Bayesovský výběr proměnných
Bayesian variable selection
diplomová práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/85940Identifikátory
SIS: 168199
Kolekce
- Kvalifikační práce [11231]
Autor
Vedoucí práce
Oponent práce
Hlávka, Zdeněk
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Pravděpodobnost, matematická statistika a ekonometrie
Katedra / ústav / klinika
Katedra pravděpodobnosti a matematické statistiky
Datum obhajoby
14. 6. 2017
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Velmi dobře
Klíčová slova (česky)
Výběr proměnných, Metody s indikátory, Metody se sráženímKlíčová slova (anglicky)
Variable Selection, Indicator Model Selection, Adaptive ShrinkageÚloha výběru proměnných je v praxi velmi častý cíl statistické analýzy. Ba- yesovské metody se na tuto úlohu začínají hojně uplatňovat již od 90. let. Cílem této práce je shrnout dosavadní výzkum v této oblasti a zasadit metody pro ba- yesovský výběr proměnných do společného rámce. Věnujeme se převážně výběru proměnných v normálním lineárním modelu, kde prezentujeme metody založené na indikátorech a srážení (z anglického shrinkage). Práce obsahuje teoretický úvod do bayesovské statistiky včetně simulační metody Markov Chain Monte Carlo (MCMC), umožňuje tak získat dobrý teoretický rá- mec pro uváděné metody. Součástí práce je i ukázka odvození všech potřebných podmíněných hustot nutných k implementaci jednotlivých algoritmů. Jednotlivé metody jsou aplikovány na simulovaná data i data reálná, což umožňuje jejich praktické porovnání. 1
The selection of variables problem is ussual problem of statistical analysis. Solving this problem via Bayesian statistic become popular in 1990s. We re- view classical methods for bayesian variable selection methods and set a common framework for them. Indicator model selection methods and adaptive shrinkage methods for normal linear model are covered. Main benefit of this work is incorporating Bayesian theory and Markov Chain Monte Carlo theory (MCMC). All derivations needed for MCMC algorithms is provided. Afterward the methods are apllied on simulated and real data. 1