Show simple item record

Reorthogonalization strategies in Golub-Kahan iterative bidiagonalization
Reortogonalizační strategie v Golub-Kahanově iterační bidiagonalizaci
dc.contributor.advisorHnětynková, Iveta
dc.creatorŠmelík, Martin
dc.date.accessioned2018-11-30T13:56:42Z
dc.date.available2018-11-30T13:56:42Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/20.500.11956/99566
dc.description.abstractThe main goal of this thesis is to describe Golub-Kahan iterative bidiagonalization and its connection with Lanczos tridiagonalization and Krylov space theory. The Golub-Kahan iterative bidiagonalization is based on short recurrencies and when computing in finite precision arithmetics, the loss of orthogonality often occurs. Consequently, with the aim to reduce the loss of orthogonality, we focus on various reorthogonalization strategies. We compare them in numerical experiments on testing matrices available in the MATLAB environment. We study the dependency of the loss of orthogonalization and computational time on the choice of the method or the attributes of the matrix.en_US
dc.description.abstractV tejto práci popíšeme Golub-Kahanovu iteračnú bidiagonalizáciu a ukážeme jej spojitosť s Lanczosovou tridiagonalizáciou a Krylovovými priestormi. Golub-Kahanova iteračná bidiagonalizácia je založená na krátkych rekurenciách a pri výpočtoch v aritmetike s konečnou presnosťou preto obvykle nastáva rýchla strata ortogonality spočítaných vektorov. Za účelom obmedzenia straty ortogonality sa zameriame na rôzne reortogonalizačné stratégie. V numerických experimentoch ich vzájomne porovnáme na testovacích maticiach v prostredí MATLAB. Budeme skúmať závislosť straty ortogonality a výpočetnej náročnosti na voľbe použitej metódy alebo vlastnostiach konkrétnej matice.cs_CZ
dc.languageSlovenčinacs_CZ
dc.language.isosk_SK
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectlinear problemen_US
dc.subjectiterative bidiagonalizationen_US
dc.subjectKrylov spaceen_US
dc.subjectreortogonalizationen_US
dc.subjectlineární problémcs_CZ
dc.subjectiterační bidiagonalizacecs_CZ
dc.subjectKrylovův prostorcs_CZ
dc.subjectreortogonalizacecs_CZ
dc.titleReortogonalizačné stratégie v Golub-Kahanovej iteračnej bidiagonalizáciisk_SK
dc.typebakalářská prácecs_CZ
dcterms.created2018
dcterms.dateAccepted2018-06-20
dc.description.departmentKatedra numerické matematikycs_CZ
dc.description.departmentDepartment of Numerical Mathematicsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId193295
dc.title.translatedReorthogonalization strategies in Golub-Kahan iterative bidiagonalizationen_US
dc.title.translatedReortogonalizační strategie v Golub-Kahanově iterační bidiagonalizacics_CZ
dc.contributor.refereeKučera, Václav
dc.identifier.aleph002192463
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra numerické matematikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Numerical Mathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV tejto práci popíšeme Golub-Kahanovu iteračnú bidiagonalizáciu a ukážeme jej spojitosť s Lanczosovou tridiagonalizáciou a Krylovovými priestormi. Golub-Kahanova iteračná bidiagonalizácia je založená na krátkych rekurenciách a pri výpočtoch v aritmetike s konečnou presnosťou preto obvykle nastáva rýchla strata ortogonality spočítaných vektorov. Za účelom obmedzenia straty ortogonality sa zameriame na rôzne reortogonalizačné stratégie. V numerických experimentoch ich vzájomne porovnáme na testovacích maticiach v prostredí MATLAB. Budeme skúmať závislosť straty ortogonality a výpočetnej náročnosti na voľbe použitej metódy alebo vlastnostiach konkrétnej matice.cs_CZ
uk.abstract.enThe main goal of this thesis is to describe Golub-Kahan iterative bidiagonalization and its connection with Lanczos tridiagonalization and Krylov space theory. The Golub-Kahan iterative bidiagonalization is based on short recurrencies and when computing in finite precision arithmetics, the loss of orthogonality often occurs. Consequently, with the aim to reduce the loss of orthogonality, we focus on various reorthogonalization strategies. We compare them in numerical experiments on testing matrices available in the MATLAB environment. We study the dependency of the loss of orthogonalization and computational time on the choice of the method or the attributes of the matrix.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra numerické matematikycs_CZ
thesis.grade.code1
dc.identifier.lisID990021924630106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV