Show simple item record

Vlastnosti typických spojitých a integrovatelných funkcí
dc.contributor.advisorHencl, Stanislav
dc.creatorHruška, David
dc.date.accessioned2017-06-02T12:40:50Z
dc.date.available2017-06-02T12:40:50Z
dc.date.issued2016
dc.identifier.urihttp://hdl.handle.net/20.500.11956/84473
dc.description.abstractCílem práce je ukázat použití Baireovy metody kategorií pro zkoumání vlastností typických funkcí. Po definici příslušných pojmů ukazuje několik tvrzení, která obecně vzato tvrdí, že typická funkce z hezkého prostoru funkcí nemá nějakou dodatečnou vlastnost, kterou bychom jí mohli intuitivně přisuzovat. Konkrétně bude dokázáno, že typická spojitá nebo dokonce Hölderovská funkce není diferencovatelná v žádném bodě, typická rostoucí spojitá funkce nesplňuje Luzinovu (N) podmínku a typická integrovatelná funkce není lokálně omezená v žádném bodě. Powered by TCPDF (www.tcpdf.org)cs_CZ
dc.description.abstractIn this thesis we use the Baire categories to define the concept of "typical functions". Then we prove several theorems generally asserting that a typical function from a space of functions having some nice property does not have a stronger property. In particular we prove that a typical continuous or Hölder continuous function is nowhere differentiable, a typical continuous monotone function does not satisfy the Luzin (N) condition and a typical integrable function is nowhere continuous. Powered by TCPDF (www.tcpdf.org)en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjecttypická funkcecs_CZ
dc.subjectBaireova metoda kategoriícs_CZ
dc.subjectBaireova větacs_CZ
dc.subjectúplný metrický prostorcs_CZ
dc.subjecttypical functionen_US
dc.subjectBaire categoryen_US
dc.subjectBaire category theoremen_US
dc.subjectcomplete metric spaceen_US
dc.titleTypical continuous and integrable functionsen_US
dc.typebakalářská prácecs_CZ
dcterms.created2016
dcterms.dateAccepted2016-06-16
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId68554
dc.title.translatedVlastnosti typických spojitých a integrovatelných funkcícs_CZ
dc.contributor.refereePražák, Dalibor
dc.identifier.aleph002093066
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra matematické analýzycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Mathematical Analysisen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csCílem práce je ukázat použití Baireovy metody kategorií pro zkoumání vlastností typických funkcí. Po definici příslušných pojmů ukazuje několik tvrzení, která obecně vzato tvrdí, že typická funkce z hezkého prostoru funkcí nemá nějakou dodatečnou vlastnost, kterou bychom jí mohli intuitivně přisuzovat. Konkrétně bude dokázáno, že typická spojitá nebo dokonce Hölderovská funkce není diferencovatelná v žádném bodě, typická rostoucí spojitá funkce nesplňuje Luzinovu (N) podmínku a typická integrovatelná funkce není lokálně omezená v žádném bodě. Powered by TCPDF (www.tcpdf.org)cs_CZ
uk.abstract.enIn this thesis we use the Baire categories to define the concept of "typical functions". Then we prove several theorems generally asserting that a typical function from a space of functions having some nice property does not have a stronger property. In particular we prove that a typical continuous or Hölder continuous function is nowhere differentiable, a typical continuous monotone function does not satisfy the Luzin (N) condition and a typical integrable function is nowhere continuous. Powered by TCPDF (www.tcpdf.org)en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ
dc.identifier.lisID990020930660106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV