dc.contributor.advisor | Prokešová, Michaela | |
dc.creator | Nemčovič, Bohuš | |
dc.date.accessioned | 2017-05-27T22:38:16Z | |
dc.date.available | 2017-05-27T22:38:16Z | |
dc.date.issued | 2014 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/72557 | |
dc.description.abstract | Název práce: Odhady v Markovských řetězcích se spojitým časem Autor: Bohuš Nemčovič Katedra: Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské práce: RNDr. Michaela Prokešová, Ph.D., Katedra pravděpo- dobnosti a matematické statistiky Abstrakt: V této práci se zabýváme odhadováním matic intenzit spojitých Mar- kovských řetězců, v případě, že máme k dispozici úplné pozorování jeho trajek- torie a v případě, že pozorujeme řetězec pouze ve vybraných diskrétních časech. Pro získání odhadu používáme metodu maximální věrohodnosti. Ve druhé kapi- tole nejprve představíme obecný EM algoritmus a následně ho upravíme na hledá- ní odhadu matice intenzity na základě pozorování řetězce v jednotlivých diskrét- ních časech. V poslední kapitole ukážeme EM algoritmus na numerických příkla- dech a budeme ilustrovat vliv velikosti diskretizačného kroku na kvalitu odhadu matice intezity. Klíčová slova: Markovské řetězce, matice intenzity, metoda maximální věrohodnos- ti, EM algoritmus 1 | cs_CZ |
dc.description.abstract | Title: Estimation in continuous time Markov chains Author: Bohuš Nemčovič Department: Department of Probability and Mathematical Statistics Supervisor: RNDr. Michaela Prokešová, Ph.D., Department of Probability and Mathematical Statistics Abstract: In this work we deal with estimating the intensity matrices of continu- ous Markov chains in the case of complete observation and observation at selected discrete time points. To obtain an estimate we use the maximum likelihood met- hod. In the second chapter we first introduce the general EM algorithm and then adjust it for finding the intensity matrix estimate based on observations at disc- rete time points. In the last chapter we will illustrate the impact of the discrete step size on the quality of intensity matrix estimate. Keywords: Markov chains, intensity matrix, maximum likelihood estimation, EM algorithm 1 | en_US |
dc.language | Slovenčina | cs_CZ |
dc.language.iso | sk_SK | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | Markovské řetězce | cs_CZ |
dc.subject | matice intenzity | cs_CZ |
dc.subject | metoda maximální věrohodnosti | cs_CZ |
dc.subject | EM algoritmus | cs_CZ |
dc.subject | Markov chains | en_US |
dc.subject | intensity matrix | en_US |
dc.subject | maximum likelihood estimation | en_US |
dc.subject | EM algorithm | en_US |
dc.title | Odhady v Markovských řetězcích se spojitým časem | sk_SK |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2014 | |
dcterms.dateAccepted | 2014-06-24 | |
dc.description.department | Department of Probability and Mathematical Statistics | en_US |
dc.description.department | Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 127029 | |
dc.title.translated | Estimation in continuous time Markov chains | en_US |
dc.title.translated | Odhady v Markovských řetězcích se spojitým časem | cs_CZ |
dc.contributor.referee | Kadlec, Karel | |
dc.identifier.aleph | 001785850 | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | Finanční matematika | cs_CZ |
thesis.degree.discipline | Financial Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Finanční matematika | cs_CZ |
uk.degree-discipline.en | Financial Mathematics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Název práce: Odhady v Markovských řetězcích se spojitým časem Autor: Bohuš Nemčovič Katedra: Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské práce: RNDr. Michaela Prokešová, Ph.D., Katedra pravděpo- dobnosti a matematické statistiky Abstrakt: V této práci se zabýváme odhadováním matic intenzit spojitých Mar- kovských řetězců, v případě, že máme k dispozici úplné pozorování jeho trajek- torie a v případě, že pozorujeme řetězec pouze ve vybraných diskrétních časech. Pro získání odhadu používáme metodu maximální věrohodnosti. Ve druhé kapi- tole nejprve představíme obecný EM algoritmus a následně ho upravíme na hledá- ní odhadu matice intenzity na základě pozorování řetězce v jednotlivých diskrét- ních časech. V poslední kapitole ukážeme EM algoritmus na numerických příkla- dech a budeme ilustrovat vliv velikosti diskretizačného kroku na kvalitu odhadu matice intezity. Klíčová slova: Markovské řetězce, matice intenzity, metoda maximální věrohodnos- ti, EM algoritmus 1 | cs_CZ |
uk.abstract.en | Title: Estimation in continuous time Markov chains Author: Bohuš Nemčovič Department: Department of Probability and Mathematical Statistics Supervisor: RNDr. Michaela Prokešová, Ph.D., Department of Probability and Mathematical Statistics Abstract: In this work we deal with estimating the intensity matrices of continu- ous Markov chains in the case of complete observation and observation at selected discrete time points. To obtain an estimate we use the maximum likelihood met- hod. In the second chapter we first introduce the general EM algorithm and then adjust it for finding the intensity matrix estimate based on observations at disc- rete time points. In the last chapter we will illustrate the impact of the discrete step size on the quality of intensity matrix estimate. Keywords: Markov chains, intensity matrix, maximum likelihood estimation, EM algorithm 1 | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistiky | cs_CZ |