Show simple item record

News Feed Classifications to Improve Volatility Predictions
dc.contributor.advisorŠopov, Boril
dc.creatorPogodina, Ksenia
dc.date.accessioned2018-07-27T13:01:26Z
dc.date.available2018-07-27T13:01:26Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/20.500.11956/94826
dc.description.abstractThis thesis analyzes various text classification techniques in order to assess whether the knowledge of published news articles about selected companies can improve its' stock return volatility modelling and forecasting. We examine the content of the textual news releases and derive the news sentiment (po­ larity and strength) employing three different approaches: supervised machine learning Naive Bayes algorithm, lexicon-based as a representative of linguistic approach and hybrid Naive Bayes. In hybrid Naive Bayes we consider only the words contained in the specific lexicon rather than whole set of words from the article. For the lexicon-based approach we used independently two lexicons one with binary another with multiclass labels. The training set for the Naive Bayes was labeled by the author. When comparing the classifiers from the machine learning approach we can conclude that all of them performed similarly with a slight advantage of the hybrid Naive Bayes combined with multiclass lexicon. The resulting quantitative data in form of sentiment scores will be then incorpo­ rated into GARCH volatility modelling. The findings suggest that information contained in news feeds does bring an additional explanatory power to tradi­ tional GARCH model and is able to improve it's forecast. On the...en_US
dc.description.abstractTato práce analyzuje různé metody klasifikace textu za účelem zjištění, zda-li publikované novinové články o konkrétních společnostech umožňují lepší sim­ ulaci a predikci volatility akcií dané společnosti. V práci zkoumáme obsah textu publikovaných novinových článků a z toho vycházející sentiment (směr a síla) za použití tří různých přístupů: supervised machine learning Naive Bayes algoritmus, lexicon-based jako zástupce lingvistického přístupu a hy­ bridní Naive Bayes. V rámci hybridního Naive Bayes jsou uvažována pouze slova obsažená v daném lexikonu a nikoliv celý obsah článku. Pro lexicon- based přístup používáme nezávisle dva lexikony, jeden s binárním a jeden vícetřídním hodnocením sentimentu. Sentiment v trénovacím setu pro Naive Bayes byl přiřazen autorem. Z porovnání klasifikační metod založených na machine learning dojdeme k závěru, že všechny metody dosahují podobných výsledků z nichž nejlépe vychází hybridní Naive Bayes používající vícetřídní lexikon. Výstupní kvantitativní data ve formě hodnot sentimentu jsou pak dále zahrnuta do modelování volatility pomocí GARCH. Výsledky ukazují, že informace obsažené v novinových článcích přinášejí další vysvětlující prvek do tradičního GARCH modelu a jsou schopné zlepšit odhad. Nicméně, nejsme schopni získat dost podkladů pro určení nejlepší...cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Fakulta sociálních vědcs_CZ
dc.subjectvolatilitycs_CZ
dc.subjecttextcs_CZ
dc.subjectklasifikátorcs_CZ
dc.subjectlexikoncs_CZ
dc.subjectsenti­ mentcs_CZ
dc.subjectnovinové článkycs_CZ
dc.subjectvolatilityen_US
dc.subjecttexten_US
dc.subjectclassifieren_US
dc.subjectlexiconen_US
dc.subjectsentimenten_US
dc.subjectnewsen_US
dc.titleNews Feed Classifications to Improve Volatility Predictionsen_US
dc.typediplomová prácecs_CZ
dcterms.created2018
dcterms.dateAccepted2018-01-31
dc.description.departmentInstitut ekonomických studiícs_CZ
dc.description.departmentInstitute of Economic Studiesen_US
dc.description.facultyFakulta sociálních vědcs_CZ
dc.description.facultyFaculty of Social Sciencesen_US
dc.identifier.repId179463
dc.title.translatedNews Feed Classifications to Improve Volatility Predictionscs_CZ
dc.contributor.refereeČervinka, Michal
dc.identifier.aleph002173344
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineEconomics and Financeen_US
thesis.degree.disciplineEkonomie a financecs_CZ
thesis.degree.programEconomicsen_US
thesis.degree.programEkonomické teoriecs_CZ
uk.faculty-name.csFakulta sociálních vědcs_CZ
uk.faculty-name.enFaculty of Social Sciencesen_US
uk.faculty-abbr.csFSVcs_CZ
uk.degree-discipline.csEkonomie a financecs_CZ
uk.degree-discipline.enEconomics and Financeen_US
uk.degree-program.csEkonomické teoriecs_CZ
uk.degree-program.enEconomicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csTato práce analyzuje různé metody klasifikace textu za účelem zjištění, zda-li publikované novinové články o konkrétních společnostech umožňují lepší sim­ ulaci a predikci volatility akcií dané společnosti. V práci zkoumáme obsah textu publikovaných novinových článků a z toho vycházející sentiment (směr a síla) za použití tří různých přístupů: supervised machine learning Naive Bayes algoritmus, lexicon-based jako zástupce lingvistického přístupu a hy­ bridní Naive Bayes. V rámci hybridního Naive Bayes jsou uvažována pouze slova obsažená v daném lexikonu a nikoliv celý obsah článku. Pro lexicon- based přístup používáme nezávisle dva lexikony, jeden s binárním a jeden vícetřídním hodnocením sentimentu. Sentiment v trénovacím setu pro Naive Bayes byl přiřazen autorem. Z porovnání klasifikační metod založených na machine learning dojdeme k závěru, že všechny metody dosahují podobných výsledků z nichž nejlépe vychází hybridní Naive Bayes používající vícetřídní lexikon. Výstupní kvantitativní data ve formě hodnot sentimentu jsou pak dále zahrnuta do modelování volatility pomocí GARCH. Výsledky ukazují, že informace obsažené v novinových článcích přinášejí další vysvětlující prvek do tradičního GARCH modelu a jsou schopné zlepšit odhad. Nicméně, nejsme schopni získat dost podkladů pro určení nejlepší...cs_CZ
uk.abstract.enThis thesis analyzes various text classification techniques in order to assess whether the knowledge of published news articles about selected companies can improve its' stock return volatility modelling and forecasting. We examine the content of the textual news releases and derive the news sentiment (po­ larity and strength) employing three different approaches: supervised machine learning Naive Bayes algorithm, lexicon-based as a representative of linguistic approach and hybrid Naive Bayes. In hybrid Naive Bayes we consider only the words contained in the specific lexicon rather than whole set of words from the article. For the lexicon-based approach we used independently two lexicons one with binary another with multiclass labels. The training set for the Naive Bayes was labeled by the author. When comparing the classifiers from the machine learning approach we can conclude that all of them performed similarly with a slight advantage of the hybrid Naive Bayes combined with multiclass lexicon. The resulting quantitative data in form of sentiment scores will be then incorpo­ rated into GARCH volatility modelling. The findings suggest that information contained in news feeds does bring an additional explanatory power to tradi­ tional GARCH model and is able to improve it's forecast. On the...en_US
uk.file-availabilityV
uk.publication-placePrahacs_CZ
uk.grantorUniverzita Karlova, Fakulta sociálních věd, Institut ekonomických studiícs_CZ
thesis.grade.codeB


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 3-5, 116 36 Praha; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV