dc.contributor.advisor | Zichová, Jitka | |
dc.creator | Rathouský, Marek | |
dc.date.accessioned | 2017-10-03T14:30:44Z | |
dc.date.available | 2017-10-03T14:30:44Z | |
dc.date.issued | 2017 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/90979 | |
dc.description.abstract | Náplňou tejto práce je porovnanie klasického a celočíselného autoregresného modelu prvého rádu. Vzhľadom k rozšírenosti klasického AR(1) modelu je v tejto práci spracovaný v menšej podrobnosti. Vo väčšom detaile je spracovaná teória celočíselného autoregresného modelu prvého rádu. V práci je definovaný operá- tor ◦ potrebný k zavedeniu INAR(1) a jeho základné vlastnosti s dôkazmi. Pre INAR(1) sú všetky netriviálne vlastnosti v podrobnosti dokázané, odvodená je aj podmienka slabej stacionarity. Pre poissonovský INAR(1) sú popísané základné odhadové metódy. Práca obsahuje aj simulačnú štúdiu sústredenú na skúmanie konvergencie odhadov. 1 | cs_CZ |
dc.description.abstract | The purpose of this thesis is to compare the classic autoregressive model of order 1 to integer autoregressive model of order 1. Considering the popularity of AR(1) model, only the basics are covered within this thesis. The main focus is on the INAR(1) model. Operator ◦ necessary for INAR(1) definition is intro- duced alongside with its properties with proof. All of the non-trivial properties of INAR(1) are followed by detailed proof, stationarity condition is also derived. Common estimation techniques are described for poisson INAR(1) model. This thesis also contains simulation study, which focuses on the rate of convergence of estimates of parameters. 1 | en_US |
dc.language | Slovenčina | cs_CZ |
dc.language.iso | sk_SK | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | stochastic process | en_US |
dc.subject | time series | en_US |
dc.subject | autoregressive model | en_US |
dc.subject | INAR | en_US |
dc.subject | náhodný proces | cs_CZ |
dc.subject | časový rad | cs_CZ |
dc.subject | autoregresný model | cs_CZ |
dc.subject | INAR | cs_CZ |
dc.title | Autoregresné modely | sk_SK |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2017 | |
dcterms.dateAccepted | 2017-09-12 | |
dc.description.department | Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.description.department | Department of Probability and Mathematical Statistics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 181641 | |
dc.title.translated | Autoregressive models | en_US |
dc.title.translated | Autoregresní modely | cs_CZ |
dc.contributor.referee | Prášková, Zuzana | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | Financial Mathematics | en_US |
thesis.degree.discipline | Finanční matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Probability and Mathematical Statistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Finanční matematika | cs_CZ |
uk.degree-discipline.en | Financial Mathematics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Velmi dobře | cs_CZ |
thesis.grade.en | Very good | en_US |
uk.abstract.cs | Náplňou tejto práce je porovnanie klasického a celočíselného autoregresného modelu prvého rádu. Vzhľadom k rozšírenosti klasického AR(1) modelu je v tejto práci spracovaný v menšej podrobnosti. Vo väčšom detaile je spracovaná teória celočíselného autoregresného modelu prvého rádu. V práci je definovaný operá- tor ◦ potrebný k zavedeniu INAR(1) a jeho základné vlastnosti s dôkazmi. Pre INAR(1) sú všetky netriviálne vlastnosti v podrobnosti dokázané, odvodená je aj podmienka slabej stacionarity. Pre poissonovský INAR(1) sú popísané základné odhadové metódy. Práca obsahuje aj simulačnú štúdiu sústredenú na skúmanie konvergencie odhadov. 1 | cs_CZ |
uk.abstract.en | The purpose of this thesis is to compare the classic autoregressive model of order 1 to integer autoregressive model of order 1. Considering the popularity of AR(1) model, only the basics are covered within this thesis. The main focus is on the INAR(1) model. Operator ◦ necessary for INAR(1) definition is intro- duced alongside with its properties with proof. All of the non-trivial properties of INAR(1) are followed by detailed proof, stationarity condition is also derived. Common estimation techniques are described for poisson INAR(1) model. This thesis also contains simulation study, which focuses on the rate of convergence of estimates of parameters. 1 | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistiky | cs_CZ |