dc.contributor.advisor | Kulich, Michal | |
dc.creator | Horejšová, Markéta | |
dc.date.accessioned | 2017-06-02T10:01:43Z | |
dc.date.available | 2017-06-02T10:01:43Z | |
dc.date.issued | 2016 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/83779 | |
dc.description.abstract | Náplní této práce je výklad různých metod k získání simultánních intervalů spolehlivosti jak pro jeden kvantil, tak i pro několik různých kvantilů odhadovaných z týchž dat. Větší část je zaměřena na neparametrické přístupy, mezi které patří například metoda založená na Kolmogorovově-Smirnovově statistice, výběrovém kvantilu nebo na multinomickém rozdělení. Zvláštní důraz je pak kladen na nedávno navrženou metodu založenou na multinomickém rozdělení. Dále práce vykládá parametrický přístup konstrukce simultánních intervalů spolehlivosti pro kvantily specializovaný na data z normálního rozdělení a představuje jeho různé modifikace. Popsané teoretické metody jsou následně prověřeny v simulacích na náhodně generovaných datech. Powered by TCPDF (www.tcpdf.org) | cs_CZ |
dc.description.abstract | In this thesis, various construction methods for simultaneous confidence intervals for quantiles are explained. Among nonparametric approaches, a special emphasis is dedicated to a recent method based on a multinomial distribution for calculating the overall confidence level of confidence intervals for all quantiles of interest using an efficient recursive algorithm, which is also described. Furthermore, a method based on Kolmogorov-Smirnov statistic or an asymptotic method using empirical distribution function and order statistics for quantile estimate are presented. A special parametric method for several quantiles of a normally distributed population is introduced along with a few of its modifications. Subsequently, a simulation is run to test the real coverage of the described theoretical methods. Powered by TCPDF (www.tcpdf.org) | en_US |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | intervaly spolehlivosti | cs_CZ |
dc.subject | kvantily | cs_CZ |
dc.subject | multinomické rozdělení | cs_CZ |
dc.subject | normální rozdělení | cs_CZ |
dc.subject | Kolmogorovova-Smirnovova statistika | cs_CZ |
dc.subject | confidence intervals | en_US |
dc.subject | quantiles | en_US |
dc.subject | multinomial distribution | en_US |
dc.subject | normal distribution | en_US |
dc.subject | Kolmogorov-Smirnov statistic | en_US |
dc.title | Intervaly spolehlivosti pro kvantily | cs_CZ |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2016 | |
dcterms.dateAccepted | 2016-06-28 | |
dc.description.department | Department of Probability and Mathematical Statistics | en_US |
dc.description.department | Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 157613 | |
dc.title.translated | Confidence Intervals for Quantiles | en_US |
dc.contributor.referee | Hlávka, Zdeněk | |
dc.identifier.aleph | 002094575 | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | Obecná matematika | cs_CZ |
thesis.degree.discipline | General Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Probability and Mathematical Statistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná matematika | cs_CZ |
uk.degree-discipline.en | General Mathematics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Dobře | cs_CZ |
thesis.grade.en | Good | en_US |
uk.abstract.cs | Náplní této práce je výklad různých metod k získání simultánních intervalů spolehlivosti jak pro jeden kvantil, tak i pro několik různých kvantilů odhadovaných z týchž dat. Větší část je zaměřena na neparametrické přístupy, mezi které patří například metoda založená na Kolmogorovově-Smirnovově statistice, výběrovém kvantilu nebo na multinomickém rozdělení. Zvláštní důraz je pak kladen na nedávno navrženou metodu založenou na multinomickém rozdělení. Dále práce vykládá parametrický přístup konstrukce simultánních intervalů spolehlivosti pro kvantily specializovaný na data z normálního rozdělení a představuje jeho různé modifikace. Popsané teoretické metody jsou následně prověřeny v simulacích na náhodně generovaných datech. Powered by TCPDF (www.tcpdf.org) | cs_CZ |
uk.abstract.en | In this thesis, various construction methods for simultaneous confidence intervals for quantiles are explained. Among nonparametric approaches, a special emphasis is dedicated to a recent method based on a multinomial distribution for calculating the overall confidence level of confidence intervals for all quantiles of interest using an efficient recursive algorithm, which is also described. Furthermore, a method based on Kolmogorov-Smirnov statistic or an asymptotic method using empirical distribution function and order statistics for quantile estimate are presented. A special parametric method for several quantiles of a normally distributed population is introduced along with a few of its modifications. Subsequently, a simulation is run to test the real coverage of the described theoretical methods. Powered by TCPDF (www.tcpdf.org) | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.identifier.lisID | 990020945750106986 | |