Show simple item record

Maximum likelihood theory for not i.i.d. observations
dc.contributor.advisorOmelka, Marek
dc.creatorKielkowská, Eva
dc.date.accessioned2017-10-04T10:24:40Z
dc.date.available2017-10-04T10:24:40Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/20.500.11956/91141
dc.description.abstractV práci se zabýváme metodou maximální věrohodnosti pro pozorování, která jsou nezávislá, ale nejsou stejně rozdělená. V první části jsou stanoveny podmínky pro konzistenci a asymptotickou normalitu maximálně věrohodných odhadů v tomto případě. Využívá se zde hlavně stejnoměrná integrovatelnost náhodných veličin. Ověření uvedených podmínek je ilustrováno na K-výběrovém problému. V druhé části se práce zaměřuje na situace, ve kterých odhady parametrů získáme minimalizací konvexních funkcí. Důkaz konzistence a asymptotické normality pro tyto odhady je založen na výsledcích pro konvexní náhodné funkce. Tento postup je možné použít pro metodu maximální věrohodnosti v modelech s logkonkávními hustotami. Příklad normálního lineárního modelu, logistické regrese a poissonovské regrese demonstruje použití výsledků představených v druhé části práce.cs_CZ
dc.description.abstractMaximum likelihood approach for independent but not identically distributed observations is studied. In the first part of the thesis, conditions for consistency and asymptotic normality of the maximum likelihood estimates for this case are stated. Uniform integrability has a major role in proving the desired properties. K-sample problem serves as an example for using the described method. The second part is focused on estimates obtained by minimizing convex functions. Convexity is a key for showing the consistency and asymptotic normality of the estimates in this case. The results can be used for maximum likelihood when observations with logconcave densities are involved. Finally, normal linear model, logistic regression and Poisson regression examples are provided to present the application of the method.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectuniform integrabilityen_US
dc.subjectconvexityen_US
dc.subjectregression modelsen_US
dc.subjectstejnoměrná integrovatelnostcs_CZ
dc.subjectkonvexitacs_CZ
dc.subjectregresní modelycs_CZ
dc.titleMetoda maximální věrohodnosti pro pozorování, která nejsou stejně rozdělená nebo nezávislács_CZ
dc.typediplomová prácecs_CZ
dcterms.created2017
dcterms.dateAccepted2017-09-13
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId168625
dc.title.translatedMaximum likelihood theory for not i.i.d. observationsen_US
dc.contributor.refereePešta, Michal
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplinePravděpodobnost, matematická statistika a ekonometriecs_CZ
thesis.degree.disciplineProbability, mathematical statistics and econometricsen_US
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csPravděpodobnost, matematická statistika a ekonometriecs_CZ
uk.degree-discipline.enProbability, mathematical statistics and econometricsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVelmi dobřecs_CZ
thesis.grade.enVery gooden_US
uk.abstract.csV práci se zabýváme metodou maximální věrohodnosti pro pozorování, která jsou nezávislá, ale nejsou stejně rozdělená. V první části jsou stanoveny podmínky pro konzistenci a asymptotickou normalitu maximálně věrohodných odhadů v tomto případě. Využívá se zde hlavně stejnoměrná integrovatelnost náhodných veličin. Ověření uvedených podmínek je ilustrováno na K-výběrovém problému. V druhé části se práce zaměřuje na situace, ve kterých odhady parametrů získáme minimalizací konvexních funkcí. Důkaz konzistence a asymptotické normality pro tyto odhady je založen na výsledcích pro konvexní náhodné funkce. Tento postup je možné použít pro metodu maximální věrohodnosti v modelech s logkonkávními hustotami. Příklad normálního lineárního modelu, logistické regrese a poissonovské regrese demonstruje použití výsledků představených v druhé části práce.cs_CZ
uk.abstract.enMaximum likelihood approach for independent but not identically distributed observations is studied. In the first part of the thesis, conditions for consistency and asymptotic normality of the maximum likelihood estimates for this case are stated. Uniform integrability has a major role in proving the desired properties. K-sample problem serves as an example for using the described method. The second part is focused on estimates obtained by minimizing convex functions. Convexity is a key for showing the consistency and asymptotic normality of the estimates in this case. The results can be used for maximum likelihood when observations with logconcave densities are involved. Finally, normal linear model, logistic regression and Poisson regression examples are provided to present the application of the method.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV