Show simple item record

Množina optimálních řešení úlohy intervalového lineárního programování
dc.contributor.advisorHladík, Milan
dc.creatorGarajová, Elif
dc.date.accessioned2017-06-02T07:32:27Z
dc.date.available2017-06-02T07:32:27Z
dc.date.issued2016
dc.identifier.urihttp://hdl.handle.net/20.500.11956/83143
dc.description.abstractUrčení množiny všech optimálních řešení lineárního programu s intervalovými daty je jedním z hlavních problémů intervalové optimalizace. Prezentujeme dvě metody založené na dualitě v lineárním programovaní, které jsou využívány k aproximaci optimální množiny. Dále je také navržena dekompoziční metoda založená na komplementaritě omezujících podmínek. Tato metoda poskytuje přesný popis optimální množiny pro problémy s pevnou maticí koeficientů. Druhá část práce se zabývá topologickými a geometrickými vlastnostmi optimální množiny. V této části zkoumáme postačující podmínky pro uzavřenost, omezenost, souvislost a konvexitu. Navíc je dokázáno, že testování omezenosti je co-NP-těžké pro problémy s omezeními ve formě nerovností a volnými proměnnými. Silnější výsledky jsou odvozeny pro některé speciální třídy intervalových lineárních programů, například programy s pevnou maticí koeficientů. Dále studujeme efekt transformací běžně používaných v lineárním programování na intervalové problémy, což umožňuje přímé zobecnění některých výsledků na různé typy intervalových lineárních programů. Powered by TCPDF (www.tcpdf.org)cs_CZ
dc.description.abstractDetermining the set of all optimal solutions of a linear program with interval data is one of the main problems discussed in interval optimization. We review two methods based on duality in linear programming, which are used to approximate the optimal set. Additionally, another decomposition method based on complementary slackness is proposed. This method provides the exact description of the optimal set for problems with a fixed coefficient matrix. The second part of the thesis is focused on studying the topological and geometric properties of the optimal set. We examine sufficient conditions for closedness, boundedness, connectedness and convexity. We also prove that testing boundedness is co- NP-hard for inequality-constrained problems with free variables. Stronger results are derived for some special classes of interval linear programs, such as problems with a fixed coefficient matrix. Furthermore, we study the effect of transformations commonly used in linear programming on interval problems, which allows for a direct generalization of some results to different types of interval linear programs. Powered by TCPDF (www.tcpdf.org)en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectintervalové lineární programovánícs_CZ
dc.subjectoptimální množinacs_CZ
dc.subjecttopologické vlastnostics_CZ
dc.subjectinterval linear programmingen_US
dc.subjectoptimal seten_US
dc.subjecttopological propertiesen_US
dc.titleThe optimal solution set of interval linear programming problemsen_US
dc.typediplomová prácecs_CZ
dcterms.created2016
dcterms.dateAccepted2016-09-13
dc.description.departmentDepartment of Applied Mathematicsen_US
dc.description.departmentKatedra aplikované matematikycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId168259
dc.title.translatedMnožina optimálních řešení úlohy intervalového lineárního programovánícs_CZ
dc.contributor.refereeZimmermann, Karel
dc.identifier.aleph002103616
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineDiskrétní modely a algoritmycs_CZ
thesis.degree.disciplineDiscrete Models and Algorithmsen_US
thesis.degree.programInformatikacs_CZ
thesis.degree.programComputer Scienceen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra aplikované matematikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Applied Mathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csDiskrétní modely a algoritmycs_CZ
uk.degree-discipline.enDiscrete Models and Algorithmsen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csUrčení množiny všech optimálních řešení lineárního programu s intervalovými daty je jedním z hlavních problémů intervalové optimalizace. Prezentujeme dvě metody založené na dualitě v lineárním programovaní, které jsou využívány k aproximaci optimální množiny. Dále je také navržena dekompoziční metoda založená na komplementaritě omezujících podmínek. Tato metoda poskytuje přesný popis optimální množiny pro problémy s pevnou maticí koeficientů. Druhá část práce se zabývá topologickými a geometrickými vlastnostmi optimální množiny. V této části zkoumáme postačující podmínky pro uzavřenost, omezenost, souvislost a konvexitu. Navíc je dokázáno, že testování omezenosti je co-NP-těžké pro problémy s omezeními ve formě nerovností a volnými proměnnými. Silnější výsledky jsou odvozeny pro některé speciální třídy intervalových lineárních programů, například programy s pevnou maticí koeficientů. Dále studujeme efekt transformací běžně používaných v lineárním programování na intervalové problémy, což umožňuje přímé zobecnění některých výsledků na různé typy intervalových lineárních programů. Powered by TCPDF (www.tcpdf.org)cs_CZ
uk.abstract.enDetermining the set of all optimal solutions of a linear program with interval data is one of the main problems discussed in interval optimization. We review two methods based on duality in linear programming, which are used to approximate the optimal set. Additionally, another decomposition method based on complementary slackness is proposed. This method provides the exact description of the optimal set for problems with a fixed coefficient matrix. The second part of the thesis is focused on studying the topological and geometric properties of the optimal set. We examine sufficient conditions for closedness, boundedness, connectedness and convexity. We also prove that testing boundedness is co- NP-hard for inequality-constrained problems with free variables. Stronger results are derived for some special classes of interval linear programs, such as problems with a fixed coefficient matrix. Furthermore, we study the effect of transformations commonly used in linear programming on interval problems, which allows for a direct generalization of some results to different types of interval linear programs. Powered by TCPDF (www.tcpdf.org)en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra aplikované matematikycs_CZ
dc.identifier.lisID990021036160106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2025 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV