dc.contributor.advisor | Jungwirth, Pavel | |
dc.creator | Perlácová, Tereza | |
dc.date.accessioned | 2017-10-04T10:09:55Z | |
dc.date.available | 2017-10-04T10:09:55Z | |
dc.date.issued | 2017 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/91056 | |
dc.description.abstract | Do mechanického modelu kochley zavádzame implicitné numerické metódy. Tes- tujeme konkrétne štyri metódy: implicitný Euler, Crank-Nicolson, BDF druhého a tretieho rádu na lineárnej a nelineárnej verzii modelu. Nelineárny model obsahuje funkciu so saturujúcou vlastnosťou. Aplikácia implicitných metód na nelineárny model vedie na sústavu nelineárnych rovníc. Predstavujeme dva spôsoby, ako túto sústavu numericky riešiť. Prvý z nich zahrňuje nelinearitu do pravej strany novovzniknutej lineárnej sústavy. Druhý robí linearizáciu nelineárnej funkcie. V práci porovnávame oba spôsoby z hľadiska efektivity a sledujeme ich konvergenciu k referenčnému riešeniu. Pre hodnotu tolerancie, ktorú používame na určenie numerickej konvergencie, je prvý spôsob efektívnejší. V úplne nelineárnom režime druhý spôsob zlyháva, pretože nekon- verguje k referenčnému riešeniu. Výsledkom porovnania implicitných metód je, že Crank-Nicolsonova metóda s prvým spôsobom riešenia nelineárnej sústavy je pre účely nášho modelu najlepšia. Použitie tejto metódy v mechanickom modeli nám umožňuje vytvoriť ľubovoľne presné prepojenie medzi mechanickým a elektrickým modelom kochley, rešpektujúc fyziológiu človeka. 1 | cs_CZ |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | cochlea | en_US |
dc.subject | implicit numerical methods | en_US |
dc.subject | mechanical model | en_US |
dc.subject | partial differential equations | en_US |
dc.subject | kochlea | cs_CZ |
dc.subject | implicitní numerické metody | cs_CZ |
dc.subject | mechanický model | cs_CZ |
dc.subject | parciální diferenciální rovnice | cs_CZ |
dc.title | Computer modeling of the inner ear | en_US |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2017 | |
dcterms.dateAccepted | 2017-09-13 | |
dc.description.department | Ústav teoretické fyziky | cs_CZ |
dc.description.department | Institute of Theoretical Physics | en_US |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 160980 | |
dc.title.translated | Počítačové modelování vnitřního ucha | cs_CZ |
dc.contributor.referee | Vejchodský, Tomáš | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Matematické a počítačové modelování ve fyzice a technice | cs_CZ |
thesis.degree.discipline | Mathematical and Computer Modelling in Physics and Engineering | en_US |
thesis.degree.program | Physics | en_US |
thesis.degree.program | Fyzika | cs_CZ |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Ústav teoretické fyziky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Institute of Theoretical Physics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Matematické a počítačové modelování ve fyzice a technice | cs_CZ |
uk.degree-discipline.en | Mathematical and Computer Modelling in Physics and Engineering | en_US |
uk.degree-program.cs | Fyzika | cs_CZ |
uk.degree-program.en | Physics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Do mechanického modelu kochley zavádzame implicitné numerické metódy. Tes- tujeme konkrétne štyri metódy: implicitný Euler, Crank-Nicolson, BDF druhého a tretieho rádu na lineárnej a nelineárnej verzii modelu. Nelineárny model obsahuje funkciu so saturujúcou vlastnosťou. Aplikácia implicitných metód na nelineárny model vedie na sústavu nelineárnych rovníc. Predstavujeme dva spôsoby, ako túto sústavu numericky riešiť. Prvý z nich zahrňuje nelinearitu do pravej strany novovzniknutej lineárnej sústavy. Druhý robí linearizáciu nelineárnej funkcie. V práci porovnávame oba spôsoby z hľadiska efektivity a sledujeme ich konvergenciu k referenčnému riešeniu. Pre hodnotu tolerancie, ktorú používame na určenie numerickej konvergencie, je prvý spôsob efektívnejší. V úplne nelineárnom režime druhý spôsob zlyháva, pretože nekon- verguje k referenčnému riešeniu. Výsledkom porovnania implicitných metód je, že Crank-Nicolsonova metóda s prvým spôsobom riešenia nelineárnej sústavy je pre účely nášho modelu najlepšia. Použitie tejto metódy v mechanickom modeli nám umožňuje vytvoriť ľubovoľne presné prepojenie medzi mechanickým a elektrickým modelom kochley, rešpektujúc fyziológiu človeka. 1 | cs_CZ |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Ústav teoretické fyziky | cs_CZ |