Show simple item record

Fractional Brownian motion
dc.contributor.advisorMaslowski, Bohdan
dc.creatorRubín, Tomáš
dc.date.accessioned2021-03-25T17:16:12Z
dc.date.available2021-03-25T17:16:12Z
dc.date.issued2013
dc.identifier.urihttp://hdl.handle.net/20.500.11956/55466
dc.description.abstractFrakcionální Brownův pohyb je netriviálním zobecněním standardního Brownova pohybu (Wienerova procesu). Upouští od nezávislosti přírůstků, závislost je naopak kontrolována Hurstovým indexem. Práce se zabývá důkazy vlastností frakcionálního Brownova pohybu, mezi které patří korelace mezi přírůstky, soběpodobnost a dlouhodobá závislost. Zabývá se také analytickými vlastnostmi jeho trajektorií - hölderovskostí a nediferencovatelností. Práce přináší důkaz tvrzení o nediferencovatelnosti skoro jistě v silnější verzi, než v jaké bývá publikován v pracích o frakcionálním Brownově pohybu. Dále se práce zabývá simulacemi trajektorií frakcionálního Brownova pohybu aplikovatelnými i na obecné gaussovské procesy. Další náplní je bodový odhad Hurstova indexu. 1cs_CZ
dc.description.abstractFractional Brownian motion is a nontrivial generalization of standard Brownian motion (Wie- ner process). Definition leaves independence of increments, whereas dependence is controlled by the Hurst index. This paper deals with proofs of fractional Brownian motion's properties such as correlation of increments, selfsimilarity, long-range dependence and analytical pro- perties of its paths, i.e. Hölder continuity and nondifferentiability. Furthermore, the proof of the theorem about nondifferentiability is presented in a stronger form than it is usual in published papers about fractional Brownian motion. Further topics are simulations of the process's paths, suitable even for general Gaussian processes, and point estimators of the Hurst index. 1en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectfractional Brownian motionen_US
dc.subjectnondifferentiability of pathsen_US
dc.subjectsimulation of pathsen_US
dc.subjectestimator of Hurst parameteren_US
dc.subjectfrakcionální Brownův pohybcs_CZ
dc.subjectnediferencovatelnost trajektoriícs_CZ
dc.subjectsi- mulace trajektoriícs_CZ
dc.subjectodhad Hurstova indexucs_CZ
dc.titleFrakcionální Brownův pohybcs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2013
dcterms.dateAccepted2013-06-27
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId76904
dc.title.translatedFractional Brownian motionen_US
dc.contributor.refereeKříž, Pavel
dc.identifier.aleph001605038
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csFrakcionální Brownův pohyb je netriviálním zobecněním standardního Brownova pohybu (Wienerova procesu). Upouští od nezávislosti přírůstků, závislost je naopak kontrolována Hurstovým indexem. Práce se zabývá důkazy vlastností frakcionálního Brownova pohybu, mezi které patří korelace mezi přírůstky, soběpodobnost a dlouhodobá závislost. Zabývá se také analytickými vlastnostmi jeho trajektorií - hölderovskostí a nediferencovatelností. Práce přináší důkaz tvrzení o nediferencovatelnosti skoro jistě v silnější verzi, než v jaké bývá publikován v pracích o frakcionálním Brownově pohybu. Dále se práce zabývá simulacemi trajektorií frakcionálního Brownova pohybu aplikovatelnými i na obecné gaussovské procesy. Další náplní je bodový odhad Hurstova indexu. 1cs_CZ
uk.abstract.enFractional Brownian motion is a nontrivial generalization of standard Brownian motion (Wie- ner process). Definition leaves independence of increments, whereas dependence is controlled by the Hurst index. This paper deals with proofs of fractional Brownian motion's properties such as correlation of increments, selfsimilarity, long-range dependence and analytical pro- perties of its paths, i.e. Hölder continuity and nondifferentiability. Furthermore, the proof of the theorem about nondifferentiability is presented in a stronger form than it is usual in published papers about fractional Brownian motion. Further topics are simulations of the process's paths, suitable even for general Gaussian processes, and point estimators of the Hurst index. 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
thesis.grade.code1
dc.contributor.consultantŠnupárková, Jana
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO
dc.identifier.lisID990016050380106986


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV