Show simple item record

A guide to fractal geometry
dc.contributor.advisorPokorný, Dušan
dc.creatorHajmová, Kateřina
dc.date.accessioned2017-05-31T20:24:39Z
dc.date.available2017-05-31T20:24:39Z
dc.date.issued2016
dc.identifier.urihttp://hdl.handle.net/20.500.11956/74015
dc.description.abstractTento text je určen zájemcům z řad široké veřejnosti. Cílem této práce je srozumitelnou formou představit základy oboru fraktální geometrie. Práce vysvětluje důležité pojmy potřebné ke studiu fraktálů, například Richardsonův vzorec či fraktální dimenzi. Velký důraz je zde kladen na vysvětlení pojmu Minkowského dimenze. Práce zahrnuje popis konstrukcí L-systémů, IFS, TEA a náhodných fraktálů. Dále ukazuje uplatnění fraktální geometrie v praxi. Text je doplněn názornými obrázky, většina z nich byla vytvořena v softwarech Geogebra a Wolfram Mathematica.cs_CZ
dc.description.abstractThis text is intended for the general public. The aim of this work is acquaint readers with foundations of the fractal geometry. The thesis explains important terminology, such as the coastline paradox or the fractal dimension. A great emphasis is placed on explaining the concept of the box-counting dimension. The thesis includes the construction methods of the L-systems, IFS, TEA and random fractals. In addition, it shows the use of fractal geometry in practice. The text is completed with illuminating figures drawn in most cases in Geogebra software and Wolfram Mathematica.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectfraktálcs_CZ
dc.subjectfraktální dimenzecs_CZ
dc.subjectMinkowského dimenzecs_CZ
dc.subjectL-systémycs_CZ
dc.subjectfractalen_US
dc.subjectfractal dimensionen_US
dc.subjectbox-counting dimensionen_US
dc.subjectL-systemsen_US
dc.titlePrůvodce fraktální geometriícs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2016
dcterms.dateAccepted2016-09-01
dc.description.departmentMathematical Institute of Charles Universityen_US
dc.description.departmentMatematický ústav UKcs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId173697
dc.title.translatedA guide to fractal geometryen_US
dc.contributor.refereeBoček, Leo
dc.identifier.aleph002109581
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineMatematika se zaměřením na vzdělávání - Deskriptivní geometrie se zaměřením na vzdělávánícs_CZ
thesis.degree.disciplineMathematics Oriented at Education - Descriptive Geometry Oriented at Educationen_US
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematika se zaměřením na vzdělávání - Deskriptivní geometrie se zaměřením na vzdělávánícs_CZ
uk.degree-discipline.enMathematics Oriented at Education - Descriptive Geometry Oriented at Educationen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVelmi dobřecs_CZ
thesis.grade.enVery gooden_US
uk.abstract.csTento text je určen zájemcům z řad široké veřejnosti. Cílem této práce je srozumitelnou formou představit základy oboru fraktální geometrie. Práce vysvětluje důležité pojmy potřebné ke studiu fraktálů, například Richardsonův vzorec či fraktální dimenzi. Velký důraz je zde kladen na vysvětlení pojmu Minkowského dimenze. Práce zahrnuje popis konstrukcí L-systémů, IFS, TEA a náhodných fraktálů. Dále ukazuje uplatnění fraktální geometrie v praxi. Text je doplněn názornými obrázky, většina z nich byla vytvořena v softwarech Geogebra a Wolfram Mathematica.cs_CZ
uk.abstract.enThis text is intended for the general public. The aim of this work is acquaint readers with foundations of the fractal geometry. The thesis explains important terminology, such as the coastline paradox or the fractal dimension. A great emphasis is placed on explaining the concept of the box-counting dimension. The thesis includes the construction methods of the L-systems, IFS, TEA and random fractals. In addition, it shows the use of fractal geometry in practice. The text is completed with illuminating figures drawn in most cases in Geogebra software and Wolfram Mathematica.en_US
uk.file-availabilityV
uk.publication-placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Matematický ústav UKcs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 3-5, 116 36 Praha; email: dspace (at) is.cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV