Show simple item record

Algebraický přístup k CSP
dc.creatorBulín, Jakub
dc.date.accessioned2021-05-24T11:57:17Z
dc.date.available2021-05-24T11:57:17Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/20.500.11956/60366
dc.description.abstractNechť A je konečná relační struktura. Problém splňování omezení s šablonou A, CSP (a), rozhoduje, zda vstupní struktura X je homomorfní A. Hypotéza o dichotomii CSP Federa a Vardiho říká, že CSP(A) je vždy buď v P nebo NP-úplný. V první části předsdtavíme algebraický přístup k CSP a shrneme známé výsledky o CSP pro orientované grafy, tzv. H-barvení. Ve druhé části se zabýváme jistou třídou orientovaných stromů, tzv. speciálními polyádami. Pomocí algebraického přístupu potvrdíme dichotomickou hypotézu pro speciální polyády. V polynomiálním případě poskytneme jemnější popis a zkontruujeme speciální polyádu T takovou, že CSP(T) je v P, ale T nemá šířku 1 ani žádné near-unanimity polymorfismy.cs_CZ
dc.description.abstractFor a finite relational structure A, the Constraint Satisfaction Problem with template A, or CSP(A), is the problem of deciding whether an input relational structure X admits a homomorphism to A. The CSP dichotomy conjecture of Feder and Vardi states that for any A, CSP(A) is either in P or NP-complete. In the first part we present the algebraic approach to CSP and summarize known results about CSP for digraphs, also known as the H-coloring problem. In the second part we study a class of oriented trees called special polyads. Using the algebraic approach we confirm the dichotomy conjecture for special polyads. We provide a finer description of the tractable cases and give a construction of a special polyad T such that CSP(T) is tractable, but T does not have width 1 and admits no near-unanimity polymorphisms.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleAlgebraický přístup k CSPen_US
dc.typerigorózní prácecs_CZ
dcterms.created2012
dcterms.dateAccepted2012-12-21
dc.description.departmentKatedra algebrycs_CZ
dc.description.departmentDepartment of Algebraen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId131344
dc.title.translatedAlgebraický přístup k CSPcs_CZ
dc.identifier.aleph001558411
thesis.degree.nameRNDr.
thesis.degree.levelrigorózní řízenícs_CZ
thesis.degree.disciplineMatematické strukturycs_CZ
thesis.degree.disciplineMathematical structuresen_US
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typerigorózní prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra algebrycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Algebraen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematické strukturycs_CZ
uk.degree-discipline.enMathematical structuresen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csUznánocs_CZ
thesis.grade.enRecognizeden_US
uk.abstract.csNechť A je konečná relační struktura. Problém splňování omezení s šablonou A, CSP (a), rozhoduje, zda vstupní struktura X je homomorfní A. Hypotéza o dichotomii CSP Federa a Vardiho říká, že CSP(A) je vždy buď v P nebo NP-úplný. V první části předsdtavíme algebraický přístup k CSP a shrneme známé výsledky o CSP pro orientované grafy, tzv. H-barvení. Ve druhé části se zabýváme jistou třídou orientovaných stromů, tzv. speciálními polyádami. Pomocí algebraického přístupu potvrdíme dichotomickou hypotézu pro speciální polyády. V polynomiálním případě poskytneme jemnější popis a zkontruujeme speciální polyádu T takovou, že CSP(T) je v P, ale T nemá šířku 1 ani žádné near-unanimity polymorfismy.cs_CZ
uk.abstract.enFor a finite relational structure A, the Constraint Satisfaction Problem with template A, or CSP(A), is the problem of deciding whether an input relational structure X admits a homomorphism to A. The CSP dichotomy conjecture of Feder and Vardi states that for any A, CSP(A) is either in P or NP-complete. In the first part we present the algebraic approach to CSP and summarize known results about CSP for digraphs, also known as the H-coloring problem. In the second part we study a class of oriented trees called special polyads. Using the algebraic approach we confirm the dichotomy conjecture for special polyads. We provide a finer description of the tractable cases and give a construction of a special polyad T such that CSP(T) is tractable, but T does not have width 1 and admits no near-unanimity polymorphisms.en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra algebrycs_CZ
thesis.grade.codeU
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusU
dc.identifier.lisID990015584110106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV