Show simple item record

Numerické řešení nelineárních problémů konvekce-difuze pomocí adaptivních metod
dc.contributor.advisorVlasák, Miloslav
dc.creatorRoskovec, Filip
dc.date.accessioned2021-03-26T16:33:32Z
dc.date.available2021-03-26T16:33:32Z
dc.date.issued2014
dc.identifier.urihttp://hdl.handle.net/20.500.11956/71639
dc.description.abstractTato práce se zabývá analýzou a implementací Časově nespojité Galerkinovy metody. Významnou součástí této práce je vytvoření algoritmu zaměřeného na řešení nelineárních rovnic konvekce-difůze, který kombinuje Nespojitou Galerkinovu metodu v prostoru s Časově nespojitou Galerkinovou metodou. Tento přístup přináší snadno docílitelnou adaptivitu i vysoký řád aproximace vzhledem k prostorovým i časovým proměnným. Nelinearita problému je překonávána pomocí tlumené zobecněné Newtonovy metody. Druhá část práce se zaměřujeme na Časově nespojitou Galerkinovu metodu pro obyčejné diferenciální rovnice. Ukazuje, že řešení Časově nespojité Galerkinovy metody se shoduje s řešením získaným pomocí implicitních Radau IIA Runge-Kuttových metod v uzlech pravé Radauovy kvadratury. Díky tomuto vztahu je možno získat v těchto bodech odhady chyby řádu o jedna vyššího než je standartní řád. Kromě toho může být dosažen téměř dvojnásobný řád chyby v koncových bodech intervalů časového dělení. Nakonec se práce zabývá fenoménem tuhosti (stiffness), který může dramaticky snižovat řád konvergence použité metody. Teoretické výsledky potvrzují numerické experimenty. Powered by TCPDF (www.tcpdf.org)cs_CZ
dc.description.abstractThis thesis is concerned with analysis and implementation of Time discontinuous Galerkin method. Important part of it is constructing of algorithm for solving nonlinear convection-diffusion equations, which combines Discontinuous Galerkin method in space (DGFEM) with Time discontinuous Galerkin method (TDG). Nonlinearity of the problem is overcome by damped Newton-like method. This approach provides easy adaptivity manipulation as well as high order approximation with respect to both space and time variables. The second part of the thesis is focused on Time discontinuous Galerkin method, applied to ordinary differential equations. It is shown that the solution of Time discontinuous Galerkin equals the solution obtained by Radau IIA implicit Runge-Kutta method in the roots of right Radau Quadrature. By virtue of this relation, error estimates of the order higher by one than the standard order can be obtained in these points. Furthermore, almost two times higher order can be achieved in the endpoints of the intervals of time discretization. Finally, the thesis deals with the phenomenon of stiffness, which may dramatically decrease the order of the applied method. The theoretical results are verified by numerical experiments. Powered by TCPDF (www.tcpdf.org)en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectTime discontinuous Galerkin methoden_US
dc.subjectnonlinear convection-diffusion equationen_US
dc.subjecta priori error estimatesen_US
dc.subjectimplicit Runge-Kutta methodsen_US
dc.subjectstiff problemsen_US
dc.subjectČasově nespojitá Galerkinova metodacs_CZ
dc.subjectrovnice konvekce-difuzecs_CZ
dc.subjectanalýza chybcs_CZ
dc.subjectimplicitní Runge-Kuttovy metodycs_CZ
dc.subjectstiff problémycs_CZ
dc.titleNumerické řešení nelineárních problémů konvekce-difuze pomocí adaptivních metoden_US
dc.typediplomová prácecs_CZ
dcterms.created2014
dcterms.dateAccepted2014-09-09
dc.description.departmentKatedra numerické matematikycs_CZ
dc.description.departmentDepartment of Numerical Mathematicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId130926
dc.title.translatedNumerické řešení nelineárních problémů konvekce-difuze pomocí adaptivních metodcs_CZ
dc.contributor.refereeFeistauer, Miloslav
dc.identifier.aleph001851639
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineNumerical and computational mathematicsen_US
thesis.degree.disciplineNumerická a výpočtová matematikacs_CZ
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra numerické matematikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Numerical Mathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csNumerická a výpočtová matematikacs_CZ
uk.degree-discipline.enNumerical and computational mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csTato práce se zabývá analýzou a implementací Časově nespojité Galerkinovy metody. Významnou součástí této práce je vytvoření algoritmu zaměřeného na řešení nelineárních rovnic konvekce-difůze, který kombinuje Nespojitou Galerkinovu metodu v prostoru s Časově nespojitou Galerkinovou metodou. Tento přístup přináší snadno docílitelnou adaptivitu i vysoký řád aproximace vzhledem k prostorovým i časovým proměnným. Nelinearita problému je překonávána pomocí tlumené zobecněné Newtonovy metody. Druhá část práce se zaměřujeme na Časově nespojitou Galerkinovu metodu pro obyčejné diferenciální rovnice. Ukazuje, že řešení Časově nespojité Galerkinovy metody se shoduje s řešením získaným pomocí implicitních Radau IIA Runge-Kuttových metod v uzlech pravé Radauovy kvadratury. Díky tomuto vztahu je možno získat v těchto bodech odhady chyby řádu o jedna vyššího než je standartní řád. Kromě toho může být dosažen téměř dvojnásobný řád chyby v koncových bodech intervalů časového dělení. Nakonec se práce zabývá fenoménem tuhosti (stiffness), který může dramaticky snižovat řád konvergence použité metody. Teoretické výsledky potvrzují numerické experimenty. Powered by TCPDF (www.tcpdf.org)cs_CZ
uk.abstract.enThis thesis is concerned with analysis and implementation of Time discontinuous Galerkin method. Important part of it is constructing of algorithm for solving nonlinear convection-diffusion equations, which combines Discontinuous Galerkin method in space (DGFEM) with Time discontinuous Galerkin method (TDG). Nonlinearity of the problem is overcome by damped Newton-like method. This approach provides easy adaptivity manipulation as well as high order approximation with respect to both space and time variables. The second part of the thesis is focused on Time discontinuous Galerkin method, applied to ordinary differential equations. It is shown that the solution of Time discontinuous Galerkin equals the solution obtained by Radau IIA implicit Runge-Kutta method in the roots of right Radau Quadrature. By virtue of this relation, error estimates of the order higher by one than the standard order can be obtained in these points. Furthermore, almost two times higher order can be achieved in the endpoints of the intervals of time discretization. Finally, the thesis deals with the phenomenon of stiffness, which may dramatically decrease the order of the applied method. The theoretical results are verified by numerical experiments. Powered by TCPDF (www.tcpdf.org)en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra numerické matematikycs_CZ
thesis.grade.code1
dc.contributor.consultantDolejší, Vít
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO
dc.identifier.lisID990018516390106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2025 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV