Numerická analýza aproximace nepolygonální hranice u nespojité Galerkinovy metody
Numerical analysis of approximation of nonpolygonal domains for discontinuous Galerkin method
rigorous thesis (RECOGNIZED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/79450Identifiers
Study Information System: 167520
Collections
- Kvalifikační práce [11242]
Author
Advisor
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Numerical and computational mathematics
Department
Department of Numerical Mathematics
Date of defense
31. 3. 2016
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
Czech
Grade
Recognized
Keywords (Czech)
nelineární rovnice konvekce difuze, nespojitá Galerkinova metoda, aproximace nepolygonálních oblastí, metoda přímek, odhady chybyKeywords (English)
nonlinear convection-diffusion equation, discontinuous Galerkin finite element method, approximations of nonpolygonal boundaries, method of lines, error estimatesNázev práce: Numerická analýza aproximace nepolygonální hranice u nespojité Galerkinovy metody Autor: Filip Klouda Katedra: Katedra numerické matematiky Vedoucí diplomové práce: prof. RNDr. Vít Dolejší, Ph.D., DSc., KNM MFF UK Abstrakt: V této práci používáme nespojitou Galerkinovu metodu k semidiskre- tizaci problému nestacionární nelineární konvekce difuze, definovaného na nepo- lygonální dvourozměrné oblasti. Používáme tzv. aproximující křivočaré elementy k po částech polynomiální aproximaci hranice oblasti a k definici prostoru, na kterém hledáme řešení. Studujeme konvergenci metody, přičemž uvažujeme sy- metrickou i nesymetrickou diskretizaci difuzního členu s vnitřní a hraniční pe- nalizací. Získané výsledky nám umožňují odvodit odhad chyby pro nespojitou Galerkinovu metodu s využitím aproximujících křivočarých elementů. Tento od- had závisí na řádu aproximace řešení a také na řádu aproximace hranice. Uvádíme jeden způsob konstrukce aproximujících křivočarých elementů pomocí polynomi- álního zobrazení, daného interpolací bodů na hranici. Prezentujeme numerické experimenty. Klíčová slova: nelineární rovnice konvekce difuze, nespojitá Galerkinova metoda, aproximace nepolygonálních oblastí, metoda přímek, odhady chyby 1
Title: Numerical analysis of approximation of nonpolygonal domains for discon- tinuous Galerkin method Author: Filip Klouda Department: Department of Numerical Mathematics Supervisor: prof. RNDr. Vít Dolejší, Ph.D., DSc., KNM MFF UK Abstract: In this work we use the discontinuous Galerkin finite element method for the semidiscretization of a nonlinear nonstationary convection-diffusion pro- blem defined on a nonpolygonal two-dimensional domain. Using so called appro- ximating curved elements we define a piecewise polynomial approximation of the boundary of the domain and a space on which we search for a solution. We study the convergence of the method considering a symmetric as well as nonsymmetric discretization of diffusion terms and with the interior and boundary penalty. The obtained results allow us to derive an error estimate for the Discontinuous Galer- kin method employing the approximating curved elements. This estimate depends on the order of the approximation of the solution and also on the order of the approximation of the boundary. We describe one possibility of the construction of the approximating curved elements with the aid of a polynomial mapping given by an interpolation of points on the boundary. We present numerical experiments. Keywords: nonlinear convection-diffusion equation, discontinuous...