ N are random functions in I with finite variances and

EXi,j(t) = 0, ∀t ∈ I,

Cov(Xi,j)(s, t) =.. Ki(s, t), ∀t, s ∈ I, ∀j ∈ {1, . . . , ni}.

Then, under the null hypothesis of functional ANOVA:

VN
d−−−→

N→∞
V ..=

K∑
i<j

∥Zi(t) − Ci,jZj(t)∥2
2,

where Cij =
√

pi

pj
and Z1(t), . . . , ZK(t) are independent Gaussian processes with

EYi(t) = 0, ∀t ∈ I,

Cov(Yi)(s, t) = Ki(s, t), ∀t, s ∈ I.

Proof. See [Cuevas, 2004], Theorem 1, page 114.

Notice that we assume EXi,j(t) = 0, ∀t ∈ I. Under the null hypothesis,
we can transform X1,1(t), . . . , XK,nK

(t) easily by substracting the overall sample
mean X+,+(t) for all points on I.

The test itself is performed in the following way:

1. We discretise the interval I into a finite set of points R and calculate values
of the random samples X1,1(t), . . . , XnK ,K(t) for every t ∈ R. In practice,
the random sample is rarely continuous.

2. We calculate K̂i(s, t), which is a consistent estimate of Ki(s, t):

K̂i(s, t) =
ni∑

j=1

(Xi,j(s) − X i,+(s))(Xi,j(t) − X i,+(t))
ni − 1 .

If we assume the covariances between groups to be equal, we can enhance
the calculations by using an overall estimate.

3. We choose a number of simulations S and simulate each of the K functions
Zi(t) S times on the discretised interval. Thus, we get

{Ẑ(t)i,l, t ∈ R}, i ∈ {1, . . . , K}, l ∈ {1, . . . , S}.

4. For all i and r, we approximate ∥Zi(t) − Ci,jZj(t)∥2 S times by

∥Ẑi,l(t) − Ci,jẐj,l(t)∥e, l ∈ {1, . . . , S},

where ∥ · ∥e is the Euclidean norm.
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5. We calculate V̂l
..= ∑K

i<j ∥Ẑi,l − Ci,jẐi,l∥2
e.

6. For a chosen level of confidence α, we calculate an empirical quantile V̂α

from the random sample V̂1, . . . , V̂S, and then compare the value with VN .
If VN > V̂α, we reject the null hypothesis.

This test has a major disadvantage, which it shares with most tests for
functional ANOVA – it lacks a graphical interpretation. The output of this test
is binary and does not provide us with any information regarding the
contribution of specific groups to the rejection.

In the next chapter, we describe a rank envelope test, based on which we
construct a functional ANOVA test with a graphical interpretation in Chapter 4.
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3. Envelope Tests
This chapter introduces the concept of envelopes, along with an envelope test
that is used in practice and a novel envelope test from the article by [Myllymäki
et al., 2016]. We will use them to test if the distribution of a random function
is equal to the distribution of a random sample of functions. Even though this
test appears to depart from the topic of this thesis, it will eventually be used in
Chapter 4 to construct a functional ANOVA test with graphical interpretation.

3.1 Global envelopes
One of the most popular methods for testing equality of distributions on
functional data are the envelope Monte Carlo tests.

Assume that we have a random function X1 ∼ P1. In this chapter, we will
test a hypothesis H0 : X1 ∼ P0, for some distribution P0 that is known either
analytically (as a specific distribution with known parameters) or empirically (as
a sample distribution), so that we can simulate s functions X2, . . . , Xs+1 ∼ P0.
We now define an envelope along with the concept of an envelope test.

Definition 3.1. Let X2, . . . , Xs+1 ∼ P0 be a random sample of functions and let
k ∈ {1, . . . , s}, t ∈ I.

We call the random function X
(k)
low(t) a lower k-th envelope, if

∀t ∈ I : X
(k)
low(t) = X(t)(k),

where X(t)(k) is the k-th order statisic of the random variables X2(t), . . . , Xs+1(t)
for a fixed t ∈ I. Similarly, we call the random function X(k)

upp(t) an upper k-th
envelope, if

∀t ∈ I : X(k)
upp(t) = X(t)(s−k).

We define a function X1(t), t ∈ I to be inside the k-th envelope, if:

∀t ∈ I : X1(t) ∈ [X(k)
low(t), X(k)

upp(t)].

Definition 3.2. Let X2, . . . , Xs+1 ∼ P0 be a random sample of functions and let
k ∈ {1, . . . , s}.

We call a test a global envelope test, if the null hypothesis is rejected if and
only if the observed function X1 is not completely covered by the k-th envelope
for some fixed k ∈ {1, . . . , s}, i.e.:

∃t0 ∈ I : X1(t0) /∈ [X(k)
low(t0), X(k)

upp(t0)].

We will now define an envelope test first introduced in [Ripley, 1977], from
which we will proceed towards more sophisticated tests.

3.1.1 Ripley’s envelope test
Let X1 ∼ P1 be a random function and let X2, . . . , Xs+1 ∼ P0 be simulated
random functions. Let H0 be a null hypothesis defined as above. In Ripley’s
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simulation envelope test, we choose

X
(1)
low(t) = min

i=2,...,s+1
Xi(t),

X(1)
upp(t) = max

i=2,...,s+1
Xi(t).

Notice that under the null hypothesis, functions X1, X2, . . . , Xs+1 are independent
and identically distributed. Therefore, under the assumption that

∀t ∈ I, ∀i, j ∈ {1, . . . , s + 1} : P(Xi(t) = Xj(t)) = 0

and for a fixed t ∈ I, we can use Theorem 1.1. Thus, we get

P(R1(t) = k) = 1
s + 1 , ∀k ∈ {1, . . . , s + 1}.

A pointwise envelope test would then be based on the rule that the null hypothesis
is rejected if and only if the observed random variable X(t) falls outside of the
interval [X(1)

low(t), X(1)
upp(t)]. For a fixed number of simulations s, we get an exact

significance level. In other words, the following is true under the null hypothesis:

P(X(1)
low(t) ≤ X1(t) ≤ X(1)

upp(t)) = P(X(1)
low(t) < X1(t) < X(1)

upp(t)) =

= P(1 < R1(t) < s + 1) =
s∑

k=2
P(R1(t) = k) = s − 1

s + 1 , ∀t ∈ I.

The significance level would then be the probability of the opposite event:

PH0(X1(t) /∈ [X(1)
low(t), X(1)

upp(t)]) = 1 − s − 1
s + 1 = 2

s + 1 .

We can further enhance the test by choosing a number k and the envelopes as

X
(k)
low(t) . . . k-th lowest Xi(t), i = 2, . . . , s + 1,

X(k)
upp(t) . . . k-th highest Xi(t), i = 2, . . . , s + 1.

Now, it becomes possible to choose a significance level for a fixed number of
simulations. In other words, the significance level becomes a function α(s, k).
The resulting significance level is α(s, k) = 2·k

s+1 , which we can calculate in the
same way as above. We also need to choose such a number of simulations that
the number k = α(s+1)

2 is an integer.
Notice that the pointwise envelope test only provides a significance level for

a fixed t ∈ I. A global version of the test would need to have a single significance
level on the whole interval I. Since we would be dealing with the problem of
multiple comparison, a test using the pointwise envelope test on all points t ∈ I
would have a significance level much higher than the established α. We get an
estimator of its type I error based on the results of the test, as is stated in
[Loosmore and Ford, 2006].

Theorem 3.1. Let s be a fixed number of simulations and r be the number of
those simulations Xi, i ∈ {2, . . . , s + 1}, for which the equation holds:

X
(1)
low(t) ≤ Xi(t) ≤ X(1)

upp(t) ∀t ∈ I.

The number 1 − r
s

is an unbiased estimator of the type I error of the global
simulation envelope test.
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Proof. We can rewrite r as a function of X2, . . . , Xs+1:

r(X2, . . . , Xs+1) =
s+1∑
i=2

1{X
(1)
low(t) ≤ Xi(t) ≤ X(1)

upp(t), ∀t ∈ I}.

Then, we can see that

E
(

r(X2, . . . , Xs+1)
s

)
= 1

s
·

s+1∑
i=2

P(X(1)
low(t) ≤ Xi(t) ≤ X(1)

upp(t), ∀t ∈ I) =

= P(X(1)
low(t) ≤ Xi(t) ≤ X(1)

upp(t), ∀t ∈ I).

Let H0 be true. Then:

P(H0 is rejected) = P(∀t ∈ I : X1(t) /∈ [X(1)
low(t), X(1)

upp(t)]) =
= P(∃t ∈ I : X1(t) > X(1)

upp(t) or X1(t) < X
(1)
low(t)) =

= 1 − P( ∀t ∈ I : X
(1)
low(t) ≤ X1(t) ≤ X(1)

upp(t)),

whose unbiased estimator is 1 − r
s
.

We could compute an upper bound of the type I error by using Bonferroni’s
inequality. A test with such a significance level would, however, have a very low
power.

The global version of the simulation test was originally designed as a post-
hoc test, whose purpose was to identify points that caused a rejection of the null
hypothesis by another test, unrelated to the former one. Nevertheless, it has been
used as a stand-alone test with a significance level misinterpreted as α. In spite of
its weakness, this test is graphically interpretable – we reject the null hypothesis
if the observed function is not completely contained inside the envelope. This
attribute makes the test very desirable for applications. Therefore, the ambition
is to transform it into a test with an exact significance level and sufficiently high
power.

3.1.2 Extension of a classical Monte Carlo test
We will begin by extending Theorem 1.1 from Chapter 1. We will need a stronger
theorem that deals with any ordering satisfying certain conditions. Thus, we will
get the necessary tools to create a test with a controlled significance level from an
ordering of whole functions. The theorem becomes a simple and a very general
method of constructing quantiles for functional data. First, we will need to extend
Definition 1.2 to the context of random functions.

Definition 3.3. Let n ∈ N, (X1, . . . , Xn) be a vector of random functions on I.
We call random functions X1, . . . , Xn exchangeable, if

PX1,...,Xn(A) = PXπ(1),...,Xπ(n)(A),

for any measurable set A ∈ (BI)n and for any permutation on {1, . . . , n}.

Remark. If X1, . . . , Xn is a random sample of functions, functions X1, . . . , Xn

are exchangeable.
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Definition 3.4. By an ordering ’≺’ on random functions X1, . . . , Xn, n ∈ N, we
will mean an ordering on a set of (non-random) functions

X = {Xi(ω), ω ∈ Ω, i ∈ {1, . . . , n}}

that satisfies the property:

{(f, g) ∈ X2 : f ≺ g} ∈ (BI)2.

Theorem 3.2. Let R1, . . . , Rs+1 be the ranks of exchangeable functions
X1, . . . , Xs+1, based on an ordering ≺, such that

∀i, j ∈ {1, . . . , s + 1}, i ̸= j : P(Xi ≺ Xj or Xj ≺ Xi) = 1. (3.1)

Then,
P(Ri = k) = 1

s + 1 ∀i, k ∈ {1, . . . , s + 1}.

Proof. (3.1) implies that we can almost surely order X1, . . . , Xs+1 by ’≺’ without
any ties. Let M ..= {(f1, . . . , fs+1) ∈ (RI)s+1, f1 ≺ f2 ≺ · · · ≺ fs+1}.

M is a measurable set, e.g. from (BI)s+1, as it is a countable intersection of
measurable sets. Thus,

P(X1 ≺ X2 ≺ · · · ≺ Xs+1) = P((X1, . . . , Xs+1) ∈ M) =
= P((Xπ(1), . . . , Xπ(s+1)) ∈ M) = P(Xπ(1) ≺ Xπ(2) ≺ · · · ≺ Xπ(s+1)),

for any permutation π : {1, . . . , s + 1}, where the second equality holds due to
the exchangibility assumption.

There are (s + 1)! permutations on {X1, . . . , Xs+1}, implying that

P(X1 ≺ · · · ≺ Xs+1) = 1
(s + 1)! .

Also, realise that Xi ≺ Xj is equivalent to Ri < Rj. Next, let

Pk
..= {π : {1, . . . , k − 1, k + 1, . . . , s + 1} → {1, . . . , k − 1, k + 1, . . . , s + 1},

π is a permutation}.

For a fixed i, k ∈ {1, . . . , s + 1}, we have

P(Ri = k) =
∑

π∈Pk

P(Xπ(1) ≺ · · · ≺ Xπ(k−1) ≺ Xk ≺ Xπ(k+1) ≺ · · · ≺ Xπ(s+1))

=
∑

π∈Pk

1
(s + 1)! = s!

(s + 1)! = 1
s + 1 ,

which concludes the proof.

With an appropriate ordering, this theorem gives us a tool to create exact tests
on a random sample of functions without knowing much about its properties.

We will continue in the same way as Myllymäki et al. [2016] in Section 3.
Now, we shall create an ordering of functions by their extremity. First, let us
assume that we already have such an ordering ’≺’ and that this ordering satisfies
the condition P(Xi ≺ Xj or Xj ≺ Xi) = 1, ∀i, j ∈ {1, . . . , s + 1}, i ̸= j.
We will examine the case that the null hypothesis holds. Then, our observed
function X1 is independent and of the same distribution as the simulated functions
X2, . . . , Xs+1. We get the following theorem:
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Theorem 3.3. Let X1, X2, . . . , Xs+1 be a random sample of functions and let ’≺’
be an ordering satisfying condition (3.1). Let s be a number such that α(s + 1) is
an integer. Then, a test that rejects the null hypothesis according to the rule

1 +
s+1∑
i=2

1(X1 ≺ Xi) ≤ α(s + 1)

is an exact test on a significance level α.

Proof. See Myllymäki et al. [2016], Section 3, Lemma 1.

The power of this test obviously depends on the ordering ’≺’. Notice that we
can very easily modify any ordering to satisfy the condition (3.1) by arbitrarily
sorting every equivalence class created by the ordering. Of course, the power
of the test depends on the relevance of this sorting to the parameters that we
consider to be ”extreme”. If we utilise this partially arbitrary ordering, we may
get different p-values for multiple tests (based on this ordering) performed on the
same data. These p-values would, however, belong to a fixed interval, which we
denote as [p−, p+].

3.2 Rank envelope test
Based on the previous approach, we now need to construct an ordering ’≺’ . We
will construct it in the same manner as was used in [Myllymäki et al., 2016],
Section 4. In order to achieve high power of the test, we will look for a measure
of ’extremeness’ of random functions. The measure will be called the extreme
rank of a function and the ordering will be naturally devised from the measure.

Definition 3.5. Let s be a fixed number of simulations and let X2, . . . , Xs+1 ∼ P0
and X1 be random functions. Then, for every i ∈ {1, . . . , s + 1}, we define the
extreme rank of function Xi as:

Ri := max{k : X
(k)
low(t) ≤ Xi(t) ≤ X(k)

upp(t), ∀t ∈ I}.

The extreme rank can be interpreted in the following way:
If Ri = k is large, the corresponding envelope [X(k)

low, X(k)
upp] is constructed from

high ranks of Xj(t), j ∈ {2, . . . , s + 1}. Thus, Xi is typical (unextreme).
We define the ordering ’≺’ as follows:

∀i, j ∈ {1, . . . , s + 1} : Ri < Rj ⇒ Xi ≺ Xj.

Notice that the ordering ’≺’ is weak – there is always a tie. For example,
for a random sample of two and more functions, there are at least two functions
with the extreme rank equal to 1. If this was not true, the only extreme function
would have to be the upper and the lower envelope at the same time.

Therefore, we will need to resolve the ties with the observed function by
deciding whether we want to consider the functions of the same rank as the
observed function to be ’more extreme’ or ’less extreme’. In the first case, we get
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a liberal test, whereas in the second case, we get a conservative test. In other
words, the values

p−(X1) := 1
s + 1

s+1∑
i=1

1(Ri < R1),

p+(X1) := 1
s + 1

s+1∑
i=1

1(Ri ≤ R1)

are the p-values of the liberal and the conservative rank envelope test, respectively.
This result is formalised in the following theorem.

Theorem 3.4. Let s ∈ N such that α(s + 1) ∈ N. A test that rejects H0 if and
only if

p−(X1) ≤ α (3.2)

is a liberal test and a test that rejects H0 if and only if

p+(X1) ≤ α (3.3)

is a conservative test.

Proof. We will prove (3.2) in a similar fashion as in [Myllymäki et al., 2016]. We
need to check if the probability of rejection is (under the null hypothesis) greater
than α. The null hypothesis H0 : X1 ∼ P0 holds, therefore X1, . . . , Xs+1 is a
random sample of functions, thus exchangeable.

We introduce new ranks R̃1, . . . , R̃s+1, so that P(R̃i < R̃j or R̃j < R̃i) = 1. In
other words, ∀i, j ∈ {1, . . . , s + 1} :

Ri < Rj ⇒ R̃i < R̃j,

Ri = Rj ⇒ we order R̃i, R̃j arbitrarily, so that R̃i ̸= R̃j,

{R̃1, . . . , R̃s+1} = {1, . . . , s + 1}.

Thus, we get an ordering based on ranks R̃1, . . . , R̃s+1 that satisfies (3.1).
According to Theorem 3.2, the new rank of X1 has a uniform distribution

across {1, . . . , s + 1} :

P(R̃1 = k) = 1
s + 1 , ∀k ∈ {1, . . . , s + 1}.

We know that {R̃1, . . . , R̃s+1} = {1, . . . , s+1}. Trivially, the following is true:

∀k ∈ {1, . . . , s + 1} :
s+1∑
i=1

1(R̃i < k) < k.

The probability of rejection is:

PH0(p−(X1) ≤ α).
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Then,

PH0(p−(X1) ≤ α) =
s+1∑
l=1

P
( 1

s + 1

s+1∑
i=1

1(R̃i < R̃1) ≤ α | R̃1 = l
)

· P(R̃1 = l) >

>
s+1∑
l=1

P
(

R̃1

s + 1 ≤ α | R̃1 = l
)

· P(R̃1 = l) =

=
s+1∑
l=1

1(l ≤ α(s + 1)) · P(R̃1 = l) =

=
α(s+1)∑

l=1
P(R̃1 = l) = α,

where the second equality holds due to the fact that

P(R̃1 ≤ α(s + 1) | R̃1 = l) = 1 if l ≤ α(s + 1),
= 0 if l > α(s + 1).

The case of (3.3) is proved analogically.

3.2.1 Graphical interpretation
The main advantage of this test is its graphical interpretation, from which we
can see how much each point t ∈ I contributes to rejection. Based on the results
of the rank envelope test, we will now create an envelope. Let α ∈ (0, 1) be the
significance level of the test. Then, for

kα
..= max

k∈N
{

s+1∑
i=1

1(Ri < k) ≤ α(s + 1)},

we consider the kα-th envelope, consisting of X
(kα)
low and X(kα)

upp . Notice that the
envelope covers those functions whose extreme rank is greater than or equal to kα

and it may include the observed function X1. At most α(s + 1) functions stray
out of the envelope, meaning that they are for at least one point t ∈ I strictly
above the upper envelope or strictly below the lower envelope.

Generally, the interval [p−, p+] represents the result of the rank envelope
test. Assume that there are no pointwise ties with probability 1. We need this
assumption so that the pointwise rank is uniquely defined, from which we know
that for all points t ∈ I, both the lower and the upper envelope coincides in t
with just one function almost surely.

If α /∈ [p−, p+), we have a clear result of the test:

• If p+ ≤ α, we clearly reject the null hypothesis. In graphical interpretation,
the observed function strays out of the envelope, as there are p+(s + 1) ≤
α(s + 1) functions from X1, . . . , Xs+1 whose rank is lower than or equal to
the rank of X1.

• If p− > α, there is no evidence for rejection of the null hypothesis. In
graphical interpretation, the observed function is completely covered by the
envelope and does not coincide with the envelope, as there are p−(s + 1) >
α(s + 1) functions whose rank is lower than the rank of X1.
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If p− ≤ α < p+, we do not have a clear result. In graphical interpretation,
the observed function X1 coincides with the envelope at some point t ∈ I. The
observations are proved in [Myllymäki et al., 2016], Theorem 4.2.

There are several solutions to the lack of a single p-value, which is necessary
for the case when α ∈ [p−, p+). Firstly, we can either choose a liberal or a
conservative test. Secondly, we can choose the middle value

pmid
..= p− + p+

2 .

This corresponds to the case where one half of the functions of the same extreme
rank as the observed function is considered as ’more extreme’ and one half as
’less extreme’.

We can also introduce a stronger ordering – for example, for a random function
Xi with rank Ri = k, we could count all the points where the function is part
of the k-th envelope and order it with functions of the same rank based on this
number. This notion is further discussed in [Myllymäki et al., 2016], Section 6.
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4. A functional ANOVA using
rank envelopes
In this chapter, we will describe a test for functional one-way ANOVA that was
introduced in [Mrkvička et al., 2018]. We will employ the rank envelope test,
which has been developed in Chapter 3. The test will thus be graphically
interpretable, compared to the other functional ANOVA tests that have been
covered in Chapter 2.

4.1 Rank envelope one-way ANOVA test
The rank envelope test is a test of equality of distributions on functional data.
Our goal is to apply this test to the problem of functional ANOVA, which tests
equality of means (non-random functions) in a group of random samples.

We will be using the same notation as in Chapter 2. For a fixed i ∈ {1, . . . , K},
we have a random sample of ni random functions Xi,j(t), j ∈ {1, . . . , ni}, t ∈ I,
where I is an interval.

The ambition is to perform one rank envelope test that would test the equality
of all mean functions at the same time. This would result in a single overall level
of significance, which is necessary for a statistical test. As the observed function,
we will use a test statistic created as a function of group sample means. For the
application of the rank envelope test, we also need to ’simulate’ the test statistic.
The lack of simulations of the test statistic will be resolved by assuming the
null hypothesis to be true and applying the function of group sample means on
permutations of Xi,j.

4.1.1 Test vectors
We shall use two variants of test statistics. Recall the null hypothesis:

H0 : µi(t) = µj(t) = µ(t), ∀i, j ∈ {1, . . . , K}, ∀t ∈ I.

We will use the fact that the mean of a random function is a (non-random)
function on I to rewrite the null hypothesis H0. Let Xi,j be represented as:

Xi,j(t) = µ(t) + µ∗
i (t) + ei,j(t), ∀t ∈ I,

where both µ and µ∗
i are (non-random) functions and ei,j is a random function,

under the condition that
K∑

i=1
µ∗

i (t) = 0, ∀t ∈ I,

so that the overall mean function µ is uniquely identifiable.
In practice, functions ei,j, which are called the error functions, are a

combination of the error of measurement and the innate random nature of the
phenomenon observed. We can now rewrite the null hypothesis in the following
way:

H
(1)
0 : µ∗

i (t) = 0 ∀i ∈ {1, . . . , K}, ∀t ∈ I.
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We will now construct the first test statistic, which consists of group sample
means:

X(1) = (X1, . . . , XK). (4.1)

The test statistic is a single random function on the interval I repeated K times.
Notice that the null hypothesis H

(1)
0 is equivalent to the following one:

H
(2)
0 : µ∗

i (t) − µ∗
j(t) = 0, ∀i, j ∈ {1, . . . , K}, ∀t ∈ I.

Based on this observation, we will construct the second test statistic, which
consists of the differences between group sample means:

X(2) = (X1 − X2, X1 − X3, . . . , XK−1 − XK). (4.2)

From now on, we will only consider a discretised version of the interval I,
which we denote as a sequence t1 < · · · < tL of length L. The discretisation is
performed in the same fashion for every Xi,j. Thus, the first test vector X(1) is
of length K × L, whereas the length of the second test vector X(2) is K(K−1)

2 × L.
For K > 3, the second vector is longer than the first one. Therefore, X(1) is

useful if the number of groups is very large, whereas X(2) is generally preferable,
considering that it graphically illustrates the areas where any two group means
differ significantly. In other functional ANOVA tests, this contrasting of group
means is sometimes used as a post-hoc test – see Zhang [2013], Chapter 5, page
145.

4.1.2 Permutations
Let us now assume that we have a test vector T, which is a function of the group
sample means. If the null hypothesis is true, we know that all Xi,j have the
same mean, and so it is immaterial which functions Xi,j we use to calculate a
(group) sample mean. Under H

(1)
0 , the sample mean X i,+(t) = 1

ni

∑ni
j=1 Xi,j(t) is

a consistent estimate of µ(t) for every i in {1, . . . , K}, t ∈ {t1, . . . , tL}, due to
the strong law of large numbers.

Also, for a permutation (a bijection) π(i, j) : A → A, where

A ..= {[i, j] ∈ N × N : 1 ≤ i ≤ K, 1 ≤ j ≤ ni},

the sample mean 1
ni

∑ni
j=1 Xπ(i,j), where i is fixed, is a consistent estimate of µ as

well. We construct a simulation T for a test vector T in the following way:

1. A permutation π is randomly generated.

2. Random sample Xi,j is transformed by π into Xπ(i,j). We obtain a new
random sample

Xπ(1,1)(t), . . . , Xπ(1,n1)(t),
Xπ(2,1)(t), . . . , Xπ(2,n2)(t),

...
Xπ(K,1)(t), . . . , Xπ(K,nK)(t).
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3. T is calculated as in (4.1) or (4.2), based on the type of test vector that
was chosen.

This is repeated S times, where S is the number of simulations, which is
a parameter that needs to be set before the execution of the test.

4.1.3 Correction for unequal variances
The method above is based on the assumption that the variances of groups are
equal. If this was not so, the groups with higher variance would reach the extreme
points of the rank envelope more frequently.

If it is not possible to assume homoscedasticity, we need to correct our
observations. The first idea would be to standardise a function Xi,j by
transforming it into

Xi,j(t) − µ(t)√
Var(Xi)(t)

.

We would, however, like to preserve its overall mean and variance, which is
achievable by the following transformation:

Si,j(t) := Xi,j(t) − X+,+(t)√
V̂i(t)

·
√

V̂ (t) + X+,+(t),

where X+,+(t) denotes the overall sample mean and V̂i, V̂ denote the sample
variances of groups i ∈ {1, . . . , K} and the overall sample variance, respectively.

Thus, we obtain a scaled version Si,j of the original observation Xi,j.
Also, in order to smooth the resulting functions, we can use a moving average

on the variances, as is further described in [Mrkvička et al., 2018].

4.2 Real case study
We have performed the functional ANOVA test on water temperature data from
Ř́ımov, according to the example in Chapter 2. We assumed homoscedasticity
and ran the functional ANOVA test on 10000 permutations.

Firstly, we ran the test using a test vector of the first type, X(1). The resulting
p-interval was (0, 0.085), by choosing the middle value of the interval as the result:
0.043, we have rejected the null hypothesis.

Figure 4.1: Mean functions of water temperature in the Ř́ımov reservoir dataset.
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The barely visible coincidence with the envelope is around Day 120 (beginning
of May) in the graph representing the mean function of the first group and the
graph representing the third group. The black line depicts the observed function,
whereas the grey area represents the global envelope.

Secondly, we ran the test using a test vector of the second type, X(2). The
resulting p-interval was (0, 0.089) and, by choosing the middle value of the interval
as the result: 0.045, we have rejected the null hypothesis.

Figure 4.2: Comparison of mean functions of water temperature in the Ř́ımov
reservoir dataset.

In the graphical output of the second test (4.2), we can see the locations that
were responsible for rejection of the null hypothesis more clearly. The difference
of means between the first and the third group, which is depicted as the observed
black line, coincides with the envelope around Day 120. These results seem
appropriate, as the largest difference in time is between the first and the third
group of temperatures.

4.3 Simulation study
For mean functions, we have chosen the same four models M1, M2, M3, M4 as
Cuevas [2004] or Mrkvička et al. [2018], on an interval I = [0, 1] uniformly
discretised into 100 points 0 = t1 < · · · < t100 = 1. For the error functions, we
have chosen:

• Gaussian process E1(ti) ∼ N(0, σ2) that is independent for all points,

• Brownian process, defined for t1 as E2(t1) ∼ N(0, σ2) and recursively for
ti, 1 < i ≤ 100 as a sum of E2(ti−1) with an independent random variable
of the distribution N(0, σ2).

We have used standard deviations σ ∈ {0.05, 0.1, 0.5, 1, 2, 5}, which include
deviations larger than those considered in [Mrkvička et al., 2018]. The same
realisations of the error functions are used across all models of mean functions.
For all models, we simulate K = 3 groups, ni = 10 functions. The models for
mean functions are:

• M1 : Xi,j(t) = t(1 − t) + ei,j(t), i ∈ {1, . . . , 10}, j ∈ {1, 2, 3},

• M2 : Xi,j(t) = ti(1 − t)6−i + ei,j(t), i ∈ {1, . . . , 10}, j ∈ {1, 2, 3},
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• M3 : Xi,j(t) = ti/5(1 − t)6− i
5 + ei,j(t), i ∈ {1, . . . , 10}, j ∈ {1, 2, 3},

• M4 : Xi,j(t) = 1 + i
50 + ei,j(t), i ∈ {1, . . . , 10}, j ∈ {1, 2, 3}.

In the case of M1, the null hypothesis is true. In the cases of M2, M3 and M4,
the alternative hypothesis is true. The means of M2 and M3 peak in different
locations according to their group identity and M4 has a constant mean which is
slightly different for all groups. The mean functions are visualised in Figure 4.3.

Figure 4.3: Mean function models (non-random).

We have compared three functional ANOVA tests:
• asymptotic F -test by [Cuevas, 2004], defined in Section 2, which we further

denote as (AsF),

• the graphical functional ANOVA test by [Mrkvička et al., 2018] with the
test vector X(1), defined in Section 4, which we denote as (GFAM),

• the graphical functional ANOVA test with the test vector X(2), which we
denote as (GFAC).

For (GFAM) and (GFAC), [Mrkvička et al., 2018] use the extreme rank count
method for calculating a unique p-value. We have used the liberal versions (using
p− as p-value), which we denote by suffix -lib, and the versions with p-value
pmid = p++p−

2 , which we denote by suffix -mid. The pmid version of the rank
envelope test is somewhat weak in the context of functional ANOVA, as we usually
have a long test vector with many ties. We have omitted the conservative version
of the test, as it is even weaker than the pmid version.

The number of simulations was 2000 for (GFAM) and (GFAC). For (AsF), we
have chosen 300 simulations in order to achieve similar levels of time consumption.

For each model, error function and test, we have performed 100 repetitions
of data generation and testing and calculated the number of times the null
hypothesis was rejected. The results in the tables are the sample probabilities of
rejection.

25



Table 4.1: Results for independent Gaussian process errors (sample prob. of
rejection)

M1 σ1 = 0.05 σ2 = 0.1 σ3 = 0.5 σ4 = 1 σ5 = 2 σ6 = 5
AsF 0.00 0.00 0.00 0.00 0.00 0.00

GFAM-lib 0.23 0.23 0.31 0.29 0.25 0.22
GFAM-mid 0.00 0.00 0.00 0.00 0.00 0.00
GFAC-lib 0.23 0.26 0.33 0.24 0.30 0.20
GFAC-mid 0.00 0.00 0.00 0.00 0.00 0.00

M2 σ1 = 0.05 σ2 = 0.1 σ3 = 0.5 σ4 = 1 σ5 = 2 σ6 = 5
AsF 1.00 1.00 0.94 0.03 0.00 0.00

GFAM-lib 1.00 1.00 0.93 0.47 0.32 0.17
GFAM-mid 1.00 0.00 0.00 0.00 0.00 0.00
GFAC-lib 1.00 1.00 0.88 0.48 0.28 0.19
GFAC-mid 1.00 0.00 0.00 0.00 0.00 0.00

M3 σ1 = 0.05 σ2 = 0.1 σ3 = 0.5 σ4 = 1 σ5 = 2 σ6 = 5
AsF 1.00 1.00 0.60 0.03 0.00 0.00

GFAM-lib 1.00 1.00 0.85 0.47 0.28 0.18
GFAM-mid 0.22 0.00 0.00 0.00 0.00 0.00
GFAC-lib 1.00 1.00 0.83 0.42 0.25 0.20
GFAC-mid 0.04 0.00 0.00 0.00 0.00 0.00

M4 σ1 = 0.05 σ2 = 0.1 σ3 = 0.5 σ4 = 1 σ5 = 2 σ6 = 5
AsF 1.00 0.14 0.00 0.00 0.00 0.00

GFAM-lib 0.98 0.58 0.32 0.27 0.25 0.23
GFAM-mid 0.00 0.00 0.00 0.00 0.00 0.00
GFAC-lib 0.99 0.62 0.34 0.25 0.30 0.20
GFAC-mid 0.00 0.00 0.00 0.00 0.00 0.00

In the case of independent Gaussian errors, we can see in (4.3) that the
asymptotic F -test fares very well. In model M1, it does not reject the (true)
null hypothesis. In models M2, M3, M4, where the alternative is true, it rejects
with a higher rate than pmid versions of the graphical ANOVA tests. The liberal
versions of the graphical ANOVA tests have a better rejection rate than (AsF)
in cases with higher variances. The overall success of the (AsF) test is in part
due to the assumption of normality, on which the original F -test relies. Notice
that the pmid versions are very conservative due to a high number of ties. This
could be resolved by increasing the number of permutations. The difference in
(GFAM) and (GFAC) is negligible, which is in part due to the fact that the
length of both test vectors is identical for K = 3.
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Table 4.2: Results for Brownian process errors (sample prob. of rejection)
M1 σ1 = 0.05 σ2 = 0.1 σ3 = 0.5 σ4 = 1 σ5 = 2 σ6 = 5
AsF 0.05 0.06 0.04 0.06 0.05 0.11

GFAM-lib 0.07 0.05 0.05 0.05 0.09 0.05
GFAM-mid 0.07 0.04 0.04 0.04 0.06 0.05
GFAC-lib 0.08 0.04 0.07 0.07 0.06 0.06
GFAC-mid 0.05 0.02 0.05 0.02 0.06 0.04

M2 σ1 = 0.05 σ2 = 0.1 σ3 = 0.5 σ4 = 1 σ5 = 2 σ6 = 5
AsF 0.42 0.13 0.04 0.06 0.05 0.11

GFAM-lib 0.45 0.14 0.05 0.04 0.09 0.05
GFAM-mid 0.42 0.11 0.05 0.04 0.06 0.05
GFAC-lib 0.46 0.13 0.08 0.07 0.06 0.06
GFAC-mid 0.39 0.09 0.06 0.03 0.05 0.04

M3 σ1 = 0.05 σ2 = 0.1 σ3 = 0.5 σ4 = 1 σ5 = 2 σ6 = 5
AsF 0.31 0.08 0.04 0.06 0.05 0.11

GFAM-lib 1.00 1.00 0.13 0.06 0.08 0.05
GFAM-mid 1.00 1.00 0.12 0.03 0.05 0.05
GFAC-lib 1.00 1.00 0.12 0.07 0.07 0.05
GFAC-mid 1.00 1.00 0.09 0.04 0.06 0.04

M4 σ1 = 0.05 σ2 = 0.1 σ3 = 0.5 σ4 = 1 σ5 = 2 σ6 = 5
AsF 0.04 0.05 0.04 0.06 0.05 0.11

GFAM-lib 0.14 0.06 0.06 0.05 0.08 0.05
GFAM-mid 0.12 0.05 0.05 0.04 0.05 0.05
GFAC-lib 0.15 0.05 0.05 0.07 0.06 0.06
GFAC-mid 0.12 0.02 0.04 0.02 0.06 0.04

In (4.3), we deal with a Brownian process error function. For the first model,
where the null hypothesis holds, we can see that all tests reject the null hypothesis
with a frequency being around the significance level α. The results of the second
model appear to be balanced when compared with each other. In the third
model, (AsF) test clearly struggles with rejection. The graphical tests, on the
other hand, reject the null hypothesis for lower variances in all cases. Due to
the incremental nature of the Brownian process, higher variances significantly
influence the rejection rate. Thus, for higher variances, all models and tests have
a rejection rate around the significance level α. Model M4 suffers from this for
deviations as low as σ2 = 0.1 due to the fact that the mean functions differ by
very little and Brownian error distorts this difference significantly.
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Conclusion
In this Bachelor’s Thesis, we have introduced the concept of functional data and
the problem of functional one-way ANOVA, along with two functional one-way
ANOVA tests. One of them represents the ANOVA tests that need a post-hoc
evaluation to understand which groups caused rejection of the null hypothesis.
The second test, whose development spans Chapters 3 and 4, is a test that does
not suffer from this drawback. We have compared these tests in both a real case
study and a simulation study.

This thesis brings a short introduction to functional data statistics. It
rigorously describes how the novel functional one-way ANOVA test works and
clarifies some deficiencies in the theory and the background behind this test.
Namely, we prove the theorem concerning an estimator of the type I error for
the global simulation envelope test, as well as the theorem for probability of
ranks based on an ordering of random functions without ties, which is then used
to prove the theorem that deals with the significance level of a test based on
such an ordering. In the simulation study, models with previously unconsidered
variances and p-values (pmid and plib) were compared and analysed, using the R
programming language of version 3.4.2, created by [R Core Team, 2017]. We
have also used a package for the asymptotic F -test created by [Febrero-Bande
and Oviedo de la Fuente, 2012] and a package from [Myllymäki et al., 2016].

The graphical functional one-way ANOVA test has not yet yielded many
results, as it is a very recent addition to functional statistics. However, due to
its applicable attributes inherited from the rank envelope test and its unique
nature, we believe that it will find a prominent place in functional statistics and
become an inspiration in the development of new ANOVA tests. The two-way
variant of graphical functional ANOVA is also possible and under development
by the authors of this test.
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