dc.contributor.advisor | Dvořák, Zdeněk | |
dc.creator | Pekárek, Jakub | |
dc.date.accessioned | 2017-09-27T09:44:30Z | |
dc.date.available | 2017-09-27T09:44:30Z | |
dc.date.issued | 2017 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/90475 | |
dc.description.abstract | The theory of Dvořák et al. shows that a 4-critical triangle-free graph embedded in the torus has only a bounded number of faces of length greater than 4 and that the size of these faces is also bounded. We study the natural reduction in such embedded graphs-identification of opposite vertices in 4-faces. We give a computer-assisted argument showing that there are exactly four 4-critical triangle-free irreducible toroidal graphs in which this reduction cannot be applied without creating a triangle. Using this result we demonstrate several properties that are necessary for every triangle-free graph embedded in the torus to be 4-critical. Most importantly we demonstrate that every such graph has at most four 5-faces, or a 6-face and two 5-faces, or a 7-face and a 5-face, in addition to at least seven 4-faces. | en_US |
dc.description.abstract | Dvořák et al. dokázali, že 4-kritická graf bez trojúhelníků vnořený v toru má pouze omezeně mnoho stěn délky větší než 4 a velikost těchto stěn je také omezena. V této práci studujeme operaci redukce těchto vnořených grafů pomocí sjednocení protějších vrcholů ve 4-stěnách. Představíme počítačem asistovaný důkaz ukazující, že existují právě čtyři 4-kritické grafy bez trojúhelníků vnořené do toru, které jsou irreducibilní, tedy na ně není možné použít redukci bez vzniku trojúhelníků. Pomocí tohoto výsledku ukážeme několik vlastností, které nutně platí pro jakýkoliv 4-kritický graf bez trojúhelníků vnořený v toru. Především ukážeme, že každý takový graf má nejvýše čtyři 5-stěny nebo 6-stěnu a dvě 5-stěny nebo 7-stěnu a 5-stěnu, a k tomu alespoň sedm 4-stěn. | cs_CZ |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | coloring | en_US |
dc.subject | graph | en_US |
dc.subject | torus | en_US |
dc.subject | barvení | cs_CZ |
dc.subject | grafy | cs_CZ |
dc.subject | torus | cs_CZ |
dc.title | 3-Coloring Graphs on Torus | en_US |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2017 | |
dcterms.dateAccepted | 2017-09-06 | |
dc.description.department | Computer Science Institute of Charles University | en_US |
dc.description.department | Informatický ústav Univerzity Karlovy | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 176344 | |
dc.title.translated | 3-barevnost grafů na toru | cs_CZ |
dc.contributor.referee | Šámal, Robert | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Discrete Models and Algorithms | en_US |
thesis.degree.discipline | Diskrétní modely a algoritmy | cs_CZ |
thesis.degree.program | Informatika | cs_CZ |
thesis.degree.program | Computer Science | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Diskrétní modely a algoritmy | cs_CZ |
uk.degree-discipline.en | Discrete Models and Algorithms | en_US |
uk.degree-program.cs | Informatika | cs_CZ |
uk.degree-program.en | Computer Science | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Dvořák et al. dokázali, že 4-kritická graf bez trojúhelníků vnořený v toru má pouze omezeně mnoho stěn délky větší než 4 a velikost těchto stěn je také omezena. V této práci studujeme operaci redukce těchto vnořených grafů pomocí sjednocení protějších vrcholů ve 4-stěnách. Představíme počítačem asistovaný důkaz ukazující, že existují právě čtyři 4-kritické grafy bez trojúhelníků vnořené do toru, které jsou irreducibilní, tedy na ně není možné použít redukci bez vzniku trojúhelníků. Pomocí tohoto výsledku ukážeme několik vlastností, které nutně platí pro jakýkoliv 4-kritický graf bez trojúhelníků vnořený v toru. Především ukážeme, že každý takový graf má nejvýše čtyři 5-stěny nebo 6-stěnu a dvě 5-stěny nebo 7-stěnu a 5-stěnu, a k tomu alespoň sedm 4-stěn. | cs_CZ |
uk.abstract.en | The theory of Dvořák et al. shows that a 4-critical triangle-free graph embedded in the torus has only a bounded number of faces of length greater than 4 and that the size of these faces is also bounded. We study the natural reduction in such embedded graphs-identification of opposite vertices in 4-faces. We give a computer-assisted argument showing that there are exactly four 4-critical triangle-free irreducible toroidal graphs in which this reduction cannot be applied without creating a triangle. Using this result we demonstrate several properties that are necessary for every triangle-free graph embedded in the torus to be 4-critical. Most importantly we demonstrate that every such graph has at most four 5-faces, or a 6-face and two 5-faces, or a 7-face and a 5-face, in addition to at least seven 4-faces. | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Informatický ústav Univerzity Karlovy | cs_CZ |