Show simple item record

Analýza návrhu hašovací funkce CubeHash
dc.contributor.advisorTůma, Jiří
dc.creatorStankovianska, Veronika
dc.date.accessioned2017-05-16T14:58:20Z
dc.date.available2017-05-16T14:58:20Z
dc.date.issued2013
dc.identifier.urihttp://hdl.handle.net/20.500.11956/57286
dc.description.abstractPředkládaná práce se zabývá analýzou návrhu hašovací funkce CubeHash a zvláštní důraz klade na následující články: "Inside the Hyper- cube" [1], "Symmetric States and Their Improved Structure" [7] a "Lineari- sation Framework for Collision Attacks" [6]. Krátce představuje algoritmus hašovací funkce CubeHash a dokazuje, že její rundovní funkce R : ({0, 1}32 )32 → ({0, 1}32 )32 je permutací. Výsledky uváděné v článcích [1] a [7], týkající se symetrických stavů pro CubeHash, jsou posouzené, opravené a doložené důkazy. Přesněji, pomocí definice D-symetrického stavu, založené na [7], práce dokazuje, že pro vektorový prostor V = Z4 2 a jeho lineární podpros- tor D existuje 22 |V | |D| D-symetrických stavů a vnitřní stav x je D-symetrický právě tehdy, když stav R(x) je D-symetrický. V reakci na [1] diplomová práce uvádí úplný výpočet dolní meze pro počet symetrických stavů, vysvětluje, proč vylepšené hledání prvního vzoru nefunguje tak, jak je představeno, a v neposlední řadě objasňuje matematické pozadí hledání pevných bodů rundovní funce R. Následně poukazuje na skutečnost, že linearizační metoda z [6] neuvažuje rovnici (A ⊕ α) + β = (A + β) ⊕ α (∗), která se v algo- ritmu CubeHash vyskytuje během...cs_CZ
dc.description.abstractThe present thesis analyses the proposal of CubeHash with spe- cial emphasis on the following papers: "Inside the Hypercube" [1], "Sym- metric States and Their Improved Structure" [7] and "Linearisation Frame- work for Collision Attacks" [6]. The CubeHash algorithm is presented in a concise manner together with a proof that the CubeHash round function R : ({0, 1}32 )32 → ({0, 1}32 )32 is a permutation. The results of [1] and [7] con- cerning the CubeHash symmetric states are reviewed, corrected and substan- tiated by proofs. More precisely, working with a definition of D-symmetric state, based on [7], the thesis proves both that for V = Z4 2 and its linear subspace D, there are 22 |V | |D| D-symmetric states and an internal state x is D-symmetric if and only if the state R(x) is D-symmetric. In response to [1], the thesis presents a step-by-step computation of a lower bound for the num- ber of distinct symmetric states, explains why the improved preimage attack does not work as stated and gives a mathematical background for a search for fixed points in R. The thesis further points out that the linearisation method from [6] fails to consider the equation (A ⊕ α) + β = (A + β) ⊕ α (∗), present during the CubeHash iteration phase. Necessary and sufficient conditions for A being a solution to (∗) are...en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectCubeHashcs_CZ
dc.subjecthašovací funkcecs_CZ
dc.subjectsymetrický stavcs_CZ
dc.subjectpevný bodcs_CZ
dc.subjectlinearizační rámec pro hledání kolizícs_CZ
dc.subjectCubeHashen_US
dc.subjectHash Functionen_US
dc.subjectSymmetric Stateen_US
dc.subjectFixed Pointen_US
dc.subjectLinearisation Framework for Collision Attacksen_US
dc.titleAnalysis of the CubeHash proposalen_US
dc.typediplomová prácecs_CZ
dcterms.created2013
dcterms.dateAccepted2013-05-17
dc.description.departmentDepartment of Algebraen_US
dc.description.departmentKatedra algebrycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId125893
dc.title.translatedAnalýza návrhu hašovací funkce CubeHashcs_CZ
dc.contributor.refereeHojsík, Michal
dc.identifier.aleph001589258
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineMathematical methods of information securityen_US
thesis.degree.disciplineMatematické metody informační bezpečnostics_CZ
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra algebrycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Algebraen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematické metody informační bezpečnostics_CZ
uk.degree-discipline.enMathematical methods of information securityen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csDobřecs_CZ
thesis.grade.enGooden_US
uk.abstract.csPředkládaná práce se zabývá analýzou návrhu hašovací funkce CubeHash a zvláštní důraz klade na následující články: "Inside the Hyper- cube" [1], "Symmetric States and Their Improved Structure" [7] a "Lineari- sation Framework for Collision Attacks" [6]. Krátce představuje algoritmus hašovací funkce CubeHash a dokazuje, že její rundovní funkce R : ({0, 1}32 )32 → ({0, 1}32 )32 je permutací. Výsledky uváděné v článcích [1] a [7], týkající se symetrických stavů pro CubeHash, jsou posouzené, opravené a doložené důkazy. Přesněji, pomocí definice D-symetrického stavu, založené na [7], práce dokazuje, že pro vektorový prostor V = Z4 2 a jeho lineární podpros- tor D existuje 22 |V | |D| D-symetrických stavů a vnitřní stav x je D-symetrický právě tehdy, když stav R(x) je D-symetrický. V reakci na [1] diplomová práce uvádí úplný výpočet dolní meze pro počet symetrických stavů, vysvětluje, proč vylepšené hledání prvního vzoru nefunguje tak, jak je představeno, a v neposlední řadě objasňuje matematické pozadí hledání pevných bodů rundovní funce R. Následně poukazuje na skutečnost, že linearizační metoda z [6] neuvažuje rovnici (A ⊕ α) + β = (A + β) ⊕ α (∗), která se v algo- ritmu CubeHash vyskytuje během...cs_CZ
uk.abstract.enThe present thesis analyses the proposal of CubeHash with spe- cial emphasis on the following papers: "Inside the Hypercube" [1], "Sym- metric States and Their Improved Structure" [7] and "Linearisation Frame- work for Collision Attacks" [6]. The CubeHash algorithm is presented in a concise manner together with a proof that the CubeHash round function R : ({0, 1}32 )32 → ({0, 1}32 )32 is a permutation. The results of [1] and [7] con- cerning the CubeHash symmetric states are reviewed, corrected and substan- tiated by proofs. More precisely, working with a definition of D-symmetric state, based on [7], the thesis proves both that for V = Z4 2 and its linear subspace D, there are 22 |V | |D| D-symmetric states and an internal state x is D-symmetric if and only if the state R(x) is D-symmetric. In response to [1], the thesis presents a step-by-step computation of a lower bound for the num- ber of distinct symmetric states, explains why the improved preimage attack does not work as stated and gives a mathematical background for a search for fixed points in R. The thesis further points out that the linearisation method from [6] fails to consider the equation (A ⊕ α) + β = (A + β) ⊕ α (∗), present during the CubeHash iteration phase. Necessary and sufficient conditions for A being a solution to (∗) are...en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra algebrycs_CZ
dc.identifier.lisID990015892580106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2025 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV