Show simple item record

Estimation in continuous time Markov chains
Odhady v Markovských řetězcích se spojitým časem
dc.contributor.advisorProkešová, Michaela
dc.creatorNemčovič, Bohuš
dc.date.accessioned2017-05-27T22:38:16Z
dc.date.available2017-05-27T22:38:16Z
dc.date.issued2014
dc.identifier.urihttp://hdl.handle.net/20.500.11956/72557
dc.description.abstractNázev práce: Odhady v Markovských řetězcích se spojitým časem Autor: Bohuš Nemčovič Katedra: Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské práce: RNDr. Michaela Prokešová, Ph.D., Katedra pravděpo- dobnosti a matematické statistiky Abstrakt: V této práci se zabýváme odhadováním matic intenzit spojitých Mar- kovských řetězců, v případě, že máme k dispozici úplné pozorování jeho trajek- torie a v případě, že pozorujeme řetězec pouze ve vybraných diskrétních časech. Pro získání odhadu používáme metodu maximální věrohodnosti. Ve druhé kapi- tole nejprve představíme obecný EM algoritmus a následně ho upravíme na hledá- ní odhadu matice intenzity na základě pozorování řetězce v jednotlivých diskrét- ních časech. V poslední kapitole ukážeme EM algoritmus na numerických příkla- dech a budeme ilustrovat vliv velikosti diskretizačného kroku na kvalitu odhadu matice intezity. Klíčová slova: Markovské řetězce, matice intenzity, metoda maximální věrohodnos- ti, EM algoritmus 1cs_CZ
dc.description.abstractTitle: Estimation in continuous time Markov chains Author: Bohuš Nemčovič Department: Department of Probability and Mathematical Statistics Supervisor: RNDr. Michaela Prokešová, Ph.D., Department of Probability and Mathematical Statistics Abstract: In this work we deal with estimating the intensity matrices of continu- ous Markov chains in the case of complete observation and observation at selected discrete time points. To obtain an estimate we use the maximum likelihood met- hod. In the second chapter we first introduce the general EM algorithm and then adjust it for finding the intensity matrix estimate based on observations at disc- rete time points. In the last chapter we will illustrate the impact of the discrete step size on the quality of intensity matrix estimate. Keywords: Markov chains, intensity matrix, maximum likelihood estimation, EM algorithm 1en_US
dc.languageSlovenčinacs_CZ
dc.language.isosk_SK
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectMarkovské řetězcecs_CZ
dc.subjectmatice intenzitycs_CZ
dc.subjectmetoda maximální věrohodnostics_CZ
dc.subjectEM algoritmuscs_CZ
dc.subjectMarkov chainsen_US
dc.subjectintensity matrixen_US
dc.subjectmaximum likelihood estimationen_US
dc.subjectEM algorithmen_US
dc.titleOdhady v Markovských řetězcích se spojitým časemsk_SK
dc.typebakalářská prácecs_CZ
dcterms.created2014
dcterms.dateAccepted2014-06-24
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId127029
dc.title.translatedEstimation in continuous time Markov chainsen_US
dc.title.translatedOdhady v Markovských řetězcích se spojitým časemcs_CZ
dc.contributor.refereeKadlec, Karel
dc.identifier.aleph001785850
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineFinanční matematikacs_CZ
thesis.degree.disciplineFinancial Mathematicsen_US
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csFinanční matematikacs_CZ
uk.degree-discipline.enFinancial Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csNázev práce: Odhady v Markovských řetězcích se spojitým časem Autor: Bohuš Nemčovič Katedra: Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské práce: RNDr. Michaela Prokešová, Ph.D., Katedra pravděpo- dobnosti a matematické statistiky Abstrakt: V této práci se zabýváme odhadováním matic intenzit spojitých Mar- kovských řetězců, v případě, že máme k dispozici úplné pozorování jeho trajek- torie a v případě, že pozorujeme řetězec pouze ve vybraných diskrétních časech. Pro získání odhadu používáme metodu maximální věrohodnosti. Ve druhé kapi- tole nejprve představíme obecný EM algoritmus a následně ho upravíme na hledá- ní odhadu matice intenzity na základě pozorování řetězce v jednotlivých diskrét- ních časech. V poslední kapitole ukážeme EM algoritmus na numerických příkla- dech a budeme ilustrovat vliv velikosti diskretizačného kroku na kvalitu odhadu matice intezity. Klíčová slova: Markovské řetězce, matice intenzity, metoda maximální věrohodnos- ti, EM algoritmus 1cs_CZ
uk.abstract.enTitle: Estimation in continuous time Markov chains Author: Bohuš Nemčovič Department: Department of Probability and Mathematical Statistics Supervisor: RNDr. Michaela Prokešová, Ph.D., Department of Probability and Mathematical Statistics Abstract: In this work we deal with estimating the intensity matrices of continu- ous Markov chains in the case of complete observation and observation at selected discrete time points. To obtain an estimate we use the maximum likelihood met- hod. In the second chapter we first introduce the general EM algorithm and then adjust it for finding the intensity matrix estimate based on observations at disc- rete time points. In the last chapter we will illustrate the impact of the discrete step size on the quality of intensity matrix estimate. Keywords: Markov chains, intensity matrix, maximum likelihood estimation, EM algorithm 1en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV