Show simple item record

Spojité reprezentace vět v neuronovém strojovém překladu
dc.contributor.advisorBojar, Ondřej
dc.creatorCífka, Ondřej
dc.date.accessioned2018-07-09T10:00:30Z
dc.date.available2018-07-09T10:00:30Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/20.500.11956/99393
dc.description.abstractRecent advances in natural language processing using neural networks have given rise to numerous methods of obtaining continuous-space vector representations of textual data that can be exploited for various applications. One of these methods is to use internal representations learned by neural machine translation (NMT) models. However, the attention mechanism in modern NMT systems removes the single point in the neural network from which the source sentence representation can be extracted. In this thesis, we propose and empirically evaluate novel ways to remove this limitation. We review existing methods of obtaining sentence representations and evaluating them, and present novel intrinsic evaluation metrics. Next, we describe our modifications to attention-based NMT architectures that allow extracting sentence representations. In the experimental section, we analyze these representations and evaluate them using a wide range of metrics with a focus on meaning representation. The results suggest that the better the translation quality, the worse the performance on these tasks. We also observe no performance gains from using multi-task training to control the representations.en_US
dc.description.abstractNedávné pokroky ve zpracování přirozeného jazyka pomocí hlubokých neuronových sítí daly vzniknout mnoha metodám získávání spojitých vektorových reprezentací textových dat. Jako jedna z těchto metod může posloužit neuronový strojový překlad, extrahujeme-li ze systému vnitřní reprezentaci vstupní věty. Nejmodernější neuronové překladové systémy jsou však založeny na mechanismu pozornosti (attention), kdy systém reprezentaci věty jako celku již vůbec nevytváří a reprezentaci tak není možné získat. V této práci navrhujeme a empiricky vyhodnocujeme nové techniky, které mají za cíl toto omezení překonat. Nejprve popisujeme stávající metody získávání a vyhodnocování větných reprezentací a rovněž představujeme dvě nové metody vyhodnocení. Dále popisujeme úpravy architektur pro strojový překlad, které umožní větné reprezentace získávat. V experimentální části tyto reprezentace analyzujeme a vyhodnocujeme je pomocí široké škály metrik se zaměřením na reprezentaci významu. Výsledky naznačují, že čím lepší je kvalita překladu, tím hůře si větné reprezentace vedou ve vyhodnocení těmito metrikami. Ani naše pokusy o regulaci větných reprezentací pomocí víceúlohového učení nepřinesly zřetelné zlepšení v tomto vyhodnocení.cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectvětycs_CZ
dc.subjectreprezentacecs_CZ
dc.subjectneuronový strojový překladcs_CZ
dc.subjectsentenceen_US
dc.subjectrepresentationen_US
dc.subjectneural machine translationen_US
dc.titleSpojité reprezentace vět v neuronovém strojovém překladuen_US
dc.typediplomová prácecs_CZ
dcterms.created2018
dcterms.dateAccepted2018-06-18
dc.description.departmentInstitute of Formal and Applied Linguisticsen_US
dc.description.departmentÚstav formální a aplikované lingvistikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId201611
dc.title.translatedSpojité reprezentace vět v neuronovém strojovém překladucs_CZ
dc.contributor.refereeRosa, Rudolf
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineComputational Linguisticsen_US
thesis.degree.disciplineMatematická lingvistikacs_CZ
thesis.degree.programInformatikacs_CZ
thesis.degree.programComputer Scienceen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Ústav formální a aplikované lingvistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Institute of Formal and Applied Linguisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematická lingvistikacs_CZ
uk.degree-discipline.enComputational Linguisticsen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csNedávné pokroky ve zpracování přirozeného jazyka pomocí hlubokých neuronových sítí daly vzniknout mnoha metodám získávání spojitých vektorových reprezentací textových dat. Jako jedna z těchto metod může posloužit neuronový strojový překlad, extrahujeme-li ze systému vnitřní reprezentaci vstupní věty. Nejmodernější neuronové překladové systémy jsou však založeny na mechanismu pozornosti (attention), kdy systém reprezentaci věty jako celku již vůbec nevytváří a reprezentaci tak není možné získat. V této práci navrhujeme a empiricky vyhodnocujeme nové techniky, které mají za cíl toto omezení překonat. Nejprve popisujeme stávající metody získávání a vyhodnocování větných reprezentací a rovněž představujeme dvě nové metody vyhodnocení. Dále popisujeme úpravy architektur pro strojový překlad, které umožní větné reprezentace získávat. V experimentální části tyto reprezentace analyzujeme a vyhodnocujeme je pomocí široké škály metrik se zaměřením na reprezentaci významu. Výsledky naznačují, že čím lepší je kvalita překladu, tím hůře si větné reprezentace vedou ve vyhodnocení těmito metrikami. Ani naše pokusy o regulaci větných reprezentací pomocí víceúlohového učení nepřinesly zřetelné zlepšení v tomto vyhodnocení.cs_CZ
uk.abstract.enRecent advances in natural language processing using neural networks have given rise to numerous methods of obtaining continuous-space vector representations of textual data that can be exploited for various applications. One of these methods is to use internal representations learned by neural machine translation (NMT) models. However, the attention mechanism in modern NMT systems removes the single point in the neural network from which the source sentence representation can be extracted. In this thesis, we propose and empirically evaluate novel ways to remove this limitation. We review existing methods of obtaining sentence representations and evaluating them, and present novel intrinsic evaluation metrics. Next, we describe our modifications to attention-based NMT architectures that allow extracting sentence representations. In the experimental section, we analyze these representations and evaluate them using a wide range of metrics with a focus on meaning representation. The results suggest that the better the translation quality, the worse the performance on these tasks. We also observe no performance gains from using multi-task training to control the representations.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Ústav formální a aplikované lingvistikycs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV