Show simple item record

Portfolio efficiency with continuous probability distribution of returns
dc.creatorKozmík, Václav
dc.date.accessioned2021-05-24T12:04:54Z
dc.date.available2021-05-24T12:04:54Z
dc.date.issued2013
dc.identifier.urihttp://hdl.handle.net/20.500.11956/60393
dc.description.abstractPředložená práce se zabývá výběrem optimálního portfolia pomocí "mean-risk" modelů. Hlavním cílem práce je zkoumat konvergenci aproximativních řešení pomocí generovaných scénářů k analytickému řešení a její citlivost na zvolené míře rizika a předpokladu spojitého rozdělení. Zkoumané míry rizika zahrnují rozptyl, VaR, cVaR, absolutní odchylku a semivarianci. Pro normální a Studentovo rozdělení prezentujeme analytická řešení pro všechny míry rizika, pro logaritmicko-normální rozdělení použijeme aproximativní předpoklad, že součet logaritmicko-normálních náhodných veličin má přibližně logaritmicko- normální rozdělení. Pro všechny míry rizika také odvodíme optimalizační úlohu pro případ diskrétních scénářů a získaná řešení porovnáme s analytickým řešením. V rámci generování scénářů je výpočet několikrát opakován a prezentujeme vlastní metodu, která umožňuje pomocí shlukové analýzy najít optimální řešení. Všechny optimalizační úlohy jsou přepsány do jazyka GAMS a samotné testování a odhady jsou realizovány vlastním programem v jazyce C++.cs_CZ
dc.description.abstractPresent work deals with the portfolio selection problem using mean-risk models. The main goal of this work is to investigate the convergence of approximate solutions using generated scenarios to the analytic solution and its sensitivity to chosen risk measure and probability distribution. The considered risk measures are: variance, VaR, cVaR, absolute deviation and semivariance. We present analytical solutions for all risk measures under the assumption of normal or Student distribution. For log-normal distribution, we use the approximate assumption that the sum of log-normal random variables has log-normal distribution. Optimization models for discrete scenarios are derived for all risk measures and compared with analytical solution. In case of approximate solution with scenarios, we repeat the procedure multiple times and present our own approach to finding the optimal solution using the cluster analysis. All optimization models are written in GAMS language. Testing and estimating are realized using an application developed in C++ language.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectmean-risk modelsen_US
dc.subjectrisk measuresen_US
dc.subjectstock portfoliosen_US
dc.subjectsample-based approximationen_US
dc.subjectmean-risk modelycs_CZ
dc.subjectmíry rizikacs_CZ
dc.subjectportfolia akciícs_CZ
dc.subjectaproximace generováním scénářůcs_CZ
dc.titleEficience portfolií při spojitém rozdělení výnosůcs_CZ
dc.typerigorózní prácecs_CZ
dcterms.created2013
dcterms.dateAccepted2013-01-23
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId131720
dc.title.translatedPortfolio efficiency with continuous probability distribution of returnsen_US
dc.identifier.aleph001558487
thesis.degree.nameRNDr.
thesis.degree.levelrigorózní řízenícs_CZ
thesis.degree.disciplinePravděpodobnost, matematická statistika a ekonometriecs_CZ
thesis.degree.disciplineProbability, mathematical statistics and econometricsen_US
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typerigorózní prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csPravděpodobnost, matematická statistika a ekonometriecs_CZ
uk.degree-discipline.enProbability, mathematical statistics and econometricsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csUznánocs_CZ
thesis.grade.enRecognizeden_US
uk.abstract.csPředložená práce se zabývá výběrem optimálního portfolia pomocí "mean-risk" modelů. Hlavním cílem práce je zkoumat konvergenci aproximativních řešení pomocí generovaných scénářů k analytickému řešení a její citlivost na zvolené míře rizika a předpokladu spojitého rozdělení. Zkoumané míry rizika zahrnují rozptyl, VaR, cVaR, absolutní odchylku a semivarianci. Pro normální a Studentovo rozdělení prezentujeme analytická řešení pro všechny míry rizika, pro logaritmicko-normální rozdělení použijeme aproximativní předpoklad, že součet logaritmicko-normálních náhodných veličin má přibližně logaritmicko- normální rozdělení. Pro všechny míry rizika také odvodíme optimalizační úlohu pro případ diskrétních scénářů a získaná řešení porovnáme s analytickým řešením. V rámci generování scénářů je výpočet několikrát opakován a prezentujeme vlastní metodu, která umožňuje pomocí shlukové analýzy najít optimální řešení. Všechny optimalizační úlohy jsou přepsány do jazyka GAMS a samotné testování a odhady jsou realizovány vlastním programem v jazyce C++.cs_CZ
uk.abstract.enPresent work deals with the portfolio selection problem using mean-risk models. The main goal of this work is to investigate the convergence of approximate solutions using generated scenarios to the analytic solution and its sensitivity to chosen risk measure and probability distribution. The considered risk measures are: variance, VaR, cVaR, absolute deviation and semivariance. We present analytical solutions for all risk measures under the assumption of normal or Student distribution. For log-normal distribution, we use the approximate assumption that the sum of log-normal random variables has log-normal distribution. Optimization models for discrete scenarios are derived for all risk measures and compared with analytical solution. In case of approximate solution with scenarios, we repeat the procedure multiple times and present our own approach to finding the optimal solution using the cluster analysis. All optimization models are written in GAMS language. Testing and estimating are realized using an application developed in C++ language.en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
thesis.grade.codeU
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusU
dc.identifier.lisID990015584870106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV