Show simple item record

Quantum Coherence for Light Harvesting
dc.contributor.advisorDědic, Roman
dc.creatorPaleček, David
dc.date.accessioned2018-11-30T13:38:50Z
dc.date.available2018-11-30T13:38:50Z
dc.date.issued2016
dc.identifier.urihttp://hdl.handle.net/20.500.11956/78544
dc.description.abstractAlmost all life on Earth depends on the products of photosynthesis - the biochemical process whereby solar energy is stored as chemical-rich compounds. The energy of captured photons is transferred through a network of pigment-protein complexes towards the reaction center. The reaction center is responsible for trans-membrane charge separation, which generates a proton motive force which drives all subsequent biochemical reactions. The ultrafast (femtosecond) nature of the primary processes in photosynthesis is the main reason for its astonishing efficiency. On this timescale, quantum effects start to play a role and can appear in measured spectra as oscillations. It has been hypothesized that these are evidence of wave-like energy transfer. To unveil the fundamental principals of ultrafast excitation energy transfer in both natural and artificial light-harvesting systems, advanced spectroscopy techniques have been utilized. Coherent two- dimensional electronic spectroscopy is a state of the art technique which allows the most complete spectroscopic and temporal information to be extracted from the system under study. This technique has allowed us to identify a new photophysical process where the coherence of the initially excited state is shifted to the ground state upon an energy transfer step. Coherence...en_US
dc.description.abstractTéměř veškerý život na Zemi závisí na fotosyntéze - biochemickém procesu který ukládá energii ze světla do chemických vazeb. Energie zachycených fotonů je přenášena do reakčního centra sítí tvořenou pigment-proteinovými komplexy. Reakční centrum je zodpovědné za mezi-membránový přenos náboje generující proton-motivní sílu, která pohání všechny navazující biochemické reakce. Femtosekundová podstata primárních procesů fotosyntézy je hlavním důvodem jejich vysoké účinnosti. Na časové škále femtosekund se začínají projevovat kvantové efekty, které jsou detekovány v měřených spektrech jako oscilace signálu v čase. Jedna z hypotéz uvádí, že pozorované oscilace jsou důkazem vlnového přenosu energie. Ke studiu fundamentální podstaty přenosu energie ve světlosběrných systémech (přírodních i umělých) jsou využívány vysoce sofistikované spektroskopické metody. Nejvyspělejší metodou, která umožňuje získat nejkompletnější spektroskopickou informaci v závislosti na čase a energii, je koherentní dvourozměrná elektronická spektroskopie. Tato metoda nám umožnila rozeznat nový fotofyzikální proces, při kterém se během přenosu excitační energie vyexcitovaná koherence přesouvá z excitovaného stavu do stavu základního. Tento proces má většinu charakteristik totožných s čistě elektronovou koherencí. A proto může být snadno...cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectCoherent two-dimensional spectroscopyen_US
dc.subjectQuantum coherenceen_US
dc.subjectLight harvestingen_US
dc.subjectPhotosynthetic reaction centeren_US
dc.subjectEnergy transferen_US
dc.subjectKoherentní dvourozměrná elektronická spektroskopiecs_CZ
dc.subjectKvantová koherencecs_CZ
dc.subjectSběr světelné energiecs_CZ
dc.subjectFotosyntetické reakční centrumcs_CZ
dc.subjectPřenos Energiecs_CZ
dc.titleQuantum Coherence for Light Harvestingen_US
dc.typedizertační prácecs_CZ
dcterms.created2016
dcterms.dateAccepted2016-01-28
dc.description.departmentKatedra chemické fyziky a optikycs_CZ
dc.description.departmentDepartment of Chemical Physics and Opticsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId106219
dc.title.translatedQuantum Coherence for Light Harvestingcs_CZ
dc.contributor.refereeJonas, David M.
dc.contributor.refereePolívka, Tomáš
dc.identifier.aleph002071096
thesis.degree.namePh.D.
thesis.degree.leveldoktorskécs_CZ
thesis.degree.disciplineBiofyzika, chemická a makromolekulární fyzikacs_CZ
thesis.degree.disciplineBiophysics, Chemical and Macromolecular Physicsen_US
thesis.degree.programPhysicsen_US
thesis.degree.programFyzikacs_CZ
uk.thesis.typedizertační prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra chemické fyziky a optikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Chemical Physics and Opticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csBiofyzika, chemická a makromolekulární fyzikacs_CZ
uk.degree-discipline.enBiophysics, Chemical and Macromolecular Physicsen_US
uk.degree-program.csFyzikacs_CZ
uk.degree-program.enPhysicsen_US
thesis.grade.csProspěl/acs_CZ
thesis.grade.enPassen_US
uk.abstract.csTéměř veškerý život na Zemi závisí na fotosyntéze - biochemickém procesu který ukládá energii ze světla do chemických vazeb. Energie zachycených fotonů je přenášena do reakčního centra sítí tvořenou pigment-proteinovými komplexy. Reakční centrum je zodpovědné za mezi-membránový přenos náboje generující proton-motivní sílu, která pohání všechny navazující biochemické reakce. Femtosekundová podstata primárních procesů fotosyntézy je hlavním důvodem jejich vysoké účinnosti. Na časové škále femtosekund se začínají projevovat kvantové efekty, které jsou detekovány v měřených spektrech jako oscilace signálu v čase. Jedna z hypotéz uvádí, že pozorované oscilace jsou důkazem vlnového přenosu energie. Ke studiu fundamentální podstaty přenosu energie ve světlosběrných systémech (přírodních i umělých) jsou využívány vysoce sofistikované spektroskopické metody. Nejvyspělejší metodou, která umožňuje získat nejkompletnější spektroskopickou informaci v závislosti na čase a energii, je koherentní dvourozměrná elektronická spektroskopie. Tato metoda nám umožnila rozeznat nový fotofyzikální proces, při kterém se během přenosu excitační energie vyexcitovaná koherence přesouvá z excitovaného stavu do stavu základního. Tento proces má většinu charakteristik totožných s čistě elektronovou koherencí. A proto může být snadno...cs_CZ
uk.abstract.enAlmost all life on Earth depends on the products of photosynthesis - the biochemical process whereby solar energy is stored as chemical-rich compounds. The energy of captured photons is transferred through a network of pigment-protein complexes towards the reaction center. The reaction center is responsible for trans-membrane charge separation, which generates a proton motive force which drives all subsequent biochemical reactions. The ultrafast (femtosecond) nature of the primary processes in photosynthesis is the main reason for its astonishing efficiency. On this timescale, quantum effects start to play a role and can appear in measured spectra as oscillations. It has been hypothesized that these are evidence of wave-like energy transfer. To unveil the fundamental principals of ultrafast excitation energy transfer in both natural and artificial light-harvesting systems, advanced spectroscopy techniques have been utilized. Coherent two- dimensional electronic spectroscopy is a state of the art technique which allows the most complete spectroscopic and temporal information to be extracted from the system under study. This technique has allowed us to identify a new photophysical process where the coherence of the initially excited state is shifted to the ground state upon an energy transfer step. Coherence...en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra chemické fyziky a optikycs_CZ
thesis.grade.codeP
dc.identifier.lisID990020710960106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV