Show simple item record

Některé aspekty nespojité Galerkinovy metody pro řešení konvektivně-difuzních problémů
dc.contributor.advisorFeistauer, Miloslav
dc.creatorBalázsová, Monika
dc.date.accessioned2021-01-11T22:22:14Z
dc.date.available2021-01-11T22:22:14Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/20.500.11956/95901
dc.description.abstractIn the present work we deal with the stability of the space-time discontinuous Galerkin method applied to non-stationary, nonlinear convection - diffusion problems. Discontinuous Galerkin method is a very efficient tool for numerical solution of partial differential equations, combines the advantages of the finite element method (polynomial approximations of high order of accuracy) and the finite volume method (discontinuous approximations). After the formulation of the continuous problem its discretization in space and time is described. In the formulation of the discontinuous Galerkin method the non-symmetric, symmetric and incomplete version of discretization of the diffusion term is used and there are added penalty terms to the scheme also. In the third chapter are estimated individual terms of the previously derived approximate solution by special norms. Using the concept of discrete characteristic functions and the discrete Gronwall lemma, it is shown that the analyzed scheme is unconditionally stable. At the end, in the fourth chapter, are given some numerical experiments, which verify theoretical results from the previous chapter.en_US
dc.description.abstractV předložené práci se zabýváme stabilitou nespojité časoprostorové Galerkinovy metody, aplikované na nestacionární, nelineární problémy konvekce - difúze. Nespojitá Galerkinova metoda představuje velice efektivní nástroj pro numerické řešení parciálních diferenciálních rovnic, kombinuje výhody metody konečných prvků (polynomiální aproximace vysokého řádu přesnosti) a metody konečných diferencí (nespojité aproximace). Po formulování spojitého problému následuje jeho diskretizace v prostoru i v čase. Ve formulaci nespojité Galerkinovy metody používáme nesymetrickou, symetrickou a neúplnou verzi diskretizace difúzního členu a dále přidáváme do schématu penalizační členy. Ve třetí kapitole následují odhady jednotlivých členů dříve odvozeného přibližného řešení pomocí speciálních norem. Pomocí konceptu diskrétních charakteristických funkcí a diskrétního Gronwallova lemmatu je ukázáno, že analyzované schéma je nepodmíněně stabilní. Na závěr, ve čtvrté kapitole, jsou uvedeny numerické experimenty, které ověřují teoretické výsledky předchozí kapitoly.cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectnelineární problém konvekce - difúzecs_CZ
dc.subjectnespojitá èasoprostorová Galerkinova metodacs_CZ
dc.subjectèasová a prostorová diskretizacecs_CZ
dc.subjectstabilita metodycs_CZ
dc.subjectdiskrétní charakteristická funkcecs_CZ
dc.subjectnonlinear convection - diffusion problemsen_US
dc.subjectspace-time discontinuous Galerkin methoden_US
dc.subjectspace and time discretizationen_US
dc.subjectstability of the methoden_US
dc.subjectdiscrete characteristic functionen_US
dc.titleSome aspects of the discontinuous Galerkin method for the solution of convection-diffusion problemsen_US
dc.typerigorózní prácecs_CZ
dcterms.created2018
dcterms.dateAccepted2018-03-23
dc.description.departmentKatedra numerické matematikycs_CZ
dc.description.departmentDepartment of Numerical Mathematicsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId200274
dc.title.translatedNěkteré aspekty nespojité Galerkinovy metody pro řešení konvektivně-difuzních problémůcs_CZ
dc.identifier.aleph002180041
thesis.degree.nameRNDr.
thesis.degree.levelrigorózní řízenícs_CZ
thesis.degree.disciplineNumerical and computational mathematicsen_US
thesis.degree.disciplineNumerická a výpočtová matematikacs_CZ
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typerigorózní prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra numerické matematikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Numerical Mathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csNumerická a výpočtová matematikacs_CZ
uk.degree-discipline.enNumerical and computational mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csProspěl/acs_CZ
thesis.grade.enPassen_US
uk.abstract.csV předložené práci se zabýváme stabilitou nespojité časoprostorové Galerkinovy metody, aplikované na nestacionární, nelineární problémy konvekce - difúze. Nespojitá Galerkinova metoda představuje velice efektivní nástroj pro numerické řešení parciálních diferenciálních rovnic, kombinuje výhody metody konečných prvků (polynomiální aproximace vysokého řádu přesnosti) a metody konečných diferencí (nespojité aproximace). Po formulování spojitého problému následuje jeho diskretizace v prostoru i v čase. Ve formulaci nespojité Galerkinovy metody používáme nesymetrickou, symetrickou a neúplnou verzi diskretizace difúzního členu a dále přidáváme do schématu penalizační členy. Ve třetí kapitole následují odhady jednotlivých členů dříve odvozeného přibližného řešení pomocí speciálních norem. Pomocí konceptu diskrétních charakteristických funkcí a diskrétního Gronwallova lemmatu je ukázáno, že analyzované schéma je nepodmíněně stabilní. Na závěr, ve čtvrté kapitole, jsou uvedeny numerické experimenty, které ověřují teoretické výsledky předchozí kapitoly.cs_CZ
uk.abstract.enIn the present work we deal with the stability of the space-time discontinuous Galerkin method applied to non-stationary, nonlinear convection - diffusion problems. Discontinuous Galerkin method is a very efficient tool for numerical solution of partial differential equations, combines the advantages of the finite element method (polynomial approximations of high order of accuracy) and the finite volume method (discontinuous approximations). After the formulation of the continuous problem its discretization in space and time is described. In the formulation of the discontinuous Galerkin method the non-symmetric, symmetric and incomplete version of discretization of the diffusion term is used and there are added penalty terms to the scheme also. In the third chapter are estimated individual terms of the previously derived approximate solution by special norms. Using the concept of discrete characteristic functions and the discrete Gronwall lemma, it is shown that the analyzed scheme is unconditionally stable. At the end, in the fourth chapter, are given some numerical experiments, which verify theoretical results from the previous chapter.en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra numerické matematikycs_CZ
thesis.grade.codeP
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusU


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV