Show simple item record

Chaos v pohybu kolem černých děr
dc.creatorSuková, Petra
dc.date.accessioned2017-05-27T03:04:12Z
dc.date.available2017-05-27T03:04:12Z
dc.date.issued2014
dc.identifier.urihttp://hdl.handle.net/20.500.11956/67386
dc.description.abstractDynamické systémy v obecné relativitě, představující nelineární teorii popisující vývoj prostoročasu, jsou náchylnější ke vzniku chaotického chování než jejich odpovídající newtonské protějšky. V této práci studujeme dynamiku časupodobných geodetik ve statických a axiálně symetrických prostoročasech zadaných pomocí přesných řešení Einsteinových rovnic, která popisují pole su- perpozice Schwarzschildovy černé díry a tenkého hmotného disku nebo prstence. Odhalíme vznik a ústup chaotického chování geodetického toku se změnou para- metrů systému, tedy relativní hmotnosti disku nebo prstence a poloze jeho vnitřní- ho okraje a energii a momentu hybnosti testovací částice za pomoci (i) Poincarého řezů, (ii) spektrální analýzy časových řad dynamických proměnných, (iii) dvou rekurenčních metod pro analýzu časových řad, tzv. rekurenční analýzy a výpočtu váženého průměru směrových vektorů a (iv) výpočtu Ljapunovových exponentů a podobných koeficientů, které kvantifikují míru rozbíhavosti blízkých trajektorií. Zaměříme se také na tzv. ,,sticky" trajektorie, jejichž segmety vykazují různé stupně chaotičnosti. Pro krátké seznámení s klasickými chaotickými systémy, které jsou dokonce...cs_CZ
dc.description.abstractAs a non-linear theory of space-time, general relativity deals with interesting dynamical systems which can be expected more prone to chaos than their Newtonian counter-parts. In this thesis, we study the dynamics of time- like geodesics in the static and axisymmetric field of a Schwarzschild black hole surrounded, in a concentric way, by a massive thin disc or ring. We reveal the rise (and/or decline) of geodesic chaos in dependence on parameters of the sys- tem (the disc/ring mass and position and the test-particle energy and angular momentum), (i) on Poincaré sections, (ii) on time series of position and their power spectra, (iii) by applying two simple yet powerful recurrence methods, and (iv) by computing Lyapunov exponents and two other related quantifiers of or- bital divergence. We mainly focus on "sticky" orbits whose different parts show different degrees of chaoticity and which offer the best possibility to test and compare different methods. We also add a treatment of classical but dissipative system, namely the evolution of a class of mechanical oscillators described by non-standard constitutive relations.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectobecná relativitacs_CZ
dc.subjectčerné díry v astrofyzicecs_CZ
dc.subjectchaoscs_CZ
dc.subjectgeodetický pohybcs_CZ
dc.subjectgeneral relativityen_US
dc.subjectblack holes in astrophysicsen_US
dc.subjectchaosen_US
dc.subjectgeodesic motionen_US
dc.titleChaotic Motion around Black Holesen_US
dc.typerigorózní prácecs_CZ
dcterms.created2014
dcterms.dateAccepted2014-06-23
dc.description.departmentInstitute of Theoretical Physicsen_US
dc.description.departmentÚstav teoretické fyzikycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId150968
dc.title.translatedChaos v pohybu kolem černých děrcs_CZ
dc.identifier.aleph001785931
thesis.degree.nameRNDr.
thesis.degree.levelrigorózní řízenícs_CZ
thesis.degree.disciplineTeoretická fyzikacs_CZ
thesis.degree.disciplineTheoretical physicsen_US
thesis.degree.programFyzikacs_CZ
thesis.degree.programPhysicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csTeoretická fyzikacs_CZ
uk.degree-discipline.enTheoretical physicsen_US
uk.degree-program.csFyzikacs_CZ
uk.degree-program.enPhysicsen_US
thesis.grade.csProspělcs_CZ
thesis.grade.enPassen_US
uk.abstract.csDynamické systémy v obecné relativitě, představující nelineární teorii popisující vývoj prostoročasu, jsou náchylnější ke vzniku chaotického chování než jejich odpovídající newtonské protějšky. V této práci studujeme dynamiku časupodobných geodetik ve statických a axiálně symetrických prostoročasech zadaných pomocí přesných řešení Einsteinových rovnic, která popisují pole su- perpozice Schwarzschildovy černé díry a tenkého hmotného disku nebo prstence. Odhalíme vznik a ústup chaotického chování geodetického toku se změnou para- metrů systému, tedy relativní hmotnosti disku nebo prstence a poloze jeho vnitřní- ho okraje a energii a momentu hybnosti testovací částice za pomoci (i) Poincarého řezů, (ii) spektrální analýzy časových řad dynamických proměnných, (iii) dvou rekurenčních metod pro analýzu časových řad, tzv. rekurenční analýzy a výpočtu váženého průměru směrových vektorů a (iv) výpočtu Ljapunovových exponentů a podobných koeficientů, které kvantifikují míru rozbíhavosti blízkých trajektorií. Zaměříme se také na tzv. ,,sticky" trajektorie, jejichž segmety vykazují různé stupně chaotičnosti. Pro krátké seznámení s klasickými chaotickými systémy, které jsou dokonce...cs_CZ
uk.abstract.enAs a non-linear theory of space-time, general relativity deals with interesting dynamical systems which can be expected more prone to chaos than their Newtonian counter-parts. In this thesis, we study the dynamics of time- like geodesics in the static and axisymmetric field of a Schwarzschild black hole surrounded, in a concentric way, by a massive thin disc or ring. We reveal the rise (and/or decline) of geodesic chaos in dependence on parameters of the sys- tem (the disc/ring mass and position and the test-particle energy and angular momentum), (i) on Poincaré sections, (ii) on time series of position and their power spectra, (iii) by applying two simple yet powerful recurrence methods, and (iv) by computing Lyapunov exponents and two other related quantifiers of or- bital divergence. We mainly focus on "sticky" orbits whose different parts show different degrees of chaoticity and which offer the best possibility to test and compare different methods. We also add a treatment of classical but dissipative system, namely the evolution of a class of mechanical oscillators described by non-standard constitutive relations.en_US
uk.file-availabilityV
uk.publication-placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Ústav teoretické fyzikycs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 3-5, 116 36 Praha; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV