dc.contributor.advisor | Lokoč, Jakub | |
dc.creator | Kovalčík, Gregor | |
dc.date.accessioned | 2017-09-27T09:36:48Z | |
dc.date.available | 2017-09-27T09:36:48Z | |
dc.date.issued | 2017 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/90464 | |
dc.description.abstract | Content-based image retrieval and similarity search has been investigated for several decades with many different approaches proposed. This thesis fo- cuses on a comparison of two orthogonal similarity models on two different im- age retrieval tasks. More specifically, traditional image representation models based on feature signatures are compared with models based on state-of-the-art deep convolutional neural networks. Query-by-example benchmarking and tar- get browsing tasks were selected for the comparison. In a thorough experimental evaluation, we confirm that models based on deep convolutional neural networks outperform the traditional models. However, in the target browsing scenario, we show that the traditional models could still represent an effective option. We have also implemented a feature signature extractor into the OpenCV library in order to make the source codes available for the image retrieval and computer vision community. 1 | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | CNN descriptors | en_US |
dc.subject | color signatures | en_US |
dc.subject | image retrieval | en_US |
dc.subject | similarity search | en_US |
dc.subject | CNN deskriptory | cs_CZ |
dc.subject | barevné signatury | cs_CZ |
dc.subject | vyhledávání v obrázcích | cs_CZ |
dc.subject | podobnostní vyhledávání | cs_CZ |
dc.title | Comparison of signature-based and semantic similarity models | en_US |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2017 | |
dcterms.dateAccepted | 2017-09-06 | |
dc.description.department | Department of Software Engineering | en_US |
dc.description.department | Katedra softwarového inženýrství | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 172460 | |
dc.title.translated | Porovnání signaturových a sémantických podobnostních modelů | cs_CZ |
dc.contributor.referee | Mráz, František | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | Programming | en_US |
thesis.degree.discipline | Programování | cs_CZ |
thesis.degree.program | Informatika | cs_CZ |
thesis.degree.program | Computer Science | en_US |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra softwarového inženýrství | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Software Engineering | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Programování | cs_CZ |
uk.degree-discipline.en | Programming | en_US |
uk.degree-program.cs | Informatika | cs_CZ |
uk.degree-program.en | Computer Science | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.en | Content-based image retrieval and similarity search has been investigated for several decades with many different approaches proposed. This thesis fo- cuses on a comparison of two orthogonal similarity models on two different im- age retrieval tasks. More specifically, traditional image representation models based on feature signatures are compared with models based on state-of-the-art deep convolutional neural networks. Query-by-example benchmarking and tar- get browsing tasks were selected for the comparison. In a thorough experimental evaluation, we confirm that models based on deep convolutional neural networks outperform the traditional models. However, in the target browsing scenario, we show that the traditional models could still represent an effective option. We have also implemented a feature signature extractor into the OpenCV library in order to make the source codes available for the image retrieval and computer vision community. 1 | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra softwarového inženýrství | cs_CZ |