Show simple item record

Enumerace vyplnění polyomin
dc.contributor.advisorJelínek, Vít
dc.creatorKarpilovskij, Mark
dc.date.accessioned2018-06-27T10:01:34Z
dc.date.available2018-06-27T10:01:34Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/20.500.11956/98687
dc.description.abstractV práci dokazujeme dva nové výsledky o 0-1-vyplněních skew diagramů, které neobsahují dlouhé rostoucí a klesající řetězce. V první polovině práce ukážeme, že pro velkou třídu skew diagramů existuje bijekce mezi řídkými vyplněními bez rostoucího řetězce dané délky a řídkými vyplněními bez klesajícího řetězce stejné délky. Ve druhé polovině práce zobecníme známou nerovnost mezi počtem řídkých vyplnění skew diagramu bez rostoucího řetězce délky 2 a počtem řídkých vyplnění bez klesajícího řetězce délky 2 na všechna možná 0-1-vyplnění. 1cs_CZ
dc.description.abstractWe prove two new results about 0-1-fillings of skew diagrams avoiding long increasing and decreasing chains. In the first half of the thesis, we show that for a large class of skew diagrams, there is a bijection between sparse fillings avoiding an increasing chain of fixed length and sparse fillings avoiding a decreas- ing chain of the same length. In the second half, we extend a known inequality between the number of sparse 0-1-fillings of skew diagrams avoiding an increasing chain of length 2 and a decreasing chain of length 2 to all 0-1-fillings. 1en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectpolyomino filling skew diagramen_US
dc.subjectpolyomino vyplnění skew diagramcs_CZ
dc.titleEnumeration of polyomino fillingsen_US
dc.typediplomová prácecs_CZ
dcterms.created2018
dcterms.dateAccepted2018-06-06
dc.description.departmentComputer Science Institute of Charles Universityen_US
dc.description.departmentInformatický ústav Univerzity Karlovycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId199410
dc.title.translatedEnumerace vyplnění polyomincs_CZ
dc.contributor.refereeKlazar, Martin
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineDiscrete Models and Algorithmsen_US
thesis.degree.disciplineDiskrétní modely a algoritmycs_CZ
thesis.degree.programInformatikacs_CZ
thesis.degree.programComputer Scienceen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csDiskrétní modely a algoritmycs_CZ
uk.degree-discipline.enDiscrete Models and Algorithmsen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV práci dokazujeme dva nové výsledky o 0-1-vyplněních skew diagramů, které neobsahují dlouhé rostoucí a klesající řetězce. V první polovině práce ukážeme, že pro velkou třídu skew diagramů existuje bijekce mezi řídkými vyplněními bez rostoucího řetězce dané délky a řídkými vyplněními bez klesajícího řetězce stejné délky. Ve druhé polovině práce zobecníme známou nerovnost mezi počtem řídkých vyplnění skew diagramu bez rostoucího řetězce délky 2 a počtem řídkých vyplnění bez klesajícího řetězce délky 2 na všechna možná 0-1-vyplnění. 1cs_CZ
uk.abstract.enWe prove two new results about 0-1-fillings of skew diagrams avoiding long increasing and decreasing chains. In the first half of the thesis, we show that for a large class of skew diagrams, there is a bijection between sparse fillings avoiding an increasing chain of fixed length and sparse fillings avoiding a decreas- ing chain of the same length. In the second half, we extend a known inequality between the number of sparse 0-1-fillings of skew diagrams avoiding an increasing chain of length 2 and a decreasing chain of length 2 to all 0-1-fillings. 1en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Informatický ústav Univerzity Karlovycs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV