dc.contributor.advisor | Kulich, Michal | |
dc.creator | Matula, Dominik | |
dc.date.accessioned | 2017-06-02T07:10:39Z | |
dc.date.available | 2017-06-02T07:10:39Z | |
dc.date.issued | 2016 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/83041 | |
dc.description.abstract | Cílem práce je podat ucelený přehled hlavních přístupů k modelování dat zatížených nadbytečnými nulami. Autor se věnuje třem podtřídám modelů s up- raveným počtem nul (ZMM), a sice modelům s nadbytečnými nulami, jimž je věnována stěžejní část práce, modelům bez nulové odezvy a hradbovým modelům. Modely každé podtřídy vždy nejprve řádně definuje, posléze se zabývá kon- strukcí maximálně věrohodných odhadů regresních koeficientů. V rámci modelů ZMM se setkáváme především s modely založenými na Poissonově či negativně binomickém rozdělení typu 2 (NB2). V této práci jsou provedena zobecnění na modely ZMM vycházející obecně z diskrétních rozdělení exponenciálního typu. Odvozen je i postup, jímž lze v těchto modelech získat maximálně věrohodné odhady regresních koeficientů. Dosavadní práce se téměř nevěnovaly modelům ZIM založeným na negativně binomickém rozdělení typu 1 (NB1). Toto rozdělení není exponenciálního typu, nelze proto použít standardní přístup ke konstrukci odhadů regresních koeficientů. Autor však navrhuje modifikaci tohoto přístupu pro modely ZIM založené na NB1 využívaje metodu kvazi-věrohodnosti. Práci uzavírají dvě simulační studie. 1 | cs_CZ |
dc.description.abstract | The aim of this thesis is to provide a comprehensive overview of the main approaches to modeling data loaded with redundant zeros. There are three main subclasses of zero modified models (ZMM) described here - zero inflated models (the main focus lies on models of this subclass), zero truncated models and hurdle models. Models of each subclass are defined and then a construction of maximum likelihood estimates of regression coefficients is described. ZMM models are mostly based on Poisson or negative binomial type 2 distribution (NB2). In this work, author has extended the theory to ZIM models generally based on any discrete distributions of exponential type. There is described a construction of MLE of regression coefficients of theese models, too. Just few of present works are interested in ZIM models based on negative binomial type 1 distribution (NB1). This distribution is not of exponential type therefore a common method of MLE construction in ZIM models cannot be used here. In this work provides modification of this method using quasi-likelihood method. There are two simulation studies concluding the work. 1 | en_US |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | modely s nadbytečnými nulami | cs_CZ |
dc.subject | poissonovské modely s nadbytečnými nulami | cs_CZ |
dc.subject | modely bez nulové složky | cs_CZ |
dc.subject | hradbové modely | cs_CZ |
dc.subject | EM algoritmus | cs_CZ |
dc.subject | zero inflated models | en_US |
dc.subject | zero inflated Poisson models | en_US |
dc.subject | zero truncated models | en_US |
dc.subject | hurdle models | en_US |
dc.subject | EM algorithm | en_US |
dc.title | Modely pro data s nadbytečnými nulami | cs_CZ |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2016 | |
dcterms.dateAccepted | 2016-09-05 | |
dc.description.department | Department of Probability and Mathematical Statistics | en_US |
dc.description.department | Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 140620 | |
dc.title.translated | Models for zero-inflated data | en_US |
dc.contributor.referee | Hlubinka, Daniel | |
dc.identifier.aleph | 002101768 | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Pravděpodobnost, matematická statistika a ekonometrie | cs_CZ |
thesis.degree.discipline | Probability, mathematical statistics and econometrics | en_US |
thesis.degree.program | Matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Probability and Mathematical Statistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Pravděpodobnost, matematická statistika a ekonometrie | cs_CZ |
uk.degree-discipline.en | Probability, mathematical statistics and econometrics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Velmi dobře | cs_CZ |
thesis.grade.en | Very good | en_US |
uk.abstract.cs | Cílem práce je podat ucelený přehled hlavních přístupů k modelování dat zatížených nadbytečnými nulami. Autor se věnuje třem podtřídám modelů s up- raveným počtem nul (ZMM), a sice modelům s nadbytečnými nulami, jimž je věnována stěžejní část práce, modelům bez nulové odezvy a hradbovým modelům. Modely každé podtřídy vždy nejprve řádně definuje, posléze se zabývá kon- strukcí maximálně věrohodných odhadů regresních koeficientů. V rámci modelů ZMM se setkáváme především s modely založenými na Poissonově či negativně binomickém rozdělení typu 2 (NB2). V této práci jsou provedena zobecnění na modely ZMM vycházející obecně z diskrétních rozdělení exponenciálního typu. Odvozen je i postup, jímž lze v těchto modelech získat maximálně věrohodné odhady regresních koeficientů. Dosavadní práce se téměř nevěnovaly modelům ZIM založeným na negativně binomickém rozdělení typu 1 (NB1). Toto rozdělení není exponenciálního typu, nelze proto použít standardní přístup ke konstrukci odhadů regresních koeficientů. Autor však navrhuje modifikaci tohoto přístupu pro modely ZIM založené na NB1 využívaje metodu kvazi-věrohodnosti. Práci uzavírají dvě simulační studie. 1 | cs_CZ |
uk.abstract.en | The aim of this thesis is to provide a comprehensive overview of the main approaches to modeling data loaded with redundant zeros. There are three main subclasses of zero modified models (ZMM) described here - zero inflated models (the main focus lies on models of this subclass), zero truncated models and hurdle models. Models of each subclass are defined and then a construction of maximum likelihood estimates of regression coefficients is described. ZMM models are mostly based on Poisson or negative binomial type 2 distribution (NB2). In this work, author has extended the theory to ZIM models generally based on any discrete distributions of exponential type. There is described a construction of MLE of regression coefficients of theese models, too. Just few of present works are interested in ZIM models based on negative binomial type 1 distribution (NB1). This distribution is not of exponential type therefore a common method of MLE construction in ZIM models cannot be used here. In this work provides modification of this method using quasi-likelihood method. There are two simulation studies concluding the work. 1 | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.identifier.lisID | 990021017680106986 | |