Odhady v Markovských řetězcích se spojitým časem
Estimation in continuous time Markov chains
Odhady v Markovských řetězcích se spojitým časem
bakalářská práce (OBHÁJENO)

Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/72557Kolekce
- Kvalifikační práce [9117]
Autor
Vedoucí práce
Oponent práce
Kadlec, Karel
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Finanční matematika
Katedra / ústav / klinika
Katedra pravděpodobnosti a matematické statistiky
Datum obhajoby
24. 6. 2014
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Slovenština
Známka
Výborně
Klíčová slova (česky)
Markovské řetězce, matice intenzity, metoda maximální věrohodnosti, EM algoritmus
Klíčová slova (anglicky)
Markov chains, intensity matrix, maximum likelihood estimation, EM algorithm
Název práce: Odhady v Markovských řetězcích se spojitým časem Autor: Bohuš Nemčovič Katedra: Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské práce: RNDr. Michaela Prokešová, Ph.D., Katedra pravděpo- dobnosti a matematické statistiky Abstrakt: V této práci se zabýváme odhadováním matic intenzit spojitých Mar- kovských řetězců, v případě, že máme k dispozici úplné pozorování jeho trajek- torie a v případě, že pozorujeme řetězec pouze ve vybraných diskrétních časech. Pro získání odhadu používáme metodu maximální věrohodnosti. Ve druhé kapi- tole nejprve představíme obecný EM algoritmus a následně ho upravíme na hledá- ní odhadu matice intenzity na základě pozorování řetězce v jednotlivých diskrét- ních časech. V poslední kapitole ukážeme EM algoritmus na numerických příkla- dech a budeme ilustrovat vliv velikosti diskretizačného kroku na kvalitu odhadu matice intezity. Klíčová slova: Markovské řetězce, matice intenzity, metoda maximální věrohodnos- ti, EM algoritmus 1
Title: Estimation in continuous time Markov chains Author: Bohuš Nemčovič Department: Department of Probability and Mathematical Statistics Supervisor: RNDr. Michaela Prokešová, Ph.D., Department of Probability and Mathematical Statistics Abstract: In this work we deal with estimating the intensity matrices of continu- ous Markov chains in the case of complete observation and observation at selected discrete time points. To obtain an estimate we use the maximum likelihood met- hod. In the second chapter we first introduce the general EM algorithm and then adjust it for finding the intensity matrix estimate based on observations at disc- rete time points. In the last chapter we will illustrate the impact of the discrete step size on the quality of intensity matrix estimate. Keywords: Markov chains, intensity matrix, maximum likelihood estimation, EM algorithm 1