Intervaly spolehlivosti pro kvantily
Confidence Intervals for Quantiles
bakalářská práce (OBHÁJENO)

Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/83779Identifikátory
SIS: 157613
Kolekce
- Kvalifikační práce [10135]
Autor
Vedoucí práce
Oponent práce
Hlávka, Zdeněk
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra pravděpodobnosti a matematické statistiky
Datum obhajoby
28. 6. 2016
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Dobře
Klíčová slova (česky)
intervaly spolehlivosti, kvantily, multinomické rozdělení, normální rozdělení, Kolmogorovova-Smirnovova statistikaKlíčová slova (anglicky)
confidence intervals, quantiles, multinomial distribution, normal distribution, Kolmogorov-Smirnov statisticNáplní této práce je výklad různých metod k získání simultánních intervalů spolehlivosti jak pro jeden kvantil, tak i pro několik různých kvantilů odhadovaných z týchž dat. Větší část je zaměřena na neparametrické přístupy, mezi které patří například metoda založená na Kolmogorovově-Smirnovově statistice, výběrovém kvantilu nebo na multinomickém rozdělení. Zvláštní důraz je pak kladen na nedávno navrženou metodu založenou na multinomickém rozdělení. Dále práce vykládá parametrický přístup konstrukce simultánních intervalů spolehlivosti pro kvantily specializovaný na data z normálního rozdělení a představuje jeho různé modifikace. Popsané teoretické metody jsou následně prověřeny v simulacích na náhodně generovaných datech. Powered by TCPDF (www.tcpdf.org)
In this thesis, various construction methods for simultaneous confidence intervals for quantiles are explained. Among nonparametric approaches, a special emphasis is dedicated to a recent method based on a multinomial distribution for calculating the overall confidence level of confidence intervals for all quantiles of interest using an efficient recursive algorithm, which is also described. Furthermore, a method based on Kolmogorov-Smirnov statistic or an asymptotic method using empirical distribution function and order statistics for quantile estimate are presented. A special parametric method for several quantiles of a normally distributed population is introduced along with a few of its modifications. Subsequently, a simulation is run to test the real coverage of the described theoretical methods. Powered by TCPDF (www.tcpdf.org)